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Abstract

We obtain estimation error rates and sharp oracle inequalities for a Birgé’s T-estimator using a regu-
larized median of mean principle as based tests. The results hold with exponentially large probability –
the same one as in the gaussian framework with independent noise– under only weak moments assump-
tion like a L4/L2 assumption and without assuming independence between the noise and the design X.
The obtained rates are minimax optimal. The regularization norm we used can be any norm. When it
has some sparsity inducing power we recover sparse rates of convergence and sparse oracle inequalities.
As in [29], the size of the sub-differential of the regularization norm in a neighborhood of the oracle
plays a central role in our analysis.

Moreover, the procedure allows for robust estimation in the sense that a large part of the data may
have nothing to do with the oracle we want to reconstruct. The number of such irrelevant data (which
can be seen as outliers) may be as large as (sample size)×(rate of convergence) as long as the quantity
of useful data is larger than a proportion of the number of observations.

As a proof of concept, we obtain the “exact” minimax rate of convergence s log(ed/s)/N for the
problem of recovery of a s-sparse vector in Rd via a median of mean version of the LASSO under a Lq0

assumption on the noise for some q0 > 2 and a C0 log(ed) moment assumption on the design matrix.
As mentionned previously this result holds with exponentially large probability as if the noise and the
design were independent and standard gaussian random variables.

1 Introduction

An important problem in learning theory is to estimate a minimizer f∗ ∈ argminf∈F P (Y − f(X))2 over
a convex class of functions F of the integrated square-loss based on a data set (Xi, Yi)i=1,...,N . The
Empirical Risk Minimizer (ERM) of [42] and later on, its penalized versions propose to replace the unknown
distribution P by the empirical distribution PN based on the sample (Xi, Yi)i=1,...,N , to choose a non-
negative function pen : F → R and to define

f̂ERM
N ∈ argmin

f∈F
{PN (Y − f(X))2 + pen(f)} .

This estimator is well understood now and is known to suffer several drawbacks when the data are heavy-
tailed or in the presence of “outliers” [15]. These issues are critical in many modern applications such
as high-frequency trading, where heavy-tailed data are quite common or in various areas of biology such
as micro-array analysis or neuroscience where data are sometimes still nasty after being preprocessed. To
overcome the problem, various methods have been proposed, the most common strategy being to “smooth”
the shape of the square function at infinity to make it less sensitive to large data. For example, the Hüber
loss [21] replaces the function x→ x2 by x→ x2I(|x| ≤ τ) + [τ(2|x| − τ)]I(|x| > τ) that is it interpolates
between the square loss that leads to the unbiased (but non robust) empirical mean estimator and the
absolute loss that leads to the (more robust but biased) empirical median. Beside the asymptotic results
of [21], this estimator has been studied in a non-asymptotic framework, see for example [16, 19] and the
references therein. An alternative to the Hüber function has been proposed by Catoni [15] and used
in learning frameworks by Audibert and Catoni [2] in least-squares regression and for more general loss
functions by Brownlees, Joly and Lugosi [13].
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Another line of research for building robust estimators and robust estimator selection procedures has
been proposed by Birgé [9], Baraud [4] and Baraud, Birgé and Sart [6] following ideas of Le Cam [26, 25].
It is based on comparison between the elements of F . More precisely, their idea is to build tests statistics
TN (·, ·) to choose between any two elements in F , these tests are used to build a“confidence region”
BTN (f) for any f ∈ F containing all g’s that have been preferred to f and to select the estimator having
the smallest confidence region given a way to measure its diameter – which is directly related to the
statistical performance one wants to prove. Usually, these methods focus on the Hellinger loss and were
considered impossible to compute for a long time until [7, 40], for example, managed to compute these
estimators in particular cases.

In a related but different approach, Lugosi and Mendelson [32] have recently introduced the notion of
“median of means tournaments”. Their idea is to use the Median of means principle of [1, 22, 38] to make
comparisons between the elements of F . The authors call “champion” any element of F with a confidence
region smaller than the one of the oracle. They prove that any champion has a risk controlled by the one
of the oracle. In Section 3 we shall show why any possibly penalized empirical loss function can also be
seen as a Birgé’s estimator and it is clear from its definition that Birgé’s estimator built with the median
of means tests is a “Champion of a Median of Means tournament”.

In this paper, we build on the idea of Lugosi and Mendelson [32] and use (a regularized version of)
their Median Of Mean tests (see Section 4.1) in a Birgé’s procedure. Its performances are studied with
respect to the square-loss. The main advantage of this approach compared to Birgé’s original one is that
it does not require to work with the Hellinger loss, allowing more classical losses functions in learning
that typically fail in the presence of heavy-tailed data. We shall illustrate this idea by focusing on the
square-loss. Compared to the Huber loss or Catoni’s loss, this approach allows to control easily the risk
of our estimators by using classical tools from empirical process theory. Compared to [32], we stress the
link between the notions of “champions” and Birgé’s estimation procedure by aggregation of tests, and
we study the robustness of the approach with respect to “outliers”, that will be defined as data whose
distribution are not related to P .

More precisely, we build three different types of estimators and prove three different types of results.
First, to use Birgé’s procedure, we have to compute the “radii” of the sets BTN (f), f ∈ F for various
“metrics” associated to some statistical measure of performance such as the regularization norm, the L2

P -
norm or exact oracle inequalities. The radius can naturally be evaluated with respect to the regularization
norm since this norm is known. It is chosen by the statistician in advance and it is usually used to promote
sparsity or smoothness. If one wants estimation result w.r.t. the L2

P -norm then ideally the diameter of
the sets BTN (f), f ∈ F should be measure w.r.t. the L2

P -norm. The problem with the L2
P -norm is that

it is unknown in general since the distribution of X is not known in general. So we shall first evaluate
empirically the metric structure induced by L2

P over F . We will do so using again a median of means
principle and then show that the corresponding Birgé’s estimator is well located. The main issue here is
that we want to infer the metric structure associated with L2

P only very weak moment assumption. We
cannot use the classical “isomorphic approach” used to compare the empirical metric L2

PN
to the actual

metric L2
P since this approach requires strong subgaussian properties of the design vector X that we don’t

have here.
Note that to obtain estimation results w.r.t. both the regularization norm and the L2

P -norm, we
need to slightly extend Birgé’s criterion since we need to compute the diameter of the BTN (f), f ∈ F
for two criteria simultaneously. Nevertheless, once the mechanism used to measure the diameter of the
BTN (f), f ∈ F w.r.t. two metrics (one of which being empirical) one can use this idea a third time to
obtain exact oracle inequalities. For such statistical results and as in the case of the estimation of the L2

P

diameter of the BTN (f), f ∈ F , we have to estimate the “metric” structure induced by the excess risk over
F using again a median of means principle (still because we do not have strong concentration property
that allows for an “isomorphic approach” between the empirical and actual excess risk). We show that the
resulting estimator based on the measure of the diameter of the BTN (f), f ∈ F w.r.t. the previous three
criteria is well localized w.r.t. both the regularization norm and the L2

P -norm as well as its excess risk is
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properly bounded. Note that the third criteria we added to Birgé’s procedure is based on the median of
means principle to control the correlation between the noise Y − f∗(X) and (f − f∗)(X) for all f ∈ F .
All these results are based on (regularized) median of means tests and depend on the number K of blocks
of data that should be ultimately chosen using an unknown parameter associated to the oracle f∗ like its
sparsity in the case where the regularization norm has some sparsity inducing power. To overcome this
issue, we use Lepski’s method [31] as in [18] to select K adaptively and get rid of this dependence and
get a fully data-dependent procedure. As we will see later this adaptation step is the reason why we can
get the exact minimax rate in sparse recovery s log(ed/s)/N (cf. [8]) for a MOM version of the LASSO
whereas the classical LASSO estimator achieves the rate s log(ed)/N .

There are four important features in our approach. First, all the results are proved under weak assump-
tions on the noise, that is only required to have an L2+ε moment, which is almost the minimal condition
under which the problem at hand makes sense and the class of functions may only satisfy a weak moment
condition as a “L4/L2” comparison. Second, the performances of the estimator are not affected by the pres-
ence of complete outliers, as long as their number remains comparable to (number of observations)×(rates
of convergence) which is for the problem of sparse-recovery of the order of the sparsity of the oracle. Third,
the results are non-asymptotic and do not require the regression function x 7→ E[Y |X = x] to belong to
the class F . In particular, the noise Y − f∗(X) can be correlated with f∗(X) and/or Y . Finally, even the
“informative data” that is the one that are not “complete outliers” are not requested to be i.i.d. ∼ P ,
but only to have close first and second moments for all f ∈ F . Nevertheless, the estimators are shown
to behave as well as the ERM when i.i.d. ∼ P data, E[Y |X = ·] ∈ F and the noise ξ = Y − f∗(X) is
independent from the design and has Gaussian distribution.

An example: sparse-recovery in Rd via the MOM LASSO. As a proof of concept, these proper-
ties are illustrated in the classical example of sparse-recovery in high-dimensional spaces using the `1-norm
as penalization. We only study this example because it has been one of the most studied example in high
dimensional statistics [14, 20] even though our approach also applies to other procedures like Slope [11, 41],
trace-norm regularization and kernel methods for instance. This example shows the minimax optimality of
our rates obtained under weak moment assumption on the noise and the design – which may be dependent
– and the robustness to outliers property of the new estimator. Moreover, the parameter λ used to balance
between adequacy to the data and regularization is chosen adaptively in our final estimator and does not
a priori depend on the sparsity parameter, as it has to be the case for the Lasso estimator if one wants
to achieve the exact rate of convergence which is s log(ed/s)/N . Let us now show the advantage of our
procedure over the classical regularization methods for the problem of sparse recovery. We first recall
the setup of this problem then recall a result from [29] on the LASSO and then state our result for this
example.

We assume that X is an isotropic random vector in Rd (i.e. E
〈
X, t

〉2
= ‖t‖22 for all t ∈ Rd) and Y is a

real-valued random vector. We define t∗ ∈ argmint∈Rd E(Y −
〈
X, t

〉
)2. We are given a dataset (Xi, Yi)i∈[N ]

of independent (not necessarily identically distributed) random variables which has been contaminated by
outliers: that is a set of data (Xi, Yi)i∈O such that the distribution of (Xi, Yi) for i ∈ O ⊂ [N ] has nothing
to do with the distribution of (X,Y ). We denote by I = [N ]\O, the set of indices of the informative data
(Xi, Yi)i∈I and we assume that for all i ∈ I, (Xi, Yi) is distributed like (X,Y ).

In the high-dimensional statistics setup, one has N ≤ d but it is believed that t∗ has a small support
of size s such that s < N . For the reconstruction of such a vector, one may use the `1-norm ‖·‖1 for the
regularization norm because it promotes zero coordinates by thresholding and therefore induces sparsity.
It follows from Theorem 1.4 in [29] that for 0 < δ < 1 if t∗ is s-sparse, N ≥ c0s log(ed/s),

i) |I| = N and so |O| = 0 (there is no outliers in the dataset),

ii) ξ = Y −
〈
X, t∗

〉
∈ Lq0 for some q0 > 2

iii) for all t ∈ Rd and every p ∈ N,
∥∥〈X, t〉∥∥

Lp
≤ L√p

∥∥〈X, t〉∥∥
L2
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then the LASSO estimator

t̃ ∈ argmin
t∈Rd

(
1

N

N∑
i=1

(
Yi −

〈
Xi, t

〉)2
+ c1(δ) ‖ξ‖Lq0

√
log(ed)

N
‖t‖1

)

is such that with probability at least 1− δ, for every 1 ≤ p ≤ 2,

∥∥t̃− t∗∥∥
p
≤ c2(L, δ) ‖ξ‖Lq0 s

1/p

√
log(ed)

N
.

Compare with the MOM LASSO t̂LE that we introduce later: we obtain that if t∗ is s-sparse, N ≥
c0s log(ed/s),

i’) |I| ≥ N/2 and |O| ≤ c1s log(ed/s) (the number of outliers may be proportional to the sparsity),

ii) ξ = Y −
〈
X, t∗

〉
∈ Lq0 for some q0 > 2

iii’) for every 1 ≤ p ≤ C0 log(ed),
∥∥〈X, ej〉∥∥Lp ≤ L

√
p where (ej)i∈[d] is the canonical basis of Rd and C0

is some absolute constant,

iv) var(ξ
〈
X, t

〉
) ≤ C2

ξ ‖t‖
2
2 for all t ∈ Rd,

the MOM LASSO estimator t̂LE is such that with probability at least 1− c2 exp(−c3s log(ed/s)), for every
1 ≤ p ≤ 2, ∥∥t̂LE − t∗∥∥p ≤ c2(L) ‖ξ‖Lq0 s

1/p

√
1

N
log

(
ed

s

)
.

