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Abstract

We construct fast and simple algorithms that estimate the mean of a vector valued random variable from
a dataset that may have been corrupted by outliers and under only a second moment assumption. The
resulting algorithms achieve the same statistical bound as Minsker’s geometric median-of-means Minsker
(2015). Using our approach we also construct a simplified version of the geometric median by replacing the
entire search space by a simple finite set without losing the statistical property of the geometric median.

Keywords: Robust mean estimation, median-of-means estimators.

1. Introduction

Let X be a Hilbert space. Let X be a random vector taking its values in X , with mean µ = EX. We are
given data (Xi)

N
i=1 taking their values in X , our aim is to estimate µ using these data. We are in particular

interested in situations where the dataset contains a fraction of outliers data (Xi)i∈O that has nothing to
do with X and the remaining data (Xi)i∈I where I = [N ]\O are only assumed to have the same mean as
X and a second moment (without assuming that they are i.i.d.).

If the data (Xi)
N
i=1 were known to be i.i.d. having the same distribution as X then the classical approach

to that problem would be to use the empirical mean µ̂N = (1/N)
∑N

i=1Xi to estimate µ, but this solution
has some limitations. First, it is not robust to adversarial data: we can make the empirical mean as large
as we want just by changing a single data. So even one adversarial outliers is enough for this estimator to
fail. Another limitation is that it is not robust to heavy-tailed data: if the data are only assumed to have
a second moment, then, for a given confidence 1− δ ∈ (0, 1), one cannot expect a confidence interval for µ
centered in µ̂N of lenght smaller than

√
Tr(Σ)/(Nδ), up to a multiplicative constant, where Tr(Σ) is the

trace of the covariance operator associated with X.

There has been an important renewal of the problem of mean estimation for heavy-tailed data and
corrupted databases during the last decade starting with Catoni (2012b); Lerasle and Oliveira (2011). For
instance, in the one-dimensional case, one can get exponential confidence intervals:

P

(
|µ− µ̂| > Lσ

√
t

N

)
< exp(−t) (1)

where σ2 is the variance of the distribution and L is an absolute constant (see Devroye et al. (2016b)
or Catoni (2012a)), where the only assumption on the data is finite second moment Lugosi et al. (2019).
Following this trend, some multi-dimensional robust estimation strategies have been investigated. We can
basically identify three lines of researches on this topic:
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• constructing statistical procedures achieving the sub-gaussian rate (which is the rate achieved by
the empirical mean when the data are i.i.d. Gaussian N (µ,Σ) where Σ is the covariance matrix).
This is the approach from Lugosi et al. (2019); Catoni and Giulini (2017); M. Lerasle and Lecué
(2017); Chen et al. (2018). In this approach only the statistical properties matter and algorithmic
performance are not studied.

• constructing algorithms with optimal statistical properties (such as achieving the information-theoretically
optimal error in terms of the ε-proportion of outliers or the subgaussian rate of estimation) together
with a control of the running time of the algorithm. Only polynomial time algorithms are constructed
and linear-time algorithms, that is algorithms running in O(Nd), being the optimal desired construc-
tions. This is the line of researches followed by Hopkins (2018); Cherapanamjeri et al. (2019b);
Depersin and Lecué (2019); Cheng et al. (2019). Most of these algorithms do not come with efficient
code even the one proved to run in (nearly) linear time (constructing the empirical mean also takes
O(Nd)). This is due, in part, to the use of some SDP relaxation such as the Sum-of-Squares approach
or some SDP solvers which have not yet being coded efficiently or do not scale efficiently (see Peng
and Tangwongsan (2012)).

• constructing computationally tractable algorithms. Here the aim is to provide efficient code and
then, if possible, to prove some statistical and algorithmic properties (even sub-optimal ones). It
is for instance the case of Minsker’s geometric median Minsker (2015) which obtain sub-optimal
convergence rate for an efficient tractable linear-time algorithm coming with the geometric median
(see Cohen et al. (2016)). This is also the approach of Diakonikolas et al. (2018, 2017).

