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Abstract

This paper is about iteratively reweighted basis-pursuit algorithms
for compressed sensing and matrix completion problems. In a first
part, we give a theoretical explanation of the fact that reweighted ba-
sis pursuit can improve a lot upon basis pursuit for exact recovery in
compressed sensing. We exhibit a condition that links the accuracy
of the weights to the RIP and incoherency constants, which ensures
exact recovery. In a second part, we introduce a new algorithm for
matrix completion, based on the idea of iterative reweighting. Since
a weighted nuclear “norm” is typically non-convex, it cannot be used
easily as an objective function. So, we define a new estimator based
on a fixed-point equation. We give empirical evidences of the fact that
this new algorithm leads to strong improvements over nuclear norm
minimization on simulated and real matrix completion problems.
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1 Introduction

In this paper, we consider the statistical analysis of high dimensional struc-
tured data in two close setups: vectors with small support and matrices with
low rank. In the first setup, known as Compressed Sensing (CS) [20, 15, 7, 6,
21, 9], the aim is to reconstruct a high dimensional vector with only few non-
zero coefficients, based on a small number of linear measurements. In the
second setup, called Matrix Completion [10, 23, 5, 26], we aim at reconstruct-
ing a small rank matrix from the observations of only a few entries. Both
problems are motivated by many practical applications in many different do-
mains (medical [22], imaging [12], seismology [16], recommending systems
such as the Netflix Prize, etc.) as well as theoretical challenges in many dif-
ferent fields of mathematics (random matrices, geometry of Banach spaces,
harmonic analysis, empirical processes theory, etc.). From an algorithmic
viewpoint, one central idea is the convex relaxation of the `0-functional (the
function giving the number of non-zero coefficients of a vector) and of the
rank function. This idea gave birth to two well-known algorithms: the Basis
Pursuit algorithm [15] and nuclear norm minimization [5]. Many results
have been obtained for these two algorithms and we refer the reader to the
next sections for more details. Here we will be interested in weighted ver-
sions of these algorithms, see [11] in the CS setup. In particular, we will be
interested in finding theoretical explanation underlying the fact that, empir-
ically, it is observed that weighted Basis pursuit outperforms classical Basis
Pursuit. We will also propose a way to export the idea of reweighting into
the Matrix Completion problem.

2 Weighted basis-pursuit in Compressed Sens-

ing

One way of setting the CS problem is to ask the following question. Starting
with a m×N matrix A, called a sensing or measurement matrix, and with a
vector x in RN , is it possible to reconstruct x from the linear measurements
Ax? Classical linear algebra theory tells that we need at least m ≥ N to
recover x from Ax in order to find a unique solution to the linear system. But,
if more is known on x, then, hopefully, a smaller number m of measurements
may be enough.

In the theory of CS, it is now well-understood that it is indeed possible to
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recover sparse signals (signals with a small support, the support being the set
of non-zeros entries) from a small number of linear measurements. If x is a
sparse vector and A a “good” measurement matrix (in a sense to be clarified
later), then looking for a vector y with the smallest support and satisfying
Ay = Ax can recover x exactly. This procedure, called the `0 or support
minimization procedure, is known to be the best theoretical procedure to
recover any s-sparse vector x (vectors with a support size smaller than s)
from Ax as long as A is injective on the set of all s-sparse vectors. However,
this problem is NP-hard, and alternatives are suitable in practice, in part
because the function x 7→ |x|0 (|x|0 stands for the cardinality of the support
of x) is not convex.

A natural remedy to this problem is convex relaxation. In [15], the au-
thors propose to minimize the `1-norm as the convex envelope of this non-
convex function, leading to the so-called Basis-Pursuit algorithm (BP). The
BP algorithm minimizes the `1 norm on the affine space x+ kerA. Namely,
consider, for any y ∈ Rm:

∆1(y) ∈ argmin
t∈RN

(
|t|1 : At = y

)
, (2.1)

so that ∆1(Ax) is a candidate for the reconstruction of x based on Ax. We
say that x is exactly reconstructed by ∆1, namely ∆1(Ax) = x, when x is
the unique solution of the minimization problem (2.1) when y = Ax.

Note that other algorithms have been introduced in the CS literature. For
instance, `p-minimization algorithms for 0 < p < 1 are considered in [13, 24,
46, 14]. Some greedy algorithms based on the ideas of the Matching Pursuit
algorithm of [19, 35] have been used in CS, see [38, 39, 49] for instance.

In the present paper, we consider weighted-`1 minimization over x+kerA.
This algorithm was introduced in [11]. Since then, it has drawn a particular
attention because it is now acknowledged, although mainly only empirically
observed, that a proper weighted basis-pursuit algorithm can improve a lot
upon basic basis-pursuit. This is illustrated in Figure 1, and many other
numerical experiments can be found in [11]. However, theoretical explana-
tions of this fact are still lacking. Some results that go in this direction are
given in [31, 51, 32], [14], [31]. But, the results given in these papers are
of a different nature than ours, since they are using a random model for
the unknown vector x, such as a vector with i.i.d N(0, 1) non-zero entries,
with a distribution support which is uniform conditionally on the sparsity.
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In the statement of our results, x is an arbitrary deterministic sparse vec-
tor. In [18] an iteratively reweighted least-squares procedure is studied, as
an approximation of basis-pursuit.

We introduce the weighted algorithm: for any y ∈ Rm and any sequence
w = (w1, . . . , wN) ∈ RN of non-negative weights,

∆w(y) ∈ argmin
t∈RN

( N∑
i=1

|ti|
wi

: At = y
)
. (2.2)

We use the convention t/0 = ∞ when t > 0 and 0/0 = 0. Note that, under
this convention, the algorithm (2.2) is defined according to the support Iw of
w by(

∆w(y)
)
Ic
w

= 0 and
(
∆w(y)

)
Iw
∈ argmin

t∈RIw

(∑
i∈Iw

|ti|
wi

: AIwt = y
)
, (2.3)

where if t ∈ RN and I ⊂ {1, . . . , N}, we denote by tI the vector such that
(tI)i = ti if i ∈ I and (tI)i = 0 if i /∈ I. Once again, we say that x is exactly
reconstructed by ∆w, namely ∆w(Ax) = x, when x is the unique solution of
the minimization problem (2.2) when y = Ax. In particular, this requires
that the support of x is included in the support of w.

2.1 No-loss property

Note that when the weight vector w is close to x, then
∑N

i=1 |xi|/wi is close
to |x|0. Moreover, for “reasonable” matrices A, the vector x is the one with
the shortest support in the affine space x+ kerA. So, a natural choice for w
in (2.2) is w = |∆1(Ax)|. We denote this decoder by ∆2:

∆2(y) ∈ argmin
t∈RN

( N∑
i=1

|ti|
|∆1(y)i|

: At = y
)
. (2.4)

The next Theorem proves that ∆2 is at least as good as the Basis Pursuit
algorithm ∆1.

Theorem 1. Let x ∈ RN . If ∆1(Ax) = x, then ∆2(Ax) = x.

The proof of Theorem 1 is based on the well-known null space prop-
erty and dual characterization of [6], see Section 4 below. However, it was
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observed empirically in [11] that it is better to consider positive weights,
and thus, to consider, for some ε > 0, the weights wi = |∆1(y)i| + ε
for i = 1, . . . , N . This is easily understood: if for some i ∈ {1, . . . , N},
∆1(Ax)i = 0 while xi 6= 0, then ∆2(Ax)i is also equal to 0 and there is
no hope to recover x using ∆2 as well. By adding an extra ε term to each
weights, the necessary support condition supp(x) ⊂ supp(w) to reconstruct
x from ∆w(Ax) is satisfied (see for instance Proposition 1 in Section 4). The
choice of ε > 0 can be done in a data-driven way, see [11].