Note that iv) holds with Cξ = ‖ξ‖L4
if a L4/L2 assumption holds: for all t ∈ Rd,

∥∥〈X, t〉∥∥
L4
P
≤

c0

∥∥〈X, t〉∥∥
L2
P

– which is a much weaker requirement than condition iii) for the LASSO.

One may pinpoint several differences between the LASSO t̂ and the MOM LASSO t̂LE : the estimation
rate obtained for the later is the exact minimax rate; the deviation parameter δ for the LASSO is obtained
using a Chebyshev’s inequality and is like 1/N (q0/2−1) whereas it is exponentially small for the MOM
LASSO – note however that when the noise ξ is assumed to be subgaussian (i.e. ‖ξ‖Lp ≤ C

√
p ‖ξ‖L2

for

all p ∈ N), the deviation parameter δ for the LASSO is the same as the one for the MOM LASSO that
is δ = c2 exp(−c3s log(ed/s)) – finally, the MOM LASSO allows for a number of outliers proportional to
the sparsity s whereas such property is either unknown or simply not true at all for the LASSO. As a
consequence, the theoretical properties of the MOM LASSO outperforms in several way the one of the
LASSO.

From a mathematical point of view, our results are based on a slight extension of the Small Ball
Method of [23] to handle non-i.i.d. data. The SBM is also extended to bound both the quadratic and
the multiplier parts of the decomposition of the quadratic loss. Otherwise, all other arguments have been
made simple, which makes the approach very attractive and easily reproducible in other frameworks of
statistical learning.

The paper is organized as follows. Section 2 briefly presents the general setting and our main illustrative
example. Section 3 present Birgé’s construction of estimators based on tests. We also show why many
learning procedures may be seen as Birgé’s estimators. The construction of the estimators and the main
assumptions are gathered in Section 4. Our main theorems are stated in Section 5 and proved in Section 6.

Notation For any real number x, let bxc denote the largest integer smaller than x and let [x] =
{1, . . . , bxc} if x ≥ 1. For any finite set A, let |A| denote its cardinality. For every vector t = (tj)

d
1 ∈ Rd

and 1 ≤ p ≤ +∞ denote the `dp-norm of t by ‖t‖p =
(∑d

j=1 |tj |p
)1/p

and the associated unit ball by Bd
p

and unit sphere by Sd−1
p .
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2 Setting

Let X denote a measurable space and let (X,Y ), (Xi, Yi)i∈[N ] denote independent random variables taking
values in X × R, with respective distributions P, (Pi)i∈[N ]. Given a probability distribution Q, let L2

Q

denote the space of all functions f from X to R such that

‖f‖L2
Q
<∞, where ‖f‖L2

Q
=
(
Qf2

)1/2
.

Let F ⊂ L2
P denote a convex class of functions f : X → R. Assume that Y ∈ L2

P and let, for any f ∈ F ,

R(f) = P
[
(Y − f(X))2

]
, f∗ ∈ argmin

f∈F
R(f), ξ = Y − f∗(X) .

We want to estimate f∗ based on (Xi, Yi)i∈[N ]. Let ‖·‖ denote a norm defined onto a linear subspace E of
L2
P containing F , that will be used as a regularization function.

Example : `1-regularization of linear functionals

As a proof of concept, we apply our results to `d1 regularization of linear functionals, which has been one of
the most studied regularization method in high-dimensional statistics during the last decade (cf. [20, 14]).
For this problem, F is the class of all linear functionals indexed by Rd and the regularization function is
(with a slight abuse of notation) the `1-norm over Rd. That is

F = {
〈
·, t
〉

: t ∈ Rd} and
∥∥〈·, t〉∥∥ = ‖t‖1 .

For this example, t∗ denotes the “coefficient” oracle that is f∗ =
〈
·, t∗
〉
∈ F , where

t∗ ∈ argmin
t∈Rd

{
P
[(
Y −

〈
X, t

〉)2]}
.

The aim of this example is to show that the parameters introduced can be computed in particular examples
and to present typical results that follow from our analysis in a well studied case. For this example, we
focus on the rates of convergence and the confidence bounds. In particular, we do not consider the non-i.i.d.
setup even if it directly follows from our analysis. We always assume that P = Pi for all i ∈ [N ] and we
shall write Lq for LqP to shorten notations.

3 Learning from tests

3.1 General Principle

Our approach is based on pairwise comparisons between elements of F . More precisely, given two functions
f and g in F , we would like to prefer f to g if P [(Y − f(X))2] ≤ P [(Y − g(X)2], or, equivalently, if

0 ≤ P [(Y − g(X))2 − (Y − f(X))2] = P [(g(X)− f(X))2 − 2(Y − f(X))(g(X)− f(X))] = Tid(f, g) .

As the distribution P is unknown, such a direct comparison is impossible and our purpose is to design test
statistics T (f, g, (Xi, Yi)i∈[N ]) ≡ TN (f, g) that is, real random variables such that TN (f, g) + TN (g, f) = 0,
TN (f, g) being an estimation of Tid(f, g). These statistics are used to compare f and g, simply by saying
that f TN -beats g iff TN (f, g) ≥ 0.

The next step of our construction is to use Birgé’s idea (see for example [9] and the references therein),
which is also sometimes attributed to Le Cam (see [25] and the references therein). Define

∀f ∈ F : BTN (f) = {g ∈ F : TN (g, f) ≥ 0} ,
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or more generally, to compare only the elements of a subset F ⊂ F , typically a maximal ε-net, define

∀f ∈ F : BTN (f,F) = {g ∈ F : TN (g, f) ≥ 0} . (1)

Notice that, from the assumption TN (f, g) + TN (g, f) = 0, one has always f ∈ BTN (g) or g ∈ BTN (f)
(both happen if TN (f, g) = 0). Therefore, if one is given a pseudo-metric d and if we set CTN (f) =
supg∈BTN (g) d(f, g), we always have d(f, g) ≤ CTN (f) ∨ CTN (g), thus, from the definition of f̂TN ,

d(f̂TN , f
∗) ≤ CTN (f̂TN ) ∨ CTN (f∗) ≤ CTN (f∗) . (2)

To upper bound the risk of f̂TN it is therefore sufficient to upper bound the radius of BTN (f∗). The
definition of “radius” depends on the distance d that should be chosen according to the properties we seek for
our estimators (see Section 4.4 for details regarding the different norms we use and the corresponding results
on the estimators). More precisely, we are interested with at least two natural norms : the regularization
norm ‖ · ‖ measuring the “sparsity” and the norm ‖.‖L2

P
measuring the excess risk. We intend to design

an estimator that is performant for both norms and we will slightly extend Birgé’s construction to that
purpose. Assume first that the norms ‖f‖L2

P
for f ∈ F can be computed (which is the case, for example,

if the distribution of the design is known). Since, we have two different norms at hands, it is not clear
which one we should use to compute the radius of BTN (f). To deal with this issue, we first rewrite Birgé’s
criterion (for ‖ · ‖) by

CTN (f) = sup
g∈BTN (f)

‖f − g‖ = min{ρ ≥ 0 : ∀g ∈ BTN (f), ‖g − f‖ ≤ ρ} .

A minimizer of this criterion is well localized but may have a large excess risk. To control also the excess
risk, we use a function r : R+ → R+ (r will be defined in Definition 1 in Section 4.3) that basically maps
the optimal rate of convergence in the reference norm ‖ · ‖ to the optimal rate in ‖ · ‖L2

P
. The extension of

Birgé’s criterion is then defined by

C
(2)
TN

(f) = min{ρ ≥ 0 : ∀g ∈ BTN (f), ‖g − f‖ ≤ ρ and ‖f − g‖L2
P
≤ r(ρ)} . (3)

In general, the L2
P -norm between two functions cannot be directly computed, so we have to estimate the

L2
P -distance between elements of BTN (f). Moreover, we shall also be interested in proving “exact” oracle

inequalities. This involves a third distance, and a third criterion that extends again a bit Birgé’s criterion
using the same ideas (see Section 4.4 for details).

Birgé’s approach has been used to define T -estimators [5, 9, 10], ρ-estimators [3, 6] (although the
aggregation of tests is a bit different there) and to build general estimator selection procedures [4, 7]. This
procedure is in general computationally expensive. It also extends many common procedures in statistical
learning theory under some assumptions on the tests the procedure relies on. To illustrate this purpose,
we present now three examples of estimators that could be seen as Birgé’s estimators.

3.2 Examples

Example 1 : Empirical (penalized) minimizers. Assume that TN can be decomposed TN (f, g) =
`N (g) − `N (f) and denote by f̂ = arg minf∈F `N (f) (provided that such minimizer exists and is unique).

Then it is easy to check that BTN (f̂) = {f̂}, so its radius is null, while the radius of any other point f is
larger than d(f, f̂) > 0 (whatever the non-degenerate notion of pseudo-distance used for d). It follows that
Birgé’s estimator cöıncide with f̂ .

In particular, any possibly penalized empirical risk minimizer f̂ = arg minf∈F {PN`f+pen(f)} is a Birgé
estimator corresponding to the tests TN (f, g) = PN (`g−`f )+pen(g)−pen(f), where `f (x, y) = (y−f(x))2

in this paper.
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Example 2 : Median Of Means estimators of the mean Another, perhaps less obvious example
is the median of means estimator [1, 22, 38] of the expectation PZ of a real valued random variable
Z. Recall that this estimator is built using a sample Z1, . . . , ZN of i.i.d. copies of Z and a partition
B1, . . . , BK of [N ] into bins of equal sizes N/K. This estimator is then defined as the (empirical) median

of the set of empirical means
{
PBkZ = 1

|Bk|
∑

i∈Bk Zi : k ∈ [K]
}

and is denoted by MOMK(Z). To see why

this estimator can be obtained from Birgé’s procedure, we remind that the expectation is the minimizer
PZ = arg minm∈R P (Z −m)2. A natural way to define a test comparing two real numbers m and m′ is
thus to define

TN (m,m′) = MOMK [(Z −m′)2 − (Z −m)2] .

Using basic properties of the median (recalled in Equations (4) and (5) in Section 4.1), we have

TN (m,m′) = (m′)2 −m2 + MOMK [−2Z(m′ −m)]

= (m′)2 − 2m′MOMK(Z)− [m2 − 2mMOMK(Z)]

= (m′ −MOMK(Z))2 − (m−MOMK(Z))2 .

Defining `N (m) = (m−MOMK(Z))2, the test TN is decomposed as in the previous example TN (m,m′) =
`N (m′)− `N (m) and the unique minimizer m̂ of `N (m) is MOMK(Z).

Example 3 : “Champions” of a Tournament In a recent paper, Lugosi and Mendelson [32] intro-
duced the notion of median of means tournaments. More precisely, they used the median of means tests
(see Section 4.1) to compare the elements of F . Notice that these tests, as well as those used by Birgé
[9, 10] don’t satisfy a relation of the type TN (f, g) = `N (g)− `N (f) in general, and Birgé’s estimator over
the all class F cannot be obtained as a minimizer f̂ = arg minf∈F `N (f). Lugosi and Mendelson [32] used
the following (a priori different from Birgé) strategy to overcome this issue. They compute a tractable
upper bound on the radius of the oracle and call “champion” any element of F with a radius smaller than
this upper bound. They prove that any champion has a radius smaller than the upper bound. It is clear
that, by definition the radius of Birgé’s estimator is smaller than the one of the oracle and Birgé’s estimator
is therefore a champion.

4 Construction of our estimators

4.1 Quantile of means processes and Median Of Means tests

In this paper, we used Median Of Means (MOM) tests of [32]. To introduce these tests, useful quantities and
basic properties in our analysis, we start with a general presentation of the quantiles of means processes.
For any α ∈ [0, 1], ` ≥ 1 and any z ∈ R`, denote the set of α-empirical quantiles of z by

Qα(z) =

{
x ∈ R :

1

`

∑̀
k=1

I{zi≤x} ≥ α and
1

`

∑̀
k=1

I{zi≥x} ≥ 1− α

}
.