Our work focuses on algorithms coming with tractable implementation and is therefore in the third
line of research mentioned above. In this paper, we construct a robust algorithm for estimation of the
mean µ, that achieve exponentially likely confidence intervals and is computationally efficient under the
only following assumption:

Assumption 1 There exists a partition O t I of {1, . . . , N} such that (Xi)i∈I are independent and for
all i ∈ I, EXi = µ and E ‖Xi − µ‖22 ≤ E ‖X − µ‖22 = Tr(Σ) where Σ is the covariance operator of X.

In particular, no assumption is made on the data (Xi)i∈O – the one indexed by O – which can therefore be
seen as outliers or adversarial data. Moreover, the informativre data (Xi)i∈I are only assumed to have a
second moment. The framework given by Assumption 1 encompasses the two type of robustness that have
been considered recently: robustness w.r.t. heavy-tailed data and robustness w.r.t. to data corruption by
adversarial outliers.

We first present our procedures and algorithms, then we give their statistical guarantees. In a third
part we show how to simplify the geometric median technique developed in Minsker (2015), without losing
its statistical properties. We then state how to make our estimation technique adaptive in the number of
outliers (meaning one does not have to know the proportion of outliers to construct the estimator). We
finally present some simulations, in order to show that our algorithms are computationally tractable and
that their empirical behavior match the theoretical bounds.

Notations: The cardinality of a set A is denoted by |A|. Given K real numbers a1, . . . , aK we define
their median as Med{a1, . . . , aK} = infJ⊂{1,...,K}

|J |≥dK/2e
supj∈J aj .

2. A search algorithm in the mutual distance matrix of block means

The so-called Median-of-Mean (MOM) approach Nemirovsky and Yudin (1983); Alon et al. (1999); Jerrum
et al. (1986), widely investigated in the last few years Bubeck et al. (2013); Lerasle and Oliveira (2011);
Devroye et al. (2016a); Minsker and Strawn (2017), often yields robust estimation strategies. Let us give
the general idea behind that approach: we first randomly split the data into K equal-size blocks B1, ..., BK
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(if K does not divide N , we just remove some data). We then compute the empirical mean within each
block:

X̄k =
1

|Bk|
∑
i∈Bk

Xi

for k = 1, . . . ,K, where we set |Bk| = Card(Bk) = N/K. In the one-dimensional case, we then take the
median of the latter K empirical means to construct an estimator of the mean. It is more complicated
in the multi-dimensional case, where there is no “definitive” equivalent of the one dimensional median
but several candidates: coordinate-wise median, the geometric median (also known as Fermat point), the
Tukey Median, among many others (see Small (1990)). The strength of this approach is the robustness of
the median operator, which leads to good statistical properties even on corrupted databases. But some of
them can be very hard to compute Johnson and Preparata (1978).

The geometric median-of-mean has received an important attention recently starting with the work
from Minsker (2015). It is defined as

µ̂geoK ∈ argmin
u∈H

K∑
k=1

∥∥X̄k − u
∥∥

2
. (2)

It is proved in Minsker (2015) that with probability at least 1− 2 exp(−K),

∥∥µ̂geoK − µ
∥∥

2
≤
√

Tr(Σ)K

N
. (3)

The latter rate has been improved in several recent papers Lugosi et al. (2019); M. Lerasle and Lecué
(2017); Catoni and Giulini (2017); Hopkins (2018); Cherapanamjeri et al. (2019a); Depersin and Lecué
(2019) where it is shown that the “subgaussian rate”√

Tr(Σ)

N
+

√
‖Σ‖opK

N

can be achieved by polynomial time algorithms Hopkins (2018); Cherapanamjeri et al. (2019a) or even
nearly linear time algorithms such as in Depersin and Lecué (2019). But none of the latter algorithms
come with actual codes and they should be looked at more as theoretical than practical results.

Our aim here is more on the practical side even though we prove theoretical bounds such as the one
in (3). We therefore provide simple codes available at MOMpower github page and a Simulation section.
Here we take advantage of the particular features of this problem in order to propose an other estimator
inspired by the MOM-approach and somehow very easy to compute.

