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Abstract

Let F be a finite model of cardinality M and denote by conv(F ) its convex hull.
The problem of convex aggregation is to construct a procedure having a risk as close
as possible to the minimal risk over conv(F ). Consider the bounded regression model
with respect to the squared risk denoted by R(·). If f̂ERM−C

n denotes the empirical
risk minimization procedure over conv(F ) then we prove that for any x > 0, with
probability greater than 1− 4 exp(−x),

R(f̂ERM−C
n ) ≤ min

f∈conv(F )
R(f) + c0 max

(
ψ(C)

n (M),
x

n

)
where c0 > 0 is an absolute constant and ψ

(C)
n (M) is the optimal rate of convex

aggregation defined in [37] by ψ
(C)
n (M) = M/n when M ≤

√
n and ψ

(C)
n (M) =√

log
(
eM/
√
n
)
/n when M >

√
n.

1 Introduction and main results

Let X be a probability space and let (X,Y ) and (X1, Y1), . . . , (Xn, Yn) be n + 1 i.i.d.
random variables with values in X × R. From the statistical point of view, the set D =
{(X1, Y1), . . . , (Xn, Yn)} is the set of given data where the Xi’s are usually considered as
input data taking their values in some space X and the Yi’s are some outputs or labels
associated with these inputs. We are interested in the prediction of Y associated with a
new observation X. The data D are thus used to construct functions f : X → R such that
f(X) provides a good guess of Y . We measure the quality of this prediction by means of
the squared risk

R(f) = E(Y − f(X))2,

when f is a real-valued function defined on X and by

R(f̂) = E
[
(Y − f̂(X))2|D

]
when f̂ is a function constructed using the data D. For the sake of simplicity, throughout
this article we restrict ourselves to functions f and random variables (X,Y ) for which
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|Y | ≤ b and |f(X)| ≤ b almost surely, for some fixed b ≥ 0. Note that b does not have to
be known from the statistician for the construction of the procedures we are studying in
this note.

Given a finite set F of real-valued measurable functions defined on X (usually called
a dictionary), there are three main types of aggregation problems:

1. model selection aggregation: construct a procedure whose risk is as close as possible
to the risk of the best element in F (cf. [2, 3, 12, 14, 15, 30, 17, 18, 22, 37, 38, 41, 42]).

2. convex aggregation: construct a procedure whose risk is as close as possible to the
risk of the best function in the convex hull of F (cf. [1, 9, 11, 12, 17, 37, 43, 26]).

3. linear aggregation: construct a procedure whose risk is as close as possible to the
risk of the best function in the linear span of F (cf. [12, 30, 20, 37, 4]).

In this note, we focus on the convex aggregation problem. We want to construct a
procedure f̃ for which, with high probability,

R(f̃) ≤ min
f∈conv(F )

R(f) + ψn(M) (1.1)

where ψn(M) is called the residual term. The residual term is the quantity that we want
as small as possible. Results in expectation are also of interest: construct a procedure f̃
such that ER(f̃) ≤ minf∈conv(F )R(f) + ψn(M).

In [37] the author defined the optimal rates of the convex aggregation, by the smallest
price in the minimax sense that one has to pay to solve the convex aggregation problem.
The definition of [37] is given in expectation, as a function of the cardinality M of the
dictionary F and of the sample size n. It has been proved in [37] (see also [17] and [43])
that the optimal rate of convex aggregation is

ψ(C)
n (M) =


M
n if M ≤

√
n√

1
n log

(
eM√
n

)
if M >

√
n.

This rate is defined up to some multiplying constant. Note that the rate ψ(C)
n (M) was

achieved in [37] in expectation for the Gaussian regression model with a known variance
and a known marginal distribution of the design. In [11], the authors were able to remove
these assumptions at a price of an extra log n factor for 1 ≤ M ≤

√
n (results are still

in expectation). Last year, there has been some striking results on different problems
of aggregation including the convex aggregation problem. To mention few of them, we
refer the reader to [33, 32] and [40]. Finally, we also refer the reader to [7, 43] for non-
exact oracle inequalities (inequalities like (1.1) where minf∈conv(F )R(f) is multiplied by a
constant strictly larger than 1) in the context of convex aggregation.

