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Abstract

We study conditions under which, given a dictionary F = {f1, ..., fM}
and an iid sample (Xi, Yi)

N
i=1, the empirical minimizer in span(F ) rel-

ative to the squared loss, satisfies that with high probability

R(f̃ERM ) ≤ inf
f∈span(F )

R(f) + rN (M),

where R(·) is the quadratic risk and rN (M) is of the order of M/N .
We show that if one assumes that |Y | ≤ 1 and |f(X)| ≤ 1 almost

surely for every function in the dictionary, the empirical risk mini-
mization procedure may still perform poorly, and in particular, its
performance is far from the rate M/N .

On the other hand, under mild assumptions on F (a uniform small-
ball estimates for functions in span(F )), ERM in span(F ) does achieve
the rate of M/N .

1 Introduction and main results

Let (X , µ) be a probability space, set X to be distributed according to µ
and put Y to be an unknown, target random variable.

In the learning theory setup, one observesN independent couples (Xi, Yi)
N
i=1

in X × R distributed according to the joint distribution of X and Y . The
goal is to construct a real-valued function f which is a good guess/prediction
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of Y . A standard way of measuring the prediction capability of f is via the
square risk: R(f) = E

(
Y − f(X)

)2
. The conditional expectation

R(f̂) = E
(

(Y − f̂(X))2|(Xi, Yi)
N
i=1

)
is the square risk of the function f̂ that was chosen by the procedure, using
the observations (Xi, Yi)

N
i=1.

There are many different ways in which one may construct learning pro-
cedures (see the books [9], [1], [24], [5], [10], [26] and references therein
for numerous examples), but in general, there is no canonical choice of a
prediction procedure.

The variety of learning algorithms motivated the introduction of aggre-
gation or ensemble methods, in which one combines a batch or dictionary
created by learning procedures to obtain a function with ‘better’ prediction
capabilities than individual members of the dictionary.

Aggregation procedures have been studied extensively (see, e.g. [11,
21, 7, 29, 28, 27, 12, 8, 25] and references therein), and among the more
well-known aggregation procedures are boosting (see, for example, [23]) and
bagging [5].

Here, our aim is to study the problem of linear aggregation: given a
dictionary F = {f1, . . . , fM}, one wishes to construct a procedure f̃ whose
risk is almost as small as the risk of the best element in the linear span
span(F ); namely, a procedure ensuring that with high probability

R(f̃) ≤ inf
f∈span(F )

R(f) + rN (M). (1.1)

This type of inequality is called an oracle inequality and the function f∗ for
which R(f∗) = inff∈span(F )R(f) is the oracle.

Of course, in (1.1), one is looking for the smallest possible residual term
rN (M), that holds uniformly for all choices of couples (X,Y ) and dictionar-
ies F that satisfy certain assumptions.

The linear aggregation problem has been studied in [21] in the gaussian
white noise model; in [25, 6] for the gaussian model with random design;
in [22] for the density estimation problem and in [3] in the learning theory
setup under moment conditions.

It appears that the best possible residual term rN (M) that one may
hope for is of the order of M/N . This rate is usually called the optimal
rate of linear aggregation and its optimality holds in some minimax sense,
introduced in [25].
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The procedure that will be studied in this note is empirical risk mini-
mization (ERM), performed in the span of the dictionary:

f̂ERM ∈ argmin
f∈span(F )

RN (f) where RN (f) =
1

N

N∑
i=1

(
Yi − f(Xi)

)2
.

This procedure has been studied extensively and we refer the reader to
[19] and [13] for results on ERM in the bounded or the gaussian setup.

The benchmark result for ERM performed in the span of a dictionary as
an aggregation procedure is Theorem 2.2 in [3]. To formulate it, here, and
throughout this note we will denote by F a dictionary of cardinality M and
by f∗ the oracle in span(F ) (i.e. R(f∗) = inff∈span(F )R(f)).