Our first approach is to consider the procedure

µ̂
(0)
K = argmin

a∈H
Med{

∥∥a− X̄k

∥∥
2

: 1 ≤ k ≤ K}. (4)

We will prove below that it achieves the same statistical performance as the geometric median in (3). But
from a computational point-of-view, there is no advantage to use this procedure compare to the geometric
median, on the contrary since the objective function in (4) is not convex whereas it is convex in the
geometric median. Nevertheless, (4) paved the way toward a procedure which comes with a very simple
search algorithm. We show below that (4) can be simplified a lot by reducing the search space H to a finite
set made of only K elements, the K empirical means X̄1, X̄2, . . . , X̄K . This drastic simplification comes at
no price from a statistical point of view since the resulting estimator

µ̂
(1)
K = argmin

a∈{X̄1,X̄2,...,X̄K}
Med{

∥∥a− X̄k

∥∥
2

: 1 ≤ k ≤ K} (5)

3
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input : X1, . . . , XN : N data points in X , K: a number of blocks
output: estimator of the mean of X

1 Construct an equipartition B1 t · · · tBK = {1, . . . , N}
2 Construct the K empirical means X̄k = (N/K)

∑
i∈Bk

Xi

3 Construct the K ×K matrix
( ∥∥X̄k1 − X̄k2

∥∥
2

)
1≤k1,k2≤K

4 for k1 ∈ {1, . . . ,K} do
5 Compute M(k1) = Med{

∥∥X̄k1 − X̄k2

∥∥
2

: k2 ∈ {1, . . . ,K}}
6 end

7 Find k̂1 ∈ argmink1∈{1,...,K}M(k1)

8 Return X̄k̂1
= µ̂

(1)
K

Algorithm 1: A search algorithm in the mutual distance matrix of the block means X̄1, . . . , X̄K for
robust estimation of the mean

satisfies exactly the same statistical bound as µ̂
(0)
K (and also the geometric median-of-means from (2)).

The algorithmic complexity of Algorithm 1 is O(Nd+K2d+K2 log(K)) where O(Nd) is the cost for
computing the K empirical means X̄1, . . . , X̄K , O(K2d) is the cost for computing the mutual distance
matrix and O(K2 logK) is the cost for finding the median of each row of the mutual distance matrix. In

particular, when K = O(
√
N/ log(N)), the algorithmic cost for computing µ̂

(1)
K is of the same order as the

one of the empirical mean, that is in O(Nd). But, unlike the empirical mean, µ̂
(0)
K and µ̂

(1)
K are robust to

outliers and heavy-tailed data; a property that we show in the next section.

3. Statistical guarantee for µ̂
(0)
K and µ̂

(1)
K

The aim of this section is to show that the two estimators µ̂
(0)
K and µ̂

(1)
K satisfy the same theoretical bound

as the geometric median-of-means from Minsker (2015).

Theorem 1 Grant Assumption 1. Let K ∈ [8|O|/3, N ]. With probability at least 1− 2−K/8+6,

∥∥∥µ̂(0)
K − µ

∥∥∥
2
≤ 8

√
Tr(Σ)K

N
and

∥∥∥µ̂(1)
K − µ

∥∥∥
2
≤ 8

√
Tr(Σ)K

N
.

Proof. Let K = {k ∈ {1, . . . ,K} : Bk ∩ O = ∅} be the set of indices of blocks of data containing no
outliers. Since K ≥ 8|O|/3, we have |K| ≥ K − |O| ≥ 5K/8. Let k ∈ K and ε ∈ (0, 1/2). It follows from
Assumption 1 and Markov inequality that with probability at least 1− ε,

∥∥X̄k − µ
∥∥

2
≤
√

Tr(Σ)K

Nε
:= Rε. (6)

Let Nε denote the number of empirical means X̄k, k = 1, . . . ,K that are outside of the `2-ball B2(µ,Rε)
centered at µ with radius Rε. Given that (X̄k)k∈K are independent under Assumption 1, it follows from
(6) that

P
(
Nε ≥

K

2
− 1

)
≤ P

(∑
k∈K

I(
∥∥X̄k − µ

∥∥
2
> Rε) ≥

K

2
− 1− |Kc|

)

≤
|K|∑

i=K/2−1−|Kc|

(
|K|
i

)
εi ≤ 2|K|εK/2−1−|Kc| ≤ (2ε)5K/8ε−1−K/2

where we used that ε < 1/2 and |K| ≥ 5K/8.
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Therefore, there exists an event Ωε of probability measure at least 1 − (2ε)5K/8ε−1−K/2 and a subset
Aε ⊂ {1, . . . ,K} of cardinality at least K/2 + 1 such that on the event Ωε for all k ∈ Aε,

∥∥X̄k − µ
∥∥

2
≤ Rε.

