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ROBUST SUBGAUSSIAN ESTIMATION OF A MEAN VECTOR IN NEARLY
LINEAR TIME

BY JULES DEPERSIN 1 AND GUILLAUME LECUÉ 1

1CREST, ENSAE, IPParis, jules.depersin@ensae.fr; guillaume.lecue@ensae.fr

We construct an algorithm for estimating the mean of a heavy tailed ran-
dom variable when given an adversarial corrupted sample of N independent
observations. The only assumption we make on the distribution of the non-
corrupted (or informative) data is the existence of a covariance matrix Σ,
unknown to the statistician. Our algorithm outputs µ̂ which is robust to the
presence of |O| adversarial outliers and satisfies

(1) }µ̂´ µ}2 À

c

TrpΣq

N
`

d

}Σ}opK

N

with probability at least 1´expp´c0Kq´expp´c1uq, and runtime ÕpNd`
uKdq where K P t600|O|, . . . ,Nu and u P N˚ are two parameters of the
algorithm. The algorithm is fully data-dependent and does not use (1) in its
construction which combines recently developed tools for median-of-means
estimators and covering semidefinite Programming. We also show that this
algorithm can automatically adapt to the number of outliers (adaptive choice
of K) and that it satisfies the same bound in expectation.

1. Introduction on the robust mean vector estimation problem. Estimating the mean
of a random variable in a d-dimensional space when given some of its realizations is arguably
the oldest and most fundamental problem of statistics. In the past few years, it has received
important attention from two communities: the statistics [7, 48, 10, 9, 47, 49, 46, 32, 13, 42,
14] and computer science [20, 19, 23, 21, 25, 26, 12, 24, 33] communities. Both communities
consider the problem of robust mean estimation, focusing mainly on different definitions of
robustness.

The first work to raise the question of robust mean estimation are Huber’s [34, 35], Tukey’s
[56, 57] or Hampel’s [31, 30]. Their concerns was more about robustness to model misspeci-
fication and on the breakdown point property (“smallest amount of contamination necessary
to upset an estimator entirely” taken from [27]). The computational problem connected to
this issue was not of primary interest even though it was already raised, for instance, in
Section 5.3 from [27] for the construction of Tukey contours (a d-dimensional definition of
quantiles).

In recent years, many efforts have been made by the statistics community on the construc-
tion of estimators performing in a subgaussian way for heavy-tailed data. Such estimators
achieve the same statistical properties as the empirical mean X̄N of pX1, ¨ ¨ ¨ ,XN q, a N -
sample of i.i.d. Gaussian variables N pµ,Σq where µ P Rd and Σ ľ 0 is the covariance ma-
trix. In that case, for a given confidence 1´ δ, the subgaussian rate as defined in [47] is (up
to an absolute multiplicative constant)

(2) rδ “

c

TrpΣq

N
`

d

}Σ}op logp1{δq

N
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where TrpΣq is the trace of Σ and }Σ}op is the operator norm of Σ. Indeed, it follows from
Borell-TIS’s inequality (see Theorem 7.1 in [40] or pages 56-57 in [41]) that with probability
at least 1´ δ,

›

›X̄N ´ µ
›

›

2
“ sup
}v}

2
ď1

〈
X̄N ´ µ, v

〉
ď E sup

}v}
2
ď1

〈
X̄N ´ µ, v

〉
` σ

a

2 logp1{δq

where σ “ sup}v}
2
ď1

b

E
〈
X̄N ´ µ, v

〉2 is the weak variance of the Gaussian process. It is

straightforward to check that E sup}v}
2
ď1

〈
X̄N ´ µ, v

〉
ď
a

TrpΣq{N and σ “
b

}Σ}op {N ,

which leads to the rate in (2) (up to the constant
?

2 on the second term in (2)). In most of
the recent works, the effort has been made to achieve the rate rδ for i.i.d. heavy-tailed data
even under the minimal requirement that the data only have a second moment. Under this
second-moment assumption only, the empirical mean cannot1 achieve the rate (2) and one
needs to consider other procedures. Over the years, some procedures have been proposed
to achieve such a goal: it started with [8] and [45], then, a Le Cam test estimator, called
a tournament estimator in [47], a minmax median-of-means estimator in [46] and a PAC-
Bayesian estimator in [9] were constructed. The constructions in [45, 47, 46] are based on
the median-of-means principle, a technique that we will also use.

On the other side, the computer science (CS) community mostly considers a different
definition of robustness and targets a different goal. In many recent CS papers, tractable al-
gorithms (and not only theoretical estimators) have been constructed and proved to be robust
with respect to adversarial contamination of the dataset that is when some of the data are
replaced by other data which may have nothing to do with the original batch and which can
even be adversarial. This covers the Huber ε-contamination model [35] and also the O Y I
framework from [38, 39, 46]. We recall now this adversarial contamination model together
with the heavy-tailed setup which will serve as our unique assumption in this work.

ASSUMPTION 1. There exists N random vectors pX̃iq
N
i“1 in Rd which are independent

with mean µ and covariance matrix EpX̃i ´ µqpX̃i ´ µq
J ĺ Σ where Σ is an unknown co-

variance matrix. The N random vectors pX̃iq
N
i“1 are first given to an ”adversary” who is

allowed to modify up to |O| of these vectors. This modification does not have to follow any
rule. Then, the ”adversary” gives the modified dataset pXiq

N
i“1 to the statistician. Hence, the

statistician receives an ”adversarially” contaminated dataset of N vectors in Rd which can
be partitioned into two groups: the modified data pXiqiPO , which can be seen as outliers and
the ”good data” or inliers pXiqiPI such that @i P I,Xi “ X̃i. Of course, the statistician does
not know which data has been modified or not so that the partition O Y I “ t1, . . . ,Nu is
unknown to the statistician.

In the adversarial contamination model from Assumption 1, the set O can depend arbitrar-
ily on the initial data pX̃iq

N
i“1; the corrupted data pXiqiPO can have any arbitrary dependance

structure; and the informative data pXiqiPI may also be correlated (for instance, it is the case,
in general, when the |O| data X̃i with largest `d2-norm are modified by the adversary). The
computer science community looks at the problem of robust mean estimation from algorith-
mic perspectives such as the running time in this contamination model. A typical result in
this line of research is Theorem 1.3 from [12] that we recall now.

1Under only a second-moment assumption, the empirical mean achieves the rate
a

TrpΣq{pδNq which can
not be improved in general, see [8].
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THEOREM 1.1 (Theorem 1.3, [12]). Let X1, . . . ,XN be a data points in Rd following
Assumption 1. We assume that the covariance matrix Σ of the inliers satisfies Σ ĺ σ2Id.
We assume that ε “ |O|{N is such that 0 ă ε ă 1{3 and N Á d logpdq{ε. There exists an
algorithm running in ÕpNdq{polypεq which outputs µ̂ε such that with probability at least
9{10, }µ̂ε ´ µ}2 À σ

?
ε.

The notation ÕpNdq stands for the computational running time of an algorithm up to
logpNdq factors. The first result proving the existence of a polynomial time algorithm robust
to adversarial contamination may be found in [20] and the first achieving such a result un-
der only a second moment assumption may be found in [22]. Theorem 1.1 improves upon
many existing results since it achieves the optimal information theoretic-lower bound with a
(nearly) linear-time algorithm.

Finally, there are two recent papers for which both algorithmic and statistical considera-
tions are important. In [32, 13], algorithms achieving the subgaussian rate in (2) have been
constructed. They both run in polynomial time: OpN24 `Ndq for [32] and OpN4 `N2dq
for [13] (see [13] for more details on these running times). They do not consider a contamina-
tion of the dataset even though their results easily extend to this setup. Some other estimators
which have been proposed in the statistics literature are very fast to compute but they do
not achieve the optimal subgaussian rate from (2). A typical example is Minsker’s geometric
median estimator [48] which achieves the rate

a

TrpΣq logp1{δq{N in linear time ÕpNdq.
All the later three papers use the median-of-means principle. We will also use this principle.
What we mainly borrow from the literature on MOM estimators is the advantage to work
with local block means instead of the data themselves. We will identify two such advantages
by doing so: a stochastic one and a computational one (see Remark 4 below for more details).

The aim of this work is to show that a single algorithm can answer the three problems:
robustness to heavy-tailed data, to adversarial contamination and computational cost. As-
sumption 1 covers the two concepts of robustness considered in the statistics and computer
science communities since the informative data (data indexed by I) are only assumed to have
a second moment and there are |O| adversarial outliers in the dataset. Our aim is to show that
the rate of convergence (2) which is the rate achieved by the empirical mean in the ideal i.i.d.
Gaussian case can be achieved in the corrupted and heavy-tailed setup from Assumption 1
with a fast algorithm: we construct an algorithm running in time ÕpNd`u logp1{δqdq which
outputs an estimator of the true mean achieving the subgaussian rate (2) with confidence
1´ δ ´ p1{10qu (for expp´c0Nq ď δ ď expp´c1|O|q) on a corrupted database and under a
second moment assumption only. It is therefore robust to heavy-tailed data and to contamina-
tion. Our approach takes ideas from both communities: the median-of-means principle which
has been recently used in the statistics community and a SDP relaxation from [12] which can
be theoretically computed fast. The baseline idea is to construct K equal size groups of data
from the N given ones and to compute their empirical means X̄k, k “ 1, . . . ,K . These K
empirical means are used successively to find a robust descent direction thanks to a SDP
relaxation from [12]. We prove the robust subgaussian statistical property of the resulting
descent algorithm under only the Assumption 1.

The paper is organized as follows. In the next section, we give a high-level description
of the algorithm and summarize its statistical and computation performance in our main
result Theorem 2.1. We also clearly identify how it improves upon existing results on the
same subject. In Section 3, we prove its statistical properties and give a precise definition
of the algorithm. In Section 4, we study the statistical performance of the SDP relaxation
at the heart of the descent direction. In Section 5, we fully characterize its computational
cost. In Section 6, we construct a procedure achieving the same statistical properties and can
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automatically adapt to the number of outliers. This latter adaptive procedure is also proved
to satisfy estimation results in expectation.

We will use the following notation rns “ t1, . . . , nu for any n P N and `d2 stands for the
Euclidean space Rd endowed with its canonical Euclidean norm }¨}2 : x“ pxjq

d
j“1 P RdÑ

`
ř

j x
2
j

˘1{2. A `d2-ball centered in x P Rd with radius r ą 0 is denoted by Bd
2px, rq, the `d2

unit ball is denoted by Bd
2 and the `d2 unit sphere is denoted by Sd´1

2 .

