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Abstract

We study the performance of Empirical Risk Minimization in noisy
phase retrieval problems, indexed by subsets of Rn and relative to

subgaussian sampling; that is, when the given data is yi =
〈
ai, x0

〉2
+wi

for a subgaussian random vector a, independent noise w and a fixed
but unknown x0 that belongs to a given subset of Rn.

We show that ERM produces x̂ whose Euclidean distance to either
x0 or −x0 depends on the gaussian mean-width of the indexing set and
on the signal-to-noise ratio of the problem. The bound coincides with
the one for linear regression when ‖x0‖2 is of the order of a constant.
In addition, we obtain a minimax lower bound for the problem and
identify sets for which ERM is a minimax procedure. As examples, we
study the class of d-sparse vectors in Rn and the unit ball in `n1 .

1 Introduction

Phase retrieval has attracted much attention recently, as it has natural ap-
plications in areas that include X-ray crystallography, transmission electron
microscopy and coherent diffractive imaging (see, for example, the discussion
in [2] and references therein).

In phase retrieval, one attempts to identify a vector x0 that belongs to
an arbitrary set T ⊂ Rn using noisy, quadratic measurements of x0. The
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given data is a sample of cardinality N , (ai, yi)
N
i=1, for vectors ai ∈ Rn and

yi = |
〈
ai, x0

〉
|2 + wi, (1.1)

for a noise vector (wi)
N
i=1.

Our aim is to investigate phase retrieval from a theoretical point of view,
relative to a well behaved, random sampling method. To formulate the
problem explicitly, let µ be an isotropic, L-subgaussian measure on Rn and
set a to be a random vector distributed according to µ. Thus, for every
x ∈ Rn, E

〈
x, a
〉2

= ‖x‖22 (isotropicity) and for every u ≥ 1, Pr(|
〈
x, a
〉
| ≥

Lu‖
〈
x, a
〉
‖L2) ≤ 2 exp(−u2/2) (L-subgaussian).

Given a set T ⊂ Rn and a fixed, but unknown x0 ∈ T , yi are the random
noisy measurements of x0: for a sample size N , (ai)

N
i=1 are independent

copies of a and (wi)
N
i=1 are independent copies of a mean-zero variable w

that are also independent of (ai)
N
i=1.

Clearly, due to the nature of the given measurements, x0 and −x0 are
indistinguishable, and the best that one can hope for is a procedure that
produces x̂ ∈ T that is close to one of the two points.

The goal here is to find such a procedure and identify the way in which
the distance between x̂ and either x0 or −x0 depends on the structure of T ,
the measure µ and the noise.

The procedure studied here is empirical risk minimization (ERM), which
produces x̂ that minimizes the empirical risk in T :

PN`x =
1

N

N∑
i=1

(〈
ai, x

〉2 − yi)2.
The loss is the standard squared loss functional, which, in this case,satisfies

`x(a, y) = (fx(a)−y)2 = (
〈
x, a
〉2−〈x0, a〉2−w)2 = (

〈
x−x0, a

〉〈
x+x0, a

〉
−w)2.

Comparing the empirical and actual structures on T is a vital component
in the analysis of ERM. In phase recovery, the centered empirical process
that is at the heart of this approach is defined for any x ∈ T by,

PN (`x−`x0) =
1

N

N∑
i=1

〈
x−x0, ai

〉2〈
x+x0, ai

〉2− 2

N

N∑
i=1

wi
〈
x−x0, ai

〉〈
x+x0, ai

〉
.

Both the first and second components are difficult to handle directly, even
when the underlying measure is subgaussian, because of the powers involved
(an effective power of 4 in the first component and of 3 in the second one).
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Therefore, rather than trying to employ the concentration of empirical
means around the actual ones, which might not be sufficiently strong in this
case, one uses a combination of a small-ball estimate for the ‘high order’ part
of the process, and a more standard deviation argument for the low-order
component (see Section 3 and the formulation of Theorem A and Theorem
B).

We assume that linear forms satisfy a certain small-ball estimate, and in
particular, do not assign too much weight to small neighbourhoods of 0.

Assumption 1.1 There is a constant κ0 > 0 satisfying that for every s, t ∈
Rn,

E|
〈
a, s
〉〈
a, t
〉
| ≥ κ0‖s‖2‖t‖2.

Assumption 1.1 is not very restrictive and holds for many natural choices
of random vectors in Rn, like the gaussian measure or any isotropic log-
concave measure on Rn (see, for example, the discussion in [2]).

It is not surprising that the error rate of ERM depends on the structure
of T , and because of the subgaussian nature of the random measurement
vector a, the natural parameter that captures the complexity of T is the
gaussian mean-width associated with normalizations of T .