Theorem 1.1 There exist absolute constants c0 and c1 for which the fol-
lowing holds. Assume that E(Y − f∗(X))4 <∞ and that

sup
f∈span(F )−{0}

‖f(X)‖L∞

‖f(X)‖L2

=
√
B <∞. (1.2)

If x > 0 satisfies that 2/N ≤ 2 exp(−x) ≤ 1 and N ≥ c0B
2(BM + x), then

with probability at least 1− 2 exp(−x),

R(f̂ERM )−R(f∗) ≤ c1
√
E(Y − f∗(X))4

(
BM + x

N

)
.

It follows from Theorem 1.1 that under an L4 assumption on Y − f∗(X)
and the equivalence of the L2 and L∞ norms on the span of F , ERM achieves
the optimal rate of convergence with exponential probability.

Recall that the ψ2 norm of a random variable Z is defined by ‖Z‖ψ2
=

inf
{
c > 0 : E exp(−Z2/c2) ≤ 2

}
. Since (1.2) implies that for any f, h ∈

span(F ), ‖(f − g)(X)‖ψ2
≤
√
B ‖(f − g)(X)‖L2

, then span(F ) is a subgaus-
sian class. Applying the results of [16], one may show a similar result to
Theorem 1.1, if one assumes that ‖Y − f∗(X)‖ψ2

< ∞. However, as such
an assumption appear rather restrictive, one may wonder whether weaker
moment conditions still suffice to guarantee the optimal rate of convergence.
Theorem A and Theorem B show that this is indeed the case.

Throughout, N and M denote integers, F is a dictionary consisting of
M functions, (X,Y ) is a couple of random variables and ζ = Y − f∗(X).

Theorem A. There exist absolute constants c0 and c1 for which the follow-
ing holds. Assume that there are κ0 and β0 such that M ≤ c0β0N and

P
{
|f(X)| ≥ κ0 ‖f(X)‖L2

}
≥ β0 (1.3)
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for every f ∈ span(F ). Assume further that one of the two conditions hold:

1. ζ is independent of X and Eζ2 ≤ σ2, or

2. |ζ| ≤ σ almost surely.

Then, for every x > 0, with probability at least 1− exp(−c0β20N)− (1/x),∥∥∥f̂ERM − f∗∥∥∥2
L2

= R(f̂ERM )− min
f∈span(F )

R(f) ≤ c2σ
2Mx

N
.

Since the loss is the squared one, one has to assume that Y and functions
in span(F ) have a second moment. It follows from Theorem A, that in some
cases this is almost all that is needed to obtain an optimal rate. Indeed,
if the noise Y − f∗(X) is independent of the design X – as is the case in
any regression model with independent noise – ERM achieves the rate M/N
under Assumption (1.3). And, one obvious case in which Assumption (1.3)
may be verified is when the L2 and Lp norms are equivalent on span(F ).

A result of a similar flavour is the following:

Theorem B. There are absolute constants c0, c1 and θ0 for which the
following holds. Assume that θ80M ≤ c0N , that(

Ef4(X)
)1/4 ≤ θ0 (Ef2(X)

)1/2
(1.4)

for every f ∈ span(F ) and that
(
Eζ4

)1/4 ≤ σ.
Then, for every x > 0, with probability at least than 1−exp(−c0N/θ80)−

(1/x), ∥∥∥f̂ − f∗∥∥∥2
L2

= R(f̂)− min
f∈span(F )

R(f) ≤ c2σ
2θ20Mx

N
.

In both results, the price that has to be paid for the very weak moment
assumptions is probability estimate – but that can not be helped, and it
seems that without stronger assumptions, the exponential probability esti-
mate is not realistic.

Finally, we would like to address another related problem. Since optimal
rates of aggregation have been obtained in the learning theory framework
under the assumptions that |Y | ≤ 1 and |f(X)| ≤ 1 almost surely for every
f ∈ F , both for the Model Selection [15, 2, 18] and for convex aggregation
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[14], it is natural to study the problem of linear aggregation in this learning
theory setup and the performance of ERM under the same assumptions.

The next result shows that the behaviour of ERM as a linear aggregation
procedure in that case is very far from optimal.

Theorem C. For every 0 < η < 1 and integers N and M , there exists a
couple (X,Y ) and a dictionary F = {f1, . . . , fM} with the following prop-
erties:

1. |Y | ≤ 1 almost surely and |f(X)| ≤ 1 almost surely for every f ∈ F .