For any non-empty subset B ⊂ [N ] and any vector z = (z1, . . . , zN )T ∈ RN , let PBz = 1
|B|
∑

i∈B zi. Let

K ∈ [N ] and let (B1, . . . , BK) denote an equipartition of {1, . . . , N} with bins of size |Bi| = N/K. Note
that when K does not divide N , one can remove a few data from the dataset. For any real number α ∈ [0, 1]
and any vector z = (z1, . . . , zN )T ∈ RN , we denote the set of α-quantiles of empirical means by

Qα,K(z) = Qα
(
(PBkz)k∈[K]

)
.

With a slight abuse of notations, we shall repeatedly denote by Qα,K(z) any element in Qα,K(z) and
write Qα,K(z) = y if y ∈ Qα,K(z), Qα,K(z) ≥ y if supQα,K(z) ≥ y, Qα,K(z) ≤ y if infQα,K(z) ≤ y,
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and Qα,K(z) + Qα′,K(z′) any element in the Minkowski sum Qα,K(z) +Qα′,K(z′). Let also MOMK(z) =
Q1/2,K(z) denote the empirical median of the empirical means on the blocs Bk. Empirical quantiles are
not linear processes, but they satisfy nevertheless the following properties

∀λ ≥ 0,∀z ∈ RN , ∀α ∈ [0, 1], Qα,K(λz) = λQα,K(z) , (4)

∀z ∈ RN , ∀α ∈ [0, 1], Qα,K(−z) = −Q1−α,K(z) , (5)

∀z, z′ ∈ RN , Q1/4,K(z) +Q1/4,K(z′) ≤ MOMK(z + z′) ≤ Q3/4,K(z) +Q3/4,K(z′) . (6)

To balance the empirical risk and the regularization norm, it is classical to introduce a parameter λ > 0
called a regularization parameter that needs to be fit in a proper way to achieve an optimal trade-off
between adequacy to the data and regularization. Define respectively the (quadratic) loss and regularized
(quadratic) loss as the functions from F ×X × R to R by

`f (x, y) = (y − f(x))2, `λf = `f + λ ‖f‖ , for every (f, x, y) ∈ F ×X × R .

To compare/test functions f and g in F , the median of means test between f and g of [32] is defined by

TK,λ(f, g) = MOMK(`λg − `λf ) = MOMK(`g − `f ) + λ(‖g‖ − ‖f‖) . (7)

Notice that, from (5), TK,λ(f, g) + TK,λ(g, f) = 0, therefore, TK,λ is a test statistic as defined in Section 3.

4.2 Main assumptions

One of our motivations in this paper is to show the robustness properties of median of means estimators in
statistical learning. We shall therefore denote by I ∪O a partition of [N ], where O has cardinality Ko. The
data (Xi, Yi)i∈O are considered as outliers, that is the set of data for which no assumptions on Pi is made.
The remaining set (Xi, Yi)i∈I is the set of informative data, that is the ones one can use for estimation.
And, of course, given the data (Xi, Yi)

N
i=1 no one knows in advance which data is informative or not.

Even for the informative data, we do not assume that (Xi, Yi)i∈I are i.i.d. ∼ P , but that the moments
of order 1 and 2 of all functions f ∈ F are close to those of P as well as the correlations between f and
the noise ξ. Let τ ≥ 0.

Assumption 1 (R(τ)). Property R(τ) holds when, for any i ∈ I and any f, g ∈ F , Pi(f−g)2 ≤ τ2P (f−g)2.

Of course, property R(1) holds in the i.i.d. framework, with I = [N ]. The second assumption bounds
the correlation between the noise ξ = Y − f∗(X) and the design on the class F − f∗.

Assumption 2. There exists Cξ > 0 such that, for every f ∈ F and any Q ∈ {P, (Pi)i∈I},√
varQ(ξ(f − f∗)) =

√
Q(ξ(f − f∗))2 − (Qξ(f − f∗))2 ≤ Cξ ‖f − f∗‖L2

P
.

If ‖ξ‖L4
Q
<∞ and, for every f ∈ F , ‖f − f∗‖L4

Q
≤ c0 ‖f − f∗‖L2

P
, then, by Cauchy-Schwarz inequality,√

varQ(ξ(f − f∗)) ≤ ‖ξ(f − f∗)‖L2
Q
≤ ‖ξ‖L4

Q
‖f − f∗‖L4

Q
≤ c0 ‖ξ‖L4

Q
‖f − f∗‖L2

P

so Assumption 2 holds for Cξ = c0 maxQ∈{P,(Pi)i∈I} ‖ξ‖L4
Q

.

The last assumption essentially states that the distribution of X uniformly spreads in the directions of
F . It has been introduced in [24, 34] and it’s called the small ball property.

Assumption 3 (The small ball property (SBP)). There exist constants 0 < β < 1 and 0 < u ≤ 1, such

that, for any Q ∈ {P, (Pi)i∈I} and any f, h ∈ F ∪ {0}, Q
(
|f − h| ≥ β‖f − h‖L2

P

)
≥ u.
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Numerous examples satisfy SBP, we refer to [23, 28, 33, 35, 36, 39] for some of them. Let us give
here a classical example where it can be checked. Assume that there exists c0 > 0 such that ‖f − h‖L4

Q
≤

c0(‖f − h‖L2
Q
∧ ‖f − h‖L2

P
) and ‖f − h‖L2

P
≤ ‖f − h‖L4

Q
for every f, h ∈ F and any Q ∈ {P, (Pi)i∈I}, then

Assumptions 3 holds (and we’ve seen that Assumption 2 also). Indeed, let β be such that c0β < 1, denoting

by p = Q
(
|f − h| ≥ β‖f − h‖L2

P

)
, the Paley-Zygmund argument [17, Proposition 3.3.1]) shows that

‖f − h‖2L4
Q
≤ c2

0 ‖f − h‖
2
L2
Q
≤ c2

0

(
Q(f − g)2I(|f − h| ≤ β‖f − h‖L2

P
) +Q(f − h)2I(|f − h| ≥ β‖f − h‖L2

P
)
)

≤ c2
0

(
β2 ‖f − g‖2L2

P
+
√
p ‖f − h‖2L4

Q

)
≤ c2

0 ‖f − h‖
2
L4
Q

(
β2 +

√
p
)
,

therefore, Assumption 3 holds with u = (1− c2
0β

2)2/c2
0.

4.3 Complexity parameters

The main purpose of this section is to define the function r connecting the norms in our extension (3) of
Birgé’s criterion. Let us start with some notations : for any r, ρ ≥ 0 and any f ∈ L2

P , let

B2(f, r) = {g ∈ L2
P : ‖f − g‖L2

P
≤ r}, S2(f, r) = {g ∈ L2

P : ‖f − g‖L2
P

= r} .

Let also rB2 = B2(0, r) and rS2 = S2(0, r). For any f ∈ E, let

B(f, ρ) = {g ∈ E : ‖f − g‖ ≤ ρ}, S(f, ρ) = {g ∈ E : ‖g − f‖ = ρ}, ρB = B(0, ρ), ρS = S(0, ρ) .

Definition 1. Let (εi)i∈I be independent Rademacher random variables, independent from (Xi, Yi)
N
i=1. For

any γQ, γM > 0 and ρ > 0 let

rQ(ρ, γQ) = sup
f?∈F

inf

r > 0 : ∀J ⊂ I, |J | ≥ |I|
2
, E sup

f,g∈F∩B(f?,ρ)

‖f−g‖
L2
P
≤r

∣∣∣∣∣∑
i∈J

εi(f − g)(Xi)

∣∣∣∣∣ ≤ γQ|J |r
 ,

rM (ρ, γM ) = sup
f?∈F

inf

r > 0 : ∀J ⊂ I, |J | ≥ |I|
2
, E sup

f∈F∩B(f?,ρ)

‖f−f?‖
L2
P
≤r

∣∣∣∣∣∑
i∈J

εiξi(f − f?)(Xi)

∣∣∣∣∣ ≤ γM |J |r2

 ,

and let ρ→ r(ρ, γQ, γM ) be a continuous and increasing function such that for every ρ > 0,

r(ρ, γQ, γM ) ≥ max{rQ(ρ, γQ), rM (ρ, γM )}.

Explicit computations of the complexity parameters rQ(·) and rM (·) may follow from classical results
on the expectation of symmetrized empirical processes. For instance, upper bounds can be obtained using
Gaussian mean widths : for any V ⊂ Rd, the Gaussian mean width of V is defined by

`∗(V ) = E sup
v=(vj)∈V

d∑
j=1

gjvj , where (g1, . . . , gd) ∼ Nd(0, Id) . (8)

Now, the complexity parameters rQ(·) and rM (·) in the `d1-regularization example are computed in [37,
Theorem 1.6]. Since the dual norm of the `d1-norm is 1-unconditional with respect to the canonical basis
of Rd (cf. [37, Definition 1.4]); [37, Theorem 1.6] applies under the following set of assumptions.

Assumption 4. There exist constants q0 > 2 and L such that:

A1 ξ ∈ Lq0,
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A2 X is isotropic : E
〈
X, t

〉2
= ‖t‖22 for every t ∈ Rd,

A3 the coordinates of X have C0 log d sub-gaussian moments: for every 1 ≤ j ≤ d∥∥〈X, ej〉∥∥Lp ≤ L√p for every 1 ≤ p ≤ C0 log d

where (e1, . . . , ed) is the canonical basis of Rd and C0 is some absolute constant.

The unit ball of the regularization norm plays a central role in our analysis. For the `d1-regularization
example, this ball is the unit `d1-ball Bd

1 = {t ∈ Rd : ‖t‖1 ≤ 1}. Under Assumption 4, [37, Theorem 1.6]
shows that, for every ρ > 0 the expectation of the symmetrized empirical process satisfies

E sup
v∈ρBd1∩rBd2

∣∣∣∣∣ 1

N

N∑
i=1

εi
〈
v,Xi

〉∣∣∣∣∣ ≤ c2`
∗(ρBd

1 ∩ rBd
2)√

N
(9)

and for the multiplier process

E sup
v∈ρBd1∩rBd2

∣∣∣∣∣ 1

N

N∑
i=1

εiξi
〈
v,Xi

〉∣∣∣∣∣ ≤ c2 ‖ξ‖Lq0 `
∗(ρBd

1 ∩ rBd
2)

√
N

. (10)

As a consequence, it only remains to bound from above the local Gaussian mean widths `∗(ρBd
1 ∩ rBd

2).
This is done in [29, Lemma 5.3] and therefore the computation of the fixed points rM and rQ follow (note
that we drop off γM and γQ since they will play the role of constants later)

r2
M (ρ) .L,q0


‖ξ‖2Lq0 d

N if ρ2N ≥ ‖ξ‖2Lq0 d
2

ρ ‖ξ‖Lq0

√
1
N log

( e‖ξ‖Lq0 d
ρ
√
N

)
otherwise

, r2
Q(ρ)

{
= 0 if N &L d

.L
ρ2

N log
(
c(L)d
N

)
otherwise

.