Definition 1.1 Let G = (g1, ..., gn) be the standard gaussian vector in Rn.
For T ⊂ Rn, set

`(T ) = E sup
t∈T

∣∣∣ n∑
i=1

giti

∣∣∣.
The normalized sets in question are

T−,R =

{
t− s
‖t− s‖2

: t, s ∈ T, R < ‖t− s‖2‖t+ s‖2
}
,

T+,R =

{
t+ s

‖t+ s‖2
: t, s ∈ T, R < ‖t− s‖2‖t+ s‖2

}
,

which have been used in [2], or their ‘local’ versions,

T−,R(x0) =

{
t− x0
‖t− x0‖2

: t ∈ T, R < ‖t− x0‖2‖t+ x0‖2
}
,

T+,R(x0) =

{
t+ x0
‖t+ x0‖2

: t ∈ T, R < ‖t− x0‖2‖t+ x0‖2
}
.

The sets in question play a central role in the exclusion argument that is
used in the analysis of ERM. Setting Lx = `x− `x0 , the excess loss function
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associated with ` and x ∈ T , it is evident that PNLx̂ ≤ 0 (because Lx0 = 0
is a possible competitor). If one can find an event of large probability and
R > 0 for which PNLx > 0 if ‖x− x0‖2‖x+ x0‖2 ≥ R, then on that event,
‖x̂− x0‖2‖x̂+ x0‖2 ≤ R, which is the estimate one is looking for.

The normalization allows one to study ‘relative fluctuations’ of PNLx
– in particular, the way these fluctuations scale with ‖x − x0‖2‖x + x0‖2.
This is achieved by considering empirical means of products of functions〈
u, ·
〉〈
v, ·
〉
, for u ∈ T+,R(x0) and v ∈ T−,R(x0).

The obvious problem with the ‘local’ sets T+,R(x0) and T−,R(x0) is that
x0 is not known. As a first attempt of bypassing this problem, one may use
the ‘global’ sets T+,R and T−,R instead, as had been done in [2].

Unfortunately, this global approach is not completely satisfactory. Roughly
put, there are two types of subsets of Rn one is interested in, and that appear
in applications. The first type consists of sets for which the ‘local complex-
ity’ is essentially the same everywhere, and the sets T+,R, T−,R are not very
different from the seemingly smaller T+,R(x0), T−,R(x0), regardless of x0.

A typical example of such a set is d-sparse vectors – a set consisting
of all the vectors in Rn that are supported on at most d-coordinates. For
every x0 ∈ T and R > 0, the sets T+,R(x0), T−,R(x0), and T+,R, T−,R are
contained in the subset of the sphere consisting of 2d-sparse vectors, which
is a relatively small set.

For this kind of set, the ‘global’ approach, using T+,R and T−,R, suffices,
and the choice of the target x0 does not really influence the rate in which
‖x̂− x0‖2 ‖x̂+ x0‖2 decays to 0 with N .

In contrast, sets of the second type one would like to study, have vastly
changing local complexity, with the typical example being a convex, centrally
symmetric set (i.e. if x ∈ T then −x ∈ T ).

Consider, for example, the case T = Bn
1 , the unit ball in `n1 . It is not

surprising that for small R, the sets T+,R(0) and T−,R(0) are very different
from T−,R(e1) and T+,R(e1): the ones associated with the centre 0 are the
entire sphere, while for e1 = (1, 0, ...., 0), T+,R(e1) and T−,R(e1) consist of
vectors that are well approximated by sparse vectors (whose support depend
on R), and thus are rather small subsets of the sphere .

The situation that one encounters in Bn
1 is generic for convex centrally-

symmetric sets. The sets become locally ‘richer’ the closer the centre is to
0, and at 0, for small enough R, T+,R(0) and T−,R(0) are the entire sphere.
Since the sets T+,R and T−,R are blind to the location of the centre, and
are, in fact, the union over all possible centres of the local sets, they are
simply too big to be used in the analysis of ERM in convex sets. A correct
estimate on the performance of ERM for such sets requires a more delicate
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local analysis and additional information on ‖x0‖2. Moreover, the rate of
convergence of ERM truly depends on ‖x0‖2 in the phase recovery problem
via the signal-to-noise ratio ‖x0‖2 /σ.

We begin by formulating our results using the ‘global’ sets T+,R and
T−,R. Let T+ = T+,0 and T− = T−,0, set

ER = max{`(T+,R), `(T−,R)}, E = max{`(T+), `(T−)}

and observe that as nonempty subsets of the sphere `(T−,r), `(T+,r) ≥ E|g| =√
2/π.
The first result presented here is that the error rate of ERM for the phase

retrieval problem in T depends on the fixed points

r2(γ) = inf
{
r > 0 : Er ≤ γ

√
Nr
}

and
r0(Q) = inf

{
r > 0 : Er ≤ Q

√
N
}
,

for constants γ and Q that will be specified later.
Recall that the ψ2-norm of a random variable w is defined by ‖w‖ψ2 =

inf{c > 0 : E exp(w2/c2) ≤ 2} and set σ = ‖w‖ψ2 .