2.2 An empirical evidence

In Figure 1, we give a simple illustration of the fact that weighted basis-
pursuit can improve a lot upon basic basis-pursuit, using a simple numerical
experiment. For many combinations of m (y-axis) and s (x-axis), we repeat
the following experiment 50 times: draw at random a sensing matrix A with
i.i.d N(0, 1/m) entries and draw at random a vector with s non-zero coordi-
nates chosen uniformly, with i.i.d N(0, 1) non-zero entries. Then, compute
x̂1 = ∆1(Ax) and x̂w = ∆ε

20(Ax) (here we take ε = 0.01 without further
investigation), where ∆ε

k(Ax) is computed iteratively, using

∆ε
k+1(Ax) ∈ argmin

t∈RN

( N∑
i=1

|ti|
|∆ε

k(Ax)i|+ ε
: At = Ax

)
. (2.5)

Then, we count the number of exact reconstructions achieved by x̂1 and x̂w
over the 50 repetitions. The plots on the left are the exact recovery counts
of x̂1 (black means exact recovery over the 50 repetitions) while the plots on
the right are the exact recovery counts of x̂w. In these figures, exact recovery
is declared exact when |x̂ − x|2/|x|2 < η, where we take η = 10−5 on the
first line and η = 10−6 on the second line. The red curve is a theoretical
“phase-transition” threshold s 7→ s log(em/s). We observe in these figures
that x̂w improves a lot upon x̂1, in particular when η = 10−6.

2.3 A theoretical explanation

Now, we want to understand if ∆2 can do better than ∆1, and why. In
particular, if ∆1(Ax) is close to x (but fails to reconstruct exactly x), under
which condition do we get ∆2(Ax) = x? In general, given a weight vector
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Figure 1: Exact recovery counts (black means exact recovery) of basis-pursuit
(left column) and weighted basis-pursuit (right column), where the x-axis is
the sparsity (s) and the y-axis is the number of measurements (m). Exact
recovery is declared with a tolerance equal to 10−5 on the first line, and equal
to 10−6 on the second line. The red curve is a theoretical phase-transition
threshold s 7→ s log(em/s)
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w ∈ RN , what conditions on w can insure that ∆w(Ax) = x? In Theorem 2
below, we use the duality argument of [6] to prove that the condition

(A0)(I, C) |wIc|∞
∣∣(1/w)I

∣∣
2
≤ C, (2.6)

where I is the support of x and C ≥ 0 is such that

C ≤ 1− δ
µ

,

where δ and µ are, respectively, the restricted isometry and incoherency
constants [8, 6, 7] of the matrix A, ensure that the w-weighted algorithm ∆w

recovers exactly x given Ax.
It is interesting to note that, so far, only random matrices are able to

satisfy the incoherency and isometry properties for small values of m. Thus,
if one wants the number m of measurements to be of the order (up to some
logarithmic factor) of the sparsity of the vector to recover, one has to con-
sider random matrices. This leads to results in Compressed Sensing that
hold with a large probability, with respect to the randomness involved in the
construction of the sensing matrix. In practice, however, the most interest-
ing sensing matrices are structured matrices, like the Fourier or the Walsh
matrices (see [8, 45]), since these matrices can be stored and constructed by
efficient algorithms. A lot of research go in this direction, and we don’t con-
sider this problem here, but rather focus on weighted algorithms. Therefore,
we will state our probabilistic results for a simple (and somehow universal)
sensing matrix A with entries being i.i.d. centered Gaussian variables with
variance 1/m.

Theorem 2. Let x ∈ RN and denote by I its support and by s the cardinality
of I. Let C, µ > 0 and 0 < δ < 1. Assume that

m ≥ c0 max
[ s
δ2
,
s logN

µ2

]
and C ≤ 1− δ

µ
,

where c0 is a purely numerical constant. Consider the event Ω(I, C) =
{|wIc |∞

∣∣(1/w)I
∣∣
2
≤ C} and let A be a m × N matrix with entries being

i.i.d. centered Gaussian random variables with variance 1/m. Then, with
probability larger than

1− 2 exp(−c1mδ
2)− exp

(
− c2µ

2m/s
)
− P

[
Ω(I, C){

]
,

the vector x is exactly reconstructed by ∆w(Ax).
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Theorem 2 gives an explicit condition, linking the incoherency constant
µ, the restricted isometry constant δ, and the constant C from condition
A0(I, C) on the weights w that ensures the exact reconstruction of x using
∆w. This is the first result of this nature for weighted basis pursuit.

When wIc = 0 then (A0)(I, C) holds with C = 0, so that one can take
δ = 1 and µ = +∞. This is the case for w = (|∆1(Ax)i|)Ni=1 when ∆1(Ax) =
x. This condition is also satisfied when the weights vector w is close enough
to |x| and when the absolute value of the non-zero coordinates of |x| are
sufficiently large. For instance, (A0)(I, C) holds when

min
i∈I
|xi| ≥

(
1 +

√
|I|
C

)
|w − |x||∞. (2.7)

Indeed, if we denote ε = |w − |x||∞ then (A0)(I, C) follows from (2.7) since
maxi∈Ic wi ≤ ε and∣∣∣( 1

w

)
I

∣∣∣ ≤ √
|I|

mini∈I wi
≤

√
|I|

mini∈I |xi| − ε
.

In particular, if A0(I, C) is satisfied with C = c1/
√

logN , for some constant
0 < c1 < 1, then a proportional to s number of Gaussian measurements will
be enough to get ∆w(Ax) = x with a large probability.

In Figure 2 below, we give an empirical illustration of the fact that
A0(I, C) is indeed a relevant condition for exact reconstruction of weighted
basis-pursuit. We consider exactly the same experiment as what we did in
Section 2.2, but this time we fix the number of measurements to m = 110
and the sparsity of x to s = 45. For this combination of m and s, the phase
transition occurs, namely basis pursuit can either work or not, see Figure 1,
so we can expect for these values a strong improvement of weighted basis-
pursuit over non-weighted one. On the left-side of Figure 2, we show the
value of the constant C over the reweighting iterations. Namely, if I is the
support of the true unknown vector x, we compute for k = 1, . . . , K the
values of

Ck = |w(k)
Ic |∞

∣∣(1/w(k))I
∣∣
2
,

where
w(k) = |∆ε

k(Ax)|+ ε

over the 10 repetitions (differentiated by different colors), where we recall
that ∆ε

k(Ax) is given by (2.5) and where we choose K = 30. On the right-
side of Figure 2, we show the logarithm of relative reconstruction errors over
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the iterations, namely

errk = log
( |∆ε

k(Ax)− x|2
|x|2

)
(we take the logarithm only for illustrational purpose, so that we can see the
cases when exact reconstructions occurs). Each repetition of the experiment
is represented with a different color.

What we observe is a direct correspondence between the constant C from
Assumption A0(I, C) and the quality of reconstruction of weighted basis
pursuit along the iterations. This tells that Assumption A0(I, C) indeed
explains (at least in the considered configuration) when exact reconstruction
can or cannot happen using weighted basis pursuit.
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Figure 2: Logarithm of the value of the constant C from Assumption A0(I, C)
(left) and logarithm of the relative reconstruction error of weighted basis
pursuit over the iterations (right).

Remark 1. Note that uniform results can also be derived for the weighted-`1

algorithm. Indeed, by using classical machinery, it can be proved that 1)
implies 2) implies 3) where:

1. for all x ∈ Σs, A diag(w) satisfies RIP(δ, 8s) and Ix ⊂ Iw,

2. supx∈ker(A diag(w))∩BN
1
|x|2 <

1
2
√
s

and ∀x ∈ Σs, Ix ⊂ Iw,

3. for any x ∈ Σs,∆w(Ax) = x.
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But, it is not clear why, for instance when w = ∆1(Ax), it would be easier for
the matrix A diag(∆1(Ax)) to satisfy RIP than for A itself. The same remark
also holds for the euclidean section of BN

1 by the kernel of A diag(∆1(Ax))
or A. These approaches look too crude to perform a study of `1-weighted
algorithms, where most of the gain can be done only on the absolute multi-
plying constant in front of the minimal number of measurements m needed
for exact reconstruction.

2.4 Verifying exact reconstruction

Thanks to Theorem 1, it is easy to test if we were able to reconstruct exactly
a vector x given Ax. So far, we have to rely on the theory to insure that
with a high probability, we have ∆1(Ax) = x. Using (2.4), we can verify this
belief. Indeed, Theorem 1 entails that ∆2(Ax) = x when ∆1(Ax) = x. In
particular, if ∆1(Ax) 6= ∆2(Ax), then we are sure that we didn’t perform the
exact reconstruction of x using ∆1(Ax). Then, we can iterate the mechanism
and define for any k ≥ 1

∆k+1(Ax) ∈ argmin
t∈RN

( N∑
i=1

|ti|
|∆k(Ax)i|

: At = Ax
)
,

leading to a sequence

∆1(Ax),∆2(Ax), · · · ,∆r(Ax). (2.8)

If the sequence (2.8) does not become constant after a certain number of iter-
ations, then it is very likely that none of the algorithm ∆k(Ax) reconstructed
exactly x. We also have the following reverse statement. Denote by Σk the
set of all k-sparse vectors in RN .