In this example therefore,

r2(ρ) ∼L,q0


max

(
ρ ‖ξ‖Lq0

√
1
N log

( e‖ξ‖Lq0 d
ρ
√
N

)
,
‖ξ‖2Lq0 d

N

)
if N &L d

max

(
ρ ‖ξ‖Lq0

√
1
N log

( e‖ξ‖Lq0 d
ρ
√
N

)
, ρ

2

N log
(
c(L)d
N

))
otherwise

. (11)

4.4 The estimators

As explained in Section 3, our procedure build on Birgé’s construction of T -estimators (cf. [9, 10]) and
uses the radii of the sets BK,λ(f) = {g ∈ F : TK,λ(g, f) ≥ 0}, where TK,λ has been defined in (7), as criteria
to deduce our estimators. These radii are evaluated using different norms depending on the results one
wants to obtain. More precisely, we shall prove deviation bounds w.r.t. the regularization norm and the
L2
P -norm as well as prediction result by proving sharp oracle inequalities. For each of these results, we

design a way to measure the size of the sets BK,λ(f) for f ∈ F .
Let us first start with the regularization norm and define Birgé’s criterionRreg

K,λ(f) = supg∈BK,λ(f) {‖g − f‖}.
Denote the corresponding estimator f̂

(1)
K,λ ∈ arg minf∈F R

reg
K,λ(f). The risk of this estimator will be bounded

w.r.t. the regularization norm.
To get estimation results for both the regularization norm and the L2

P -norm, one needs to add another
way to measure the size of the sets BK,λ(f) related to this norm. Given that P is unknown in general,
we have to introduce an empirical way to measure the L2

P diameter of BK,λ(f). The classical empirical
L2
PN

-metric would work under strong assumptions on the design, like a subgaussian property or any other

property insuring some isometry between L2
PN

and L2
P metrics above some level (usually given by rQ(·), cf.
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[27]). We want to relax also this assumption and consider therefore another “empirical norm”. Instead of
taking the empirical mean, we simply take the empirical median, that is, we define the empirical pseudo-
norm: for every f ∈ F , ‖f‖L2,N

= MOMN (f) and the radius of BK,λ(f) w.r.t. L2,N is denoted by

R
L2,N

K,λ (f) = supg∈BK,λ(f)

{
‖g − f‖L2,N

}
. The second criterion is then given by

C(2)(f) = min
{
ρ ≥ 0 : Rreg

K,λ(f) ≤ ρ, RL2,N

K,λ (f) ≤ ηr(ρ)
}

,

where η is defined in Theorem 1 below and r(ρ) = r(ρ, γQ, γM ) for the choice of constants γQ and γM in

Theorem 1 below. The estimator associated to this criterion is f̂
(2)
K,λ ∈ arg minf∈F C

(2)(f).
Finally, we want to design an estimator satisfying simultaneously a sharp oracle inequality and optimal

risk bounds for both the regularization and L2
P norms. We introduce a third pseudo-distance :

∀f, g ∈ F, dK(g, f) = MOMK [(Y − f)(f − g)] ,

the radius of BK,λ(f) w.r.t. dK is denoted by RdKK,λ(f) = supg∈BK,λ(f) {dK(g, f)}. The third criterion is
given by

C(3)(f) = min
{
ρ ≥ 0 : Rreg

K,λ(f) ≤ ρ, RL2,N

K,λ (f) ≤ ηr(ρ), RdKK,λ(f) ≤ γr2(ρ)
}

where η and γ are specified in Theorem 1 below and the associated estimator is f̂
(3)
K,λ ∈ arg minf∈F C

(3)(f).

4.5 The sparsity equation

As shown in (2), the performances of our estimators are bounded by those of the oracle f∗. To control for
example C(2)(f∗) and deduce estimation bounds for f∗ with respect to ‖ · ‖ and ‖ · ‖L2

P
, we have to prove

that TK,λ(f∗, f) ≥ 0 for any f such that ‖f − f∗‖ or ‖f − f∗‖L2
P

is large. Recall that

TK,λ(f∗, f) = MOMK [(f − f∗)2 − 2ξ(f − f∗)] + λ(‖f‖ − ‖f∗‖) .

Given f ∈ F and a radius ρ such that ‖f − f∗‖ = ρ. When ‖f − f∗‖L2
P

is small, the quadratic term

(f − f∗)2 in this decomposition may be small as well and therefore of little help if one wants to prove that
TK,λ(f∗, f) ≥ 0. Therefore, we need to use the term λ(‖f‖−‖f∗‖) coming from penalization to prove that
TK,λ(f∗, f) ≥ 0 when ‖f − f∗‖L2

P
is small. The sparsity equation [29] connects ‖f − f∗‖ with ‖f‖ − ‖f∗‖

for all f closed to f∗ in L2
P . To bound from below ‖f‖ − ‖f∗‖, we introduce the subdifferentials of ‖·‖ :

∀f ∈ F, (∂ ‖·‖)f = {z∗ ∈ E∗ : ‖f + h‖ ≥ ‖f‖+ z∗(h) for every h ∈ E}

where (E∗, ‖·‖∗) is the dual norm space of (E, ‖·‖).
For any ρ > 0, let Hρ denote the set of functions ”closed” to f∗ in L2

P and at distance ρ from f∗ in
regularization norm. Let Γf∗(ρ) denote the set of subdifferentials of vectors ”closed” to f∗ :

Hρ = {f ∈ F : ‖f − f∗‖ = ρ and ‖f − f∗‖L2
P
≤ r(ρ)} and Γf∗(ρ) =

⋃
f∈F :‖f−f∗‖≤ρ/20

(∂ ‖·‖)f .

Now, the idea underlying the sparsity equation is that, if there exists a “sparse” f∗∗ vector in {f ∈ F :
‖f∗ − f‖ ≤ ρ/20}, this vector will have a ”large subdifferential” meaning that ‖f‖− ‖f∗∗‖ is large for any
f ∈ Hρ so ‖f‖ − ‖f∗‖ can be lower bounded by ‖f‖ − ‖f∗∗‖ − ‖f∗ − f∗∗‖ and thus be large as well. More
precisely, let us introduce

∀ρ > 0, ∆(ρ) = inf
f∈Hρ

sup
z∗∈Γf∗ (ρ)

z∗(f − f∗) .

∆(ρ) is the uniform lower bound over all f ∈ Hρ of what can be interpreted as the maximal lower bound
on ‖f‖ − ‖f∗∗‖ for f∗∗ ∈ Γf∗(ρ). The maximal value of ‖f‖ − ‖f∗‖ when f ∈ Hρ is ρ by the triangular
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inequality. According to our previous analysis, we will have ‖f‖ − ‖f∗‖ & ρ if there exists c0 > 1 such
that, for all f ∈ Hρ, supf∗∗∈Γf∗ (ρ)(‖f‖ − ‖f∗∗‖) ≥ c0ρ. As explained, ∆(ρ) will be used to lower bound

supf∗∗∈Γf∗ (ρ)(‖f‖ − ‖f∗∗‖) and our goal will follow from the following inequality, introduced in [29] and
called the sparsity equation.

Definition 2. A radius ρ > 0 is said to satisfy the sparsity equation when ∆(ρ) ≥ 4ρ
5 .

One can check that, if ρ∗ satisfies the sparsity equation, so do all ρ ≥ ρ∗. Therefore, one can define

ρ∗ = inf

(
ρ > 0 : ∆(ρ) ≥ 4ρ

5

)
.

Example (continued): `d1-regularization

In this example, the sparsity equation has been solved in [29]. The key idea is that the `d1-norm has
singularities at sparse vectors. Therefore, if the oracle t∗ is close to a sparse vector then the size of Γf∗(ρ)
(for f∗(·) =

〈
·, t∗
〉
) will be large because the subdifferential in this neighbor of f∗ is large when ρ is large

enough. Let us recall this result.

Lemma 1. [29, Lemma 4.2] If there exists v ∈ Rd such that v ∈ t∗ + (ρ/20)Bd
1 and 100|supp(v)| ≤

c(ρ/r(ρ))2 then

∆(ρ) = inf
h∈ρSd−1

1 ∩r(ρ)Bd2

sup
g∈Γt∗ (ρ)

〈
h, g − t∗

〉
≥ 4ρ

5

where Sd−1
1 is the unit sphere of the `d1-norm and Bd

2 is the unit Euclidean ball in Rd.

When N & s log(ed/s), it follows from Lemma 1 and the choice of the function r(·) in (11) that

ρ∗ ∼L,q0 ‖ξ‖Lq0 s

√
1

N
log

(
ed

s

)
if t∗ is “close” to a s-sparse vector (i.e. there exists a s-sparse vector in t∗ + (ρ∗/20)Bd

1). With this ρ∗,

r2(ρ∗) ∼
‖ξ‖Lq0 s
N

log

(
ed

s

)
.

5 Main results

5.1 Performances of the estimators

Theorem 1 gathers the properties of the estimators f̂
(j)
K,λ for j = 1, 2, 3 defined in Section 4.4.

Theorem 1. Assume that F satisfies Assumption 3 (SBP) with constants 0 < β < 1 and 3/4 < u ≤ 1,
that ξ satisfies Assumption 2 and that property R(τ) holds for some τ ≥ 1 (see Assumption 1). Assume
that there exists positive absolute constants ci ∈ (0, 1), such that

(1− c2)(1− c6) (u− 3c1) ≥ 3

4
, (1− c2)

(
1− 4

c5

c2
3

− c7 −
16c4

c3

)
≥ 3

4
,

40

7
c3 ≤

10

11

(
3

4
c6 − 4c3

)
. (12)

Let γQ = c1β, γM = c4β
2, c = c5

β4

Cξ
, let, for all ρ > 0, r(ρ) = r(ρ, γQ, γM ) and let K∗ = dcNr2(ρ∗)e ∨ Ko

c2
.

For any K ≥ 1 define ρK as the solution of rM (ρK) =
√

K
cN . Let

40

7
c3β

2 r
2(ρK)

ρK
≤ λ ≤ 10

11

(
3

4
c6 − 4c3

)
β2 r

2(ρK)

ρK
.
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Assume that for every i ∈ I, every integer K ∈ [K∗, N ] and every f ∈ F ∩B(ρK , f
∗),

|(Pi − P )ξ(f − f∗)| ≤ c3β
2 max

(
‖f − f∗‖2L2

P
, r(ρK)2

)
. (13)

There exists Ω1(K) such that P(Ω1(K)) ≥ 1 − 2 exp(−1
2 min(c2

1N, c
2
7K)), where the estimators f̂

(j)
K,λ for

j = 1, 2, 3 defined in Section 4.4 with η = τ/
√
c1 and γ = 3c3√

c1
τβ satisfy

1.
∥∥∥f̂ (1)

K,λ − f
∗
∥∥∥ ≤ ρK

2.
∥∥∥f̂ (2)

K,λ − f
∗
∥∥∥ ≤ ρK and

∥∥∥f̂ (2)
K,λ − f

∗
∥∥∥
L2
P

≤ τ
β
√
c1
r(ρK)

3.
∥∥∥f̂ (3)

K,λ − f
∗
∥∥∥ ≤ ρK ,

∥∥∥f̂ (3)
K,λ − f

∗
∥∥∥
L2
P

≤ τ
β
√
c1
r(ρK) and R(f̂

(3)
K,λ) ≤ R(f∗) + C4r

2(ρK) where C4 =

( τ
β
√
c1

+ 2c3β
2 + 10c3√

c1
βτ).

One cannot hope to get any result if the probability distributions {Pi}i∈I are not related to the prob-
ability distribution of the “new” data (X,Y ), which is P . As mentioned, Assumption 1 is automatically
satisfied in the i.i.d. case; this is also the case for assumption (13). In the i.i.d. setup one just may forget
about those two assumptions.

Our aim is to go beyond the i.i.d. setup and the standard strong subgaussian assumptions by designing
procedures having the same statistical properties as in the i.i.d. setup when the data satisfy the Gaussian
regression model (that is for a subgaussian class of functions and a subgaussian noise ξ independent of
X). To that end, we relax the i.d. assumptions by saying that, for most data (those with i ∈ I), the
L2
Pi

moments of the functions in F are close to those for the distribution P , and that the noise is not two
weirdly correlated to the design.

More precisely, our aim is to estimate in L2
P the oracle f∗ which is defined as the best L2

P approximation
of Y in F from data distributed according to the probability distribution given by the Pi’s. Note that the
best L2

Pi
approximation of Yi in F may be different from f∗. It seems unavoidable to assume that for most

data, these oracles are not too far from each other, which is the role of Assumption (13). Finally, note

that Assumption (13) is used only to prove the exact oracle inequality for f̂
(3)
K,λ.

Example (continued): `d1 regularization

Let us compute explicit value of the radius ρK and the associated regularization parameter λ ∼ r2(ρK)/ρK
in the `d1-regularization case. Let K ∈ [N ] and denote by σ = ‖ξ‖Lq0 . We have K = cr2(ρK)N when

ρK ∼L,q0
K

σ

√
1

N
log−1

(
σ2d

K

)
. (14)

Therefore, the regularization parameter should be taken as

λ ∼ r2(ρK)

ρK
∼L,q0 σ

√
1

N
log

(
eσd

ρK
√
N

)
∼L,q0 σ

√
1

N
log

(
eσ2d

K

)
. (15)

As usual the regularization parameter depends on the “variance” of the “noise” which is played here by
the Lq0-norm of ξ. This parameter is not known in general. In practice, one may use a cross-validation
approach to fit the regularization parameter. In theory, one may construct an estimator σ̂ of σ as in [20,
Sections 5.4 and 5.6.2] and simply replace σ by this estimator in the regularization parameter.
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5.2 Adaptive choice of K by Lepski’s method

The main drawback of Theorem 1 is that we only get the optimal rates of convergence for our estimators
when we can choose K ≈ K∗, which is unknown in general. In this section, we use a Lepski method to
select K.