Theorem A. For every L > 1, κ0 > 0 and β > 1, there exist constants
c0, c1 and c2 that depend only on L, κ0 and β for which the following holds.
Let a and w be as above and assume that w has a finite ψ2-norm. If ` is the
squared loss and x̂ is produced by ERM, then with probability at least

1− 2 exp(−c0 min{`2(T+,r∗2 ), `2(T−,r∗2 )})− 2N−β+1,

‖x̂− x0‖2‖x̂+ x0‖2 ≤ r∗2 := max{r0(c1), r2(c2/σ
√

logN)}.

When ‖w‖∞ <∞ the term σ
√

logN may be replaced by ‖w‖∞.

The upper estimate of max{r0, r2} in Theorem A represents two ranges
of noise. It follows from the definition of the fixed points that r0 is dominant
if σ ≤ r0/

√
logN . As explained in [7] for linear regression, r0 captures the

difficulty of recovery in the noise free case, when the only reason for errors
is that there are several far-away functions in the class that coincide with
the target on the noiseless data. When the noise level σ surpasses that
threshold, errors occur because of the interaction class members have with
the noise, and the dominating term becomes r2.
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Of course, there are cases in which r0 = 0 for N sufficiently large. This
is precisely when exact recovery is possible in the noise-free environment.
And, in such cases, the error of ERM tends to zero with σ.

The behavior of ERM in the noise-free case is one of the distinguishing
features of sets with well behaved ‘global complexity’ – because E is not too
large. Since ER ≤ E for every R > 0, it follows that when N & E2, r0 = 0
and that r2(γ) ≤ E/(γ

√
N). Therefore, on the event from Theorem A,

‖x̂− x0‖2‖x̂+ x0‖2 . σ
E√
N

√
logN.

This estimate suffices for many applications. For example, when T is the
set of d-sparse vectors, one may show (see, e.g. [2]) that

E .
√
d log(en/d).

Hence, by Theorem A, when N & d log
(
en/d

)
, with high probability,

‖x̂− x0‖2‖x̂+ x0‖2 . σ

√
d log(en/d)

N

√
logN.

The proof of this observation regarding d-sparse vectors, and that this es-
timate is sharp in the minimax sense (up to the logarithmic term) may be
found in Section 6.

One should note that Theorem A improves the main result from [2] in
three ways. First of all, the error rate (the estimate on ‖x̂− x0‖2‖x̂+ x0‖2)
established in Theorem A is ∼ E/

√
N (up to logarithmic factors), whereas

in [2], it scaled like c/N1/4 for very large values of N . Second, the error rate
scales linearly in the noise level σ in Theorem A. On the other hand, the
rate obtained in [2] does not decay with σ for σ ≤ 1. Finally, the probability
estimate has been improved, though it is still likely to be suboptimal.

Although the main motivation for [2] was dealing with phase retrieval for
sparse classes, and for which Theorem A is well suited, we next turn to the
question of more general classes, the most important example of which is a
convex, centrally-symmetric class. For such a class, the global localization
is simply too big to yield a good bound.

Definition 1.2 Let

r∗N (Q) = inf
{
r > 0 : `(T ∩ rBn

2 ) ≤ Qr
√
N
}
,

s∗N (η) = inf
{
s > 0 : `(T ∩ sBn

2 ) ≤ ηs2
√
N
}
,
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and
v∗N (ζ) = inf

{
v > 0 : `(T ∩ vBn

2 ) ≤ ζv3
√
N
}
,

The parameters r∗N and s∗N have been used in [7] to obtain a sharp esti-
mate on the performance of ERM for linear regression in an arbitrary convex
set, and relative to L-subgaussian measurements. This result is formulated
below in a restricted context, analogous to the phase retrieval setup: a linear
model z =

〈
a, x0

〉
+w, for an isotropic, L-subgaussian vector a, independent

noise w and x0 ∈ T .
Let x̂ be the output of ERM using the data (ai, zi)

N
i=1 and set ‖w‖ψ2 = σ.

Theorem 1.3 For every L ≥ 1 there exist constants c1, c2, c3 and c4 that
depend only on L for which the following holds. Let T ⊂ Rd be a convex set,
put η = c1/σ and set Q = c2.

1. If σ ≥ c3r∗N (Q) then with probability at least 1−4 exp(−c4Nη2(s∗N (η))2),

‖x− x0‖2 ≤ s∗N (η).

2. If σ ≤ c3r∗N (Q) then with probability at least 1− 4 exp(−c4NQ2),

‖x− x0‖2 ≤ r∗N (Q).

Our main result is a phase retrieval version of Theorem 1.3.