It is then obvious that, on Ωε, for every j ∈ Aε, Med{
∥∥X̄j − X̄k

∥∥
2

: 1 ≤ k ≤ K} ≤ 2Rε, so that for

µ̂ ∈ {µ̂(0)
K , µ̂

(1)
K } we have

Med
{∥∥µ̂− X̄k

∥∥
2

: 1 ≤ k ≤ K
}
≤ 2Rε (7)

because
Med

{∥∥µ̂− X̄k

∥∥
2

: 1 ≤ k ≤ K
}
≤ min

a∈{X̄1,X̄2,··· ,X̄K}
Med

{∥∥a− X̄k

∥∥
2

: 1 ≤ k ≤ K
}
.

Moreover, when (7) holds, if we note Aµ̂ the set containing the dK/2e block-means X̄k that are the
closest to µ̂ then for all k ∈ Aµ̂ we have

∥∥µ̂− X̄k

∥∥
2
≤ 2Rε.

By cardinality Aε ∩Aµ̂ 6= ∅, so for k ∈ Aε ∩Aµ̂, we obtain

‖µ̂− µ‖2 ≤
∥∥µ̂− X̄k

∥∥
2

+
∥∥X̄k − µ

∥∥
2
≤ 3Rε.

By taking for instance ε = 2−6 we get that, with probability> 1−2−K/8+6,
∥∥µ̂− X̄k

∥∥
2
≤ 8
√

Tr(Σ)K/N .

This bound, even if it has subgaussian deviations, is not optimal: in Catoni and Giulini (2017); Lugosi
et al. (2019); M. Lerasle and Lecué (2017); Hopkins (2018); Cherapanamjeri et al. (2019a); Depersin and
Lecué (2019) the authors achieve a bound of order of the sub-gaussian rate

√
Tr(Σ)/N +

√
||Σ||opK/N

(where Σ is the covariance matrix of X) with the same deviation as in Theorem 1. While, in Theorem 1
the achieved rate is the same rate as the one of the geometric median

√
Tr(Σ)K/N . However the three

estimators in Catoni and Giulini (2017); Lugosi et al. (2019); M. Lerasle and Lecué (2017) have not yet
been proved to be computationally feasible. In Hopkins (2018), a SDP estimator achieving the optimal rate
has been constructed but it is based on the Sum-of-squares approach and is therefore not computationally
tractable yet. Similar observations hold for the two papers Cherapanamjeri et al. (2019a); Depersin and
Lecué (2019) which construct intractable algorithms even though they are proved to run in polynomial
and even (nearly) linear times. As announced in the Introduction, the main interest of Theorem 1 is that
the procedure µ̂(1) can be efficiently implemented and that the proof of its convergence analysis is simple.
The price we pay for this simplicity is on the rate of convergence since we do not recover the optimal
subgaussian rate in Theorem 1.

4. Simplification of the geometric median

Following the main idea from Section 2, we show that the geometric median (2) can also be simplified in
the statistical framework that we consider. The key idea is that the (possibly infinite dimensional) search
space H used in (2) can be replaced by the finite set {X̄1, X̄2, . . . , X̄K} without any loss. This yields to
the procedure

µ̂
(2)
K ∈ argmin

a∈{X̄1,X̄2,...,X̄K}

K∑
k=1

∥∥a− X̄k

∥∥
2
. (8)

Moreover, the Weiszfeld’s algorithm used to approach the geometric median can also be reduced into a
simple search algorithm similar to the one from Algorithm 1.

Contrary to the Weiszfeld algorithm (which is the computation of a weighted mean, where the weights
are updated at each step), one does not have to worry about convergence issues or starting point or about
the pace of its convergence with Algorithm 2. Moreover, the next theorem states that, with this procedure,
we do not lose anything on the statistical point of view compared with what is presented in Minsker (2015).