2. Construction of the algorithms and main result. The construction of our robust
subgaussian descent procedure is using two ideas. The first one comes from the median-
of-means (MOM) approach which has recently received a lot of attention in the statistical
and machine learning communities [6, 45, 18, 50, 48]. The MOM approach [51, 3, 36, 4]
often yields robust estimation strategies (but usually at a high computational cost). Let us
give the general idea behind that approach: we first randomly split the data into K equal-size
blocks B1, . . . ,BK (if K does not divide N , we just remove some data). We then compute
the empirical mean within each block: for k “ 1, . . . ,K ,

X̄k “
1

|Bk|

ÿ

iPBk

Xi

where we set |Bk| “ CardpBkq “N{K . In the one-dimensional case, we then take the me-
dian of the latter K empirical means to construct a robust and subgaussian estimator of the
mean [18]. It is more complicated in the multi-dimensional case, where there is no definitive
equivalent of the one dimensional median but instead there are several candidates: coordinate-
wise median, the geometric median (also known as Fermat point), the Tukey Median, among
many others (see [55]). The strength of this approach is the robustness of the median operator,
which leads to good statistical properties even on corrupted databases. For the construction
of our algorithm, we use the idea of grouping the data and compute iteratively some median
of the bucketed means X̄k, k “ 1, . . . ,K .

In [13], the authors propose to use these block means for a gradient descent algorithm: at
the current point xc of the iterative algorithm, a ”robust descent direction” well aligned with
xc ´ µ is constructed with high probability. Note that xc ´ EX is the best descent direction
towards EX starting from xc; we can also re-write that as a matrix problem: a top eigenvector
(i.e. an eigenvector associated with the largest singular value) of pEX ´ xcqpEX ´ xcqJ is
the optimal descent direction pxc ´EXq{ }xc ´EX}2. As a consequence, a top eigenvector
of a solution to the optimization problem

(3) argmax
Mľ0,TrpMq“1

〈
M, pEX ´ xcqpEX ´ xcqJ

〉
also yields the best descent direction we are looking for (note that

〈
A,B

〉
“TrpAJBq is the

inner product between two matrices A and B). Optimization problem (3) may be seen as a
SDP relaxation for the problem of finding a top eigenvector and it is the reason why we go
into SDP optimization techniques. Recently, this SDP relaxation has been bypassed thanks
to the power method in [42] whose aims is also to approximate a top eigenvector.

Of course, we don’t know pEX ´ xcqpEX ´ xcqJ in (3) but we are given a database of
N data X1, . . . ,XN (among which |I| of them have mean µ). We use these data to estimate
in a robust way the unknown quantity pEX ´ xcqpEX ´ xcqJ in (3). Ideally, we would like
to identify the informative data and their block means p1{|K|q

ř

kPKpX̄k ´ xcqpX̄k ´ xcq
J,

where K“ tk :Bk
Ş

O “Hu, to estimate this quantity but this information is not available
either.
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To address this problem we use a tool introduced in [12, 20] adapted to the block means.
The idea is to endow each block mean X̄k with a weight ωk taken in ∆K defined as

∆K “

#

pωkq
K
k“1 : 0ď ωk ď

1

9K{10
,
K
ÿ

k“1

ωk “ 1

+

.

Ideally we would like to put 0 weights to all block means X̄k corrupted by outliers. But, we
cannot do it since K is unknown. To overcome this issue, we learn the optimal weights and
consider the following minmax optimization problem

(Exc) max
Mľ0,TrpMq“1

min
wP∆K

〈
M,

K
ÿ

k“1

ωkpX̄k ´ xcqpX̄k ´ xcq
J
〉
.

This is the dual problem from [12] adapted to the block means. The key insight from [12]
is that an approximate solution Mc of the maximization problem in (Exc) can be obtained
in a reasonable amount of time using a covering SDP approach [12, 53] (see Section 4). We
expect a solution (in M ) to (Exc) to be close to a solution of the minimization problem in (3)
– which is M˚ “ pµ´xcqpµ´xcq

J{ }µ´ xc}
2
2 – and the same for their top eigenvectors (up

to the sign). We note that in order to find a good descent direction the authors of [13] also use
a (different) SDP relaxation. Theirs costs OpN4 `Ndq to be computed.

At a high level description, the robust descent algorithm we perform outputs µ̂K after at
most logd iterations of the form xc ´ θcv1 where v1 is a top eigenvector of an approximate
solution Mc to the problem (Exc) and θc is a step size. It starts at the coordinate-wise median
of the bucketed means X̄1, . . . , X̄K . In Algorithm 4, we define precisely the step size and
the stopping criteria we use to define the algorithm (it requires too much notation to be
defined at this stage). This algorithm outputs the vector µ̂K whose running time and statistical
performance are gathered in the following result.

THEOREM 2.1. Grant Assumption 1. Let K P t1, . . . ,Nu be the number of equal-size
blocks and assume that K ě 300|O|. Let u P N˚ be a parameter of the covering SDP used
at each descent step. With probability at least 1´ expp´K{180000q ´ p1{10qu, the descent
algorithm finishes in time ÕpNd`Kudq and outputs µ̂K such that

}µ̂K ´ µ}2 ď 808

¨

˝1200

c

TrpΣq

N
`

d

1200 }Σ}opK

N

˛

‚.

To make the presentation of the proof of Theorem 2.1 as simple as possible we did not op-
timize the constants (better constants have been obtained in [8, 9]). Theorem 2.1 generalizes
and improves Theorem 1.1 in several ways. We first improve the confidence from a constant
“9{10” to an exponentially large confidence 1´expp´c0Kq (when u„K), which was a ma-
jor technical challenge (note however that the confidence 9{10 in [11] can be increased to any
desired confidence at the expense of deteriorating the rate of convergence – see footnote of
page 2 in [11]). We obtain the result for any covariance structure Σ and µ̂K does not require
the knowledge of Σ for its construction. We obtain a result which holds for any N (even in
the case where N ď d). The construction of µ̂K does not require the knowledge of the exact
proportion of outliers ε in the dataset, but it requires an upper bound in the number of outlier,
so that we can chose K Á |O|. Moreover, using a Lepskii adaptation method [44, 43] it is
also possible to automatically choose K and therefore to adapt to the proportion of outliers if
we have some extra knowledge on TrpΣq and }Σ}op (see Section 6 for more details). More-
over, if we only care about constant 9{10 confidence, our runtime does not depend on ε and
is nearly-linear ÕpNdq. We also refer the reader to Corollary 2 for more comparison with
Theorem 1.1.
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REMARK 1 (Nearly-linear time). We identify two important situations where the algo-
rithm from Theorem 2.1 runs in nearly-linear time, that is, in time ÕpNdq. First, when the
number of outliers is known to be less than

?
N , we can choose K ď

?
N and u“K . In that

case, the algorithm runs in time ÕpNdq and the subgaussian rate is achieved with probability
at least 1 ´ 2 expp´c0Kq for some constant c0 (see also Corollary 3 for an adaptive to K
version of this result). Another widely investigated situation is when we only want to have a
constant confidence like 9{10 as it is the case in the CS community such as in Theorem 1.1.
In that case, one may choose u “ 1 and any values of K P rN s can be chosen (so we can
have any number of outliers up to a N{300) to achieve the rate in Theorem 2.1 with con-
stant probability and in nearly-linear time ÕpNdq (see also Corollary 2 for an adaptive to K
version of this result). Finally, it is possible to get a subgaussian estimator for the all range
of K P rN s which is also robust to adversarial outliers up to a constant fraction of N when
we take u“K . In that case, the running time is ÕpNd`K2dq which is at worst ÕpN2dq.
So algorithm outputs µ̂K in time between ÕpNdq and ÕpN2dq depending on the number of
outliers and the probability deviation certifying the result we want.

Theorem 2.1 improves the result from [32, 13] since µ̂K runs faster than the polyno-
mial times OpN24 `Ndq and OpN4 `Ndq in [32] and [13]. The algorithm µ̂K also does
not require the knowledge of TrpΣq and }Σ}op. Finally, Theorem 2.1 provides running time
guarantees on the algorithm unlike in [47, 46, 9] and it improves upon the statistical per-
formance from [48]. The main technical novelty lies in Proposition 1, necessary to improve
analysis from [12] toward exponentially large confidence 1´expp´c0Kq. Proposition 1 may
be of independent interest. Theorem 2.1 also improves the running time in [12] ÕpNd{ε6q
and the constant probability deviation (see Theorem 1.1 for more details) – both probability
estimates and computational time have been improved by using bucketed means in place of
the data themselves (see Remark 4 below for more details). The computational time improve-
ment from Theorem 2.1 upon the one in [13] is due to the use of covering SDP [1, 53, 11] at
each iteration of the robust gradient descent algorithm. Very recent works [42, 33, 16] obtain
similar results to the one of Theorem 2.1. They were also able to replace SDPs by spectral
methods for the computations of a robust descent direction at each step. Even though cover
SDPs are from a theoretical point of view computationally efficient [1, 53] they are notori-
ously difficult to implement in practice whereas the power methods used in [42, 33, 16] open
the door to implementable algorithms. For more references on robust mean estimation, we
refer the reader to the survey [24].

3. Proof of the statistical performance in Theorem 2.1. In this section, we prove the
statistical performance of µ̂K as stated in Theorem 2.1. We first identify an event E onto
which we will derive the rate of convergence of the order of (2). This event is also used to
compute the running time of µ̂K in the next section as announced in Theorem 2.1.

PROPOSITION 1. Denote by E the event onto which for all symmetric matrices M ľ 0
such that TrpMq “ 1, there are at least 9K{10 of the blocks for which

›

›M1{2pX̄k ´ µq
›

›

2
ď

8r where

(4) r “ 1200

c

TrpΣq

N
`

d

1200 }Σ}opK

N
.

If Assumptions 1 holds and K ě 300|O| then PrEs ě 1´ expp´K{180000q.

Proposition 1 contains all the stochastic arguments we will use in this paper (constants
have not been optimized). In other words, after identifying the event E , all the remaining
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arguments do not involve any other stochastic tools. The proof of Proposition 1 is based on a
rounding argument similar to the one used to prove Grothendieck’s inequality [29, 54] or in
the Goemans and Williamson’s analysis of a SDP relaxation of the Max-Cut problem [28] or
in Nesterov’s theorem [52]. Before proving Proposition 1, let us first state a result that is of
particular interest beyond our problem.

COROLLARY 1. On the event E , for all symmetric matrices M PRdˆd such that M ľ 0
and TrpMq “ 1 there are at least 9K{10 blocks k for which

›

›M1{2pX̄k ´ µq
›

›

2
ď 8r and for

all such k’s and all xc PRd,

(5)
›

›

›
M1{2pµ´ xcq

›

›

›

2
´ 8r ď

›

›

›
M1{2pX̄k ´ xcq

›

›

›

2
ď

›

›

›
M1{2pµ´ xcq

›

›

›

2
` 8r.