For any integer K ∈ [cr(ρ∗)2N,N ], let ρK and λ be defined as in Theorem 1 and for every j = 1, 2, 3

denote by f̂
(j)
K = f̂

(j)
K,λ for this choice of λ. These estimators are the building blocks for the following

confidence sets. Let f ∈ F . The empirical “balls” centered in f associated to L2,N is defined by

B̂
L2,N

K (f) =
{
g ∈ F : ‖g − f‖L2,N

≤ µr(ρK)
}

and the one associated to dK is defined by

B̂dK
K (f) = {g ∈ F : dK(g, f) ≥ −νr2(ρK)},

where µ and ν will be set in Theorem 2. The notion of proximity w.r.t. dK used here to define B̂dK
K (f) is

somehow the opposite of the one used to criteria C(3)(·) and the associated estimator f̂
(3)
K . Now, let

R
(1)
K = B(f̂

(1)
K , ρK), R

(2)
K = B(f̂

(2)
K , ρK) ∩ B̂L2,N

K (f̂
(2)
K ) and R

(3)
K = B(f̂

(3)
K , ρK) ∩ B̂L2,N

K (f̂
(3)
K ) ∩ B̂dK

K (f̂
(3)
K )

and for every j = 1, 2, 3, let

K̂(j) = inf

{
K ∈ [N ] :

N⋂
J=K

R
(j)
J 6= ∅

}
.

Finally, define adaptive (to K) estimators via the Lepski’s method: for j = 1, 2, 3, f̂
(j)
LE ∈

⋂N
J=K̂(j) R

(j)
J .

Theorem 2. Grant the assumptions and notations of Theorem 1. There exist an absolute constant c0 such

that Lepski’s estimators f̂
(j)
LE for j = 1, 2, 3 defined for µ = τ√

c1
, ν = 3c3√

c1
βτ satisfy for every K ∈ [K∗, N ],

with probability 1− c0e
−K/c0,

1.
∥∥∥f̂ (1)

LE − f∗
∥∥∥ ≤ 2ρK

2.
∥∥∥f̂ (2)

LE − f∗
∥∥∥ ≤ 2ρK and

∥∥∥f̂ (2)
LE − f∗

∥∥∥
L2
P

≤
(

1 + 1
β

)
τ√
c1
r(2ρK)

3. if, denoting by ζ =
(

1 + 1
β

)
τ√
c1

, for every i ∈ I, every K ∈ [K∗, N ] and every f, g ∈ F ∩B(f∗, 2ρK)∩
B2(f∗, ζr(2ρK)),

|Pi(Y − g)(f − g)− P (Y − g)(f − g)| ≤ α′cr(2ρK)2 , (16)

then
∥∥∥f̂ (3)

LE − f∗
∥∥∥ ≤ 2ρK ,

∥∥∥f̂ (3)
LE − f∗

∥∥∥
L2
P

≤ ζr(2ρK) and R(f̂
(3)
LE) ≤ R(f∗)+C5r

2(ρK), for some C5 > 0

independent from K and N .

In particular, if K∗ ≥ Ko/c2 and K = K∗, with probability 1− c0e
−cr2(ρK∗ )N/c0,∥∥∥f̂ (3)

LE − f
∗
∥∥∥ ≤ 2ρK∗ ,

∥∥∥f̂ (3)
LE − f

∗
∥∥∥
L2
P

≤ ζr(2ρK∗) and R(f̂
(3)
LE) ≤ R(f∗) + C5r

2(2ρK∗).

To comment Theorem 2, recall an optimality result from [27]. Assume that all (Xi, Yi) are distributed
according to (X,Y f∗), where f∗ ∈ F and Y f∗ = f∗(X) + ξ and ξ is a centered Gaussian variable with
variance σ independent of X. Assume that F is L-subgaussian i.e. that, for every f ∈ F : ‖f‖Lp ≤
L
√
p ‖f‖L2 for every p ≥ 2. Then, [27, Theorem A′] proves that, for every r > 0, if f̃N is a procedure
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such that, for every f∗ ∈ F , with probability at least 1 − c0 exp(−σ−1r2N/c0),
∥∥∥f̃N − f∗∥∥∥

L2
P

≤ ζN , then,

necessarily, its rate of convergence ζN must satisfy

ζN & min
(
r, diam(F,L2

P )
)
. (17)

In the case where the statistical model Y f∗ = f∗(X)+ξ is true, c ∼ 1/Cξ ∼ 1/σ. As a consequence, [27,
Theorem A′] with r = r(ρK) for some K ≥ K∗ shows that no procedure can estimate f∗ in L2

P uniformly
over F with confidence at least 1− c0 exp(−K/c0) at better rate than r(ρK) (we implicitly assumed that
r(ρK) ≤ diam(F,L2

P ) since r(ρK) can obviously be replaced by r(ρK) ∧ diam(F,L2
P ) in all the results).

Moreover, [27, Theorem A] also shows that the ERM over ρKB, f̂ERMN ∈ argminf∈ρKB PN`f , satisfies,

with probability at least 1 − c0 exp(−σ−1r2(ρK)N/c0),
∥∥∥f̂ERMN − f∗

∥∥∥
L2

. r(ρK) when σ & rQ(ρK). This

proves that, when the noise level is non trivial (that is σ & rQ(ρK)), the ERM is a minimax procedure
over ρKB in the exponentially high confidence regime.

Therefore, Theorem 2 shows that the procedure f̂LE achieves the same rate of convergence with the same
exponentially high confidence as a minimax estimator in the Gaussian regression model (with independent
noise) whereas Theorem 2 grants only a very weak stochastic assumption (a simple L4/L2 assumption
is enough, for instance), no statistical model like the Gaussian regression model with independent noise
Y f∗ = f∗(X) + ξ is assumed, the data may not be i.i.d. and even contain a few outliers.

Recall that we have seen in Section 3.2 that the f̂K,λ are champions of a MOM’s tournament in the
sense of Lugosi and Mendelson [32]. In this sense, their result is stronger than ours since they prove that
any champion has a properly controlled risk if K is adequately chosen. On the other hand, the main
advantage of our approach is that the definition of Birgé’s estimator does not require the computation of a
theoretical upper bound on the radius of the oracle. Moreover, if the upper bound is pessimistic, as might
be the case because they have to consider a supremum over F to get rid of the dependence in f∗ of their
original bound, then their control of the risk will be pessimistic too. Moreover, using a Lepski method, we
don’t have to choose the integer K in advance, we let the data decide the best choice and automatically
get an estimator with the correct rate of convergence.

Example (continued): `d1 regularization

Finally, let us turn to the main result concerning the `d1 regularization example. The following result follows
from Theorem 2 together with the computation of ρ∗ and r(·) for this particular example.

Theorem 3. We assume that the design vector X and the noise ξ = Y −
〈
X, t∗

〉
satisfy the following:

there exist c1, u > 3/4, β, Cξ such that, for every t ∈ Rd,

1. E
〈
X, t

〉2
= ‖t‖22, P[|

〈
X, t

〉
| ≥ β ‖t‖2] ≥ u and for every 1 ≤ j ≤ d,

∥∥〈X, ej〉∥∥Lp ≤ L√p for every 1 ≤
p ≤ C0 log d where (e1, . . . , ed) is the canonical basis of Rd and C0 is an absolute constant,

2. σ = ‖ξ‖Lq0 <∞ for some q0 > 2 and
√

var
(
ξ
〈
X, t

〉)
≤ Cξ ‖t‖2

3. there exists s ∈ [N ] such that N ≥ c1s log(ed/s) and for ρ∗ ∼ σs
√

log (ed/s) /N , there exists v ∈ Rd
for which ‖t∗ − v‖1 ≤ ρ∗/20 and |supp(v)| ≤ s.

Then, there exists a constant c0 depending only on c1, C0, u > 3/4, β, Cξ such that with probability at least
1 − c0 exp (−σs log(ed/s)/c0), the estimator t̂LE built using Lepski’s method on the family of estimator

(t̂
(3)
K )K∈[N ] satisfies, for every 1 ≤ p ≤ 2,

∥∥t̂LE − t∗∥∥p .L,q0 σs
1/p

√
1

N
log

(
ed

s

)
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Proof. It follows from Theorem 2, the computation of r(·) in (11) and ρK in (14) that with probability at
least 1−c0 exp(−cr2(ρK∗)N/c0),

∥∥t̂LE − t∗∥∥1
≤ ρK∗ and

∥∥t̂LE − t∗∥∥2
. r(ρ∗). Then, the result follows since

ρK∗ ∼ ρ∗ ∼L,q0 ‖ξ‖Lq0 s
√

1
N log

(
ed
s

)
and because of the interpolation inequality ‖v‖p ≤ ‖v‖

−1+2/p
1 ‖v‖2−2/p

2

for all v ∈ Rd and 1 ≤ p ≤ 2.

Theorem 3 is a sub-Gaussian deviation bound obtained under a limited moment assumption and no
independence between the noise and the design. The noise ξ only needs to have q0 moments for some
q0 > 2, which is almost the minimal assumption one needs to get a L2-estimation result. Moreover, the
rate of convergence is the minimax one, that is we really get the

√
log(ed/s)/N rate of convergence and

not only the “classical”
√

(log d)/N which is usually found in the literature on the LASSO even under
stronger assumption like a statistical model with subgaussian design and independent gaussian noise.

6 Proofs

The proof of Theorem 1 follows from the next three lemmas.

Lemma 2. Grant the conditions of Theorem 1. There exists an event Ω1(K) such that P(Ω1(K)) ≥
1− 2 exp(−1

2 min(c2
1N, c

2
7K)), where

BK,λ(f∗) ⊂ F ∩B(f∗, ρK) ∩B2(f∗, r(ρK)) ,

in particular, on Ω1(K), C
(1)
K,λ(f∗) ≤ ρK .

Lemma 3. Grant the conditions of Theorem 1. Let ρ > 0. For any x such that |I|N (u − x − c1) ≥ 1
2 ,

then, for every f, g ∈ F ∩ B(ρ, f∗) such that ‖f − g‖L2
P
≥ rQ(ρ), there exists an event ΩQ(ρ, x) such that

P(ΩQ,2(ρ, x)) ≥ 1− e−
x2

2
N where ‖f − g‖L2,N

≥ β ‖f − g‖L2
P

.

For any A > 1 and x > 0 such that |I|N

(
1− 1

A2 − x− 2c1β
Aτ

)
≥ 1

2 , there exists an event ΩQ,2(ρ, x) such

that P(ΩQ,2(ρ, x)) ≥ 1 − e−
x2

2
N where, ∀(f, g) ∈ F ∩ B(f∗, ρK) : ‖f − g‖L2,N

≤ Aτ(‖f − g‖L2
P
∨ rQ(ρ)).

For example, if A = 1√
c1

, x = c1 and β ≤ 1/8, with probability larger than 1 − 2e−
c21
2
N , for any (f, g) ∈

F ∩B(f∗, ρK),

‖f − g‖L2,N
≤ τ
√
c1

(‖f − g‖L2
P
∨ rQ(ρK)) and, if ‖f − g‖L2

P
≥ rQ(ρK), ‖f − g‖L2,N

≥ β ‖f − g‖L2
P
.

(18)
In particular, on Ω2(K) = ΩQ(ρK , c1) ∩ ΩQ,2(ρK , c1),

{F ∩B(f∗, ρK) ∩B2(f∗, r(ρK))} ⊂ {B(f∗, ρK) ∩ {g ∈ F : ‖g − f∗‖2,N ≤
τ
√
c1
r(ρK)}}

⊂ {F ∩B(f∗, ρK) ∩B2(f∗,
τ
√
c1β

r(ρK))} .