A lower bound in deviation for the convex aggregation problem follows from the ar-
guments of [37]: there exist absolute positive constants c0, c1 and c2 such that for any
sample cardinality n ≥ 1, any cardinality of dictionary M ≥ 1 such that logM ≤ c0n,
there exists a dictionary F of size M such that for any aggregation procedure f̄n, there

2



exists a random couple (X,Y ) such that |Y | ≤ b and maxf∈F |f(X)| ≤ b a.s. and with
probability larger than c1,

R(f̄n) ≥ min
f∈conv(F )

R(f) + c2b
2ψ(C)

n (M). (1.2)

This means that, from a minimax point of view, one cannot do better than the rate
ψ

(C)
n (M) for the convex aggregation problem. Therefore, any procedure achieving the rate
ψ

(C)
n (M) for any dictionary F and couple (X,Y ) such that |Y | ≤ b and maxf∈F |f(X)| ≤ b

a.s. in an oracle inequality like (1.1) is called an optimal procedure in deviation for the
convex aggregation problem.

The procedure constructed in [37] achieves the rate ψ(C)
n (M) in expectation (i.e. a

procedure satisfying (1.1) in expectation with the optimal residual term ψ
(C)
n (M)). An

optimal procedure in deviation has been constructed in Theorem 2.8.1 in [21]. In both
cases, the construction of these optimal aggregation procedures require the aggregation
of an exponential number in M of functions in conv(F ) and thus cannot be used in
practice. On the other side, it would be much simpler and natural to consider the classical
procedure of empirical risk minimization (cf. [39]) over the convex hull of F to solve the
convex aggregation problem:

f̂ERM−Cn ∈ argmin
f∈conv(F )

Rn(f) where Rn(f) =
1
n

n∑
i=1

(Yi − f(Xi))2. (1.3)

In [17, 30, 24], the authors prove that, for every x > 0, with probability greater than
1− 4 exp(−x)

R(f̂ERM−Cn ) ≤ min
f∈conv(F )

R(f) + c0 max
(
φn(M),

x

n

)
where φn(M) = min

(M
n
,

√
logM
n

)
.

The rate φn(M) behaves like the optimal rate ψ(C)
n (M) except for values of M such that

n1/2 < M ≤ c(ε)n1/2+ε for ε > 0 for which there is a logarithmic gap. In this note,
we were able to remove this logarithmic loss proving that f̂ERM−Cn is indeed optimal for
the convex aggregation problem. Finally, note that in [24], the authors show that the
rate ψ(C)

n (M) can be achieved by f̂ERM−Cn for any orthogonal dictionary (i.e. such that
∀f 6= g ∈ F,Ef(X)g(X) = 0). The performance of ERM in the convex hull has been
studied for an infinite dictionary in [9]. The resulting upper bounds, in the case of a finite
dictionary, is of the order of M/n for every n and M .

Another motivation for this work comes from what is known about ERM in the context
of the three aggregation schemes mentioned above. It is well-known that ERM in F is, in
general, a suboptimal aggregation procedure for the model selection aggregation problem
(see [18], [29] or [23]). It is also known that ERM in the linear span of F is an optimal
procedure for the linear aggregation problem [20] (cf. Theorem 13 and Example 1) or
[4]. Therefore, studying the performances of ERM in the convex hull of F in the context
of convex aggregation can be seen as an “intermediate” problem which remained open.
In fact, a lot of effort has been invested in finding any procedure that would be optimal
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for the convex aggregation problem. For example, many boosting algorithms (see [34] or
[10] for recent results on this topic) are based on finding the best convex combination
in a large dictionary (for instance, dictionaries consisting of “decision stumps”), while
random forest algorithms can be seen as procedures that try finding the best convex
combination of decision trees. Thus, finding an optimal procedure for the problem of
convex aggregation for a general dictionary is of high practical importance. In the following
result, we prove that empirical risk minimization is an optimal procedure for the convex
aggregation problem.