Let us now turn to a proof of Proposition 1. We first remark that if we were to only consider
matrices M of rank 1, Proposition 1 would boil down to showing that for all v P Sd´1

2 (the
unit sphere in `d2) on more than 9K{10 blocks |

〈
v, X̄k´µ

〉
| ď 8r. This is a “classical” result

in the MOM literature which has been proved in [47] and [46]. We recall now this result and
the short proof from [46] adapted to the adversarial contamination setup from Assumption 1.
We will use it to prove Proposition 1.

LEMMA 1. Grant Assumption 1 and assume that K ě 300|O|. With probability at least
1´ expp´K{180000q, for all v P Sd´1

2 , there are at least 99K{100 of the blocks k such that
|
〈
v, X̄k ´ µ

〉
| ď r.

Proof. We use the notation introduced in Assumption 1 and we considered the following
bucketed means X̃k “ |Bk|

´1
ř

iPBk
X̃i for k P rKs. They are the K means constructed

on the N independent vectors X̃i, i P rN s before contamination (whereas X̄k are the ones
constructed after contamination).

In the following, we show that with probability at least 1 ´ expp´K{180000q, for all
v P Sd´1

2 ,

(6)
ÿ

kPrKs

Ip|
〈
X̃k ´ µ, v

〉
| ą rq ď

2K

300
.

The result from Lemma 1 follows from (6) because the adversary is allowed to change at most
|O| data points among the X̃i’s. Hence, there are at most |O| bucketed means X̃k containing
an outliers and so K ´ |O| ě 299K{300 means X̃k which are unchanged that is for which
X̃k “ X̄k. So, if (6) holds then they are at least 298K{300 means X̃k for which |

〈
X̃k ´

µ, v
〉
| ď r and so, at least 297K{300“ 99K{100 means X̄k for which |

〈
X̄k ´ µ, v

〉
| ď r.

As in [37], we define φptq “ 0 if tď 1{2, φptq “ 2pt´ 1{2q if 1{2ď tď 1 and φptq “ 1 if
tě 1. We have Iptě 1q ď φptq ď Iptě 1{2q for all t PR and so
ÿ

kPrKs

Ip|
〈
X̃k ´ µ, v

〉
| ą rq

ď
ÿ

kPrKs

Ip|
〈
X̃k ´ µ, v

〉
| ą rq ´ Pr|

〈
X̃k ´ µ, v

〉
| ą r{2s ` Pr|

〈
X̃k ´ µ, v

〉
| ą r{2s

ď
ÿ

kPrKs

φ

˜

|
〈
X̃k ´ µ, v

〉
|

r

¸

´Eφ

˜

|
〈
X̃k ´ µ, v

〉
|

r

¸

` Pr|
〈
X̃k ´ µ, v

〉
| ą r{2s
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ď sup
vPSd´1

2

¨

˝

ÿ

kPrKs

φ

˜

|
〈
X̃k ´ µ, v

〉
|

r

¸

´Eφ

˜

|
〈
X̃k ´ µ, v

〉
|

r

¸

˛

‚`
ÿ

kPrKs

Pr|
〈
X̃k ´ µ, v

〉
| ą r{2s.

For all k P rKs, we have

Pr|
〈
X̃k ´ µ, v

〉
| ą r{2s ď

E
〈
X̃k ´ µ, v

〉2

pr{2q2
ď

4KvJΣv

Nr2

ď
4K supvPSd´1

2
vJΣv

Nr2
“

4K }Σ}op
Nr2

ď
1

300

because r2 ě 1200K }Σ}op {N .
Next, we use several tools from empirical process theory and in particular, for a sym-

metrization argument, we consider a family of N independent Rademacher variables pεiqNi“1

independent of the pX̃iq
N
i“1. In (bdi) below, we use the bounded difference inequality (Theo-

rem 6.2 in [5]). In (sa-cp), we use the symmetrization argument and the contraction principle
(Chapter 4 in [41]) – we refer to the supplementary material of [46] for more details. We
have, with probability at least 1´ expp´K{180000q,

sup
vPSd´1

2

¨

˝

ÿ

kPrKs

φ

˜

|
〈
X̃k ´ µ, v

〉
|

r

¸

´Eφ

˜

|
〈
X̃k ´ µ, v

〉
|

r

¸

˛

‚

pbdiq
ď E sup

vPSd´1
2

¨

˝

ÿ

kPrKs

φ

˜

|
〈
X̃k ´ µ, v

〉
|

r

¸

´Eφ

˜

|
〈
X̃k ´ µ, v

〉
|

r

¸

˛

‚`

c

K2

360000

psa´cpq
ď

4K

Nr
E sup
vPSd´1

2

〈
v,

ÿ

iPrNs

εipX̃i ´ µq
〉
`

K

600

“
4K
?
Nr

E

›

›

›

›

›

›

1
?
N

ÿ

iPrNs

εipX̃i ´ µq

›

›

›

›

›

›

2

`
K

600
ď

K

300

because r ě 1200E
›

›

›

ř

iPrNs εipX̃i ´ µ
˚q

›

›

›

2
{
?
N since

E

›

›

›

›

›

›

1
?
N

ÿ

iPrNs

εipX̃i ´ µq

›

›

›

›

›

›

2

ď

g

f

f

f

eE

›

›

›

›

›

›

1
?
N

ÿ

iPrNs

εipX̃i ´ µq

›

›

›

›

›

›

2

2

ď
a

TrpΣq.

As a consequence, when K ě 300|O|, with probability at least 1´ expp´K{180000q, for
all v P Sd´1

2 ,
ÿ

kPrKs

Ip|
〈
X̃k ´ µ, v

〉
| ą rq ď

|K|
300

`
K

300
ď

2K

300
,

which is (6).

Proof of Proposition 1: Let M P Rdˆd be such that M ľ 0 and TrpMq “ 1. Denote by
AM “ tk P rKs :

›

›M1{2pX̄k ´ µq
›

›

2
ě 8ru and assume that |AM | ě 0.1K . Let G be a Gaus-

sian vector in Rd with mean 0 and covariance matrixM (and independent fromX1, . . . ,XN ).
We consider the random variable Z “

ř

kPrKs I
`

|
〈
X̄k ´ µ,G

〉
| ą 5r

˘

. We work condition-
ally to X1, . . . ,XN in this paragraph.
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For all k P rKs,
〈
X̄k ´ µ,G

〉
is a centered Gaussian variable with variance σ2

k :“
›

›M1{2pX̄k ´ µq
›

›

2

2
. In particular, for all k P AM , if we denote by g a standard real-valued

Gaussian variable, we have PG
“

|
〈
X̄k ´ µ,G

〉
| ą 5r

‰

ě PG
“

|
〈
X̄k ´ µ,G

〉
| ą 5σk{8

‰

“

2Prg ą 5{8s ě 0.528 (where PG (resp. EG) denotes the probability (resp. expectation) w.r.t.
G conditionally on X1, . . . ,XN ). Hence, EGZ ě 0.528|AM | ě 0.0528K . Since |Z| ď K
a.s., it follows from Paley-Zygmund inequality (see Proposition 3.3.1 in [15]) that

PGrZ ą 0.01Ks ě
pEGZ ´ 0.01Kq2

EGZ2
ě p0.0428q2 “ 0.0018.

Moreover, it follows from the Borell-TIS inequality (see Theorem 7.1 in [40] or pages 56-
57 in [41]) that with probability at least 1´expp´8q, }G}2 ď E }G}2`4

b

}M}op. Moreover,

E }G}2 ď
a

TrpMq ď 1 and }M}op ď TrpMq ď 1, so }G}2 ď 5 with probability at least
1´ expp´8q ě 0.9996. Since 0.9996` 0.0018ą 1 there exists a vector GM P Rd such that
}GM}2 ď 5 and

ř

kPrKs I
`

|
〈
X̄k ´ µ,GM

〉
| ą 5r

˘

ą 0.01K . We recall that this latter result
holds when we assume that |AM | ě 0.1K .

Next, we denote by Ω0 the event onto which for all v P Sd´1
2 , there are at least

99K{100 blocks such that |
〈
X̄k ´ µ, v

〉
| ď r. We know from Lemma 1 that PrΩ0s ě

1 ´ expp´K{180000q. Let us place ourselves on the event Ω0 up to the end of the proof.
Let M P Rdˆd be such that M ľ 0 and TrpMq “ 1 and assume that |AM | ě 0.1K .
It follows from the first paragraph of the proof that there exists GM P Rd such that
}GM}2 ď 5 and

ř

kPrKs I
`

|
〈
X̄k ´ µ,GM

〉
| ą 5r

˘

ą 0.01K . Given that we work on the
event Ω0, we have for vM “ GM{ }GM}2, that for more than 99K{100 blocks |

〈
X̄k ´

µ, vM
〉
| ď r and so |

〈
X̄k ´ µ,GM

〉
| ď }GM}2 r ď 5r which contradicts the fact that

ř

kPrKs I
`

|
〈
X̄k ´ µ,GM

〉
| ą 5r

˘

ą 0.01K . Therefore, we necessarily have |AM | ď 0.1K ,
which concludes the proof.

Proof of Corollary 1: Let us assume that the event E holds up to the end of the proof. Let
M P Rdˆd be such that M ľ 0 and TrpMq “ 1. Let KM “ tk P rKs :

›

›M1{2pX̄k ´ µq
›

›

2
ď

8ru. On the event E , we have |KM | ě 9K{10. Let xc P Rd. For all k P KM , we have
›

›M1{2pµ´ X̄kq
›

›

2
ď 8r and so

›

›

›
M1{2pX̄k ´ xcq

›

›

›

2
P

›

›

›
M1{2pµ´ xcq

›

›

›

2
`

”

´

›

›

›
M1{2pµ´ X̄kq

›

›

›

2
,
›

›

›
M1{2pµ´ X̄kq

›

›

›

2

ı

Ă

›

›

›
M1{2pxc ´ µq

›

›

›

2
` r´8r,8rs .

Let us now turn to the study of the optimization problem (Exc) on the event E . Like in
[12], we denote by OPTxc the optimal value of (Exc) and by

hxc :M Ñ min
wP∆K

xM,
ÿ

kPrKs

ωkpX̄k ´ xcqpX̄k ´ xcq
Jy

its objective function to be minimized over tM PRdˆd :M ľ 0,TrpMq “ 1u.

REMARK 2. For a given M , the optimal choice of w P∆K in the definition of hxcpMq
is straightforward: one just have to put the maximum possible weight on the 9K{10 smallest〈
M, pX̄k ´ xcqpX̄k ´ xcq

J
〉
, k P rKs. Formally, we set SM “ σpt1,2, ¨ ¨ ¨ ,9K{10uq, where
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σ is a permutation on rKs that arranges the pX̄k ´ xcq
JMpX̄k ´ xcq, k P rKs in ascending

order:
›

›

›
M1{2pX̄σp1q ´ xcq

›

›

›

2
ď

›

›

›
M1{2pX̄σp2q ´ xcq

›

›

›

2
ď ¨ ¨ ¨ ď

›

›

›
M1{2pX̄σpKq ´ xcq

›

›

›

2
.