Theorem 2 Grant Assumption 1. Let K ∈ [8|O|/3, N ]. With probability at least 1− 2−K/8+6,∥∥∥µ̂(2)
K − µ

∥∥∥
2
≤ 52

√
Tr(Σ)K

N
.
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input : X1, . . . , XN : N data points in H, K: a number of blocks
output: estimator of the mean of X

1 Construct an equipartition B1 t · · · tBK = {1, · · · , N}
2 Construct the K empirical means X̄k = (N/K)

∑
i∈Bk

Xi

3 Construct the K ×K matrix
( ∥∥X̄k1 − X̄k2

∥∥
2

)
1≤k1,k2≤K

4 for k1 ∈ {1, · · · ,K} do

5 Compute Σ(k1) =
∑K

k2=1

∥∥X̄k1 − X̄k2

∥∥
2

6 end

7 Find k̂1 ∈ argmink1∈{1,··· ,K}Σ(k1)

8 Return X̄k̂1
= µ̂

(2)
K

Algorithm 2: A simple geometric median

Proof. Using the same argument as in the proof of Theorem 1, there exists an event Ω and a subset
K̂ ⊂ {1, . . . ,K} such that P(Ω) ≥ 1 − 2−K/8+6, |K̂| ≥ K/2 + 1 and on the event Ω, for all k ∈ K,∥∥X̄k − µ

∥∥
2
≤ 8
√

Tr(Σ)K/N := R.

We now place ourselves on the event Ω. Let k0 ∈ K̂. It follows from the definition of µ̂
(2)
K that

K∑
k=1

∥∥∥µ̂(2)
K − X̄k

∥∥∥
2
≤

K∑
k=1

∥∥X̄k0 − X̄k

∥∥
2
. (9)

On one side, since k0 ∈ K̂, we have

K∑
k=1

∥∥X̄k0 − X̄k

∥∥
2

=
∑
k∈K̂

∥∥X̄k0 − X̄k

∥∥
2

+
∑
k∈K̂c

∥∥X̄k0 − X̄k

∥∥
2

≤ 2|K̂|R+
∑
k∈K̂c

∥∥X̄k − µ
∥∥

2
+ |K̂c|R. (10)

On the other side, we have

K∑
k=1

∥∥∥µ̂(2)
K − X̄k

∥∥∥
2

=
∑
k∈K̂

∥∥∥µ̂(2)
K − X̄k

∥∥∥
2

+
∑
k∈K̂c

∥∥∥µ̂(2)
K − X̄k

∥∥∥
2

≥ |K̂|
(∥∥∥µ̂(2)

K − µ
∥∥∥

2
−R

)
+
∑
k∈K̂c

∥∥X̄k − µ
∥∥

2
− |K̂c|

∥∥∥µ̂(2)
K − µ

∥∥∥
2
. (11)

Combining (10) and (11) in (9), we obtain(
|K̂| − |K̂c|

) ∥∥∥µ̂(2)
K − µ

∥∥∥
2
≤
(
3|K̂|+ |K̂c|)R.

This shows that, on the event Ω, we have

∥∥∥µ̂(2)
K − µ

∥∥∥
2
≤

(
3|K̂|+ |K̂c|
|K̂| − |K̂c|

)
R ≤ 52

√
Tr(Σ)K

N

because |K̂| ≥ 5K/8.

The simplification of the geometric median that we propose in this section only makes sense in a sta-
tistical framework and may be seen as an other instance of the trade-off between statistical properties and
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computational trade-off: given that we are asked to approximate the mean µ up to a statistical error term
of the order of

√
Tr(Σ)K/N no need to find exactly the geometric median but only an approximation for

it is enough. It appears that to find such an approximating solution, the entire search space H as used in
the Wieszfeld algorithm can simply be replaced by a finite set of cardinality K.

Remark 1 In dimension d = 1, that is for H = R, the geometric median and µ̂
(3)
K coincides.