Theorem A There exists absolute constants c0 and c1 such that the following holds. Let
F be a finite dictionnary of cardinality M and (X,Y ) be a random couple of X × R such
that |Y | ≤ b and maxf∈F |f(X)| ≤ b a.s. for some b > 0. Then, for any x > 0, with
probability greater than 1− 4 exp(−x)

R(f̃ERM−Cn ) ≤ min
f∈conv(F )

R(f) + c0b
2 max

[
ψ(C)
n (M),

x

n

]
.

The optimality also holds in expectation:

ER(f̃ERM−Cn ) ≤ min
f∈conv(F )

R(f) + c1b
2ψ(C)

n (M).

2 Preliminaries on isomorphic properties of functions classes

We recall the machinery developed in [5] to prove isomorphic results between the empirical
and actual structures of functions classes.

Let (Z, σ) be a measurable space, Z,Z1, . . . , Zn be n + 1 i.i.d. random variables
with values in Z distributed according to PZ and G be a class of real-valued measurable
functions defined on Z. We consider the star shaped hull of G in zero and its localized set
at some level λ > 0:

V (G) = {αg : 0 ≤ α ≤ 1, g ∈ G} and V (G)λ = {h ∈ V (G) : Ph ≤ λ}.

For any functions class H (in particular for H being G, V (G) or V (G)λ for some λ), we
denote ‖P − Pn‖H = suph∈H |(P −Pn)h|, where Ph = Eh(Z) and Pnh = n−1

∑n
i=1 h(Zi),

σ(H) = suph∈H
√
Ph2 and ‖H‖∞ = suph∈H ‖h‖L∞(PZ). We also recall the separability

condition of [28] (cf. Condition (M)) for which Talagrand’s concentration inequality holds:

(M) There exists G0 ⊂ G such that G0 is countable and for any g ∈ G, there exists a
sequence (gk)k in G0 such that for any z ∈ Z, (gk(z))k tends to g(z) when k tends
to infinity.

Theorem 2.1 ([5]) There exists an absolute constant c0 > 0 such that the following holds.
Let G be a class of real-valued measurable functions defined on Z satisfying condition (M)
and such that Pg2 ≤ BPg,∀g ∈ G for some constant B > 0. Let λ∗ > 0 be such that

E ‖P − Pn‖V (G)λ∗
≤ (1/8)λ∗. (2.1)
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For every x > 0, with probability greater than 1− 4 exp(−x), for every g ∈ G,

|Pg − Png| ≤ (1/2) max
(
Pg, ρn(x)

)
where ρn(x) = max

(
λ∗,

c0(B + ‖G‖∞)x
n

)
.

For the reader convenience, we recall the short proof of [5].
Proof. Without loss of generality, we can assume that G is countable. From a limit
argument the result holds for classes of functions satisfying condition (M).

Fix λ > 0 and x > 0, and note that by Talagrand’s concentration inequality (cf.
[35, 36, 27, 19, 8]), with probability larger than 1− 4 exp(−x),

‖P − Pn‖V (G)λ
≤ 2E ‖P − Pn‖V (G)λ

+Kσ(V (G)λ)
√
x

n
+K ‖V (G)λ‖∞

x

n
(2.2)

where K is an absolute constant. Clearly, we have ‖V (G)λ‖∞ ≤ ‖G‖∞ and

σ2(V (G)λ) = sup
(
P (αg)2 : 0 ≤ α ≤ 1, g ∈ G,P (αg) ≤ λ

)
≤ Bλ.

Moreover, since V (G) is star-shaped, λ > 0 → φ(λ) = E ‖P − Pn‖V (G)λ
/λ is non-

increasing, and since φ(λ∗) ≤ 1/8 and ρn(x) ≥ λ∗ then

E ‖P − Pn‖V (G)ρn(x)
≤ (1/8)ρn(x).