2. With probability at least η, for every κ > 0 there is some

f̂ERM ∈ argmin
f∈span(F )

1

N

N∑
i=1

(Yi − f(Xi))
2

for which
R(f̂ERM ) ≥ inf

f∈span(F )
R(f) + κ.

One should note that since Theorem C is a non-asymptotic lower bound
and the probability distribution of X may depend on N and M , the asymp-
totic result appearing in Theorem 2.1 in [3] does not apply here. What is
also surprising is that even though the model span(F ) is convex, ERM is
still a suboptimal procedure.

2 Proofs of Theorem A and Theorem B

The starting point of the proofs of Theorem A and Theorem B is the same
as in [16, 20, 17]: a decomposition of the excess loss function

Lf (x, y) = (f∗(x)− f(x))2 + 2(y − f∗(x))(f∗(x)− f(x)) (2.1)

to a sum of a quadratic term and a linear term. The idea of the two proofs
is to control the quadratic term from below using a ‘small-ball’ argument,
and the linear term from above using standard methods from empirical
processes theory. A combination of these two bounds suffices to show that
if ‖f − f∗‖L2 ≥ r∗N for an appropriate choice of r∗N , then the quadratic term
dominates the linear one, and in particular, for such functions PNLf > 0.
Since the empirical excess loss of the empirical minimizer is non-positive, it
follows that ‖f̂ − f∗‖L2 < r∗N .
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Lemma 2.1 There exist absolute constants c0, c1, c2, c3 and c4 for which the
following holds. If there are κ0 and β0 for which

P
(
|f(X)| ≥ κ0 ‖f(X)‖L2

)
≥ β0

for every f ∈ span(F ), and if M ≤ c0β
2
0N , then with probability at least

1− c1 exp(−c2β20N), for every f ∈ span(F ),∣∣{i ∈ {1, . . . , N} : |f(Xi)| ≥ κ0 ‖f(X)‖L2
}
∣∣ ≥ c3β0N.

Proof. Let x > 0 and set

H = sup
f∈span(F )

∣∣∣∣∣ 1

N

N∑
i=1

1{|f(Xi)|≥κ0‖f(X)‖L2

}(Xi)− P
({
|f(X)| ≥ κ0 ‖f(X)‖L2

})∣∣∣∣∣ .
Set W = (f1(X), ..., fM (X)), and thus the dictionary F and the random
variable X define a random vector on RM . Each f ∈ span(F ) is associated
with t ∈ RM , since

∑M
i=1 tjfj(X) =

〈
t,W

〉
. Set ‖t‖L2 = ‖

∑M
j=1 tjfj‖L2 , and

observe that N independent copies of X, X1, ..., XN , endow N independent
copies of W . Thus,

H = sup
t∈RM

∣∣∣∣∣ 1

N

N∑
i=1

1{
|
〈
t,·
〉
|≥κ0‖t‖L2

}(Wi)− P
({
|
〈
t, ·
〉
| ≥ κ0 ‖t‖L2

})∣∣∣∣∣ .
By the bounded difference inequality (see, e.g. Theorem 6.2 in [4]), with

probability at least 1− exp(−x2/2),

H ≤ EH + c0

√
x

N
, (2.2)

and a standard argument based on the VC-dimension of halfspaces in RM
shows that

EH(X1, . . . , XN ) ≤ c1

√
M

N
.

Therefore, if c1
√
M/N ≤ β0/4 and c0

√
x/N = β0/4, then with probability

at least 1− c0 exp(−c1β20N), H ≤ β0/2, and since

inf
f∈span(F )

P
({
|f(X)| ≥ κ0 ‖f(X)‖L2

})
≥ β0

then on the same event

inf
f∈span(F )

1

N

N∑
i=1

1{|f(Xi)|≥κ0‖f(X)‖L2

}(Xi) ≥
β0
2
.
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Lemma 2.2 Let ζ = Y − f∗(X) and assume that either one of following
two conditions hold:

1. ζ is independent of X and Eζ2 ≤ σ2, or

2. |ζ| ≤ σ almost surely.