Theorem 3. Let A be a m×N injective matrix on Σm and let x ∈ Σbm/2c.
The following statements are equivalent:

1. There exists an integer r such that ∆r(Ax) = x,

2. The sequence ∆1(Ax),∆2(Ax), . . . , becomes constantly equal to a bm/2c-
sparse vector after a certain number of iterations.

Note that the matrix with i.i.d. standard Gaussian entries is injective on
Σm with probability one. Thus, we propose to compute the sequence (2.8)
as an empirical test for the exact reconstruction of a vector x from Ax.

10



3 Iteratively weighted soft-thresholding for

matrix completion

In many applications, data can be represented as a database with missing
entries. The problem is then to fill the missing values of the database, lead-
ing to the so-called matrix completion problem. For instance, collaborative
filtering aims at doing automatic predictions of the taste of users, using the
collected tastes of every users at the same time [25]. The popular Netflix
prize is a popular application of this problem1. Other applications include
machine-learning [1], control [37], quantum state tomography [27], structure
from motion [48], among many others. This problem can be understood as a
non-commutative extension of the compressed sensing problem. So, a natu-
ral question is the following: Does the principle of iterative weighting of the
`1-norm work also for matrix completion? In this Section, we prove empiri-
cally that the answer to this question is yes. We prove that one can improve
the convex relaxation principle for matrices, which is based on the nuclear
norm [10], [26], by using a weighted nuclear norm, in the same way as we did
for vectors in Section 2. However, note that there is, as explained below, a
major difference between the vectors and matrices cases at this point, since
a weighted nuclear norm is not convex in general, while a weighted `1-norm
is.

Let us first recall standard definitions and notations. Let A0 ∈ Rn1×n2 be
a matrix with n1 rows and n2 columns. The matrix A0 is not fully observed.
What we observe is a given subset Ω ⊂ {1, . . . , n1}×{1, . . . , n2} of cardinality
m of the entries of A0, where m � n1n2. For any matrix A ∈ Rn1×n2 , we
define the masking operator PΩ(A) ∈ Rn1×n2 such that (PΩ(A))j,k = Aj,k
when (j, k) ∈ Ω and (PΩ(A))j,k = 0 when (j, k) /∈ Ω. We define also P⊥Ω (A) =
A− PΩ(A).

Since we consider the case where m� n1n2, the matrix completion prob-
lem is in general severely ill-posed. So, one needs to impose a complexity
or sparsity assumption on the unknown matrix A0. This is done by assum-
ing that A0 has low rank, which is the natural extension of the sparsity
assumption for vectors to the spectrum of a matrix. For the problem of ex-
act reconstruction, other geometrical assumptions are necessary (such as the
incoherency assumption, see [5, 10, 31]). Under such assumptions, it is now
well-understood that the principle of convex relaxation of the rank function

1http://www.netflixprize.com/
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is able to reconstruct exactly the unknown matrix from few measurements,
see [5, 10, 26, 43]. Indeed, a natural approach would be to solve the problem

minimize rankA

subject to PΩ(A) = PΩ(A0),
(3.1)

but this minimization problem is known to be very hard to solve in practice
even for small matrices, see for instance [5, 10]. The convex envelope of the
rank function over the unit ball of the operator norm is the nuclear norm,
see [23], which is given by

‖A‖1 =

n1∧n2∑
j=1

σj(A),

(it is the bi-conjugate of the rank function over the unit ball of the opera-
tor norm), where σ1(A) ≥ · · · ≥ σn1∧n2(A) are the singular values of A in
decreasing order. So, the convex relaxation of (3.1) is

minimize ‖A‖1

subject to PΩ(A) = PΩ(A0).
(3.2)

This problem has received a lot of attention quite recently, see [5, 10, 26,
30, 43], among many others. The point is that, in the same way as the
basis pursuit for vectors, (3.2) is able to recover exactly A0 with a large
probability, based on an almost minimal number of samples (under some
geometrical assumption).

In literature concerned about computational problems [34], [36], [47, 33],
among others, the relaxed version of (3.2) is considered, since it is easier to
construct a solver for it (one can apply generic first-order optimal methods,
such as proximal forward-backward splitting [17], among many other meth-
ods) and since it is more stable in the presence of noise. Note that the SVT
algorithm of [4] gives a solution under equality constraints for an objective
function with an extra ridge term ‖A‖1 + τ‖A‖2

2. The relaxed problem is
simply formulated as penalized least-squares:

Âλ ∈ argmin
A∈Rn1×n2

{1

2
‖PΩ(A)− PΩ(A0)‖2

2 + λ‖A‖1

}
, (3.3)

where λ > 0 is a parameter balancing goodness-of-fit and complexity, mea-
sured by the nuclear norm.
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Before we go on, we need some notations. The vector of singular values of
A is denoted by σ(A) = (σ1(A), . . . , σr(A)), sorted in non-increasing order,
where r is the rank of A. We define, for p ≥ 1, the p-Schatten norm by

‖A‖p = |σ(A)|p,

which is the `p norm of σ(A). We shall denote also by ‖A‖ = ‖A‖∞ = σ1(A)
the operator norm of A, and note that ‖A‖2 is the Frobenius norm, associated
to the Euclidean inner product

〈
A,B

〉
= tr(A>B), where tr(A) stands for

the trace of A. For any matrix A its singular values decomposition (SVD)
writes as A = U diag(σ(X))V >, where diag(σ(X)) is the diagonal matrix
with σ(A) on its diagonal, and U and V are, respectively n1 × r and n2 × r
orthonormal matrices.

3.1 A new algorithm for matrix completion

We have in mind to do the same as we did in Section 2 for the reconstruction
of sparse vectors. For a given weight vector w = (w1, . . . , wn1∧n2), with
w1 ≥ · · · ≥ wn1∧n2 ≥ 0, we consider

Ãwλ ∈ argmin
A∈Rn1×n2

{1

2
‖PΩ(A)− PΩ(A0)‖2

2 + λ‖A‖1,w

}
, (3.4)

where ‖A‖1,w is the weighted nuclear-norm

‖A‖1,w =

n1∧n2∑
j=1

σj(A)

wj
, (3.5)

with the convention 1/0 = +∞. Now, we would like to use the idea of
reweighting using previous estimates, in the same as we did in Section 2: if
Âλ is a solution to (3.3), we want to use for instance

wj = σj(Âλ),

and find a solution to the problem (3.4) for this choice of weights. But, let
us stress the fact that, while we call ‖ · ‖1,w the weighted nuclear norm, it is
not a norm, since it is not a convex function in general! A simple counter-
example is as follows. If w1 > w2 (which is usually the case since singular
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values are taken in a non-increasing order) then for A = diag(1, 0, . . . , 0) and
B = diag(0, 1, 0, . . . , 0), we have

‖A‖1,w + ‖B‖1,w

2
=
s1(A) + s1(B)

2w1

=
1

w1

<
1

2

( 1

w1

+
1

w2

)
=
∥∥∥A+B

2

∥∥∥
1,w
,

hence ‖ · ‖1,w is not convex. Moreover, since the aim of ‖ · ‖1,w is to promote
low-rank matrices, the weight vector w should be chosen non-increasing,
corresponding precisely to the case where ‖ · ‖1,w is non-convex (note that
when 0 < w1 ≤ w2 ≤ · · · ≤ wn1∧n2 , it is easy to prove that ‖ · ‖1,w is a norm).
Consequently, (3.4) is not a convex minimization problem in general, and a
minimization algorithm is very likely to be stuck at a local minimum. But
we would like to stick to the idea of reweighting, since it worked well for CS.

The first idea that may come to mind is to use a convex relaxation of the
non-convex function ‖ · ‖1,w (just as convex relaxation of the rank function
led to the nuclear norm), but it simply leads back to the nuclear norm itself!
Indeed, it can be proved that if w1 ≥ w2 ≥ · · · ≥ wn1∧n2 > 0, the convex
envelope of ‖ · ‖1,w on the ball {A : ‖A‖1 ≤ 1} is simply A 7→ ‖A‖1/w1.