Combined with (2.2), there exists an event Ω0(x) of probability greater than 1−4 exp(−x),
and on Ω0(x),

‖P − Pn‖V (G)ρn(x)
≤ (1/4)ρn(x) +K

√
Bρn(x)x

n
+K

‖G‖∞ x
n

≤ (1/2)ρn(x)

as long as c0 ≥ 64(K2 + K). Hence, on Ω0(x), if g ∈ V (G) satisfies that Pg ≤ ρn(x),
then |Pg − Png| ≤ (1/2)ρn(x). Moreover, if g ∈ V (G) is such that Pg > ρn(x), then
h = ρn(x)g/Pg ∈ V (G)ρn(x); hence |Ph − Pnh| ≤ (1/2)ρn(x), and so in both cases
|Pg − Png| ≤ (1/2) max

(
Pg, ρn(x)

)
.

Therefore, if one applies Theorem 2.1 to obtain isomorphic properties between the
empirical and actual structures, one has to check the condition Pg2 ≤ BPg,∀g ∈ G,
called the Bernstein condition in [5], and to find a point λ∗ satisfying (2.1).

A point λ∗ such that (2.1) holds can be found thanks to the peeling argument of [6]:
for any λ > 0,

V (G)λ ⊂
∞⋃
i=0

{
αg : 0 ≤ α ≤ 2−i, g ∈ G,Pg ≤ 2i+1λ

}
which implies

E ‖P − Pn‖V (G)λ
≤
∞∑
i=0

2−iE ‖P − Pn‖G2i+1λ
(2.3)

where, for any µ > 0, Gµ = {g ∈ G : Pg ≤ µ}. Then if λ∗ > 0 is such that λ∗/8 upper
bounds the RHS in (2.3) this point also satisfies (2.1).
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The Bernstein condition usually follows from some convexity argument. For instance,
it is now standard to check the Bernstein condition for the excess loss functions class
LF = {Lf : f ∈ F} associated with a convex model F with respect to the squared loss
function `f (x, y) = (y − f(x))2, ∀x ∈ X , y ∈ R, where f∗F ∈ argminf∈F E(Y − f(X))2 and
Lf = `f − `f∗F . Indeed, if F is a convex set of functions and (X,Y ) is a random couple on
X × R such that |Y | ≤ b and supf∈F |f(X)| ≤ b a.s. then it follows from convexity and
definition of f∗F that for any f ∈ F , E

[
(f∗F (X)− Y )(f∗F (X)− f(X))

]
≤ 0 and so

ELf = 2E(f∗F (X)− f(X))(Y − f∗F (X)) + E(f∗F (X)− f(X))2 ≥ E(f∗F (X)− f(X))2. (2.4)

Moreover, since |Y | ≤ b and supf∈F |f(X)| ≤ b a.s. then

EL2
f = E

(
2Y − f∗F (X)− f(X)

)2(
f(X)− f∗F (X)

)2 ≤ (4b)2E
(
f(X)− f∗F (X)

)2
. (2.5)

Therefore, any f in F is such that EL2
f ≤ (4b)2ELf .

3 Proof of Theorem A

The proof of Theorem A for the case M ≤
√
n is now very classical and can be found

in [20] (cf. Theorem 13 and Example 1). Nevertheless, we reproduce here this short
proof in order to provide a self-contained note. The proof for the case M >

√
n is

more tricky and relies on isomorphic properties of an exponential number of segments in
conv(F ) together with Maurey’s empirical method (cf. [31, 13]) which was first used in the
context of convex aggregation in [30] and [37]. Note that segments are models of particular
interest in Learning theory because they are convex models (in particular, they satisfy the
Bernstein condition) and they are of small complexity (essentially the same complexity as
a model of cardinality two). On the contrary to the classical entropy based approach which
essentially consists in approximating a set by finite sets, approaching models by union of
segments may be of particular interest in Learning theory beyond the convex aggregation
problem. Note that finite models have no particular geometrical structure and therefore
are somehow “bad models” as far as ERM procedures are concerned.