Then we get hxcpMq “ p1{|SM |q
ř

kPSM pX̄k ´ xcq
JMpX̄k ´ xcq.

The first lemma deals with the optimal value of (Exc) when the current point xc is far from
the mean µ.

LEMMA 2. On the event E , for all xc PRd, if }xc ´ µ}2 ą 16r then

p8{9qp}xc ´ µ}2 ´ 8rq2 ďOPTxc ď p}xc ´ µ}2 ` 8rq2.

Proof. Let M be a matrix such that M ľ 0 and TrpMq “ 1. Set KM “ tk P rKs :
›

›M1{2pX̄k ´ µq
›

›

2
ď 8ru. On the event E , we have |KM | ě 9K{10 and it follows from Corol-

lary 1 that for all k PKM and all xc PRd,

(7)
›

›

›
M1{2pµ´ xcq

›

›

›

2
´ 8r ď

›

›

›
M1{2pX̄k ´ xcq

›

›

›

2
ď

›

›

›
M1{2pµ´ xcq

›

›

›

2
` 8r.

Then we define a weight vector ω̃ P∆K by setting for all k P rKs

ω̃k “

"

1{|KM | if k PKM

0 else.

It follows from the definition of hxc and (7) that

hxcpMq ď
ÿ

kPrKs

ω̃kpX̄k ´ xcq
JMpX̄k ´ xcq(8)

“
1

|KM |

ÿ

kPKM

›

›

›
M1{2pX̄k ´ xcq

›

›

›

2

2
ď

´›

›

›
M1{2pµ´ xcq

›

›

›

2
` 8r

¯2
.

Taking the maximum over all M P Rd such that M ľ 0 and TrpMq “ 1 on both side of the
latter inequality yields the right-hand side inequality of Lemma 2.

For the left-hand side inequality of Lemma 2, we let xc PRd be such that }xc ´ µ}2 ą 16r
and let M be such that M ľ 0 and TrpMq “ 1. We use the notation and observation from
Remark 2: we note that |KM

Ş

SM | ě 8K{10 so that it follows from Corollary 1 that

hxcpMq “
1

9K{10

ÿ

kPSM

›

›

›
M1{2pX̄k ´ xcq

›

›

›

2

2
ě

1

9K{10

ÿ

kPAM
Ş

SM

›

›

›
M1{2pX̄k ´ xcq

›

›

›

2

2

ě
8K{10

9K{10

´›

›

›
M1{2pµ´ xcq

›

›

›

2
´ 8r

¯2
.

Then, taking the maximum over all M ľ 0 such that TrpMq “ 1 on both sides, finishes the
proof.

The next lemma shows that the top eigenvector of an approximate solution to (Exc) is
aligned with the best possible descent direction pµ ´ xcq{ }µ´ xc}2. It is taken from the
proof of Lemma 3.3 in [12]. We reproduce here a short proof for completeness.

PROPOSITION 2. On the event E , if M is a matrix such that M ľ 0, TrpMq “ 1 and
hxcpMq ě pβ }xc ´ µ}2 ` 8rq2 for some 1{

?
2 ď β ď 1, then any top eigenvector v1 of M

satisfies
ˇ

ˇ

ˇ

ˇ

〈
v1,

xc ´ µ

}xc ´ µ}2

〉ˇˇ
ˇ

ˇ

ą
a

2β2 ´ 1.
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Proof. Let M be a matrix such that M ľ 0 , TrpMq “ 1 and hxcpMq ě pβ }xc ´ µ}2 `
8rq2 for some 1{

?
2ď β ď 1. We use the same argument as in the proof of Lemma 2: on the

event E , |KM | ě 9K{10 where KM “ tk P rKs :
›

›M1{2pX̄k ´ µq
›

›

2
ď 8ru and so ω̃ P∆K

where for all k P rKs, ω̃k “ 1{|KM | if k P KM and ω̃k “ 0 if k R KM . It follows from the
definition of hxc that

hxcpMq ď
ÿ

kPrKs

ω̃kpX̄k ´ xcq
JMpX̄k ´ xcq “

1

|KM |

ÿ

kPKM

›

›

›
M1{2pX̄k ´ xcq

›

›

›

2

2

and so from Corollary 1, hxcpMq ď
`
›

›M1{2pµ´ xcq
›

›

2
` 8r

˘2
. Since, we assumed that

hxcpMq ě pβ }xc ´ µ}2 ` 8rq2, it follows that
›

›M1{2pµ´ xcq
›

›

2

2
ě β2 }µ´ xc}

2
2.

Let λ1 ě λ2 ě . . .ě λd ě 0 denote the eigenvalues of M and let v1, . . . , vd denote corre-
sponding eigenvectors. The conditions on M imply that

ř

j λj “ 1 and BM “ pv1, . . . , vdq is
an orthonormal basis of Rd. We denote v “ pµ ´ xcq{ }µ´ xc}2. We decompose v in BM
as v “

ř

j αjvj with
ř

j α
2
j “ 1. Using this decomposition, we have vJMv “

ř

j λjα
2
j .

We have λ1 “ λ1
ř

j α
2
j ě

ř

j λjα
2
j ě β2, so λ1 ě β2. Moreover, since

ř

j λj “ 1, we
have β2

ř

j α
2
j ď

ř

j λjα
2
j ď λ1α

2
1 ` p1´ λ1qp1´ α

2
1q ď α2

1 ` p1´ β
2q
ř

j α
2
j , so we have

α2
1 ě p2β

2 ´ 1q. As we know that α1 “
〈
v1, v

〉
, we get the result.

Proposition 2 is the first tool we need to construct a descent algorithm since it provides a
descent/ascent direction (depending on the sign of the top eigenvector of an approximate solu-
tion to (Exc)). It remains to specify three other quantities to fully characterize our algorithm:
a starting point, a step size and a stopping criteria. We start with the starting point. Here we
simply use the coordinate-wise median-of-means. The following statistical guarantee on the
coordinate-wise median-of-means is known or folklore but we want to put forward that in our
case it holds on the event E . This again shows that E is the only event we need to fully analyze
all the building blocks of the algorithm. We recall that the coordinate-wise median-of-means
is the estimator µ̂p0q P Rd whose coordinates are for all j P rds, µ̂p0qj “medpX̄k,j : k P rKsq

where X̄k,j is the j-th coordinate of the block mean X̄k for all k P rKs.

PROPOSITION 3. On the event E , we have
›

›µ̂p0q ´ µ
›

›

2
ď 8
?
dr.

Proof. Let us place ourselves on the event E during all the proof. For all directions,
v P Sd´1

2 , there are at least 9K{10 blocks k such that |
〈
X̄k ´ µ, v

〉
| ď 8r. In particular,

for all j P rds, |
〈
X̄k ´ µ, ej

〉
| ď 8r where pe1, . . . , edq is the canonical basis of Rd. That is

for at least 9K{10 blocks |X̄k,j ´ µj | ď 8r. In particular, the latter result is true for the
median of tX̄k,j : k P rKsu, that is, for µ̂p0qj . We therefore have

›

›µ̂p0q ´ µ
›

›

8
ď 8r and so

›

›µ̂p0q ´ µ
›

›

2
ď 8r

?
d.

Proposition 3 guarantees that starting from the coordinate-wise median-of-means we are
off by a

?
d proportional factor from the optimal rate r. This will play a key role to analyze

the number of steps we need to reach µ within the optimal rate r. Indeed, if we prove a
geometric decay of the distance to µ along the descent algorithm then only logd steps (up to
a multiplicative constants) would be enough to reach µ by a distance at most of the order of r.

Let us now specify the step size we use at each iteration. At the current point xc we com-
pute a top eigenvector v1 of an approximate solution M to (Exc) (i.e. M such that hxcpMq ě
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pβ }xc ´ µ}2 ` 8rq2 for some 1{
?

2ď β ď 1). The next iteration is xc`1 “ xc ´ θcv1 where
the step size is

(9) θc “´Med
`〈
X̄k ´ xc, v1

〉
: k P rKs

˘

.

In particular, since θcv1 does not depend on the sign of v1 (the product θcv1 is the same if we
replace v1 by ´v1), we do not care which top eigenvector of M we choose.

Let us now prove a geometric decay of the algorithm while xc is far from µ. Again, this
result is proved on the event E .

PROPOSITION 4. On the event E , the following holds. Let xc P Rd (be the current point
of the algorithm). Assume that M is an approximate solution of (Exc): M is such that
hxcpMq ě pβ }xc ´ µ}2 ` 8rq2 for some 0.78 ď β ď 1 and let v1 be one of its top eigen-
vectors. Then, we have

}xc`1 ´ µ}
2
2 ď 0.8 }xc ´ µ}

2
2 ` 64r2

when xc`1 “ xc ´ θcv1 for θc defined in (9).

Proof. Let us assume that the event E holds up to the end of the proof. Let M be an
approximate solution to (Exc) such that hxcpMq ě pβ }xc ´ µ}2` 8rq2 for some 0.78ď β ď
1 and let v1 be a top eigenvector of M .

In direction v1, there are at least 9K{10 blocks such that |
〈
X̄k ´ µ, v1

〉
| ď 8r (see

Lemma 1). Hence, on these blocks, we also have

|θc ´
〈
xc ´ µ, v1

〉
| “ |Med

`〈
µ´ X̄k, v1

〉
: k P rKs

˘

|

ďMed
`

|
〈
µ´ X̄k, v1

〉
| : k P rKs

˘

ď 8r.(10)

Let v “ pµ ´ xcq{ }µ´ xc}2 denote the optimal normalized descent direction. We write
v “ λ1v1 ` λ2v

K
1 where vK1 is a normalized orthogonal vector to v1. We have λ2

1 ` λ
2
2 “ 1

and it follows from Proposition 2 that |λ1| “ |
〈
v1, v

〉
| ą

a

2β2 ´ 1. We conclude that

}xc`1 ´ µ}
2
2 “ }xc ´ µ´ θcv1}

2
2 “

›

›p
〈
xc ´ µ, v1

〉
´ θcqv1 `

〈
xc ´ µ, v

K
1

〉
vK1

›

›

2

2

“ p
〈
xc ´ µ, v1

〉
´ θcq

2 `
〈
xc ´ µ, v

K
1

〉2
ď p8rq2 ` λ2

2 }xc ´ µ}
2
2

As λ2
2 “ 1´ λ2

1 ă 2´ 2β2 ă 0.8 we get the result.

We now have almost all the building blocks to fully characterize the algorithm. The last
and final step is to find a stopping rule. The idea we use to design such a rule is based on
Proposition 4: we know that when the current point xc is not in a `d2-neighborhood of µ with
a radius 80r then the `d2-distance between the next iteration xc`1 and µ should be less than?