Then, for every x > 0, with probability larger than 1− (1/x),∣∣∣∣∣ 1

N

N∑
i=1

(Yi − f∗(Xi)) (f∗(Xi)− f(Xi))

∣∣∣∣∣ ≤ c1σ
√
Mx

N
‖f∗(X)− f(X)‖L2

for every f ∈ span(F ).

Proof. Recall that f∗(X) is the best approximation of Y in span(F ) with
respect to the L2 norm; hence, E(Y − f∗(X))(f∗(X)− f(X)) = 0 for every
f ∈ span(F ).

Let ε1, . . . , εN be independent Rademacher variables that are also inde-
pendent of the couples (Xi, Yi)

N
i=1. A standard symmetrization argument

shows that

E sup
f∈span(F )

∣∣∣∣∣ 1

N

N∑
i=1

(Yi − f∗(Xi))
f∗(Xi)− f(Xi)

‖f∗(X)− f(X)‖L2

∣∣∣∣∣
2

≤ c1E sup
f∈span(F )

∣∣∣∣∣ 1

N

N∑
i=1

εi (Yi − f∗(Xi))
f∗(Xi)− f(Xi)

‖f∗(X)− f(X)‖L2

∣∣∣∣∣
2

for a suitable absolute constant c1.
Let T = {t ∈ RM : ‖

∑M
j=1 tjfj‖L2 = 1}. If ζ1, ..., ζN are independent

copies of ζ, then

E sup
f∈span(F )

∣∣∣∣∣ 1

N

N∑
i=1

εi (Yi − f∗(Xi))
f∗(Xi)− f(Xi)

‖f∗(X)− f(X)‖L2

∣∣∣∣∣
2

= E sup
t∈T

∣∣∣∣∣∣ 1

N

N∑
i=1

εiζi

 M∑
j=1

tjfj(Xi)

∣∣∣∣∣∣
2

= (∗).

Recall that W = (f1(X), ..., fM (X)), set Σ to be the covariance matrix
associate with W and let Σ−1/2 be the pseudo-inverse of the squared-root
of Σ. Set Z = Σ−1/2W and observe that Z is an isotropic random vector
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on its image and that E ‖Z‖2`M2 ≤ M . Hence, if Z1, ..., ZN are independent

copies of Z,

(∗) = E sup
‖t‖

`M2
=1

∣∣∣∣∣〈t, 1

N

N∑
i=1

εiζiZi
〉∣∣∣∣∣

2

= E

∥∥∥∥∥ 1

N

N∑
i=1

εiζiZi

∥∥∥∥∥
2

`M2

= EEε1,...,εN

∥∥∥∥∥ 1

N

N∑
i=1

εiζiZi

∥∥∥∥∥
2

`M2

= E

(
1

N2

N∑
i=1

ζ2i ‖Zi‖
2
`M2

)
=

Eζ2 ‖Z‖2`M2
N

≤
σ2E ‖Z‖2`M2

N
,

implying that

E sup
f∈span(F )

∣∣∣∣∣ 1

N

N∑
i=1

(Yi − f∗(Xi))
f∗(Xi)− f(Xi)

‖f∗(X)− f(X)‖L2

∣∣∣∣∣
2

≤ σ2M

N
.

The claim follows from Markov’s inequality.

Proof of Theorem A: Combining Lemma 2.1 and Lemma 2.2, it is evident
that with probability at least 1 − exp(−c0N) − (1/x), if f ∈ span(F ) and
‖f(X)− f∗(X)‖L2

≥ c0σ2Mx/n for a sufficiently large constant c0, then

1

N

N∑
i=1

(f∗(Xi)− f(Xi))
2

≥ κ20 ‖f − f∗‖
2
L2
|{i : |f∗(Xi)− f(Xi)| ≥ κ0 ‖f − f∗‖L2

}|/N

≥ c3β0κ20 ‖f − f∗‖
2
L2
> 2c1σ

√
Mx

N
‖f∗ − f‖L2

>
2

N

N∑
i=1

(Yi − f∗(Xi)) (f∗(Xi)− f(Xi)) .