Proofs are given for the deviation result of Theorem A. The result in expectation of
Theorem A follows from a direct integration argument.

3.1 The case M >
√

n

We apply Theorem 2.1 to excess loss functions classes indexed by segments. First note
that segments of bounded functions are functions classes satisfying condition (M). We
consider a set C′ = {g1, . . . , gN} of real-valued measurable functions defined on X such
that maxg∈C′ |g(X)| ≤ b a.s.. For every i, j ∈ {1, . . . , N} we consider the segment [gi, gj ] =
{θgi + (1− θ)gj : 0 ≤ θ ≤ 1} and take g∗ij ∈ argming∈[gi,gj ]R(g) where R(·) is the squared
risk. We consider the excess loss functions class

Lij = {Lijg : g ∈ [gi, gj ]} where Lijg = `g − `g∗ij
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for `g(x, y) = (y − g(x))2, ∀x ∈ X , y ∈ R.
As a consequence of convexity of segments, we have for any g ∈ [gi, gj ], E

(
Lijg
)2 ≤

(4b)2ELijg (cf. (2.4) and (2.5) in Section 2). This implies that the functions class Lij
satisfies the Bernstein condition of Theorem 2.1. Now, it remains to find λ∗ > 0 such that
E ‖P − Pn‖V (Lij)λ∗ ≤ (1/8)λ∗. Let µ > 0 and ε1, . . . , εn be n i.i.d. Rademacher variables.

Note that for any g ∈ [gi, gj ], PLijg ≥ P (g − g∗ij)2 = E
(
g(X) − g∗ij(X)

)2 (cf. (2.4)). It
follows from the symmetrization argument and the contraction principle (cf. [25] page 95)
that if gi 6= gj then

E ‖P − Pn‖(Lij)µ ≤ 2E sup
g∈[gi,gj ]:PLijg ≤µ

∣∣∣ 1
n

n∑
k=1

εkLijg (Xk, Yk)
∣∣∣

≤ 8bE sup
g∈[gi,gj ]:PLijg ≤µ

∣∣∣ 1
n

n∑
k=1

εk(g(Xk)− g∗ij(Xk))
∣∣∣

≤ 8bE sup
g∈[gi,gj ]:P (g−g∗ij)2≤µ

∣∣∣ 1
n

n∑
k=1

εk(g(Xk)− g∗ij(Xk))
∣∣∣

= 8bE sup
g∈[gi,gj ]−g∗ij :Pg2≤µ

∣∣∣ 1
n

n∑
k=1

εkg(Xk)
∣∣∣ ≤ 8bE sup

g∈span(gi−gj):Pg2≤µ

∣∣∣ 1
n

n∑
k=1

εkg(Xk)
∣∣∣

=
8b
√
µ

P (gi − gj)2
E
∣∣∣ 1
n

n∑
k=1

εk(gi − gj)(Xk)
∣∣∣ ≤ 8b

√
µ

P (gi − gj)2

(
E
( 1
n

n∑
k=1

εk(gi − gj)(Xk)
)2)1/2

= 8b
√
µ

n
.

Note that when gi = gj the result is also true. Now, we use the peeling argument of (2.3)
to obtain

E ‖P − Pn‖V (Lij)λ ≤
∞∑
k=0

2−kE ‖P − Pn‖(Lij)
2k+1λ

≤
∞∑
k=0

2−k8b

√
2k+1λ

n
≤ c0b

√
λ/n.

Therefore, for λ∗ = (8c0b)2/n, we have E ‖P − Pn‖V (Lij)λ∗ ≤ (1/8)λ∗.
Now, we can apply Theorem 2.1 to the family of excess loss functions classes (Lij)1≤i,j≤N

together with a union bound to obtain the following result.