Let us go back to the original problem (3.3). It turns out that (3.3) is
equivalent to the fact that Âλ satisfies the following fixed-point equation:

Âλ = Sλ(P⊥Ω (Âλ) + PΩ(A0)), (3.6)

where Sλ is the spectral soft-thresholding operator defined for every B ∈
Rn1×n2 by

Sλ(B) = UB diag
(

(σ1(B)− λ)+, . . . , (σrank(B)(B)− λ)+

)
V >B ,

whereB = UBΣBV
>
B is the SVD ofB, with ΣB = diag(σ1(B), . . . , σrank(B)(B)).

This fact is easily explained. Indeed, define f2(A) = 1
2
‖PΩ(A) − PΩ(A0)‖2

2,
which is a differentiable function with gradient ∇f2(A) = PΩ(A) − PΩ(A0)
and f1(A) = λ‖A‖1, which is a non-differentiable convex function. We
will denote by ∂f1(A) the subdifferential of f1 at A. The fact that Âλ ∈
argminA{f2(A) + f1(A)} is equivalent to the fact that 0 ∈ ∂(f1 + f2)(Âλ) =
{∇f2(Âλ)}+∂f1(Âλ) (for the Minkowskii’s addition of sets), that we rewrite
in the following way:

Âλ −∇f2(Âλ)− Âλ ∈ ∂f1(Âλ). (3.7)
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On the other hand, a standard tool in convex analysis is the proximal oper-
ator, [17], [44]. The proximal operator of a convex function, for instance f1,
is given, for every B ∈ Rn1×n2 , by

proxf1(B) = argmin
A∈Rn1×n2

{1

2
‖A−B‖2

2 + f1(A)
}
,

the minimizer being unique since A 7→ 1
2
‖A−B‖2

2 +f1(A) is strongly convex.
But, since ∂(1

2
‖ ·−B‖2

2 + f1(·))(A) = {A−B}+ ∂f1(A), the point proxf1(B)
is uniquely determined by the inclusion

B − proxf1(B) ∈ ∂f1(proxf1(B)). (3.8)

So, choosing B = Âλ −∇f2(Âλ) in (3.8) and identifying with (3.7) leads to
the fact that Âλ satisfies the fixed-point equation

Âλ = proxf1(Âλ −∇f2(Âλ)),

which leads to (3.6) on this particular case, since we know that proxf1(B) =
Sλ(B) (see Proposition 2 below). Note that the same argument proves that,
if we add a ridge term to the nuclear norm penalization, namely

Âλ,τ = argmin
A∈Rn1×n2

{
‖PΩ(A)− PΩ(A0)‖2

2 + 2λ‖A‖1 + τ‖A‖2
2

}
(3.9)

for any τ ≥ 0, then and equivalent formulation is the fixed point equation

Âλ,τ =
1

1 + τ
Sλ(P⊥Ω (Âλ,τ ) + PΩ(A0)), (3.10)

and the minimizer is unique this time, since the objective function is now
strongly convex.

The argument given above is at the core of the proximal operator theory,
and leads to the so-called proximal forward-backward splitting algorithms,
see [17, 40] and [3]. Since these algorithm are optimal among the class of
first-order algorithms, they drawn a large attention in the machine learning
community, see for instance the survey [2]. Another advantage in the case of
matrix completion is that such an algorithm can handle large scale matrices,
see Remark 2 below.

So, we have seen that (3.3) and (3.6), or (3.9) and (3.10) are equivalent
formulations of the same problem. So, instead of considering (3.4), we could
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consider the corresponding fixed-point problem. Unfortunately, since ‖ · ‖1,w

is non-convex, the above arguments based on the subdifferential does not
make sense anymore. But still, we can consider an estimator defined as a
fixed point equation for the weighted soft-thresholding operator.

Theorem 4. Assume that τ > 0 and w1 ≥ · · · ≥ wn1∧n2 ≥ 0. Let us define
the matrix Âwλ as the solution of the fixed-point equation

Âwλ =
1

1 + τ
Swλ (P⊥Ω (Âwλ ) + PΩ(A0)), (3.11)

where Swλ is the weighted soft-thresholding operator given by

Swλ (B) = UB diag
((
σ1(B)− λ

w1

)
+
, . . . ,

(
σrank(B)(B)− λ

wrank(B)

)
+

)
V >B ,

(3.12)
where B = UB diag(σ(B))V >B is the SVD of B. Then, the solution to (3.11)
exists and is unique.

Theorem 4 is proved in Section 4.2 below, and is a by-product of our
analysis of the iterative scheme to approximate the solution of (3.11). The
parameter τ > 0 can be arbitrarily small (in our numerical experiments we
take it equal to zero, see Section 3.2), but it ensures unicity and convergence
of the iterative scheme proposed below. Once again, let us stress the fact
that (3.11) (with τ = 0) is not equivalent to (3.4) in general, since A 7→
‖A‖1,w is not convex.

The consideration of (3.11) has several advantages: we guarantee unicity
of the solution, while the problem (3.4) may have several solutions, and
it is easy to solve the fixed-point problem (3.11) using iterations. Even
further, from a numerical point of view, it can be easily used together with a
continuation algorithm, as explained in Section 3.2 below, to compute a set
of solutions for several values of the smoothing parameter λ.

The next Theorem proves that iterates of the fixed-point Equation (3.11)
converges exponentially fast to the solution.

Theorem 5. Take A0 as the matrix with zero entries and define for any
k ≥ 0:

Ak+1 =
1

1 + τ
Swλ (P⊥Ω (Ak) + PΩ(A0)). (3.13)
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Then, for any n ≥ 1, one has:

‖Âwλ − An‖2 ≤
1

τ(1 + τ)n
‖PΩ(A0)‖2,

where Âwλ is the solution of (3.11).

The proof of Theorem 5 is given in Section 4.2. The main step of the
proof is to establish the Lipshitz property of the weighted soft-thresholding
operator, see Proposition 3. Since Swλ is not a proximal operator (the ob-
jective function is not convex), we cannot use directly the property of firm-
expansivity, which is a direct consequence of the definition of a proximal
operator, see the discussion in Section 4.2.

3.2 Numerical study

3.2.1 Algorithms

In this Section we compare empirically the quality of reconstruction using
nuclear norm minimization (3.3) (NNM), or equivalently (3.6), and weighted
spectral soft-thresholding (3.11) (WSST). To compute the NNM we use the
Accelerated Proximal Gradient (APG) algorithm of [47] using the MATLAB

package NNLS, which is a state-of-the-art solver for the minimization prob-
lem (3.3). This algorithm is based on an accelerated proximal gradient algo-
rithm, itself based on the accelerated gradient of Nesterov, see [40, 41] and
the FISTA algorithm, see [3] and see also [29] for a similar algorithm. In the
APG algorithm, we use the linesearch and the continuation techniques, see
[47], but we don’t use truncation, since it led to poor results in the prob-
lems considered here. The target value of λ for NNM and WSST (see (3.3)
and (3.11)) is simply taken as λtarget = ε × ‖PΩ(A0)‖∞, with ε = 10−4 or
ε = 10−3 depending on the problem, see below. The solution coming out
of the APG algorithm is denoted by Â

(0)
λ . Note that we could have used

the FPC [34] or SVT [4] algorithms instead, but it led in our experiments to
poorer results compared to the APG (in particular when looking for solutions
with a rank of order, say, 100 on “real” matrices, like in the inpainting or
recommanding systems, see below).

The WSST is computed following the Algorithm 1 below. The first while
loop is a continuation loop, that goes progressively to λtarget. Doing this
instead of using λtarget directly is known to improve stability and rate of
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convergence of the algorithm. It does not take more time than using λtarget

directly (actually, it usually takes less time), since we use warm starts: when
taking a smaller λ, we use the previous value Anew (the solution with the
previous λ) as a starting point. Once we reached λtarget, we obtain a first

solution of the fixed point problem (3.11), denoted by Â
(1)
λ . Then, we update

the weights by taking wj = σj(Â
(1)
λ ), and we start all over. We don’t use

a continuation loop again, since we are already at the desired value of λ.
We keep the parameter λ fixed, we only repeat the process of updating the
weights and finding the solution to the fixed point (3.11) K times. By doing
this, we are typically going to decrease (eventually a lot) the final rank of
the WSST, while keeping a good reconstruction accuracy. This process of
updating the weights is usually not long. Typically, after a small number
of iterations, two fixed-point solutions before and after an update are very
close, so that our choice K = 50 is typically too large, but we keep it this
way to ensure a good stability of the final solution.