Lemma 4. Grant the conditions of Theorem 1. On the event Ω1(ρK) of Lemma 2, for every f ∈ F ∩
B(f∗, ρK) ∩B2(f∗, τ√

c1
r(ρK)),

1. dK(f, f∗) ≤ 3c3√
c1
βτr2(ρK)

2. QP̄3/4,K |(Y − f
∗)(f∗ − f)| ≤ 2c3√

c1
βτr2(ρK), where, for any function G : X × R→ R

QP̄3/4,K |G(X,Y )| ∈ Qα([|(PBk − PBk)G|]k∈[K]) and PBkG =
1

|Bk|
∑
i∈Bk

PiG .
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In the proof, λ is fixed according to Theorem 1 and the dependence in λ of the estimators is omitted.

Proof of point 1. of Theorem 1: On Ω1(K) defined in Lemma 2, C(1)(f∗) ≤ ρK so C(1)(f̂
(1)
K ) ≤ ρK ,

thus ‖f̂ (1)
K − f∗‖ ≤ C(1)(f∗) ∨ C(1)(f̂

(1)
K ) ≤ ρK .

Proof of point 2. of Theorem 1: Let Ω1(K) and Ω2(K) denote the events defined in Lemmas 2 and 3
respectively. On Ω1(K) ∩ Ω2(K),

BK,λ(f∗) ⊂ F ∩B(f∗, ρK) ∩B2(f∗, r(ρK)) ⊂ {B(f∗, ρK) ∩ {g ∈ F : ‖g − f∗‖2,N ≤
τ
√
c1
r(ρK)}} ,

therefore C
(2)
K,λ(f∗) ≤ ρK and by definition of f̂

(2)
K , CK,λ(f̂

(2)
K ) ≤ ρK . Thus

f̂
(2)
K ∈ {B(f∗, ρK) ∩ {g ∈ F : ‖g − f∗‖2,N ≤

τ
√
c1
r(ρK)}} ⊂ {F ∩B(f∗, ρK) ∩B2(f∗,

τ

β
√
c1
r(ρK))} .

In other words ‖f̂ (2)
K − f∗‖ ≤ ρK and ‖f̂ (2)

K − f∗‖L2
P
≤ τ

β
√
c1
r(ρK).

Proof of point 3. of Theorem 1: Let Ω1(K), Ω2(K) denote the events defined respectively in Lemmas 2
and 3. On Ω1(K) ∩ Ω2(K), by point 1. in Lemma 4, C(3)(f∗) ≤ ρK . As seen in the proof of point 2. of

Theorem 1, we have thus ‖f̂ (3)
K − f∗‖ ≤ ρK and ‖f̂ (3)

K − f∗‖L2
P
≤ τ

β
√
c1
r(ρK).

Let us now turn to the proof of the oracle inequality. We have

R(f̂
(3)
K )−R(f∗) =

∥∥∥f̂ (3)
K − f

∗
∥∥∥2

L2
P

+ 2P (Y − f∗)(f∗ − f̂ (3)
K ) ≤ τ

β
√
c1
r2(ρK) + 2P (Y − f∗)(f∗ − f̂ (3)

K ) .

From Assumption (13), for every f ∈ F ∩B(f∗, ρK) ∩B2(f∗, τ
β
√
c1
r(ρK)), ∀k ∈ [K] such that Bk ∩O = ∅,

(P − P̄Bk)[ξ(f∗ − f)] =
1

|Bk|
∑
i∈Bk

(P − Pi)[ξ(f∗ − f)] ≤ c3β
2r2(ρK) .

Thus, for any K ≥ 4Ko,

R(f̂
(3)
K )−R(f∗) ≤ (

τ

β
√
c1

+ 2c3β
2)r2(ρK) + 2Q1/4([P̄Bk [ξ(f∗ − f̂ (3)

K )]]k∈[K])

≤ (
τ

β
√
c1

+ 2c3β
2)r2(ρK) + 2MOMK [ξ(f∗ − f̂ (3)

K )]

− 2Q1/4([(P̄Bk − PBK )[ξ(f∗ − f̂ (3)
K )]]k∈[K])

≤ (
τ

β
√
c1

+ 2c3β
2)r2(ρK) + 2dK(f∗, f̂

(3)
K ) + 2QP3/4(|ξ(f∗ − f)|)

≤ (
τ

β
√
c1

+ 2c3β
2 +

10c3√
c1
βτ)r2(ρK) .

In Section 6.1, we recall the small ball method of Mendelson by presenting a lemma that will be
repeatedly used afterwards in the proofs of Lemmas 2, 3 and 4. Section 6.2, we prove an “empirical small
ball” result (Corollary 1) for the quadratic process PBk(f − f∗)2 and a similar result for the multiplier
process PBkξ(f − f∗) in Section 6.3. The proofs of Lemmas 2, 3 and 4 are given in Section 6.4, using a
strategy similar to the proof of [29, Theorem 3.2]. Finally, Theorem 2 is proved in Section 6.6.

6.1 Mendelson’s small ball method (SBM)

We will repeatedly use the following lemma.
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Lemma 5. Let W1, . . . ,Wn denote independent random variables with respective distributions Q1, . . . , Qn,
let G be a class of functions, b ∈ (0, 1) and h ≥ 0. Let I ⊂ [n], let ε1, . . . , εn be i.i.d. Rademacher random
variables, independent of the Wi’s and (γi)i∈I be nonnegative functions such that

inf
i∈I

Qi(|g| ≥ 2γi(g)) ≥ b and E sup
g∈G

∣∣∣∣∣∑
i∈I

εi
g(Wi)

γi(g)

∣∣∣∣∣ ≤ h|I| .
Then

∀x ≥ 0, P (|{i ∈ [n], |g(Wi)| ≥ γi(g)}| ≥ |I|(b− x− 2h)) ≥ 1− e−
|I|
2
x2 . (19)

If the first condition is replaced by infi∈I Qi(2|g| < γi(g)) ≥ b, then,

∀x ≥ 0, P (|{i ∈ [n], |g(Wi)| < γi(g)}| ≥ |I|(b− x− 4h)) ≥ 1− e−
|I|
2
x2 .

Proof. Define φ for all t ≥ 0 by

φ(t) =


0 if 0 ≤ t ≤ 1

t− 1 if 1 ≤ t ≤ 2
1 otherwise.

Let F = {g/γi(g) : g ∈ G} and for all f ∈ F , let Z(f) =
∑n

i=1 I(|f(Wi)| ≥ 1),

PI =
1

|I|
∑
i∈I

δWi and P I =
1

|I|
∑
i∈I

Qi.

For all f ∈ F , we have

Z(f) ≥
∑
i∈I

I(|f(Wi)| ≥ 1) = |I|
(
P II(|f | ≥ 2) + PII(|f | ≥ 1)− P II(|f | ≥ 2)

)
≥ |I|

(
b− (PI − P I)φ(|f |)

)
≥ |I|

(
b− sup

f∈F
(PI − P I)φ(|f |)

)

By the bounded difference inequality (see, for instance [12, Theorem 6.2]), for any x > 0, with proba-

bility larger than 1− e−
|I|
2
x2 ,

sup
f∈F

(PI − P I)φ(|f |) ≤ E sup
f∈F

(PI − P I)φ(|f |) + x .

Denote by PI,ε = |I|−1
∑

i∈I εiδWi the symmetrized empirical measure then, by the symmetrization argu-
ment,

E sup
f∈F

(PI − P I)φ(|f |) ≤ 2E sup
f∈F

PI,εφ(|f |) .

Note that φ is Lipschitz with Lipschitz constant equal to one and φ(0) = 0. By the contraction principle
(see, for example [30, Chapter 4] or [12, Theorem 11.6])

E sup
f∈F

PI,εφ(|f |) ≤ E sup
f∈F

PI,ε|f | = E sup
g∈G

∣∣∣∣∣ 1

|I|
∑
i∈I

εi
|g(Wi)|
γi(g)

∣∣∣∣∣ ≤ h .

Gathering these results yields (19).
For the last claim, observe that, for all f ∈ F ,

n∑
i=1

I (|f(Wi)| < 1) ≥
∑
i∈I

I (|f(Wi)| < 1) ≥ |I| −
∑
i∈I

I (|f(Wi)| ≥ 1)
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and

1

|I|
∑
i∈I

I (|f(Wi)| ≥ 1) = PII (|f | ≥ 1)− P I (|f | ≥ 1/2) + P I (|f | ≥ 1/2) ≤ 1− b+
(
PI − P I

)
ψ(|f |)

where ψ is defined for all t ≥ 0 by

ψ(t) =


0 if 0 ≤ t ≤ 1/2

2t− 1 if 1/2 ≤ t ≤ 1
1 otherwise.

Using the same arguments as in the first part of the proof (note however that ψ is 2-Lipschitz), we obtain

that for all x > 0, with probability larger than 1− e−
|I|
2
x2 ,

sup
f∈F

(
PI − P I

)
ψ(|f |) ≤ 4h+ x.

This concludes the proof.

6.2 Control of the quadratic process via the SBM

The following result is a slight extension of a result in [23] that we reproduce to highlight the small ball
method and its robustness properties.

Theorem 4 ([23]). Assume that F satisfies Assumption 3 (small-ball condition) with constants 0 < β < 1

and 0 < u ≤ 1. Let ρ > 0, then for any x ≥ 0, on an event ΩQ(ρ, x) satisfying P(ΩQ(ρ, x)) ≥ 1− e−
|I|
2
x2,

for every f, g ∈ F ∩B(ρ, f∗) such that ‖f − g‖L2
P
≥ rQ(ρ),∣∣∣{i ∈ [N ] : |(f − g)(Xi)| ≥ β ‖f − g‖L2

P

}∣∣∣ ≥ |I|(u− x− 4γQ
β

) .

In particular, if |I|N (u− x− 4γQ
β ) ≥ 1

2 , then, for every f, g ∈ F ∩B(ρ, f∗) such that ‖f − g‖L2
P
≥ rQ(ρ)

‖f − g‖L2,N
≥ β ‖f − g‖L2

P

Proof. The proof follows from Lemma 5 for n = N , G = {f − g : f, g ∈ F ∩B(ρ, f∗), ‖f − g‖L2
P
≥ rQ(ρ)},

Wi = Xi for any i ∈ [N ], I = I and, for any g ∈ G, γi(g) = β ‖g‖L2
P
/2.

It follows from the small ball property that Condition 1 of Lemma 5 is satisfied with b = u. Therefore,
it only remains to bound the expectation in Condition 2 of Lemma 5. We have

E sup
g∈G

∣∣∣∣∣∑
i∈I

εi
g(Wi)

γi(g)

∣∣∣∣∣ = E sup
f,g∈F∩B(ρ,f∗)
‖f−g‖

L2
P
≥rQ(ρ)

∣∣∣∣∣∑
i∈I

εi
(f − g)(Xi)

γi(f − g)

∣∣∣∣∣ = E sup
f,g∈F∩B(ρ,f∗)
‖f−g‖

L2
P

=rQ(ρ)

∣∣∣∣∣∑
i∈I

εi
(f − g)(Xi)

γi(f − g)

∣∣∣∣∣
≤ 2

βrQ(ρ)
E sup

f,g∈F∩B(ρ,f∗)
‖f−g‖

L2
P

=rQ(ρ)

∣∣∣∣∣∑
i∈I

εi(f − g)(Xi)

∣∣∣∣∣ ≤ 2γQ
β
|I| .

Therefore, Condition 2 of Lemma 5 holds with h =
2γQ
β and the result follows.
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Corollary 1. On the event ΩQ(ρ, x) of Theorem 4, for any f, g ∈ F∩B(ρ, f∗) such that ‖f − g‖L2
P
≥ rQ(ρ),

one has

∀δ ∈ (0, 1),

∣∣∣∣{k ∈ [K] : PBk(f − g)2 ≥ δβ2(u− x−
4γQ
β

)
|I|
N
‖f − g‖2L2

P

}∣∣∣∣ ≥ (1−δ)(u−x−
4γQ
β

)
|I|
N
K .

In particular, if δ = c6, x = c1, γQ = c1β and |I|N ≥ 1− Ko
K ≥ 1− c2 as in Theorem 1, then (1− δ)(u− x−

4γQ
β ) |I|N ≥ 3/4, so, on ΩQ(ρ, c1), for any f, g ∈ F ∩B(ρ, f∗) such that ‖f − g‖L2

P
≥ rQ(ρ), one has

Q1/4,K [(f − g)2] ≥ 3

4
c6β

2 ‖f − g‖2L2
P
.