0.81 times the `d2-distance between xc and µ – that is a geometric decay of the distance to
µ. Moreover, if the current iteration xc is in a `d2-ball centered in µ with the radius 80r then,
it follows from Proposition 4 that the next iteration xc`1 will also be in a `d2-ball centered in
µ with radius at most 80r. So once the algorithm enters the ball Bd

2pµ,80rq it never leaves
it. We therefore have a geometric decay of the distance to µ along the iterations until we
reach the ball Bd

2pµ,80rq. Starting from the coordinate-wise median(-of-means) which is in
a 8
?
dr neighborhood of µ (see Proposition 3), we only have to do logp8

?
dq{ logp1{

?
0.81q

iterations to output a current point which at most 80r-close to µ w.r.t. the `d2-norm.
We are now in a position to write an “almost final” pseudo-code of our algorithm. In the

next section, we will dive a bit deeper in this pseudo-code (and in particular on the covering
SDP algorithm used to construct an approximate solution to (Exc)) in order to provide a final
pseudo-code together with its total running time.
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input : X1, . . . ,XN and a number K of blocks
output: A robust subgaussian estimator of µ

1 Construct an equipartition B1 \ ¨ ¨ ¨ \BK “ t1, ¨ ¨ ¨ ,Nu
2 Construct the K empirical means X̄k “ pN{Kq

ř

iPBk
Xi, k P rKs

3 Compute µ̂p0q the coordinate-wise median-of-means and put xcÐ µ̂p0q

4 for T “ 1,2, ¨ ¨ ¨ , logp8
?
dq{ logp1{

?
0.81q do

5 Compute Mc an approximate solution to (Exc) such that

hxcpMcq ě p0.78 }xc ´ µ}2 ` 8rq2

6 Compute v1 a top eigenvector of Mc

7 Compute a step size θc “´Med
`〈
X̄k ´ xc, v1

〉
: k P rKs

˘

8 Update xcÐ xc ´ θcv1

9 end
10 Return xc

Algorithm 1: “Almost final” pseudo-code of the robust sub-gaussian estimator of µ

Algorithm 1 is “almost” our final algorithm. There is one last step we need to check
carefully: given a current point xc we need to find a way to construct Mc satisfying
“hxcpMcq ě p0.78 }xc ´ µ}2 ` 8rq2” without knowing r or µ. This is the last issue we need
to address in order to explain how step 5 from Algorithm 1 can be realized in a fully data-
dependent way in a good time. This issue is answered in the next section together with the
computation of its running time.

4. Approximately solving the SDP (Exc
). The aim of this section is to show that, on

the event E , it is possible to construct in a reasonable amount of time a matrix Mc such that
“hxcpMcq ě p0.78 }xc ´ µ}2 ` 8rq2” without any extra information than the data. To that end
we construct in an efficient way an approximate solution to the optimization problem (Exc)
using covering SDP as in [12]. The main result of this section is the following.

THEOREM 4.1. Let u P N˚. On the event E , for every xc P Rd such that }xc ´ µ}2 ě
800r, given input xc, we can either compute, in time ÕpKudq, with probability ą 1 ´
p1{10qu`5{

?
d :

• A matrix Mc such that

hxcpMcq ě p0.78 }xc ´ µ}2 ` 8rq2

• Or directly a subgaussian estimate of µ, using only the block means X̄1, . . . , X̄K as inputs.

Theorem 4.1 answers the last issue raised at the end of Section 3 and provides the running
time for step 5 of Algorithm 1. It therefore concludes the statement that there exists a fully
data-driven robust subgaussian algorithm for the estimation of a mean vector under the only
Assumption 1 (the total running time of Algorithm 1 is studied in Section 5).

REMARK 3. Theorem 4.1 states that we either find an approximate solution Mc to (Exc)
or a good estimate of µ (at the current point xc). As we will see in this section, this second
case is degenerate as it is not the typical situation.
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Before turning to the proof of Theorem 4.1, we recall the definition of the following quan-
tities to ease the reading of the proof:

OPTxc “ min
Mľ0:TrpMq“1

hxcpMq where hxc :M Ñ min
wP∆K

xM,
ÿ

kPrKs

ωkpX̄k ´ xcqpX̄k ´ xcq
Jy

and (Exc) refers to the optimization problem minM phxcpMq :M ľ 0,TrpMq “ 1q.
We now turn to the proof of Theorem 4.1. It is decomposed into several lemmas adapted

from techniques developed by [12] to approximately solve the SDP problem (Exc) in time
ÕpKudq as announced in Theorem 1.1. To that end, we first introduce the following covering
SDP

(Cρ)

minimize
M 1,y1

TrpM 1q `
›

›y1
›

›

1

subject to M 1 ľ 0, y1 ě 0,

@k P rKs, ρpX̄k ´ xcq
JM 1pX̄k ´ xcq ` 9K{10 y1k ě 1

where ρ ą 0 is some parameter that we will show how to fine-tune later. Then, we show
that, for a good choice of ρ, we can turn a good approximate solution for (Cρ) into a good
approximate solution for (Exc).

We denote by gpρq the optimal objective value of (Cρ). We begin with a first lemma that
shows how to link the two optimization problems (Exc) and (Cρ). The proof can be found in
Lemma 4.2 from [12]. We adapt it here for our purpose.

LEMMA 3. Let ρą 0. From a feasible solution pM 1, y1q for (Cρ) that achieves TrpM 1q`

}y1}1 ď 1, we can construct a feasible solution M for (Exc) with objective value hxcpMq ě
1{ρ. The reverse is also true. In particular, if gpρq (resp. OPTxc ) denotes the optimal value
achieved by the objective function in (Cρ) (resp. (Exc)), we have gpρq ď 1 iff 1{ρěOPTxc .

Proof. We first note that the optimization problem (Exc) is equivalent to the following
one:

(Ẽxc)

maximize
M,y,z

z ´
}y}1

9K{10

subject to M ľ 0, TrpMq “ 1, y ě 0, z ě 0

@k P rKs, pX̄k ´ xcq
JMpX̄k ´ xcq ` yk ě z

Indeed, for a given M ľ 0 such that TrpMq “ 1, one can notice that the optimal value
is achieved in (Ẽxc) for yk “ maxp0, z ´ pX̄k ´ xcq

JMpX̄k ´ xcqq, k P rKs and z “
Q9{10

`

pX̄k ´ xcq
JMpX̄k ´ xcq

˘

the 9{10-th quantile of tpX̄k ´ xcq
JMpX̄k ´ xcq : k P

rKsu, so that z ´ }y}1 {p9K{10q “ hxcpMq which gives the equivalence between (Exc) and
(Ẽxc).

Then, let a feasible solution pM 1, y1q for (Cρ) be such that TrpM 1q ` }y1}1 ď 1. We define

M “
M 1

TrpM 1q
, z “

1

ρTrpM 1q
and y “

p9K{10q

pρTrpM 1qq
y1.

We can check that pM,y, zq is feasible for (Ẽxc) and z´}y}1 {p9K{10q ě 1{ρ. Hence, given
the equivalence between (Exc) and (Ẽxc), we obtain that M is feasible for (Exc) and that
hxcpMq ě 1{ρ.

Conversely, if M is feasible for (Exc) such that hxcpMq ě 1{ρ then we define y and
z such that for all k P rKs, yk “ maxp0, z ´ pX̄k ´ xcq

JMpX̄k ´ xcqq, k P rKs and
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z “Q9{10

`

pX̄k ´ xcq
JMpX̄k ´ xcq

˘

. We check that pM,y, zq is feasible for (Ẽxc) with ob-
jective values equals to hxcpMq and so it is larger than 1{ρ. Next, by defining

M 1 “
M

ρz
and y1 “

y

p9K{10qz
,

we see that pM 1, y1q is feasible for (Cρ) and its objective values is less than 1.

From Lemma 3, it is enough to solve (Cρ) – for a good choice of ρ – to find a good
approximate solution for (Exc). It therefore remains to find such a good ρ. To do so, we rely
on the next two lemmas. The first one is adapted from Lemma 4.3 in [12]; we recall that gpρq
is the optimal value achieved by the objective function in (Cρ).

LEMMA 4. For every ρą 0 and α P p0,1q, gpp1´ αqρq ě gpρq ě p1´ αqgpp1´ αqρq.

Proof. A feasible pair pM 1, y1q for pCp1´αqρq is also feasible for pCρq, which gives the
first inequality. If pM 1, y1q is a feasible pair for pCρq, then pM 1{p1 ´ αq, y1{p1 ´ αqq is a
feasible pair for pCp1´αqρq, which gives the second inequality.

It follows from Lemma 4 that g is continuous, non increasing and gp1{OPTxcq “ 1 (this
follows from Lemma 3 since we have that gpρq ď 1 iff 1{ρ ě OPTxc and the continuity of
g). So in order to find a good solution, we must find a ρ such that gpρq is as close to 1 as
possible. Unfortunately, we do not know how to solve (Cρ) exactly for a given ρą 0, but we
can compute efficiently a good approximation pM 1, y1q and a top eigenvector of M 1 thanks
to the following result which can be found in [53] or [2] and is detailed in [12] (see Section 4
and Remark 3.4).

LEMMA 5. [[53], [2]] Let uě 1 be an integer. For every ρą 0 and every fixed η ą 0, we
can find with probability ą 1´p1{10qu`10{d a feasible solution to (Cρ) that is η-close to the
optimal, that is to say a feasible pair pM 1, y1q so that TrpM 1q ` }y1}1 ď p1` ηqgpρq in time
ÕpuKdq. Moreover, it is possible to find an approximate top eigenvector of M 1 in ÕpKdq.

We compute pu ` 3 logpdq ` 10q times independently the (randomized) algorithm from
[53] (or the one from [2]) that has a runtime of ÕpKdq and that outputs an η-close feasi-
ble solution with probability 9{10. By taking the largest of the output’s objective value, we
have an η-close feasible solution with probability 1´ p1{10qu`3 logpdq`10, in time ÕpuKdq,
proving Lemma 5.

Let us call ALGρ the algorithm from Lemma 5, that takes as input ppX̄kq
K
k“1, xc, ρ, η, uq

and returns a feasible pair pM 1, y1q for (Cρ) satisfying TrpM 1q ` }y1}1 ď p1 ` ηqgpρq in
ÕpuKdq, with probability ą 1´ p1{10qu`10{d. Next, in order to find a good ρ, we have to
get some additional information on the function g. We will get it on the event E .

LEMMA 6. On the event E , for all xc PRd, if }xc ´ µ}2 ą 8r then

gpρq ď
1

ρ OPTxc

ˆ

1` ρOPTxc

ˆ

9p}xc ´ µ}2 ` 8rq2

8p}xc ´ µ}2 ´ 8rq2
´ 1

˙˙

.