5. Robust mean estimator and algorithm adaptive to the number of outliers

Given K, the number of blocks, procedures µ̂
(1)
K and µ̂

(2)
K can be efficiently computed using Algorithms 1

and 2 but the choice of K has to be done beforehand and should satisfies K ≥ 8|O|/3 according to Theo-
rem 1 and Theorem 2, where |O| is the number of outliers. Even though it is usually admit that most of
real databases are corrupted up to 5% and so one can usually assume that |O| ≤ 5% × N and therefore
take K = (4/30)N , it is better to make no such assumption, in particular, in situations where the number
of outliers is much smaller. In such cases, confidence sets can be much smaller. Another possible choice
for K is to take it equal to N but it makes the confidence interval usually bigger than necessary. One way
to solve this issue is to construct an estimator adaptive to K, for instance, using Lepsky’s method Lepskĭı
(1990, 1991).

Let us assume that for all K ∈ {8|O|/3, . . . , N}, we know how to construct an estimator σ̂2
K of Tr(Σ)

such that (1/2)σ̂2
K ≤ Tr(Σ) ≤ 2σ̂2

K with probability at least 1−2−K/8+6 (we provide an explicit construction

of such an estimator later). In that case, for every integer K ∈ {1, . . . , N} and for µ̂K being either µ̂
(1)
K or

µ̂
(2)
K the confidence sets

ÎK = B2

(
µ̂K , C0σ̂K

√
2K

N

)
=

{
a ∈ H : ‖a− µ̂K‖2 ≤ C0σ̂K

√
2K

N

}
(12)

can be constructed from the dataset (where C0 is either C0 = 8 for µ̂K = µ̂
(1)
K or C0 = 52 for µ̂K = µ̂

(2)
K ).

Using the latter confidence sets, an adaptive choice of K can be done as follows:

K̂ = inf

(
K ∈ {1, . . . , N} :

N⋂
k=K

Îk 6= ∅

)
. (13)

The fully data-driven estimator µ̃ that we consider is any element µ̃ ∈
⋂N
k=K̂

Îk. We now show that µ̃
satisfies the same statistical bounds as the µ̂K ’s for all K ∈ [8|O|/3, N ].

Theorem 3 Grant Assumption 1 and assume that for all K ∈ {8|O|/3, . . . , N}, we know how to construct
an estimator σ̂2

K such that (1/2)σ̂2
K ≤ Tr(Σ) ≤ 2σ̂2

K with probability at least 1 − 2−K/8+6. Then, for all
K ∈ [8|O|/3, N ], with probability at least 1− (257/8/(21/8 − 1))2−K/8,

‖µ̃− µ‖2 ≤ 2C0

√
2Tr(Σ)K

N

where C0 is either C0 = 8 for µ̂K = µ̂
(1)
K or C0 = 52 for µ̂K = µ̂

(2)
K .

Proof. For all K ∈ [8|O|/3, N ], consider the following events. Denote by ΩΣ,K the event onto which
(1/2)σ̂2

K ≤ Tr(Σ) ≤ 2σ̂2
K . By assumption, we have P[ΩΣ,K ] ≥ 1− 2−K/8+6. Denote by ΩK the event onto

which ‖µ̂K − µ‖2 ≤ C0

√
Tr(Σ)K/N . It follows from Theorem 1 and 2 that P[ΩK ] ≥ 1− 2−K/8+6.

7
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Let K ∈ [8|O|/3, N ]. On the event Ω(K) :=
⋂N
k=K Ωk ∩ ΩΣ,k, we have µ ∈

⋂N
k=K Îk because for all

k = K, . . . , N

‖µ̂k − µ‖2 ≤ C0

√
Tr(Σ)k

N
≤ C0σ̂k

√
2k

N
,

meaning that µ ∈ Îk. Hence, by definition, K̂ ≤ K and, in particular, µ̃ ∈ ÎK , therefore, ‖µ̃− µ̂K‖2 ≤
C0σ̂K

√
K/N . Moreover, ‖µ̂K − µ‖2 ≤ C0

√
Tr(Σ)K/N and σ̂2

K ≤ 2Tr(Σ). Therefore, on the event Ω(K),
we have

‖µ̃− µ‖2 ≤ 2C0

√
2Tr(Σ)K

N
.

Finally, we have

P[Ω(K)] ≥ 1− 2

N∑
k=K

2−k/8+6 ≥ 1−

(
257/8

21/8 − 1

)
2−K/8.