Proof. Denote by J = {i ∈ [N ] : |(f − g)(Xi)| ≥ β ‖f − g‖L2
P
}. On the event ΩQ(ρ, x), |J | ≥ αN , with

α = (u− x− 4γQ
β ) |I|N . If there were less than (1− δ)αK blocks containing more than δαNK elements in J ,

there would be at most

(1− δ)αKN

K
+ (1− (1− δ)α)Kδα

N

K
< αN

elements in J . Therefore, there must be at least (1− δ)αK blocks Bk containing more than δαNK elements
in J . For these blocks, one has

PBk(f − g)2 ≥ 1

|Bk|
∑

i∈J∩Bk

(f − g)2(Xi) ≥
1

|Bk|
δα
N

K
β2 ‖f − g‖2L2(P ) = δαβ2 ‖f − g‖2L2(P ) .

Lemma 6. Assume that property R(τ) holds (see Assumption 1) for some τ ≥ 1 and let A > 1. For any

x ≥ 0 and ρ > 0, there exists an event ΩQ,2(ρ, x) satisfying P(ΩQ,2(ρ, x)) ≥ 1 − exp(−x2

2 |I|), where, for
every f, g ∈ F ∩B(f∗, ρ), one has∣∣∣{i ∈ [N ] : |(f − g)(Xi)| ≤ Aτ(‖f − g‖L2

P
∨ rQ(ρ))

}∣∣∣ ≥ |I|(1− 1

A2
− x−

16γQ
Aτ

)
.

In particular, if |I|N

(
1− 1

A2 − x−
4γQ
Aτ

)
≥ 1

2 , on ΩQ,2(ρ, x), ‖f − g‖L2,N
≤ Aτ(‖f − g‖L2

P
∨ rQ(ρ)).

Proof. We apply Lemma 5 to n = N , G = {f − g : f, g ∈ F ∩ B(f∗, ρ)}, Wi = Xi for i ∈ [N ] and I = I.
Define, for any g ∈ G, γi(g) = (Aτ/2)(‖g‖L2

P
∨ rQ(ρ)). It follows from property R(τ) that, for every i ∈ I,

γi(g) ≥ (A/2) ‖g‖L2
Pi

and, by Markov’s inequality, infi∈I Pi (2|g| < γi(g)) ≥ 1− 1
A2 . Therefore Condition 1

(bis) of Lemma 5 holds with b = 1−A−2.
From the convexity of F and the definition of rQ(ρ),

E sup
g∈G

∣∣∣∣∣∑
i∈I

εi
g(Wi)

γi(g)

∣∣∣∣∣ ≤ 4

AτrQ(ρ)
E

 sup
f,g∈F∩B(ρ,f∗)

‖f−g‖L2(P )=rQ(ρ)

∑
i∈I

εi(f − g)(Xi)

 ≤ 4γQ
Aτ
|I| .

Therefore, Condition 2. of Lemma 5 holds with h =
4γQ
Aτ and Lemma 6 is proved.
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6.3 Control of the multiplier process via the SBM

In this section, we provide bounds on the multiplier process via an adaptation of Mendelson’s (SBP).
The SBP is usually used to control the quadratic process (or any process with nonnegative terms) as in
Theorem 4. In this section, we show that SBP can be adapted to control also the multiplier process.

Theorem 5. Suppose that the noise ξ satisfies Assumption 2. For any ρ > 0, x ≥ 0, K ≥ 2Ko, there

exists an event ΩM (ρ, x) such that P(ΩM (ρ, x)) ≥ 1− e−
x2

2
(K−Ko) where, ∀f ∈ F ∩B(ρ, f∗), ∀A2 > 0,∣∣∣∣∣∣

k ∈ K :

∣∣∣∣∣∣ 2

|Bk|
∑
i∈Bk

(ξi(f − f∗)(Xi)− Pi(ξ(f − f∗)))

∣∣∣∣∣∣ ≤ A2 max
(
rM (ρ)2, ‖f − f∗‖2L2

P

)
∣∣∣∣∣∣

≥ |K|
(

1−
4CξK

A2
2NrM (ρ)2

− x− 64γM
A2

)
=: αK ,

where K = {k ∈ [K] : Bk ∩ O = ∅} denote the set of blocks containing only informative data.

Proof. Let K ≥ 2Ko. Obviously, by the pigeonhole principle, |K| ≥ K−Ko. We apply Lemma 5 to n = K,
Wk = ((Xi, Yi))i∈Bk for k ∈ [K], F ∗ = {f−f∗ : f ∈ F ∩B(ρ, f∗)} and I = K. For any f ∈ F ∗ and k ∈ [K],
define

gf (Wk) =
2

|Bk|
∑
i∈Bk

(ξif(Xi)− Pi(ξf)) and γk(gf ) = 2A2 max
(
rM (ρ)2, ‖f‖2L2

P

)
.

Let f ∈ F ∗ and k ∈ K. It follows from Markov’s inequality that

P
[
2
∣∣∣gf (Wk)

∣∣∣ ≥ γk(gf )
]
≤

E
[(

2
|Bk|

∑
i∈Bk(ξif(Xi)− Pi(ξf))

)2
]

A2
2 max(rM (ρ)4, ‖f‖4L2

P
)

≤
4
∑

i∈Bk varPi(ξf)

|Bk|2A2
2 max(rM (ρ)4, ‖f‖4L2

P
)

≤
4Cξ ‖f‖2L2

P

|Bk|A2
2 max(rM (ρ)4, ‖f‖4L2

P
)
≤

4Cξ
A2

2

K

NrM (ρ)2
.

Hence, Condition 1 (bis) of Lemma 5 applies with b = 1− 4Cξ
A2

2

K
NrM (ρ)2

.

Let J = ∪k∈KBk, |J | = |K|NK = K−Ko
K N ≥ N

2 . By definition,

E

(
sup
f∈F ∗

∑
k∈K

εk
gf (Wk)

γk(gf )

)
≤ 4

A2
E sup
f∈F ∗

∣∣∣∣∣∑
k∈K

εk
|Bk|

∑
i∈Bk(ξif(Xi)− Pi(ξf))

max
(
rM (ρ)2, ‖f‖2L2

P

) ∣∣∣∣∣
≤ 4

A2rM (ρ)2
E sup
f∈F ∗∩rM (ρ)B2

∣∣∣∣∣∣
∑
k∈K

εk
|Bk|

∑
i∈Bk

(ξif(Xi)− Pi(ξf))

∣∣∣∣∣∣
+

4

A2
E sup
f∈F ∗ s.t.‖f‖

L2
P
≥rM (ρ)

∣∣∣∣∣∣
∑
k∈K

εk
|Bk|

∑
i∈Bk

(ξif(Xi)− Pi(ξf))

‖f‖2L2(P )

∣∣∣∣∣∣ .
Therefore, by convexity of F and the symmetrization argument,

E

(
sup
f∈F ∗

∑
k∈K

εk
gf (Wk)

γk(gf )

)
≤ 8K

A2NrM (ρ)2
E sup
f∈F ∗∩rM (ρ)B2

∣∣∣∣∣∑
i∈J

ε[i](ξif(Xi)− Piξf)

∣∣∣∣∣
≤ 16K

A2NrM (ρ)2
E sup
f∈F ∗∩rM (ρ)B2

∣∣∣∣∣∑
i∈J

εiξif(Xi)

∣∣∣∣∣ ≤ 16KγM |J |
A2N

=
16γM
A2
|K| .

where, in the first inequality of last line, we used a classical symmetrization argument on the family of
independent and centered random variables (ξif(Xi)−Piξf)Ni=1. The result now follows from Lemma 5.
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6.4 Proof of Lemma 2

Reduction to bounds on the quantiles of mean processes. We want to prove that, with large
probability, for any f such that ‖f − f∗‖L2

P
≥ r(ρK) or ‖f − f∗‖ ≥ ρK ,

MOMK

[
(f − f∗)2 − 2ξ(f − f∗)

]
+ λ(‖f‖ − ‖f∗‖) ≥ 0 . (20)

Using properties (4), (5) and (6), one can lower bound

MOMK

[
(f − f∗)2 − 2ξ(f − f∗)

]
≥ Q1/4,K [(f − f∗)2]− 2Q3/4,K [ξ(f − f∗)] . (21)

Now, since K ⊂ K, Q3/4,K [ξ(f − f∗)] ≤ Q3/4,K[ξ(f − f∗)], where K = {k : Bk ∩ O = ∅}, and, ∀z ∈ RN ,

Q3/4,K[z] = inf{x ∈ R :
∑
k∈K

I(PBkz ≤ x) ≥ 3

4
K} .

Then, by (13), for any i ∈ I, Piξ(f − f∗) ≤ c3β
2(‖f − f∗‖2

L2
P
∨ r(ρK)2), so

Q3/4,K[ξ(f − f∗)] ≤ QP3/4,K[ξ(f − f∗)] + c3β
2(‖f − f∗‖L2

P
∨ r(ρK))

≤ QP3/4,K[|ξ(f − f∗)|] + c3β
2(‖f − f∗‖2L2

P
∨ r(ρK)2) . (22)

It follows from these bounds that (20) holds if

Q1/4,K [(f − f∗)2]− 2QP3/4,K[|ξ(f − f∗)|] + λ(‖f‖ − ‖f∗‖) ≥ c3β
2(‖f − f∗‖2L2

P
∨ r(ρK)2) . (23)

Conclusion of the proof when the excess risk is large and the regularization distance is
small Assume first that ‖f − f∗‖L2

P
≥ r(ρK) and ‖f − f∗‖ ≤ ρK , then, by the triangular inequality,

‖f‖ − ‖f∗‖ ≥ −‖f − f∗‖ ≥ −ρK , therefore, (23) holds if

Q1/4,K [(f − f∗)2]− 2QP3/4,K[|ξ(f − f∗)|] ≥ λρK + c3β
2‖f − f∗‖2L2

P
. (24)

By Corollary 1, if (12) holds, then, on the event ΩQ(ρK , c1), since f ∈ F ∩ B(f∗, ρK) and ‖f − g‖L2
P
≥

rQ(ρK), one has

Q1/4,K [(f − g)2] ≥ 3

4
c6β

2 ‖f − g‖2L2
P
.

By Theorem 5, for A2 = c3β
2 as in Theorem 1, on ΩM (ρK , c7),

QP3/4,K[|ξ(f − f∗)|] ≤ c3β
2 max

(
rM (ρK)2, ‖f − f∗‖2L2

P

)
≤ c3β

2 ‖f − f∗‖2L2
P
.

Therefore, (24) holds on ΩQ(ρK , c1) ∩ ΩM (ρK , c7) thanks to the upper bound assumption on λ.

The homogeneity argument when ‖f − f∗‖ is large Assume from now on that ‖f − f∗‖ ≥ ρK . One
has for every f∗∗ ∈ f∗ + (ρK/20)B and every z∗ ∈ (∂ ‖·‖)f∗∗ ,

‖f‖−‖f∗‖ ≥ ‖f‖−‖f∗∗‖−‖f∗∗ − f∗‖ ≥ z∗(f−f∗∗)−ρK
20

= z∗(f−f∗)−z∗(f∗∗−f∗)−ρK
20
≥ z∗(f−f∗)−ρK

10
,

where the last inequality follows from z∗(f∗∗ − f∗) ≤ ‖f∗∗ − f∗‖. As this holds for any z∗ ∈ Γf∗(ρK), (21)
holds if

Q1/4,K [(f − f∗)2]− 2Q3/4,K [ξ(f − f∗)] + λ sup
z∗∈Γf∗ (ρK)

z∗(f − f∗) ≥ λρK
10

. (25)
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Assume that (25) holds for any g ∈ S(f∗, ρK). Let g = f∗ + ρK
f−f∗
‖f−f∗‖ so g ∈ S(f∗, ρK), therefore,

Q1/4,K [(g − f∗)2]− 2Q3/4,K [ξ(g − f∗)] + λ sup
z∗∈Γf∗ (ρK)

z∗(g − f∗) ≥ λρK
10

.

Hence, if κ = ‖f−f∗‖
ρK

≥ 1,

Q1/4,K [(f − f∗)2]− 2Q3/4,K [ξ(f − f∗)] + λ sup
z∗∈Γf∗ (ρK)

z∗(f − f∗)

= κ2Q1/4,K [(g − f∗)2]− 2κQ3/4,K [ξ(g − f∗)] + κλ sup
z∗∈Γf∗ (ρK)

z∗(g − f∗)

≥ κ

(
Q1/4,K [(g − f∗)2]− 2Q3/4,K [ξ(g − f∗)] + λ sup

z∗∈Γf∗ (ρK)
z∗(g − f∗)

)
≥ λρK

10
.