Proof. We use the same notation as in the proof of Lemma 3. For any ν ą 0, we can
choose a triplet pM,y, zq feasible for (Ẽxc) such that z ´ }y}1 {p9K{10q ąOPTxc ´ ν and
z and y are the optimal solutions of the problem (Ẽxc) given by yk “ maxp0, z ´ pX̄k ´

xcq
JMpX̄k ´ xcqq, k P rKs and z “Q9{10

`

pX̄k ´ xcq
JMpX̄k ´ xcq

˘

the 9{10-th quantile
of tpX̄k ´ xcq

JMpX̄k ´ xcq : k P rKsu.
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On the event E , Lemma 2 yields OPTxc ą p8{9qp}xc ´ µ}2 ´ 8rq2 and we have from
Corollary 1 that

z “Q9{10

`

pX̄k ´ xcq
JMpX̄k ´ xcq

˘

“Q9{10

ˆ

›

›

›
M1{2pX̄k ´ xcq

›

›

›

2

2

˙

ď

´
›

›

›
M1{2pxc ´ µq

›

›

›

2
` 8r

¯2
ď p}xc ´ µ}2 ` 8rq2

because M ľ 0 and TrpMq “ 1. Let M 1 “M{pρzq, y1 “ y{rzp9K{10qs. Since pM 1, y1q is
feasible for (Cρ), we have

gpρq ďTrpM 1q `
›

›y1
›

›

1
ď

1` ρ }y}1 {p9K{10q

ρz

ă
1` ρpz ´OPTxc ` νq

ρz
ď

1` ρν ` ρOPTxc

´

9p}xc´µ}2`8rq2

8p}xc´µ}2´8rq2 ´ 1
¯

ρpOPTxc ´ νq
.

By taking νÑ 0, we get the result.

Proof of Theorem 4.1. Let us place ourselves on the event E so that we can apply
Lemma 6. Let xc P Rd and assume that }xc ´ µ}2 ą 800r. It follows from Lemma 6 that
gpρq ď 1{pρ OPTxcq`0.171. Therefore, if we can find a ρ such that gpρq ě 1´ ε`0.171 for
some 0ă εă 1, then necessarily 1{ρěOPTxcp1´εq. Let us take ε“ 0.173, and η “ 0.0001.
Then if ALGρ returns a feasible pair pM 1, y1q for (Cρ) so that 0.9981ďTrpM 1q ` }y1}1 ď 1,
then, since 0.9981ą 1.0001ˆ 0.998“ p1` ηqp1´ ε` 0.171q we will know that, with prob-
ability ą 1´ p1{10qu`10{d,

p1` ηqgpρq ěTrpM 1q `
›

›y1
›

›

1
ě p1` ηqp1´ ε` 0.171q

hence 1{ρ ě OPTxcp1´ εq, and by Lemma 3, we can construct a feasible solution Mc for
(Exc) with objective value satisfying hxcpMcq ě OPTxcp1´ εq. Next, using Lemma 2, we
obtain that when }xc ´ µ}2 ě 800r,

hxcpMcq ěOPTxcp1´ εq ě p1´ εqp8{9q p}xc ´ µ}2 ´ 8rq2 ě p0.78 }xc ´ µ}2 ` 8rq2

for ε“ 0.173, solving step 5 from Algorithm 1.
Therefore, it only remains to show how to find a ρ such that ALGρ returns a pair pM 1, y1q

(feasible for (Cρ)) satisfying 0.9981ď TrpM 1q ` }y1}1 ď 1. We do it first by assuming that
we have access to an initial ρ0 such that ALGρ0 returns a feasible pair pM 1, y1q for (Cρ) (for
ρ “ ρ0) so that TrpM 1q ` }y1}1 ď 1 and to a maximal number T of iterations (we will also
see later how to choose such ρ0 and T ). The following algorithm (which is a binary search)
taking as input pX̄1, . . . , X̄K , xc, ρ0, u,T q returns a feasible pair pM 1, y1q for (Cρ) so that
0.9981ďTrpM 1q`}y1}1 ď 1 (when T is large enough). This is simply due to the fact that g is
continuous, non increasing, gp0q “ 10{9ą 1 and gpρq ď 2{8 when ρÑ`8 and }xc ´ µ}2 ą
800r (because of Lemma 6). For this to work, we need that for each iteration, ALGρ returns
a feasible pair pM 1, y1q for (Cρ) (for ρ“ ρ0) so that TrpM 1q` }y1}1 ď p1` 0.0001qgpρq. We
will suppose that it is the case for the rest of the proof. By union bound, this happens with
probability at least ą 1´ T p1{10qu`10{d
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input : X̄1, . . . , X̄K , xc, ρ0, u,T
output: A feasible pair pM 1, y1q for (Cρ) satisfying 0.9981ďTrpM 1q ` }y1}1 ď 1

1 ρmÐ 0, ρM Ð ρ0, V Ð ALGρ0pxc, u, η “ 0.0001q , iÐ 0
2 while V R r0.9981,1s and iă T do
3 if V ă 0.9981 then
4 ρM ÐpρM ` ρmq{2
5 end
6 else
7 ρmÐpρM ` ρmq{2
8 end
9 V Ð objectivepALG ρm`ρM

2

pxc, u, η “ 0.0001qq , iÐ i` 1

10 end
11 Return ALG ρm`ρM

2

pxc, u, η “ 0.0001q

Algorithm 2: The BinarySearch algorithm to find a ρ so that ALGρ returns a pair
pM 1, y1q feasible for (Cρ) satisfying 0.9981ďTrpM 1q ` }y1}1 ď 1.

If we can find a ρ0 (such that ALGρ0 returns a feasible pair pM 1, y1q for (Cρ) so that
TrpM 1q ` }y1}1 ď 1) and a large enough number of iterations T in BinarySerach, Algo-
rithm 2 returns a feasible pair pM 1, y1q for (Cρ) from which we can construct an approximat-
ing solution Mc for (Exc) with objective value hxcpMcq larger than p0.78 }xc ´ µ}2 ` 8rq2

whenever }xc ´ µ}2 ě 800r. This is exactly what we expect in step 5 of Algorithm 1. Next,
the last and final step that remains to be explained is to show how one can get such a ρ0 and
T using only the block means pX̄kq

K
k“1 in ÕpNd` uKdq.

Let us consider µ̂p0q the coordinate-wise median(-of-means) and let us define δ “
Medp

›

›X̄k ´ µ̂
p0q
›

›

2
: k P rKsq – both quantities can be computed in time ÕpKdq. On the

event E , it follows from Corollary 1 (for M “ Id{d) and Proposition 3 that δ ď 16
?
dˆ r.

So if one takes ρ0 “ d{δ
2 ě 1{rp16q2r2s, and if }xc ´ µ}2 ą 800r, Lemma 2 and Lemma 6

guarantee that OPTxc ě p8{9q p}xc ´ µ}2 ´ 8rq2 ě p8{9qp792q2r2 and so

gpρ0q ď
1

ρ OPTxc
` 0.171ď

162

p8{9qp792q2
` 0.171ă 0.18

so ALGρ0 ď p1` ηqgpρq ă 1.0001ˆ 0.18ă 1 (for the same choice of η “ 0.0001).
Now we tackle the question of the number T of iterations, which is crucial for the runtime.

We know from Lemma 4 and Lemma 6 that the interval I of all ρ’s such that 0.9981 ď
objectivepALGρq ď 1 is at least of size 0.001{OPTxc when }xc ´ µ}2 ą 800r. Indeed, since
gpρq ď objectivepALGρq ď p1 ` ηqgpρq, if ρ is such that 0.9981 ď gpρq ď 1{p1 ` ηq then
0.9981 ď objectivepALGρq ď 1. Now, if we let ρ1 ą 0 and 0 ă α ă 1 be such that gpρ1q “

0.9981 and gpp1´ αqρ1q “ 1{p1` ηq the interval I is at least of size αρ1. Moreover, from
Lemma 4 we have 1{p1` ηq ď gpp1´αqρ1q ď gpρ1q{p1´αq and so 0.9981“ gpρ1q ě p1´
αq{p1` ηq, i.e. αě 1´ 0.9981p1` ηq ą 0.001. Finally, since gpρ1q ď 1, gp1{OPTxcq “ 1
and g is non-increasing, we conclude that ρ1 ě 1{OPTxc and so the length of I is at least
αρ1 ě 0.001{OPTxc .

So, in the case where }xc ´ µ}2 ą 800r, log2pρ0 ˆOPTxc{0.001q iterations are enough
to ensure that BinarySearch outputs pM 1, y1q (from ALGρ for a well-chosen ρ) feasible
for (Cρ) and such that 0.9981ďTrpM 1q ` }y1}1 ď 1. Moreover, on the event E it is possible
to show that for all iterations xc of the algorithm we have }xc ´ µ}2 ă C

?
dr for a constant
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C ď 800 (we may take that as an induction hypothesis for the firsts iterates xc, and the proof
of Theorem 2.1 below in Section 5 shows that it will still holds for xc`1). So if δ ą r{d then
ρ0 ă d

3{r2, and since OPTxc ă pC2d`8qr2 (this follows from Lemma 2), the binary search
ends in time T “ log2pC̃d

4q with C̃ ă 106.

Thus, if the binary search has not ended in that time, we have either δ ă r{d (which is
a degenerate case) or }xc ´ µ}2 ă 800r (or both). If }xc ´ µ}2 ą 800r and δ ă r{d, then,
taking ρ1 “ 1{pdδq2, we have, by Lemma 6, ALGρ1 ă 1{2. So, if we can not end our binary
search in time log2pC̃d

4q, we compute ALG1{pdδq2 : if this gives something smaller than 1,
that means that 1{pdδq2 ą 1{OPTxcñ δ ă

a

pC2d` 8qr{dă pC` 1qr{
?
d. We notice that

on E ,
›

›µ̂p0q ´ µ
›

›

2
ă δ` 8r, so if ALG1{pdδq2 ă 1, then µ̂p0q is a good estimate for µ. If on the

contrary we have ALGρ1 ą 1, it means that }xc ´ µ}2 ă 800r, so we stop the algorithm and
return xc.