Proposition 3.1 There exists an absolute constant c0 > 0 such that the following holds.
Let C′ = {g1, . . . , gN} be a set of measurable real-valued functions defined on X . Let (X,Y )
be a random couple with values in X × R such that |Y | ≤ b and maxg∈C′ |g(X)| ≤ b a.s..
For any x > 0, with probability greater than 1− 4 exp(−x), for any i, j ∈ {1, . . . , N} and
any g ∈ [gi, gj ],

∣∣PLijg − PnLijg ∣∣ ≤ (1/2) max
(
PLijg , γ(x)

)
where γ(x) =

c0b
2(x+ 2 logN)

n
.
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Now, we want to apply the isomorphic result of Proposition 3.1 to a wisely chosen
subset C′ of C = conv(F ). For that we consider the integer

m =

⌈√
n

log
(
eM/
√
n
)⌉

and the set C′ is defined by

C′ =
{ 1
m

m∑
i=1

hi : h1, . . . , hm ∈ F
}
.

The set C′ is an approximating set of the convex hull conv(F ). We will for instance use
the following approximation property:

min
f∈C′

R(f) ≤ min
f∈C

R(f) +
4b2

m
. (3.1)

Indeed, to obtain such a result, we use Maurey’s empirical method. Let f∗C ∈ argminf∈C R(f)
and denote f∗C =

∑M
j=1 λjfj where λj ≥ 0, ∀j = 1, . . . ,M and

∑M
j=1 λj = 1. Consider a

random variable Θ : Ω → F such that P[Θ = fj ] = λj ,∀j = 1, . . . ,M and let Θ1, . . . ,Θm

bem i.i.d. random variables distributed according to Θ and independent of (X,Y ). Denote
by EΘ the expectation with respect to Θ1, . . . ,Θm. Since EΘΘj = f∗C for any j = 1, . . . ,m,
we have

min
f∈C′

R(f) ≤ EΘR
( 1
m

m∑
j=1

Θj

)
= EΘE

( 1
m

m∑
j=1

Θj(X)− Y
)2

= E
( 1
m2

m∑
j,k=1

EΘ(Y −Θj(X))(Y −Θk(X))
)

= R(f∗C ) +
EVΘ(Y −Θ(X))

m

where VΘ stands for the variance symbol with respect to Θ. Equation (3.1) follows since
|Y | ≤ b and maxf∈F |f(X)| ≤ b a.s..

Denote by N = |C′| the cardinality of C′ and by g1, . . . , gN the functions in C′. For
simplicity assume that R(g1) = ming∈C′ R(g). Thanks to [13] for the first inequality and
[16], page 218, or [27] proposition 2, for the second inequality , we know that

|C′| = N ≤
(
M +m− 1

m

)
≤
(2eM
m

)m
. (3.2)

Let x > 0. Consider the event Ω(x) ⊂ Ω such that the following isomorphic property
holds for all the segments [g1, gj ], j = 1, . . . , N :∣∣PnL1j

g − PL1j
g

∣∣ ≤ (1/2) max
(
PL1j

g , γ(x)
)
, ∀g ∈ [g1, gj ] (3.3)

where we recall that L1j
g = `g − `g∗1j is the excess loss function of g ∈ [g1, gj ] for the model

[g1, gj ] and

γ(x) =
c0b

2(x+ 2 logN)
n

.
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Thanks to Proposition 3.1, we know that P[Ω(x)] ≥ 1− 4 exp(−x).
We are going to work on the event Ω(x) but for the moment, we use a second time

Maurey’s empirical method. Fix X1, . . . , Xn and write f̂ERM−Cn =
∑M

j=1 βjfj . Consider
a random variable Θ : Ω′ → F defined on an other probability space (Ω′,A′,P′) such that
P′[Θ = fj ] = βj ,∀j = 1, . . . ,M and let Θ1, . . . ,Θm be m i.i.d. random variables having
the same probability distribution as Θ. Once again, denote by E′Θ the expectation with
respect to Θ1, . . . ,Θm and by VΘ the variance with respect to Θ. Since E′ΘΘj = f̂ERM−Cn

for any j = 1, . . . ,m, it follows from the same method used to obtain (3.1) that