Note that in Algorithm 1 we use the iterations (3.13) with τ = 0, since it
gives satisfactory results. We use a simple stopping rule ‖Anew−Aold‖2/‖Aold‖2 ≤
tol with tol = 5×10−4 or tol = 10−3 depending on the scaling of the problem,
see below. We used in all our computations q = 0.7 and K = 50. For a fair
comparison, we always use, for a reconstruction problem, the same param-
eters ε, tol and λ for both NNM and WSST. Of course, for the WSST we
need to rescale λ by multiplying it by w1 (the first coordinate of the weights
vector, which is equal to σ1(Â(0)) at the first iteration).

Remark 2. A good point with WSST is that it can handle large scale matrices,
since at each iteration one only needs to store Aold, which is a low rank matrix
(coming out of a previous spectral soft-thresholding) and PΩ(Aold + A0),
which is a sparse matrix.

Remark 3. The overall computational cost of WSST is obviously much longer
than the one of NNM, since we use K iterations, and since we don’t use
accelerated gradient, linesearch and other accelerating recipes in our imple-
mentation of WSST. This is done purposely: we want to compare the quality
of reconstruction of the “pure” WSST, without helping computational tricks,
that usually improves rate of convergence, but accuracy of reconstruction as
well (this is the case if one compares NNM with and without these tools).
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Algorithm 1: Computation of the iteratively weighted spectral soft-
thresholding.

Input: The observed entries PΩ(A0), a preliminary reconstruction Â(0)
λ and

parameters λ1 > λtarget > 0, 0 < q, tol < 1, K ≥ 1
Output: The WSST reconstruction Â

(K)
λ

Put Anew = 0, λ = λ1 and take wj = σj(Â
(0)
λ )

while λ > λtarget do
Put δ = +∞
while δ > tol do

Aold = Anew

Anew = Swλ (Aold − PΩ(Aold) + PΩ(A0))
δ = ‖Anew −Aold‖2/‖Aold‖2

end
λ = λ× q

end

Put Â(1)
λ = Anew

for k = 1, . . . ,K do
Put wj = σj(Â

(k)
λ ) and δ = +∞

while δ > tol do
Aold = Anew

Anew = Swλ (Aold − PΩ(Aold) + PΩ(A0))
δ = ‖Anew −Aold‖2/‖Aold‖2

end
end

return Â
(K)
λ
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3.2.2 Phase transition

In Figure 3, we give a first empirical evidence of the fact that WSST improves
a lot upon NNM. For each r ∈ {5, 10, 15, . . . , 80}, we repeat the following
experiment 50 times. We draw at random U and V as 500 × r matrices
with N(0, 1) i.i.d entries, and put A0 = UV > (which is rank r a.s.). Then,
we choose uniformly at random 30% of the entries of A0, and compute the
NNM and the WSST based on this matrix. In Figure 3, we show, for each r
(x-axis), the boxplots of the relative reconstruction errors ‖Â− A0‖2/‖A0‖2

over the 50 repetitions for Â = NNM (top-left) and Â = WSST (top-right).
On this example, we observe that NNM is not able to recover matrices with
a rank larger than 35, while WSST can recover matrices with a rank up to
70. The boxplots of the ranks recovered by NNM and WSST are on the
second line, where we observe that WSST always recovers the true rank up
to a rank of order 70, while NNM correctly recovers the rank (only most of
the time) up to a rank 35, and overestimates it a lot for larger ranks. So,
on this simulated example, we observe a serious improvement of NNM using
WSST, since the latter has the exact reconstruction property for matrices
with twice a larger rank (70 instead of 35).

3.2.3 Image inpainting

In Figure 4, we consider the reconstruction of four test images (“lenna”,
“fingerprint”, “flinstones” and “boat”). Each test image has 512×512 pixels,
and is of rank 50. We only observe 30% of the pixels, picked uniformly at
random, with no noise. The observations are given in the first line of Figure 4,
where non-observed pixels are represented by white. The second line gives
the reconstruction obtained using NNM. The third line shows the difference
between the true image and the recovery by NNM, where blue is perfect
recovery and red is bad recovery. The fourth line shows the reconstruction
using WSST and the fifth shows the difference between the true image and
recovery by WSST.

On all four images, the recovery is much better using WSST, in partic-
ular on the fingerprint and flinstones images. This can be understood form
the fact that these two are very structured images. The most surprising fact
is that all the four reconstructions using NNM have rank 150 (because of
the way we choose λ, see above), while the rank of the reconstructions ob-
tained with WSST is never more than 90 (with the same choice of λ). So,
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Figure 3: Boxplots of the recovery errors (first line) and recovered ranks
(second line) using NNM (left) and WSST (right) of a 500 × 500 rank r
matrix with r between 5 and 80 (x-axis)
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WSST leads to simpler (with a lower rank, which is better in terms of com-
pression/description) and more accurate reconstructions. In particular, we
observe that WSST is able to recover in a more precise way the underlying
geometry of the true images (for instance, on the third line, first column, we
can recognize the shape of lenna, while this is not the case with WSST).

3.2.4 Collaborative filtering

Now, we consider matrix completion for a real dataset: the MovieLens data.
It contains 3 datasets, available on http://www.grouplens.org/:

• movie-100K: 100,000 ratings for 1682 movies by 943 users

• movie-1M: 1 million ratings for 3900 movies by 6040 users

• movie-10M: 10 million ratings and 100,000 tags for 10681 movies by
71567 users

The ranks of the users are integers between 1 and 5. In each 3 datasets, each
user has rated at least 20 movies. For our experiments, we simply choose
uniformly at random half of the ratings of each user to form a subset Γ of
the entire subset Ω or ratings. Then, based on the ratings in Γ, we try to
predict the ratings in Ω−Γ. Since many entries are missing, we measure the
accuracy of completion by computing the relative error in Ω − Γ. If Â is a
reconstruction matrix, we reproduce in Table 1 below the values of

err = ‖PΩ−Γ(Â)− PΩ−Γ(A0)‖2/‖PΩ−Γ(A0)‖2, (3.14)

together with the rank used for the reconstruction. We observe in Table 1
that WSST improves a lot upon NNM on each datasets. The most surprising
fact is that the rank used by WSST is much smaller than the one used by
NNM, while leading at the same time to strong prediction improvements.
For movie-1M for instance, the prediction error of WSST is 30% better than
NNM, while NNM solution has rank 200 and the WSST has rank 40. Once
again, we can conclude on this example that WSST gives both much simpler
reconstructions, and better prediction accuracy. Note that we considered a
maximum rank equal to 200 for the movie-100K and movie-1M datasets, and
equal to 50 for movie-10M (to make this problem computationally tractable
on a normal computer).
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Figure 4: Image reconstruction using NNM and WSST. First line: observed
pixels (white means non-observed). Second line: reconstruction using NNM.
Third line: difference between truth and NNM (red is bad, blue is good).
Fourth line: recovery using WSST. Fifth line: difference between truth and
WSST.
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relative error rank
n1/n2 m

NNM WSST NNM WSST
movie-100K: 943/1682 1.00e+5 3.92e-01 3.30e-01 128 33
movie-1M: 6040/3702 1.00e+6 3.83e-01 2.70e-01 200 40
movie-10M: 71567/10674 9.91e+6 2.76e-01 2.36e-01 50 5

Table 1: Relative reconstruction errors for the MovieLens datasets.