Therefore, (21) holds for any f such that ‖f −f∗‖ ≥ ρK if it holds for any f ∈ S(f∗, ρK). Using the bound
(22) shows finally that (21) holds for any f such that ‖f − f∗‖ ≥ ρK if, for any f ∈ S(f∗, ρK),

Q1/4,K [(f−f∗)2]−2QP3/4,K[|ξ(f−f∗)|]+λ sup
z∗∈Γf∗ (ρK)

z∗(f−f∗) ≥ λρK
10

+2αc(‖f−f∗‖2L2
P
∨r(ρK)2) . (26)

Conclusion of the proof when ‖f−f∗‖ is large and ‖f−f∗‖L2
P

is small Suppose now that f ∈ HρK ,

i.e. that ‖f − f∗‖ = ρK and ‖f − f∗‖LP2 ≤ r(ρK). Then, by definition supz∗∈Γf∗ (ρK) z
∗(f − f∗) ≥ ∆(ρK)

and, since ρK ≥ ρ∗, ρK satisfies the sparsity equation and thus, supz∗∈Γf∗ (ρK) z
∗(f−f∗) ≥ 4

5ρK . Moreover,

Q1/4,K [(f − f∗)2] ≥ 0 and by Theorem 5, for A2 = c3β
2, with the parameters set in Theorem 1, on

ΩM (ρK , c7),

QP3/4,K[|ξ(f − f∗)|] ≤ c3β
2 max

(
rM (ρK)2, ‖f − f∗‖2L2

P

)
≤ c3β

2r(ρK)2 .

Therefore, (26) holds on ΩM (ρK , c7) by the lower bound condition on λ.

Conclusion of the proof when both ‖f − f∗‖ and ‖f − f∗‖L2
P

are large Assume finally that

‖f−f∗‖ = ρK and ‖f−f∗‖L2
P
≥ r(ρK). Then we always have supz∗∈Γf∗ (ρK) z

∗(f−f∗) ≥ −‖f−f∗‖ = −ρK .

Moreover, by Corollary 1, by condition (12), on the event ΩQ(ρK , c1), since f ∈ F ∩ B(ρK , f
∗) and

‖f − g‖L2
P
≥ rQ(ρK), one has

Q1/4,K [(f − g)2] ≥ 3

4
c2β

2 ‖f − g‖2L2
P

and, by Theorem 5, for A2 = c3β
2, with the parameters set in Theorem 1, on ΩM (ρK , c7),

QP3/4,K[|ξ(f − f∗)|] ≤ c3β
2 max

(
rM (ρK)2, ‖f − f∗‖2L2

P

)
≤ c3β

2 ‖f − f∗‖2L2
P
.

Therefore, (26) holds on ΩM (ρK , c7) ∩ ΩQ(ρK , c1) from our upper bound assumption on λ.

6.5 Proofs of Lemma 3 and Lemma 4

Proof of Lemma 3: The first part of the Lemma is stated in the conclusion of Theorem 4. The second
part is stated in the conclusion of Lemma 6.

Proof of Lemma 4: It follows from (22) that, for the parameters set in Theorem 1, on ΩM (ρK , c7),

QP3/4,K|ξ(f − f
∗)| ≤ 2c3β

2 max
(
r2
M (ρK), ‖f − f∗‖2L2(P )

)
,
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Therefore, on ΩM (ρK , c7), from (13),

dK(f, f∗) = MOMK [ξ(f∗ − f)] ≤ max
k∈K

PBkξ(f − f
∗) +QP3/4,K |ξ(f − f

∗)|

≤ Pξ(f − f∗) + 3c3β
2 max

(
r2
M (ρK), ‖f − f∗‖2L2(P )

)
.

By convexity of F and the definition of f∗, Pξ(f − f∗) ≤ 0, which concludes the proof of the first point.
The second point follows from (22).

6.6 Proof of Theorem 2

Proof of point 1. of Theorem 2: It follows from Theorem 1 that for every integer J ∈ [K∗, N ], the

event {f∗ ∈ R(1)
J = B(ρJ , f̂

(1)
J )} has probability larger than 1− 2 exp(−C7J), where C7 = 1

2(c2
1 ∧ c2

7). For

every K ∈ [K∗, N ], the event {f∗ ∈ ∩NJ=KR
(1)
J } has probability

P
[
f∗ ∈ ∩NJ=KR

(1)
J

]
≥ 1−

N∑
J=K

2 exp(−C7J) ≥ 1− c8 exp(−C7K), c8 = 2eC7/(1− e−C7) .

On this event, K̂(1) ≤ K and so f̂
(1)
LE ∈ R

(1)
K implying that

∥∥∥f̂ (1)
LE − f∗

∥∥∥ ≤ 2ρK .

The proof of points 2 and 3 of Theorem 2 rely on the next result which follows from a straigforward
modification (just replace ρK by 2ρK) of the proofs of Lemmas 3 and 4.

Lemma 7. Grant the conditions of Theorem 1. There exists an absolute constant c9 and an event Ω̃(K)

such that P
(

Ω̃(K)
)
≥ 1− 2 exp (−c9K) where, for any (f, g) ∈ F ∩B(f∗, 2ρK),

‖f − g‖L2,N
≤ τ
√
c1

(‖f − g‖L2
P
∨rQ(2ρK)) and, if ‖f − g‖L2

P
≥ rQ(2ρK), ‖f − g‖L2,N

≥ β ‖f − g‖L2
P
.

(27)
On the same event, there exists η, independent from K and N such that

∀f, g ∈ F ∩B(f∗, 2ρK) ∩B2(f∗, ζr(2ρK)), QP̄3/4,K |(Y − f)(g − f)| ≤ ηr2(2ρK) .

Proof of point 2. of Theorem 2: It follows from Theorem 1 that for every integer J ∈ [cr2(ρ∗)N,N ],
there exists an event Ω̄(J) with probability larger than 1− 2 exp(−C7J), such that on Ω̄(J), we have both∥∥∥f̂ (2)

J − f
∗
∥∥∥ ≤ ρJ and

∥∥∥f̂ (2)
J − f

∗
∥∥∥
L2
P

≤ τ

β
√
c1
r(ρJ). (28)

Now, consider the event Ω2(J) (resp. Ω̃(J)) as defined in Lemma 3 (resp. Lemma 7) and denote
Ω(J) := Ω̄(J) ∩ Ω̃(J) ∩ Ω2(J). On Ω(J), we have from (28) and Lemma 3 that

‖f̂ (2)
J − f

∗‖L2,N
≤ τ
√
c1

(∥∥∥f̂ (2)
J − f

∗
∥∥∥
L2(P )

∨ rQ(ρJ)

)
≤ τ
√
c1
r(ρJ) . (29)

This implies that f∗ ∈ R(2)
J .

Let now K ∈ [K∗, N ]. On ∩NJ=KΩ(J), which has probability 1−c0e
−J/c0 , we have f∗ ∈ ∩NJ=KR

(2)
J therefore

K̂(2) ≤ K and so f̂
(2)
LE ∈ R

(2)
K . This means that∥∥∥f̂ (2)
LE − f̂

(2)
J

∥∥∥ ≤ ρJ and
∥∥∥f̂ (2)

LE − f̂
(2)
J

∥∥∥
L2,N

≤ τ
√
c1
r(ρJ).
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In particular, both f̂
(2)
LE and f̂

(2)
J belong to B(2ρJ , f

∗) and one has either
∥∥∥f̂ (2)

LE − f̂
(2)
J

∥∥∥
L2
P

≤ r(2ρJ) or, by

Lemma 7, ∥∥∥f̂ (2)
LE − f̂

(2)
J

∥∥∥
L2
P

≤ 1

β
‖f̂ (2)
LE − f̂

(2)
J ‖L2,N

≤ τ

β
√
c1
r(2ρJ) .

Together with (28), this gives∥∥∥f̂ (2)
LE − f

∗
∥∥∥
L2
P

≤
∥∥∥f̂ (2)

LE − f̂
(2)
J

∥∥∥
L2
P

+
∥∥∥f̂ (2)

J − f
∗
∥∥∥
L2
P

≤
(

1 +
1

β

)
τ
√
c1
r(2ρJ) .

Proof of point 3. of Theorem 2: It follows from Theorem 1 that for every integer J ∈ [K∗, N ], there
exists an event Ω̄(J) with probability larger than 1− 2 exp(−C7J), such that on Ω̄(J), we have∥∥∥f̂ (3)

J − f
∗
∥∥∥ ≤ ρJ ,∥∥∥f̂ (3)

J − f
∗
∥∥∥
L2
P

≤ τ

β
√
c1
r(ρJ) and R(f̂

(3)
J )−R(f∗) ≤ C4r

2(ρJ) . (30)

Now, consider the event Ω2(J) (resp. Ω̃(J)) as defined in Lemma 3 (resp. Lemma 7) and denote Ω(J) :=

Ω̄(J) ∩ Ω̃(J) ∩ Ω2(J). On Ω(J), by Lemma 4, dK(f̂
(3)
K , f∗) ≥ − 3c3√

c1
τβr2(ρK), thus, f∗ ∈ R(3)

J . Then let

K ∈ [K∗, N ]. On ∩NJ=KΩ(J), we have f∗ ∈ ∩NJ=KR
(3)
J , therefore K̂(3) ≤ K and so f̂

(3)
LE ∈ R

(3)
K . This implies

by points 1. and 2. that∥∥∥f̂ (3)
LE − f

∗
∥∥∥ ≤ 2ρK ,

∥∥∥f̂ (3)
LE − f

∗
∥∥∥
L2
P

≤
(

1 +
1

β

)
τ
√
c1
r(2ρK) , (31)

and, by definition that dK(f̂
(3)
LE , f̂

(3)
K ) ≥ −νr2(ρK). By (30),

R(f̂
(3)
LE)−R(f∗) = E[(Y − f̂ (3)

K (X) + f̂
(3)
K (X)− f̂ (3)

LE(X))2]−R(f∗)

=
∥∥∥f̂ (3)

LE − f̂
(3)
K

∥∥∥2

L2
P

+ 2P (Y − f̂ (3)
K )(f̂

(3)
K − f̂

(3)
LE) +R(f̂

(3)
K )−R(f∗)

≤ 2P (Y − f̂ (3)
K )(f̂

(3)
K − f̂

(3)
LE) + (

τ
√
c1β

+ C4)r2(ρK) .

then, the third point in Theorem 2 hold on ∩NJ=KΩ(J) if there exists at least one block Bk such that

P (Y − f̂ (3)
K )(f̂

(3)
K − f̂

(3)
LE) = (P − P̄Bk)(Y − f̂ (3)

K )(f̂
(3)
K − f̂

(3)
LE)

+ (P̄Bk − PBk)(Y − f̂ (3)
K )(f̂

(3)
K − f̂

(3)
LE)− PBk(Y − f̂ (3)

K )(f̂
(3)
LE − f̂

(3)
K ) . r2(2ρK). (32)

Since dK(f̂
(3)
LE , f̂

(3)
K ) ≥ −νr2(ρK), the last term in (32) is properly bounded on K/2 blocks Bk at least.

From (31) and assumption (16), the first term of (32) is properly bounded for every k ∈ K, that is, on
at least 3K/4 blocks Bk under the conditions of Theorem 1. Finally, the second term in (32) is properly
bounded on 3K/4 blocks by the last item of Lemma 7, which applies thanks to (31). As a consequence,
there exists at least one block k where (32) holds.
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Poincaré Probab. Statist., 42(3):273–325, 2006.
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the Russian by Klaus-Günter Stöckel and Barbara Schneider, Translation edited by Siegfried Unger and Klaus Fritzsch.

27


	Introduction
	Setting
	Learning from tests
	General Principle
	Examples

	Construction of our estimators
	Quantile of means processes and Median Of Means tests
	Main assumptions
	Complexity parameters
	The estimators
	The sparsity equation

	Main results
	Performances of the estimators
	Adaptive choice of K by Lepski's method

	Proofs
	Mendelson's small ball method (SBM)
	Control of the quadratic process via the SBM
	Control of the multiplier process via the SBM
	Proof of Lemma 2
	Proofs of Lemma 3 and Lemma 4
	Proof of Theorem 2