E′ΘR
( 1
m

m∑
j=1

Θj

)
= R(f̂ERM−Cn ) +

EV′Θ(Y −Θ(X))
m

(3.4)

and the same holds for the empirical risk:

E′ΘRn
( 1
m

m∑
j=1

Θj

)
= Rn(f̂ERM−Cn ) +

1
m

( 1
n

n∑
i=1

V′Θ(Yi −Θ(Xi))
)
. (3.5)

Consider the following notation:

gΘ =
1
m

m∑
j=1

Θj and iΘ ∈ {1, . . . , N} such that giΘ = gΘ.

Note that gΘ is a random point in C′ (as a measurable function from Ω′ to C′) and that,
on the event Ω(x), the following isomorphic property on the segment [g1, gΘ] holds:∣∣PnL1iΘ

g − PL1iΘ
g

∣∣ ≤ (1/2) max
(
PL1iΘ

g , γ(x)
)
, ∀g ∈ [g1, giΘ ]. (3.6)

First note that for every Θ1, . . . ,Θm, we have

R(f̂ERM−Cn ) = R(g∗1iΘ) +R(gΘ)−R(g∗1iΘ) +R(f̂ERM−Cn )−R(gΘ). (3.7)

By definition of g∗1iΘ ∈ argming∈[giΘ ,g1]R(g), we have R(g∗1iΘ) ≤ R(g1) = ming∈C′ R(g) and
according to (3.1) we have minf∈C′ R(f) ≤ minf∈C R(f) + (4b2)/m. Therefore, it follows
from (3.7) that

R(f̂ERM−Cn ) ≤ min
f∈C

R(f) +
4b2

m
+ PL1iΘ

gΘ
+R(f̂ERM−Cn )−R(gΘ). (3.8)

On the event Ω(x), we use (3.6) to obtain for every Θ1, . . . ,Θm

R(f̂ERM−Cn ) ≤ min
f∈C

R(f) +
4b2

m
+ 2PnL1iΘ

gΘ
+ γ(x) +R(f̂ERM−Cn )−R(gΘ).

Moreover, by definition of f̂ERM−Cn , we have

PnL1iΘ
gΘ

= Rn(gΘ)−Rn(g∗1iΘ) ≤ Rn(gΘ)−Rn(f̂ERM−Cn ).
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Therefore, on the event Ω(x), we have for every Θ1, . . . ,Θm

R(f̂ERM−Cn ) ≤ min
f∈C

R(f) +
4b2

m
+ γ(x)

+ 2
(
Rn(gΘ)−Rn(f̂ERM−Cn )

)
+R(f̂ERM−Cn )−R(gΘ).

In particular, one can take the expectation with respect to Θ1, . . . ,Θm (defined on Ω′) in
the last inequality. We have on Ω(x),

R(f̂ERM−Cn ) ≤ min
f∈C

R(f) +
4b2

m
+ γ(x)

+ 2E′Θ
(
Rn(gΘ)−Rn(f̂ERM−Cn )

)
+ E′Θ

(
R(f̂ERM−Cn )−R(gΘ)

)
.

Thanks to (3.4), we have E′Θ
(
R(f̂ERM−Cn ) − R(gΘ)

)
≤ 0 and it follows from (3.5) that

E′Θ
(
Rn(gΘ)−Rn(f̂ERM−Cn )

)
≤ (2b)2/m. Therefore, on the event Ω(x), we have

R(f̂ERM−Cn ) ≤ min
f∈C

R(f) +
8b2

m
+ γ(x) ≤ min

f∈C
R(f) + c1b

2 max
(
ψ(C)
n (M),

x

n

)
where the last inequality follows from (3.2) and the definition of m.