Hence, on the same event, if f ∈ span(F ) and ‖f − f∗‖L2
≥ c0σ2Mx/n then

PNLf > 0. Since PNLf̂ERM ≤ 0, then

∥∥∥f̂ERM − f∗∥∥∥2
L2

< c0
σ2Mx

n
.
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Proof of Theorem B: The proof of Theorem B is almost identical to the
proof of Theorem A, and we will only outline the minor differences.

The small-ball property (1.3) follows from the Paley-Zygmund inequal-
ity: if Z is a real valued random variable then

P
(
|Z| ≥ κ0

(
EZ2

)1/2) ≥ (1− κ0)2
(
EZ2

)2
E|Z|4

.

In particular, if
(
E|Z|4

)1/4 ≤ θ0 (E|Z|2)1/2 then

P
(
|Z| ≥ (1/2)

(
EZ2

)1/2) ≥ (4θ40)−1
and thus the assertion of Lemma 2.1 holds for κ0 = 1/2 and β0 = (4θ40)−1.

As for the analogous version of Lemma 2.2, the one change in its proof
is that

Eζ2 ‖Z‖2`M2 ≤
(
Eζ4

)1/2 (E ‖Z‖4`M2 )1/2
and

E ‖Z‖4`M2 = E

 M∑
j=1

〈
ej , Z

〉22

= E
M∑

p,q=1

〈
ep, Z

〉2〈
eq, Z

〉2
≤

M∑
p,q=1

(
E
〈
ep, Z

〉4E〈eq, Z〉4)1/2 ≤ θ40 M∑
p,q=1

E
〈
ep, Z

〉2E〈eq, Z〉2 = θ40M
2.

3 Proof of Theorem C

Fix Y = 1 as the target and let X = ∪Mi=0XM be some partition of X . Define
the distribution X as follows: fix k ≥M to be chosen later; for 1 ≤ j ≤M ,
set P (X ∈ Xj) = 1

k and put P (X ∈ X0) = 1− M
k .

Finally, set

fj(x) =

{
1 if x ∈ Xj
0 otherwise

and put F = {f1, ..., fM}.
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Note that |Y | ≤ 1 almost surely and that for every f ∈ F , |f(X)| ≤ 1
almost surely. It is straightforward to verify that the oracle in span(F ) is
f∗ =

∑M
j=1 fj(·), and thus

inf
f∈span(F )

R(f) = R(f∗) = E (Y − f∗(X))2 = P (X ∈ X0) = 1− M

k
.

Let X1, . . . , XN be independent copies of X. Given 0 < η < 1 and k large
enough (for instance k &η N/ logM would suffice), there exists an event Ω0

of probability at least η on which the following holds: if X1, ..., XN ∈ Ω0,
then there exists some j0 ∈ {1, . . . ,M} and Xi /∈ Xj0 for every 1 ≤ i ≤ N
(this is a slight modification of the coupon-collector problem).

For every X1, ..., XN ∈ Ω0, let Nj = |{i ∈ {1, . . . , N} : Xi ∈ Xj}|. Hence,

if t ∈ RM then the empirical risk of
∑M

i=1 tjfj is

RN

 M∑
j=1

tjfj

 =
1

N

N∑
i=1

Yi − M∑
j=1

tjfj(Xi)

2

=
N0

N
+

M∑
j=1

(
Nj

N
(1− tj)2

)
.

In particular, for κ > 0 define t̂(κ) ∈ RM by setting

t̂(κ)j =

{
1 if there exists i ∈ {1, . . . , N} s.t. Xi ∈ Xj
κ if there is no i ∈ {1, . . . , N} s.t. Xi ∈ Xj .

Hence, t̂(κ) ∈ argmint∈RM RN (
∑M

j=1 tjfj), and ĥκ =
∑M

j=1 t̂(κ)jfj mini-
mizes the empirical risk in span(F ). Thus, if (X1, ..., XN ) ∈ Ω0 and Xi 6∈ Xj0
for every 1 ≤ i ≤ N , then

R(ĥκ) = E
(
Y − ĥκ(X)

)2
≥ (κ− 1)2P (X ∈ Xj0) =

(κ− 1)2

k
.

The result follows by selecting κ large enough.
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