4 Proofs

4.1 Proofs for Section 2

We denote by `Mp the space RM endowed with the `p norm. The unit ball
there is denoted by BM

p . We also denote the unit Euclidean sphere in RM

by SM−1. We denote by (e1, . . . , eN) the canonical basis of RN and for any
I ⊂ {1, . . . , N} denote by RI the subspace of RN spanned by (ei : i ∈ I). Let
A = [A{1}, . . . , A{N}] be a matrix from RN to Rm, where A{i} denotes the
i-th column vector of A. Let x ∈ RN and I an arbitrary subset of {1, . . . , N}.
We define AI = [A{i} : i ∈ I] the matrix from RI to Rm with columns vectors
A{i} for i ∈ I. We denote by xI the vector in RI with coordinates xi for
i ∈ I, where xi is the i-th coordinate of x. We denote by xI the vector of
RN such that xIi = 0 when i /∈ I and xIi = xi when i ∈ I. If w ∈ RN has
non negative coordinates, we denote by wx the vector (w1x1, . . . , wNxN) and
by x/w the vector (x1/w1, . . . , xN/wN) with the previous convention in case
where wi = 0 for some i. We denote by |x| the vector (|x1|, . . . , |xN |). The
support of x is denoted by Ix, this is the set of all i ∈ {1, . . . , N} such that
xi 6= 0. We also consider the w-weighted `N1 -norm

|x|1,w =
N∑
i=1

|xi|
wi

. (4.1)

Note that | · |1,w is a norm only when restricted to RIw , where Iw is the
support of w.

We start with the well-known null space property and dual characteriza-
tion [6] of exact reconstruction of a vector by `1-based algorithms.

Proposition 1. Let x,w ∈ RN and denote by Ix (resp. Iw) the support of x
(resp. w). The following points are equivalent :
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1. ∆w(Ax) = x,

2. Ix ⊂ Iw and for any h ∈ kerAIw such that h 6= 0 then∣∣∣∣( h

wIw

)
I{
x

∣∣∣∣
1

+

〈
sgn(xIx),

( h

wIw

)
Ix

〉
> 0,

3. Ix ⊂ Iw and there exists Y ∈ (kerAIw)⊥ such that (wIwY )Ix = sign(xIx)
and |(wIwY )I{

x
|∞ < 1.

Proof. It follows from (2.3) that, under each one of the three conditions, we
have Ix ⊂ Iw. Therefore, to simply notations, we can work as if the ambient
space were RIw . Hence, without loss of generality, we assume that RIw = RN .
We also denote by I = Ix the support of x.

[Point 2. entails Point 1.] Using standard arguments (see for instance [44]),
we can see that the subgradient of | · |1,w at x ∈ RN is the set

∂|x|1,w =
{
t ∈ RN : ti = sgn(xi)/wi when xi 6= 0

and |ti| ≤ 1/wi when xi = 0
}
.

(4.2)

Using the definition of the subgradient of | · |1,w at x, it follows that for any
h ∈ RN ,

|x+ h|1,w ≥ |x|1,w + |(h/w)I{|1 +
〈
sgn(xI), (h/w)I

〉
.

Thus, if Point 2 holds then for any h ∈ kerA such that h 6= 0,

|x+ h|1,w > |x|1,w

and thus Point 1 is satisfied.
[Point 3. entails Point 2.] Let Y ∈ (kerA)⊥ such that (wY )I = sgn(xI)

and |(wY )I{|∞ < 1. For any h 6= 0 in kerA, we have

|(h/w)I{ |1 +
〈
sgn(xI), (h/w)I

〉
=
〈
sgn(x)I + sgn(h)I

{
, h/w

〉
=
〈
(sgn(x)/w)I + (sgn(h)/w)I

{
, h
〉

=
〈
(sgn(x)/w)I + (sgn(h)/w)I

{ − Y, h
〉

=
〈
(sgn(h)/w)I{ − YI{ , hI{

〉
=
∑
i∈I{

hi
wi

(
sgn(hi)− wiYi

)
> 0,
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where we used Point 3 in the fourth inequality.
[Point 1. entails Point 3.] This follows from classical results on the min-

imization of a convex function over a convex set (cf. [44]). Nevertheless, we
provide a direct proof following the argument of [6]. Denote by {e1, . . . , eN}
the canonical basis in RN and by BN

1,w the unit ball associated to the w-
weighted `N1 -norm:

BN
1,w = {t ∈ RN : |t|1,w ≤ 1}. (4.3)

If x is the unique solution of (2.2) then |x|1,wBN
1,w∩(x+kerA) = {x}. Then by

a duality argument (for instance Hahn-Banach Theorem for the separation of
convex sets), there exists Y ∈ RN such that x+ kerA ⊂ Γ1, where Γ1 = {t :〈
t, Y
〉

= 1} and |x|1,wBN
1,w ⊂ Γ≤1, where Γ≤1 = {t :

〈
t, Y
〉
≤ 1}. Introduce

F1,w(x) = |x|1,w conv(wiei : xi 6= 0), the face of |x|1,wBN
1,w containing x. By

moving the hyperplan Γ1, we can assume that |x|1,wBN
1,w ∩ Γ1 ⊂ F1,w(x).

Since |x|1,wBN
1,w ⊂ Γ≤1, we have supt∈|x|1,wBN

1,w

〈
t, Y
〉
≤ 1 thus |(wY )|∞ ≤

1/|x|1,w. Moreover, x ∈ Γ1 so 1 =
〈
x, Y

〉
≤ |x|1,w|(wY )|∞ ≤ 1 because

|(wY )|∞ ≤ 1/|x|1,w. This is the equality case in Hölder’s inequality, so it
follows that (wY )I = sgn(xI)/|x|1,w. Then, for any i /∈ I, |x|1,wwiei ∈
|x|1,wBN

1,w, thus
〈
|x|1,wwiei, Y

〉
≤ 1 and |x|1,wwiei /∈ F1,w(x), so |x|1,wwiei /∈

Γ1 thus
〈
|x|1,wwiei, Y

〉
< 1. That is, |(wY )I{|∞ < 1/|x|1,w. Finally, for any

h ∈ kerA, 1 =
〈
x + h, Y

〉
=
〈
x, Y

〉
+
〈
h, Y

〉
= 1 +

〈
h, Y

〉
, thus

〈
h, Y

〉
= 0

and Y ∈ (kerA)⊥. Then, we normalize Y by |x|1,w to obtain Point 3.

Both Criterions 2 and 3 in Proposition 1 can be used to characterize the
exact reconstruction of a vector x by the `1-weighted algorithm. The vector Y
of Criterion 3 is now called an exact dual certificate (cf. [6, 26]). We will use
Criterion 3 and the construction of an exact dual certificate from [6] to prove
Theorems 1 and 2. Note that Criterion 2 together with the construction of
an inexact dual certificate (cf. [26]) can also be used. Nevertheless, we do
not present this construction here since it does not improve the statement of
Theorem 2.

4.1.1 Proof of Theorem 1

In the same way as we did in the proof of Proposition 1, we can work as
if the ambient space were RIw and assume, without loss of generality, that
RIw = RN . We denote by I the support of x. We prove first that when
∆1(Ax) = x, then AI is injective. Indeed, suppose that there exists some
h ∈ RI such that h 6= 0 and AIh = 0. Denote by h0 ∈ RN the vector
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such that h0
I = h and h0

I{ = 0. We have h0 6= 0 and Ah0 = AIhI = 0.
In particular, for any λ 6= 0, λh ∈ kerA − {0}. Therefore, since x is the
unique solution of the Basis Pursuit algorithm, it follows from Point 2 of
Proposition 1 (applied to the weight vector w = (1, . . . , 1)), that, for every
λ 6= 0,

〈
sgn(xI), λh

0
I

〉
> 0. This is not possible, so AI is injective.

Since ∆1(Ax) = x, the decoder ∆2 is given here by

∆2(Ax) ∈ argmin
t∈RN

( N∑
i=1

|ti|
|xi|

: At = Ax
)
.

Therefore, according to (2.3), we have ∆2(Ax)i = 0 for any i /∈ I, that is
supp(∆2(Ax)) ⊂ I. As a consequence AIxI = Ax = A∆2(Ax) = AI∆2(Ax)I
and AI is injective thus, xI = ∆2(Ax)I . Since xI{ = 0 = ∆2(Ax)I{ , we have
x = ∆2(Ax).

4.1.2 Proof of Theorem 2

We adapt to our setup the “dual certificate” introduced in [6] and consider

Y 0 = A>AI(A
>
I AI)

−1
(sgn(x)

w

)
I
. (4.4)

In particular, we have Y 0 ∈ im(A>) = (kerA)⊥ and

Y 0
I = A>I AI(A

>
I AI)

−1
(sgn(x)

w

)
I

=
(sgn(x)

w

)
I
.