3.2 The case M ≤
√

n

We use the strategy developed in [5] together with the one of [20] (cf. example 1) to prove
Theorem A in the case M ≤

√
n. Define C = conv(F ) and LC = {Lf : f ∈ C} the excess

loss class associated with C where Lf = `f − `f∗C ,∀f ∈ C and f∗C ∈ argminf∈C R(f).
Let x > 0. Assume that we can find some ρn(x) > 0 such that with probability greater

than 1− 4 exp(−x), for any f ∈ C,∣∣PnLf − PLf ∣∣ ≤ (1/2) max
(
PLf , ρn(x)

)
. (3.9)

Then, the ERM over conv(F ) would satisfy with probability greater than 1− 4 exp(−x),

R(f̂ERM−Cn )− min
f∈conv(F )

R(f) = PL bfERM−Cn
≤ 2PnL bfERM−Cn

+ ρn(x) ≤ ρn(x).

This means that if we can prove some isomorphic properties between the empirical and
the actual structures of the functions class LC like in (3.9), then we can derive oracle
inequalities for f̂ERM−Cn . This is the strategy used in [5] that we follow here.

According to Theorem 2.1 in Section 2, a function ρn(x) satisfying (3.9) can be con-
structed if we prove that LC satisfies some Bernstein condition and if we find some fixed
point λ∗ > 0 such that E ‖P − Pn‖V (LC)λ∗

≤ (1/8)λ∗. The Bernstein condition follows
from the convexity of conv(F ) and the strategy used in Section 2: for any f ∈ C, PL2

f ≤
(4b)2PLf .

We use the peeling argument of Section 2 together with the following observations
due to [20] (cf. example 1) to find a fixed point λ∗. Let S be the linear subspace of

10



L2(PX) spanned by the dictionary F and consider an orthonormal basis (e1, . . . , eM ′) of S
in L2(PX) (where M ′ = dim(S) ≤M). For any µ > 0, it follows from the symmetrization
argument and the contraction principle (cf. Chapter 4 in [25]) that

E ‖P − Pn‖(LC)µ
≤ 8bE sup

f∈S:Pf2≤µ

∣∣∣ 1
n

n∑
i=1

εif(Xi)
∣∣∣

≤ 8bE sup
β∈RM′ :‖β‖2≤

√
µ

∣∣∣ 1
n

n∑
i=1

εi

( M ′∑
j=1

βjej(Xi)
)∣∣∣

≤ 8b
√
µE
( M ′∑
j=1

( 1
n

n∑
i=1

εiej(Xi)
)2)1/2

≤ 8b

√
M ′µ

n
.

We use the peeling argument of (2.3) to prove that for λ∗ = c0b
2M/n and c0 an absolute

constant large enough, we have indeed E ‖P − Pn‖V (LC)λ∗
≤ (1/8)λ∗.

Now, it follows from Theorem 2.1 that for any x > 0, with probability greater than
1− 4 exp(−x),

R(f̂ERM−Cn ) ≤ min
f∈C

R(f) + c1b
2 max

(M
n
,
x

n

)
.

This concludes the proof for the case M ≤
√
n.

Remark 3.2 We did not use the condition M ≤
√
n in the last proof. In fact, the result

holds in the following more general framework. Let Λ be any closed convex subset of RM

and for any dictionary F = {f1, . . . , fM} denote by Λ(F ) the set of all functions
∑M

j=1 λjfj
when (λ1, . . . , λM )> ∈ Λ. Let (X,Y ) be a random couple with values in X × R such that
|Y | ≤ b and maxf∈F |f(X)| ≤ b a.s.. Consider the ERM procedure

f̂n ∈ argmin
f∈Λ(F )

Rn(f).

Then, it follows from Theorem 2.1 and the argument used previously in this section that
for any x > 0, with probability greater than 1− 4 exp(−x),

R(f̂n) ≤ min
f∈Λ(F )

R(f) + c1b
2 max

(M
n
,
x

n

)
.

The same result can be found in [4] under very weak moment assumptions.

Acknowledgements: We would like to thank Alexandre Tsybakov for helping us for
the presentation of this result.
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