Let us now construct robust estimators σ̂2
K for all K ∈ {8|O|/3, . . . , N} of Tr(Σ) satisfying the re-

quired “isomorphic” property “(1/2)σ̂2
K ≤ Tr(Σ) ≤ 2σ̂2

K” in Theorem 3. Our starting point is to write

Tr(Σ) = (1/2)E ‖X −X ′‖22 when X and X ′ are independent random variables with mean µ and covariance
matrix Σ (no need to have the same distribution). It is therefore possible to look at Tr(Σ) as the mean of a

random variable Z = ‖X −X ′‖22 /2 and so, use robust mean-estimators such as µ̂
(1)
K or µ

(2)
K to estimate EZ.

We remark that we need two Xi’s data to construct one Zi data. We therefore need to couple data in
the dataset {X1, . . . , XN}. For instance, we consider the coupling {(X2i, X2i+1) : i = 1, . . . , bN/2c} and
for all i = 1, . . . , bN/2c, we define Zi = ‖X2i −X2i+1‖22 /2. Next, for a given K ∈ {1, . . . , bN/2c}, we
consider an equipartition B1 t · · · tBK of {1, . . . , bN/2c} and construct the K associated empirical means
Z̄1, . . . , Z̄K , where Z̄k = (1/|Bk|)

∑
i∈Bk

Zi, for all k = 1, . . . ,K. Finally, we define an estimator σ̂2
K of

Tr(Σ) as any element in

argmin
a∈ẐK

Med{|a− Z̄k| : 1 ≤ k ≤ K} or argmin
a∈ẐK

K∑
k=1

|a− Z̄k|. (14)

where ẐK = {Z̄1, Z̄2, ..., Z̄K}. Remark that if σ̂2
K is taken in the right-hand side set in (14) then it is simply

the median of {Z̄1, . . . , Z̄K}.

We now turn to the statistical analysis of σ̂2
K . We need slightly stronger assumption than in Assump-

tion 1 to obtain an “isomorphic result” such as “(1/2)σ̂2
K ≤ Tr(Σ) ≤ 2σ̂2

K”. In particular, we need to
compare the first and second moment of the Zi’s variables such as in a Bernstein / Margin condition (see
Bartlett and Mendelson (2006); Mammen and Tsybakov (1999); Tsybakov (2004)) which translates into a
L4/L2 moment equivalence assumption on the random variables ‖X2i −X2i+1‖2 when 2i, 2i+ 1 ∈ I. Such
assumption have become popular since the introduction of the small ball assumption in Koltchinskii and
Mendelson (to appear) see also van de Geer and Muro (2014) and Oliveira (2016) for various examples.

Assumption 2 There exists a partition O t I of {1, . . . , N} such that (Xi)i∈I are independent and for
all i ∈ I, EXi = µ and E ‖Xi − µ‖22 = E ‖X − µ‖22 = Tr(Σ) where Σ is the covariance operator of
X. Moreover, there exists a constant A such that ‖‖X2i −X2i+1‖2‖L4

≤ A ‖‖X2i −X2i+1‖2‖L2
for all

i ∈ {1, . . . , bN/2c} such that 2i, 2i+ 1 ∈ I.

Theorem 4 Grant Assumption 2 for some A ≥ 1. Let K ∈ [8|O|/3, bN/2c/(2C2
0A

4)] where C0 = 8 if
σ̂2
K is taken in the left-hand side set in (14) or C0 = 58 if it is taken in the right-hand side set. With

probability at least 1− 2−K/8+6,
(1/2)σ̂K ≤ Tr(Σ) ≤ 2σ̂K . (15)
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Proof. Let K ∈ [8|O|/3, bN/2c/(2C2
0A

4)]. Following the same arguments as in the proof of Theorem 1
and Theorem 2, we can prove that with probability at least 1− 2−K/8+6,

|σ̂2
K − Tr(Σ)| ≤ C0σ

√
K

bN/2c
(16)

where σ2 = maxi:2i,2i+1∈I Var(Zi) for Zi = ‖X2i −X2i+1‖22 /2.

Next, it follows from the L4/L2 assumption in Assumption 2 that for all i ∈ {1, . . . , bN/2c} such that
2i, 2i+1 ∈ I,

√
Var(Zi) ≤ ‖Zi‖L2

≤ A2 ‖Zi‖L1
= A2EZi = A2Tr(Σ). Therefore, sinceK ≤ bN/2c/(2C2

0A
4)

then |σ̂2
K − Tr(Σ)| ≤ (1/2)Tr(Σ) follows from (16).