Let us write now in pseudo-code the procedure we just described. This is an algorithm,
named SolveSDP, running in ÕpKudq which takes as inputs X̄1, . . . , X̄K , xc, u and which
outputs, on the event E , with probability ą 1 ´ logpC̃d4qp1{10qu`10{d, for every xc P Rd
such that }xc ´ µ}2 ě 800r either a matrix Mc such that

hxcpMcq ě p0.78 }xc ´ µ}2 ` 8rq2

or a subgaussian estimate of µ. It therefore describes step 5 from Algorithm 1.

input : X̄1, . . . , X̄K , xc and u
output: A feasible solution for (Exc)

1 Compute the coordinate wise MOM µ̂p0q and δ “Medp
›

›X̄k ´ µ̂
p0q
›

›

2
: k P rKsq

2 T Ð logpC̃d4q, ρ0 Ð d{δ2

3 pM 1, y1qÐ BinarySearch(T,ρ0, u, xc)
4 if TrpM 1q ` }y}1 P r0.9981,1s then
5 M ÐM 1{TrpM 1q

6 Return (True, M )
7 end
8 else
9 if ALG1{pdδq2pxc, u, η “ 0.0001q ă 1 then

10 Return (False, µ̂p0q)
11 end
12 else
13 Return (False, xc)
14 end
15 end

Algorithm 3: SolveSDP

REMARK 4. [Two advantages of block means] During the whole algorithm, we solve
the program (Cρ) up to a factor p1` ηq where η is fixed (here we take it equal to 0.0001).
This differs crucially from the work of [12] where η depends on the fraction of outliers,
which decreases the performance of the algorithm in Lemma 5, the true running time being
ÕpKd{Polypηqq. This is a first advantage of using bucketed means instead of the data them-
selves: we work with a constant fraction of corrupted blocks (we took it equal to 1{10). The
second advantages is of stochastic nature, it is revealed by Proposition 1 or Lemma 1: most
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of the bucketed means have a nice subgaussian behavior in all directions. Working with buck-
eted means has therefore two advantages: a stochastic one, which is to exhibit a subgaussian
behavior for 9K{10 blocks even under a L2-moment assumption and a computational one,
which is to make the proportion of corrupted blocks constant.

5. The final algorithm and its computational cost: proof of Theorem 2.1. We are now
in a position to fully describe our robust subgaussian descent algorithm running in ÕpNd`
uKdq. One may check that its construction is fully data-dependent, in particular, we do not
need to know the value of r or the proportion of outliers.

input : X1, . . . ,XN , K P rN s and u PN˚
output: A robust subgaussian estimator of µ

1 Construct an equipartition B1 \ . . .\BK “ t1, . . . ,Nu
2 Construct the K empirical means X̄k “ pN{Kq

ř

iPBk
Xi, k P rKs

3 Compute µ̂p0q the coordinate-wise median
4 xcÐ µ̂p0q, Bool Ð True, T Ð 0

5 while Bool and T ă logp8
?
dq{ logp1{0.81q do

6 Bool, AÐSolveSDP(X̄1, . . . , X̄K , xc, u)
7 if Bool then
8 McÐA
9 Compute v1 a top eigenvector of Mc

10 Compute a step size θc “´Med
`〈
X̄k ´ xc, v1

〉
: k P rKs

˘

11 Update xcÐ xc ´ θcv1

12 T Ð T ` 1

13 end
14 else
15 xcÐA
16 end
17 end
18 Return xc

Algorithm 4: Final Algorithm: covSDPofMeans

Proof of Theorem 2.1. From Theorem 4.1, we know that on E , when, }xc ´ µ}2 ą 800r,
we get, with probabilityą 1´p1{10qu`5{

?
d, anMc so that hxcpMcq ě p0.8 }xc ´ µ}2 ` 8rq2

(or directly a subgaussian estimate, in which case our work is done). Proposition 4, states that
in that case }xc`1 ´ µ}

2
2 ď 0.8 }xc ´ µ}

2
2 ` 64r2 ď 0.81 }xc ´ µ}

2
2. So we have a geometric

decays and Proposition 3 guarantees that our starting point is at most 8
?
dr far away from

the mean so that in at most logp8
?
dq{ logp1{0.81qq steps the algorithm outputs its current

point which is r-close to µ, with probabilityą 1´p1{10qu`5 logp8
?
dq{plogp1{0.81qq

?
dq ą

1´ p1{10qu (by union bound).
The last thing to do is to control what happens when }xc ´ µ}2 ă 800r. Then, we have no

guarantees on v1, but using the similar argument as in the proof of Proposition 4 we know
that
(11)
|θc´

〈
xc´µ, v1

〉
| “ |Med

`〈
µ´ X̄k, v1

〉
: k P rKs

˘

| ďMed
`

|
〈
µ´ X̄k, v1

〉
| : k P rKs

˘

ď 8r
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and (for some vK1 a normalized orthogonal vector to v1)

}xc`1 ´ µ}
2
2 “ }xc ´ µ´ θcv1}

2
2 “

›

›p
〈
xc ´ µ, v1

〉
´ θcqv1 `

〈
xc ´ µ, v

K
1

〉
vK1

›

›

2

2

“ p
〈
xc ´ µ, v1

〉
´ θcq

2 `
〈
xc ´ µ, v

K
1

〉2
ď p8rq2 ` }xc ´ µ}

2
2 .

Hence, }xc`1 ´ µ}2 ď p8rq ` }xc ´ µ}2. Therefore, in the worst case scenario where
}xc ´ µ}2 ą 800r at the last iteration, the algorithm outputs the next iteration µ̂K “ xc`1

so that }µ̂K ´ µ}2 ď 808r.
We end this proof with the computation of the running time of Algorithm 4. We detail the

computation cost for each line of Algorithm 4: line 1 cost N , line 2 costs Nd, line 3 costs
OpdK logpKqq. The while loop in line 5 is running at least logd times (up to constant) so
that the computational cost of all remaining lines of Algorithm 4 are at worst to be multiplied
by logd. Line 6 costs logpC̃d4q steps, each of cost ÕpKudq (that comes from Lemma 5).
Line 9 can be computed in ÕpNdq thanks to Lemma 5. Finally, line 10 costs OpKdq. Other
lines take time at most d. We thus recover the running time announced in Theorem 2.1.

6. Adaptive choice of K and results in expectation. Given a number of blocks
K P t1, . . . ,Nu, a parameter uě 1 (so that the covering SDPs from [53] (used in Lemma 5)
run in u ` 3 logd ` 10 times) and the (adversarially corrupted and heavy-tailed) dataset
tX1, . . . ,XNu, Algorithm 4 returns a vector µ̂K in Rd and Theorem 2.1 ensures that µ̂K
estimates the true mean µ at the subgaussian rate (1) with large probability as long as
K ě 300|O|. As a consequence, we have certified statistical guarantees for µ̂K only when
some a priori knowledge on the number |O| of outliers is provided (such as “the corruption
of this database is less than 5%” ) or if we choose K like N - but, in this later case the rate (1)
may be too pessimistic. The aim of this section is to overcome this issue by constructing a
procedure which can automatically adapt to the number of outliers. The resulting procedure
(denoted later by µ̂pĴq) satisfies the same statistical bounds as µ̂K for all K ě 300|O| without
knowing |O| (up to constants). We also show that it satisfies results in expectation.

The adaptation method we use is based on the Lepski method [43, 44] which is another
tool used by the “statistical community” working on robustness issues since [47, 8]. The price
we pay for this adaptation is the a priori knowledge of the rate (1) for all K which means that
we know in advance TrpΣq and }Σ}op – this is for instance the case when it is known that
Σ is the identity matrix Id. Of course, one can design robust estimators for TrpΣq (see [17])
and }Σ}op but this requires stronger assumptions (more than four moments) that we want to
avoid at this stage.

Lepski’s method proceeds as follows. We set for all K P t1, . . . ,Nu and all j P
t0,1, . . . , log2Nu

r˚K “ 808

¨

˝1200

c

TrpΣq

N
`

d

1200 }Σ}opK

N

˛

‚ and rpjq “ r˚rN{2js

the rate of convergence from Theorem 2.1. For a given parameter uj PN˚, we construct from
Algorithm 4

(12) µ̂pjqÐ covSDPofMeanspX1, . . . ,XN ,K “ rN{2js, u“ ujq.

Classical Lepski’s method considers the largest J such that
ŞJ
j“0B

d
2pµ̂

pjq, rpjqq is none-
empty and then take any point µ̂ in this none-empty intersection. Standard analysis of Lep-
ski’s method shows that µ̂ estimates µ at the rate r˚K (up to an absolute constant) simul-
taneously for all K P t300|O|, . . . ,Nu without knowing |O|. Given that checking that the
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intersection of several `d2-balls may not be straightforward, we use a slightly modified ver-
sion of Lepski’s method as described in the following algorithm.

input : X1, . . . ,XN and tuj : j “ 0,1,2, . . . , log2Nu ĂN˚
output: A robust subgaussian estimator of µ with adaptive choice of K
init : J “ 0 and µ̂p0q “ covSDPofMeanspX1, . . . ,XN ,K “N,u“ u0q

1 while
›

›µ̂pJq ´ µ̂pjq
›

›

2
ď rpJq ` rpjq, j “ J ´ 1, J ´ 2, . . . ,0 do

2 J Ð J ` 1

3 µ̂pJqÐ covSDPofMeanspX1, . . . ,XN ,K “ rN{2J s, u“ uJq

4 end
5 Return µ̂pJq

Algorithm 5: Adaptive choice of K in covSDPofMeans

Unlike for the traditional Lepski’s method we check that µ̂pJq is in
ŞJ´1
j“0 B

d
2pµ̂

pjq, rpJq `

rpjqq instead of checking that
ŞJ
j“0B

d
2pµ̂

pjq, rpjqq is none-empty – this simplifies the
adaptation step. It is also possible to speed up the whole procedure by constructing it-
eratively the bucketed means. Indeed, given that we consider a dyadic grid for K , i.e.
K P tN, rN{2s, rN{4s, . . .u, for all j P N, we can construct the block means tX̄pj`1q

k , k “
1, . . . , rN{2j`1su at step K “ rN{2j`1s using the block means from the previous step
K “ rN{2js by simply averaging two successive block means: X̄pj`1q

k ÐpX̄
pjq
2k `X̄

pjq
2k`1q{2.

Let us now turn to the statistical analysis of the output µ̂pĴq from Algorithm 5 where

Ĵ “max

˜

J P t0,1, . . . , log2Nu : µ̂pJq P
J´1
č

j“0

Bd
2pµ̂

pjq, rpJq ` rpjqq

¸

.

THEOREM 6.1. Let tuj : j “ 0,1,2, . . . , log2Nu ĂN˚ be the family of parameters used
to construct the family of estimators tµ̂pjq, j “ 0,1, . . .u in Algorithm 5 (see also (12)). For
all K P t600|O|, . . . ,Nu, with probability at least

(13) 1´ 2 expp´K{360000q ´

log2pN{pK´1qq
ÿ

j“0

p1{10quj

the output µ̂pĴq of Algorithm 5 is such that
›

›

›
µ̂pĴq ´ µ

›

›

›

2
ď 3r˚K .