Thus, we have (wY 0)I = sgn(xI). In view of Proposition 1, it only remains
to prove that |(wY 0)I{ | < 1 with high probability. For 0 < δ < 1 and µ > 0,
we consider the events

Ω0(I, δ) =
{

(1− δ)|y|22 ≤ |AIy|22 ≤ (1 + δ)|y|22, ∀y ∈ RI
}

(4.5)

and
Ω1(I, µ) =

{
max
i∈I{
|A>I A{i}|2 < µ

}
. (4.6)

First, note that since A>I AI − Id is Hermitian, we have

‖A>I AI − Id‖2→2 = sup
|y|2=1

∣∣|AIy|22 − 1
∣∣.
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Thus, on Ω0(I, δ), we have ‖A>I AI − Id‖2→2 ≤ δ and so for any y ∈ RI ,∣∣(A>I AI)−1y
∣∣
2
≤ (1− δ)−1|y|2. In particular,∣∣∣(A>I AI)−1
(sgn(x)

w

)
I

∣∣∣
2
≤ 1

1− δ

∣∣∣(sgn(x)

w

)
I

∣∣∣
2

=
1

1− δ
∣∣(1/w)

I

∣∣
2
.

Then, it follows that, on Ω0(I, δ)∩Ω1(I, x) and under condition (A0)(I, (1−
δ)/µ),

|(wY 0)I{ |∞ = max
i∈I{

∣∣∣wiA>{i}AI(A>I AI)−1
(sgn(x)

w

)
I

∣∣∣
≤ max

i∈I{
wi max

i∈I{

∣∣∣〈A>I A{i}, (A>I AI)−1
(sgn(x)

w

)
I

〉∣∣∣
≤ max

i∈I{
wi max

i∈I{

∣∣A>I A{i}∣∣2∣∣∣(A>I AI)−1
(sgn(x)

w

)
I

∣∣∣
2

<
µ

1− δ
max
i∈I{

wi
∣∣(1/w)

I

∣∣
2
≤ 1.

Then, Theorem 2 follows from the probability estimates of Ω0(I, δ)∩Ω1(I, µ)
provided in the next lemma.

Lemma 4.1. Let A = m−1/2
(
gi,j
)

be a m × N matrix where the gi,j’s are
i.i.d. standard Gaussian variables. Assume that

m ≥ c0 max
[ s
δ2
,
s logN

µ2

]
.

With probability larger than 1− 2 exp(−c1mδ
2)− exp(−c2µ

2m/s), we have

(1− δ)|y|22 ≤ |AIy|22 ≤ (1 + δ)|y|22, ∀y ∈ RI

and maxi∈I{ |A>I A{i}|2 < µ.

Proof. For the sake of completeness, we recall here the classical ε-net argu-
ment to prove the first statement of Lemma 4.1. It is enough to prove that
supy∈SI ||AIy|22 − 1| ≤ δ, where SI is the set of unit vectors of `N2 supported
on I. First, note that

sup
y∈SI

∣∣|AIy|22 − 1
∣∣ = sup

y∈SI

|
〈
Ty, y

〉
| = ‖T‖2→2,
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where T : RI → RI is the symmetric operator A>A − Id. Let Λ ⊂ SI be
a 1/4-net of SI for the `2 metric with a cardinality smaller than 9s (the
existence of such a net follows from a volumetric argument, see [42]). For
any y ∈ SI , there exists z ∈ Λ such that y = z + u with |u|2 ≤ 1/4 and
therefore,

|
〈
Ty, y

〉
| ≤ |

〈
Tz, z

〉
|+ |

〈
Tu, u

〉
|+ 2|

〈
Tz, u

〉
| ≤ max

z∈Λ
|
〈
Tz, z

〉
|+ 9‖T‖2→2

16
.

Hence, ‖T‖2→2 ≤ (16/7) maxz∈Λ |
〈
Tz, z

〉
|, and it is enough to control the

supremum of y → |
〈
Ty, y

〉
| over Λ instead of SI .

Let y ∈ Λ. We denote by G1/
√
m, . . . , Gm/

√
m the row vectors of A

where G1, . . . , Gm are m independent standard Gaussian vectors of RN . We

have
〈
Ty, y

〉
= m−1

∑m
i=1

〈
Gi, y

〉2 − 1. Since ‖
〈
G, y

〉2‖ψ1 = ‖
〈
G, y

〉
‖2
ψ2

, it
follows from Bernstein inequality for ψ1 random variables [50] that

P
[
|
〈
Ty, y

〉
| ≤ δ

]
≥ 1− 2 exp(−c1mδ

2),

and a union bound yields

P
[
|
〈
Ty, y

〉
| ≤ δ , ∀y ∈ Λ

]
≥ 1− 2 exp(s log 9− c1mδ

2).

Combining the ε-net argument with this probability estimate we obtain that
when m ≥ c2s/δ

2 then ‖T‖2→2 ≤ δ with probability at least 1 − 2 exp
(
−

c3mδ
2
)
.

Now, we turn to the second part of the statement. Let i ∈ I{. The i-th
column vector of A is A{i} = Gi/

√
m = (gi1, . . . , gim)>/

√
m where the Gi’s

are independent standard Gaussian vectors of Rm. Let q ≥ 2 to be chosen
later. By Markov inequality,

P
[∣∣∣A>I A{i}∣∣∣

2
≥ µ

]
= P

[∣∣∣ m∑
j=1

gijGjI

∣∣∣
2
≥ mµ

]
≤ (mµ)−qE

∣∣∣ m∑
j=1

gijGjI

∣∣∣q
2
. (4.7)

Now, we use the vectorial version of Khintchine inequality conditionally to
G1J , . . . , GmJ , to obtain, for some absolute constant c4,(

Eg

∣∣∣ m∑
j=1

gijGjI

∣∣∣q
2

)1/q

≤ c4
√
q
(
Eg

∣∣∣ m∑
j=1

gijGjI

∣∣∣2
2

)1/2

= c4
√
q
( m∑
j=1

∣∣GjI

∣∣2
2

)1/2

.
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It follows that

E
∣∣∣ m∑
j=1

gijGjI

∣∣∣q
2
≤
(
c2

4qms
)q/2

.

Hence, in (4.7) for q =
(
µ/(2c2

4)
)2

(m/s), we obtain

P
[∣∣∣A>I A{i}∣∣∣

2
≥ µ

]
≤ exp

(
− µ2m log 2

s(2c2
4)2

)
.

The result follows now from an union bound.

4.1.3 Proof of Theorem 3

Proof. Assume that ∆r(Ax) = x and define y = ∆r+1(Ax). By construction
of y, we have supp(y) ⊂ supp(x) and Ax = Ay. So, since A is injective on
Σm and x − y ∈ Σm, we have x = y. This proves that ∆r+1(Ax) = x, and
that the sequence (∆n(Ax))n is constant and equal to a bm/2c-sparse vector
starting from the r-th iteration.

Now, assume that there exists an integer r and y ∈ Σbm/2c such that
∆r(Ax) = ∆r+1(Ax) = · · · = y. In particular, we have Ay = Ax, so since A
is injective on Σm and x− y ∈ Σm, we have x = y.

4.2 Proofs for Section 3

The next proposition shows that weighted spectral soft-thresholding achieves
the minimum of the weighted nuclear norm plus a proximity term. Note that,
however, weighted spectral soft-thresholding is not a proximal operator, since
the weighted nuclear norm is not convex. This entails in particular that the
proofs below use a direct analysis, since we cannot use arguments based on
subdifferential computations here.