Remark that we don’t have the “isomorphic result” (15) for all values of K up to N but only up to
bN/2c/(2C2

0A
4). Therefore, we can only apply Theorem 3 up to bN/2c/(2C2

0A
4) which is a minor modifi-

cation of the result.

Finally, we describe a fully data-driven algorithm for the robust estimation of the mean of a random
variable which does not assume the knowledge of any upper bound on |O| for its construction (except for
the one that 8|O|/3 ≤ bN/2c). In the following we use the modified geometric median estimator from (8)
for both estimation of the mean and the variance (in particular, we set C0 = 52). A similar algorithm

follows by using the µ̂
(1)
K procedure from (5) instead of the simplified geometric median.

input : X1, . . . , XN : N data points in H
output: robust estimator of the mean µ of X
init : K = bN/2c

1 while ‖µ̂K − µ̂k‖2 ≤ r̂k + r̂K , k = 2K, 4K, . . . , bN/2c do
2 Construct an equipartition B1 t · · · tBK = {1, · · · , bN/2c}
3 Construct the K empirical means X̄k = (2bN/2c/K)

∑
i∈Bk

X2i +X2i+1

4 Construct the K ×K matrix of mutual distances
( ∥∥X̄k1 − X̄k2

∥∥
2

)
1≤k1,k2≤K

5 for k1 ∈ {1, . . . ,K} do

6 Compute Σ(k1) =
∑K

k2=1

∥∥X̄k1 − X̄k2

∥∥
2

7 end

8 Find k̂1 ∈ argmink1∈{1,··· ,K}Σ(k1)

9 Set µ̂K = X̄k̂1

10 Construct the K empirical variances Z̄k = (bN/2c/K)
∑

i∈Bk
‖X2i −X2i+1‖22 /2

11 Construct the empirical median σ̂K = Med(Z̄1, . . . , Z̄K)

12 Set r̂K = 52σ̂K
√

2K/N
13 K ← bK/2c
14 end
15 Return µ̂K

Algorithm 3: A data-driven robust estimator of the mean adaptive to the number of outliers.

Note that instead of checking that the intersection of the Euclidean balls
⋂bN/2c
k=K B2(µ̂k, r̂k) is none

empty we check that µ̂K ∈
⋂bN/2c
k=K+1B2(µ̂k, r̂k + r̂K) in step 1 of Algorithm 3, which is a way easier

condition to check (in fact the first condition is algorithmically hard to check). Moreover, we consider
values of K in the geometric grid {1, 2, 4, . . . , bN/4c, bN/2c} to fasten the algorithm. One can check that
the result from Theorem 3 still holds with this choice of K̂, by adjusting the proof mutatis mutandis and
the constants by a factor ≤ 8.

9
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6. Simulation study

We now present a simulation performed using the adaptive algorithm described in Algorithm 3 (code is
available in MOMpower github page). For this simulation we chose the following setting: the variable
in I are distributed according to a standard normal distribution in dimension d = 20. The size of I is
100000. To these data, we add |O| outliers where |O| goes from 0 to 120. We repeat each experiment 20
times. We then let our algorithm choose K̂ by itself, and we draw, in Figure 1, the medium, the maximum
and the minimum K̂ picked by our algorithm. As our data are Gaussian, their empirical mean is well
concentrated, so when there are no outliers, it is expected for K̂ to be equal to 1 – this is indeed the case.
When outliers are added, it seems natural (as our inlier data are gaussian) that K̂ should not be more than
2O + 1, which represents the worst case scenario where there is exactly one outliers in half the K = 2O
blocks when we set K = 2|O|. We do find this trend in Figure 1. Here we took as outliers the vector
(10000, 10000, · · · , 10000) ∈ R20 repeated a number |O| of times.

Figure 1: Adaptively selected K̂ against the number of outliers.
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Gábor Lugosi, Shahar Mendelson, et al. Sub-gaussian estimators of the mean of a random vector. The
Annals of Statistics, 47(2):783–794, 2019.
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