Proof. For all j P t0,1, . . . , log2Nu denote by Ej the event onto which Theorem 2.1
is valid for K “ rN{2js and for u “ uj : that is on Ej , if rN{2js ě 300|O|,

›

›µ̂pjq ´ µ
›

›

2
ď

rpjq and PrEjs ě 1 ´ expp´rN{2js{180000q ´ p1{10quj . Let K P t600|O|, . . . ,Nu and
J P t0,1, . . . , log2Nu be such that rN{2J s ď K ă rN{2J´1s. On the event

ŞJ
j“0 Ej , we

have
›

›µ̂pjq ´ µ
›

›

2
ď rpjq for all j “ 0,1, . . . , J , in particular, for all j “ 0,1, . . . , J ´ 1,

›

›µ̂pJq ´ µ̂pjq
›

›

2
ď rpJq ` rpjq and so µ̂pJq P

ŞJ´1
j“0 B

d
2pµ̂

pjq, rpJq ` rpjqq. As a consequence

Ĵ ě J therefore
›

›

›
µ̂pĴq ´ µ̂pJq

›

›

›

2
ď rpĴq ` rpJq ď 2rpJq ď 2r˚K . Finally, we have

P
”

J
č

j“0

Ej
ı

ě 1´
J
ÿ

j“0

expp´rN{2js{180000q ´ p1{10quj
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ě 1´ 2 expp´K{360000q ´

log2pN{pK´1qq
ÿ

j“0

p1{10quj .

We can see in Algorithm 5 that µ̂pĴq does not use any information on the number of outliers
|O| for its construction but it can still estimate µ at the optimal rate r˚K for all deviation pa-
rametersK in t600|O|, . . . ,Nu. The maximum total running time of Algorithm 5 is achieved
when Ĵ “ log2N ; in that case, it is at most ÕpNd`

řlog2N
j“0 rN{2jsujdq. In particular, if one

chooses uj “ 2j for all j “ 0,1, . . . , log2N then the total running time for the construction
of µ̂pĴq is nearly-linear ÕpNdq. For this choice of uj , the probability deviation in (13) is
constant and so one should choose the smallest possible K allowed in Theorem 6.1, that is
K “ 600|O|. Let us write formally this result.

COROLLARY 2. If one takes uj “ 2j for all j “ 0,1, . . . , log2N in Algorithm 5 then, in
nearly-linear time ÕpNdq, with probability at least 1´2 expp´600|O|{360000q´1{11, the
output µ̂pĴq from Algorithm 5 satisfies

›

›

›
µ̂pĴq ´ µ

›

›

›

2
ď 2r˚600|O| “ 1616

¨

˝1200

c

TrpΣq

N
` 850

d

}Σ}op |O|
N

˛

‚.

In particular, considering the setup from Theorem 1.1, if |O| “ εN for some ε ď 1{600

then the rate achieved by µ̂pĴq in Corollary 2 is of the order of

(14)

c

TrpΣq

N
`

b

}Σ}op ε

which is like
b

}Σ}op ε when N ě pTrpΣq{ }Σ}opq{ε. As a consequence, the result from
Corollary 2 improves the one from Theorem 1.1 by removing an extra logd factor in the
sample complexity in the case considered in Theorem 1.1 that is when Σ ĺ σ2Id. More-
over, Corollary 2 also shows that the sample complexity depends on the effective rank
TrpΣq{ }Σ}op of Σ. This ratio can be much smaller than d if the spectrum of Σ decays suf-
ficiently fast. Finally, Corollary 2 also covers the case where the sample size N is less than
the sample complexity – that is when N ď pTrpΣq{ }Σ}opq{ε. In that case, the estimation
rate is given by

a

TrpΣq{N which is the complexity coming from the estimation of µ in the
none corrupted case. As a consequence, Corollary 2 exhibits a phase transition happening at
N „ pTrpΣq{ }Σ}opq{ε above which corruption is the main source of estimation mistakes and
below which corruption does not play any role.

Corollary 2 covers the case where µ̂pĴq is computed in nearly-linear time and with statisti-
cal guarantees happening with constant probability. In the following final result, we show that
µ̂pĴq can estimate µ at the optimal rate r˚K for all K ě 600|O| with a subgaussian deviation
1´2 expp´K{360000q if we perform more iterations uj of the covering SDP from Lemma 5.
The price we pay for this subgaussian behavior of µ̂pĴq is on the total running time which goes
from nearly-linear time ÕpNdq to ÕpN2dq by taking uj “ rN{2js for j “ 0,1, . . . , log2N
(uj “ N would do as well). We write formally this statement in the next corollary which
follows directly from Theorem 6.1.
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COROLLARY 3. If one takes uj “ rN{2js for all j “ 0,1, . . . , log2N in Algorithm 5
then, in time ÕpN2dq, for all K ě 600|O|, with probability at least 1´ 4 expp´K{360000q,
the output µ̂pĴq from Algorithm 5 satisfies

›

›

›
µ̂pĴq ´ µ

›

›

›

2
ď 2r˚K “ 1616

¨

˝1200

c

TrpΣq

N
`

d

1200 }Σ}opK

N

˛

‚.

As a consequence µ̂pĴq is a subgaussian estimator of µ for all range of K from 600|O| to
N which can handle up to |O| outliers in the database (even when |O| „N ) and that can be
constructed in time ÕpN2dq. It does not require any knowledge on |O| for its construction.

Let us now show that the algorithm µ̂pĴq constructed in Corollary 3 also satisfies esti-
mation results in expectation. So far all the statistical properties have been given with large
probability; for µ̂pĴq it is also possible to obtain a result in expectation.

The benchmark result we use here is the rate achieved by the empirical mean in a non-
corrupted setup but unlike the result in deviation we don’t need i.i.d. Gaussian variables since
E
›

›

›
X̃n ´ µ

›

›

›

2
ď
a

TrpΣq{N where X̃n “ n
´1

ř

i X̃i and X̃1, . . . , X̃N are the non-corrupted

data points from Assumption 1. Hence,
a

TrpΣq{N is the rate we aim to achieve but we also
may expect a price to pay for the adversarial corruption, in particular, when ε “ |O|{N is
above the phase transition exhibited in (14), that is for εě pTrpΣq{ }Σ}opq{N .

THEOREM 6.2. Under Assumption 1, and if N ě 600|O|, the following holds. If one
takes uj “ rN{2js for all j “ 0,1, . . . , log2N in Algorithm 5 then, in time ÕpN2dq, Algo-
rithm 5 outputs µ̂pĴq satisfying

E
›

›

›
µ̂pĴq ´ µ

›

›

›

2
ď p3` 16c2

0qr
˚
600|O| ď p3` 16c2

0q808ˆ 1200

¨

˝

c

TrpΣq

N
`

d

}Σ}op |O|
2N

˛

‚

as long as and N ě 4c0 logpc0d` c0q where c0 “ 360000.

Proof. We denote µ̃ “ µ̂pĴq and c0 “ 360000. We know from Corollary 3 that for all
600|O| ďK ďN , with probability at least 1´4 expp´K{c0q, }µ̃´ µ}2 ď 2r˚K . So we know
how to control the estimation property of µ̃ up to an event of probability measure at most
4 expp´N{c0q. On that event, we only need a crude upper bound on }µ̃´ µ}2 to get the
result. This is what we do now.

We know that by construction that µ̃ PBd
2pµ̂

pNq,2r˚N q. Moreover, µ̂pNq starts from µ̂
pNq
0 ,

the coordinate wise median of the data Xi (because K “N blocks here) and makes at most
T “ logp8

?
dq{ logp1{0.81q descent iterations like xc`1 “ xc ´ θcv1 where v1 P Sd´1

2 and
θc “´Med

`〈
Xi ´ xc, v1

〉
: i P rN s

˘

. In particular, one has at every iteration

}xc`1 ´ µ}2 ď 2 }xc ´ µ}2 `Medp}Xi ´ µ}2 : k P rKsq.

Hence, µ̂pNq satisfies
›

›

›
µ̂pNq ´ µ

›

›

›

2
ď 2T`1

´›

›

›
µ̂
pjq
0 ´ µ

›

›

›

2
`Medp}Xi ´ µ}2 : i P rN sq

¯

ď 16d
´›

›

›
µ̂
pNq
0 ´ µ

›

›

›

8
`Medp}Xi ´ µ}8 : i P rN sq

¯

.(15)
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In the adversarial contamination model from Assumption 1, as we assumed that N ě

600|O|, there are at least N ´ |O| ě p599{600qN indices i such that Xi “ X̃i, hence for at
least p599{600qN i’s we have, for all p P rds,

|Xi,p ´ µp| ďmax
iPrNs

|X̃i,p ´ µp| and }Xi ´ µ}8 ďmax
iPrNs

›

›

›
X̃i ´ µ

›

›

›

8

where Xi,p (resp. µp) denotes the p-th coordinate of Xi (resp. µ). Hence, in (15), we get
›

›

›
µ̂pNq ´ µ

›

›

›

2
ď 32dmax

iPrNs
max
pPrds

|Xi,p ´ µp|.

Let us now turn to the stochastic argument to upper bound the right-hand side in the last
inequality.

Epmax
iPrNs

max
pPrds

|Xi,p ´ µp|
2q ď Epmax

iPrNs
||Xi ´ µ||

2
2q ďN TrpΣq.

Hence,

(16) Ep}µ̃´ µ}22q ď 2048d2N TrpΣq ` 8pr˚N q
2.

We are now in a position to obtain an estimation result in expectation for µ̃. We denote
KO “ 600|O|:

E }µ̃´ µ}2 “
N´1
ÿ

k“KO

E
“

}µ̃´ µ}2 Ip2r
˚
k ď }µ̃´ µ}2 ď 2r˚k`1q

‰

`E
“

}µ̃´ µ}2 Ip}µ̃´ µ}2 ď 2r˚KO
q
‰

`E r}µ̃´ µ}2 Ip}µ̃´ µ}2 ě 2r˚N qs

ď 2r˚KO
`

N´1
ÿ

k“KO

2r˚k`1 ˆ 4 expp´k{c0q `E r}µ̃´ µ}2 Ip}µ̃´ µ}2 ě 2r˚N qs

ď 2r˚KO
` 16c2

0r
˚
KO

expp´KO{c0q ` 25c0d
a

N TrpΣq expp´N{p2c0qq

where, in the last inequality, we used that

E r}µ̃´ µ}2 Ip}µ̃´ µ}2 ě 2r˚N qs ď
´

E
”

}µ̃´ µ}22

ı¯1{2
pP r}µ̃´ µ}2 ě 2r˚N sq

1{2

ď p64d
a

N TrpΣq ` 3r˚N q ˆ 2 expp´N{p2c0qq ď 25c0d
a

N TrpΣq expp´N{p2c0qq

from (16). When N ě 4c0 logpc0d ` c0q, then N ě 2c0 logrc0dN s, so E }µ̃´ µ}2 ď p3 `
16c2

0qr
˚
KO

.

We therefore recover the same rate of convergence in expectation in Theorem 6.2 as the
one in deviation in Corollary 3 for the adaptive estimator µ̂pĴq, it is also the rate achieved
by the non adaptive estimator µ̂K for the minimal value of K “ 600|O|. In particular, the
same phase transition phenomena occurs in expectation as in the discussion following Equa-
tion (14).
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