Proposition 2. Let B ∈ Rn1×n2, τ, λ ≥ 0 and w1 ≥ · · · ≥ wn1∧n2 ≥ 0. Then
the minimization problem

min
A∈Rn1×n2

{1

2
‖A−B‖2

2 + λ

n1∧n2∑
j=1

σj(A)

wj
+
τ

2
‖A‖2

2

}
has a unique solution, given by 1

1+τ
Swλ (B), where Swλ (B) is the weighted soft-

thresholding operator (3.12).
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Proof of Proposition 2. Denote for short q = n1∧n2 and write the SVD of A
as A = UΣV > =

∑q
j=1 σjujv

>
j where U = [u1, . . . , uq], V = [v1, . . . , vq] and

Σ = diag(σ1, . . . , σq). We have

‖A−B‖2
2 = ‖B‖2

2 − 2

q∑
j=1

σju
>
j Bvj + (1 + τ)

q∑
j=1

σ2
j

so that we want to minimize the function

φ(U, V,Σ) =
1

2

q∑
j=1

(
− 2σju

>
j Bvj + (1 + τ)σ2

j

)
+ λ

q∑
j=1

σj
wj

over U, V,Σ with the constraints U>U = I, V >V = I and σ1 ≥ . . . ≥
σq ≥ 0. Using the variational characterization of singular values, if B =
U ′Σ′V ′> is the SVD of B, where U ′ = [u′1, . . . , u

′
q], V

′ = [v′1, . . . , v
′
q], Σ′ =

diag(σ′1, . . . , σ
′
q), we know that the maximum of u>Bv over all vectors u and

v subject to |u|2 = |v|2 = 1 and u orthogonal to u′1, . . . , u
′
j−1 and v orthogonal

to v′1, . . . , v
′
j−1 is achieved at u′j and v′j, and is equal to σ′j. So the maximum

of φ(U, V,Σ) is achieved at U = U ′ and V = V ′, and

φ(U ′, V ′,Σ) =
1

2

q∑
j=1

(
− 2σjσ

′
j + (1 + τ)σ2

j + 2λ
σj
wj

)
.

It is easy to see that for each j the the minimum over σj is achieved at
σj = 1

1+τ
(σ′j − λ

wj
)+, which is non-increasing.

As mentioned before, Swλ is not a proximal operator. A nice property
about proximal operators is that they are firmly non-expansive, see [44].
Namely, if T is the proximal operator of some convex function over an Hilbert
space H, then we have

‖Tx− Ty‖2 ≤ ‖x− y‖2 − ‖x− y − (Tx− Ty)‖2

for any x, y ∈ H. However, it turns out that we can prove, using a direct
analysis, that Swλ is non-expansive. Once again, the proof uses a direct and
technical analysis (since we cannot use arguments based on subdifferential
computations), while the property of firm-nonexpansivity of proximal oper-
ators is an easy consequence of their definition.

31



Proposition 3. Let w1 ≥ · · · ≥ wn1∧n2 ≥ 0, λ ≥ 0. Then, for any A,B ∈
Rn1×n2, we have

‖Swλ (A)− Swλ (B)‖2 ≤ ‖A−B‖2.

Proof of Proposition 3. Let us assume without loss of generality that λ = 1.
Write the SVD of A and B as A = U1Σ1V

>
1 and B = U2Σ2V

>
2 where Σ1 =

diag[σ1,1, . . . , σ1,r1 ], Σ2 = diag[σ2,1, . . . , σ2,r2 ] and r1 (resp. r2) stands for the
rank of A (resp. B). We also write for short Ā = Sw1 (A) = U1Σ̄1V

>
1 and

B̄ = Sw1 (B) = U2Σ̄2V
>

2 where Σ̄1 = diag[(σ1,1− 1/w1)+, . . . , (σ1,r1 − 1/wr1)+]
and Σ̄2 = diag[(σ2,1 − 1/w1)+, . . . , (σ2,r1 − 1/wr2)+]. We want to prove that
‖A−B‖2

2 − ‖Ā− B̄‖2
2 ≥ 0. First use the decomposition

‖A−B‖2
2−‖Ā− B̄‖2

2 = ‖A‖2
2 − ‖Ā‖2

2 + ‖B‖2
2 − ‖B̄‖2

2 − 2
〈
A,B

〉
+ 2
〈
Ā, B̄

〉
=

r1∑
j=1

σ2
1,j −

r̄1∑
j=1

(
σ1,j −

1

wj

)2

+

r2∑
j=1

σ2
2,j −

r̄2∑
j=1

(
σ2

2,j −
1

wj

)2

− 2
(〈
A,B

〉
−
〈
Ā, B̄

〉)
,

where we take r̄1 such that σ1,j > 1/wj for j ≤ r̄1 and σ1,j ≤ 1/wj for
j ≥ r̄1 + 1, and similarly for r̄2. We decompose〈

A,B
〉
−
〈
Ā, B̄

〉
=
〈
A− Ā, B − B̄

〉
+
〈
Ā, B − B̄

〉
+
〈
A− Ā, B̄

〉
(4.8)

Using von Neumann’s trace inequality
〈
X, Y

〉
≤
∑

j σj(X)σj(Y ) (see for
instance [28], Section 7.4.13), it follows for the first term of (4.8) that〈

A− Ā, B − B̄
〉
≤

r1∧r2∑
j=1

(Σ1 − Σ̄1)j,j(Σ2 − Σ̄2)j,j.

Using the same argument for the two other terms of (4.8), we obtain〈
A,B

〉
−
〈
Ā, B̄

〉
≤

r1∧r2∑
j=1

(
(Σ1 − Σ̄1)j,j(Σ2 − Σ̄2)j,j + (Σ̄1)j,j(Σ2 − Σ̄2)j,j

+ (Σ1 − Σ̄1)j,j(Σ̄2)j,j

)
,

We explore the case r1 ≤ r2 and r̄1 ≤ r̄2; the other cases follow the same
argument. We have〈

A,B
〉
−
〈
Ā, B̄

〉
≤

r̄1∑
j=1

σ1,j

wj
+
(
σ2,j −

1

wj

) 1

wj
+

r1∑
j=r̄1+1

σ1,jσ2,j,
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so, an easy computation leads to

‖A−B‖2
2 − ‖Ā− B̄‖2

2 ≥
r1∑

j=r̄2+1

σ2
1,j +

r2∑
j=r̄2+1

σ2
2,j − 2

r1∑
j=r̄2+1

σ1,jσ2,j

+

r̄2∑
j=r̄1+1

(
σ2

1,j − 2σ1,jσ2,j +
2σ2,j

wj
− 1

w2
j

)
.

We obviously have
∑r1

j=r̄2+1 σ
2
1,j +

∑r2
j=r̄2+1 σ

2
2,j − 2

∑r1
j=r̄2+1 σ1,jσ2,j ≥ 0. By

definition of r̄2 and r̄1, we have σ1,j ≤ 1/wj < σ2,j for any j = r̄1 + 1, . . . , r̄2.
Hence, we have

σ2
1,j − 2σ1,jσ2,j +

2σ2,j

wj
− 1

w2
j

= (σ1,j − 2σ2,j + 1/wj)(σ1,j − 1/wj) ≥ 0,

which concludes the proof of Proposition 3.

Proof of Theorem 4. Consider the sequence (Ak)k≥0 defined in (3.13). Using
Proposition 3 we have for any k ≥ 1

‖Ak+1 − Ak‖2 =
1

(1 + τ)
‖Swλ (PΩ(A0) + P⊥Ω (Ak))− Swλ (PΩ(A0) + P⊥Ω (Ak−1))‖2

≤ 1

(1 + τ)
‖P⊥Ω (Ak)− P⊥Ω (Ak−1)‖2 ≤

1

(1 + τ)
‖Ak − Ak−1‖2,

so that ‖Ak+1−Ak‖2 ≤ (1+τ)−k‖A1−A0‖2. This proves that
∑

k≥0 ‖Ak+1−
Ak‖2 < +∞, so the limit of (Ak)k≥0 exists and is given by

A∞ =
∑
k≥0

(Ak+1 − Ak) + A0.

Now, by continuity of Swλ and P⊥Ω , taking the limit on both sides of (3.13),
we obtain that A∞ satisfies the fixed-point equation

A∞ =
1

1 + τ
Swλ (P⊥Ω (A∞) + PΩ(A0)),

so we have found at least one solution. Let us show now that it is unique, so
that Âwλ = A∞: consider a matrix B satisfying the same fixed point equation.
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We have

‖B − A∞‖2 =
1

(1 + τ)2
‖Swλ (PΩ(A0) + P⊥Ω (B))− Swλ (PΩ(A0) + P⊥Ω (A∞))‖2

≤ 1

(1 + τ)
‖P⊥Ω (B)− P⊥Ω (A∞)‖2 ≤

1

(1 + τ)
‖B − A∞‖2,

therefore B = A∞.

Proof of Theorem 5. We know from the proof of Theorem 4 that

‖Âwλ − An‖2 = ‖
∑
k≥n

(Ak+1 − Ak)‖2 ≤
∑
k≥n

1

(1 + τ)k
‖A1 − A0‖2,

leading to the conclusion.
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