Theorem B. For every L ≥ 1, κ0 > 0 and β there exist constants c1, c2, c3,
c4, c5 and Q that depend only on L and κ0 and β for which the following
holds. Let T ⊂ Rd be a convex, centrally-symmetric set, and let a and
w be as in Theorem A. Assume that (σ/‖x0‖2) ≥ c0r

∗
N (Q)/

√
logN , set

η = c1‖x0‖2/(σ
√

logN) and let ζ = c1/(σ
√

logN).

1. If ‖x0‖2 ≥ v∗N (c2), then with probability at least 1−2 exp(−c3Nη2(s∗N (η))2)−
2N−β+1,

min{‖x− x0‖2, ‖x+ x0‖2} ≤ c4s∗N (η).

2. If ‖x0‖2 ≤ v∗N (c2) then with probability at least 1−2 exp(−c3Nζ2(v∗N (ζ))2)−
2N−β+1,

max{‖x− x0‖2, ‖x+ x0‖2} ≤ c4v∗N (ζ).

If (σ/‖x0‖2) ≥ c0r
∗
N (Q)/

√
logN the same assertion as in 1. and 2. holds,

with an upper bound of r∗N (Q) replacing s∗N (η) and v∗N (ζ).
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Theorem B follows from Theorem A and a more transparent description
of the localized sets T−,R(x0) and T+,R(x0) (see Lemma 4.1).

To put Theorem B in some perspective, observe that v∗N tends to zero.
Indeed, since `(T ∩ rBn

2 ) ≤ `(T ), it follows that v∗N (ζ) ≤ (`(T )/
√
Nζ)1/3.

Hence, for the choice of ζ ∼ (σ
√

logN)−1 as in Theorem B,

v∗N ≤

(
σ`(T )

√
logN

N

)1/3

,

which tends to zero when σ → 0 and when N → ∞. Therefore, if x0 6= 0,
the first part of Theorem B describes the ‘long term’ behaviour of ERM.

Also, and using the same argument,

r∗N (Q) ≤ `(T )

Q
√
N
.

Thus, for every σ > 0 the problem becomes ‘high noise’ in the sense that the
condition (σ/‖x0‖2) ≥ c0rN (Q)/

√
logN is satisfied when N is large enough.

In the typical situation, which is both ‘high noise’ and ‘large ‖x0‖2’, the
error rate depends on η = c1‖x0‖2/σ

√
logN . We believe that the 1/

√
logN

factor is an artifact of the proof, but the other term, ‖x0‖2/σ is the signal-
to-noise ratio, and is rather natural.

Although Theorem A and Theorem B clearly improve the results from
[2], it is natural to ask whether these are optimal in a more general sense.
The final result presented here is that Theorem B is close to being optimal in
the minimax sense. The formulation and proof of the minimax lower bound
is presented in Section 5.

Finally, we end the article with two examples of classes that are of inter-
est in phase retrieval: d-sparse vectors and the unit ball in `n1 . The first is
a class with a fixed ‘local complexity’, and the second has a growing ‘local
complexity’.

2 Preliminaries

Throughout this article, absolute constants are denoted by C, c, c1, ... etc.
Their value may change from line to line. The fact that there are absolute
constants c, C for which ca ≤ b ≤ Ca is denoted by a ∼ b; a . b means
that a ≤ cb, while a ∼L b means that the constants depend only on the
parameter L.
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For 1 ≤ p ≤ ∞, let ‖ · ‖p be the `np norm endowed on Rn, and for a
function f (or a random variable X) on a probability space, set ‖f‖Lp to be
its Lp norm.

Other norms that play a significant role here are the Orlicz norms. For
basic facts on these norms we refer the reader to [9, 15].

Recall that for α ≥ 1,

‖f‖ψα = inf{c > 0 : E exp(|f |α/cα) ≤ 2},

and it is straightforward to extend the definition for 0 < α < 1.
Orlicz norms measure the rate of decay of a function. One may verify

that ‖f‖ψα ∼ supp≥1 ‖f‖Lp/p1/α. Moreover, for t ≥ 1, Pr(|f | ≥ t) ≤
2 exp(−ctα/‖f‖αψα), and ‖f‖ψα is equivalent to the smallest constant κ for
which Pr(|f | ≥ t) ≤ 2 exp(−tα/κα) for every t ≥ 1.

Definition 2.1 A random variable is L-subgaussian if it has a bounded ψ2

norm and ‖X‖ψ2 ≤ L‖X‖L2.

Observe that for L-subgaussian random variables, all the Lp norms are equiv-
alent and their tails exhibits a faster decay than the corresponding gaussian.
Indeed, if X is L-subgaussian,

‖X‖Lp .
√
p‖X‖ψ2 . L

√
p‖X‖L2 ,

and for every t ≥ 1,

Pr(|X| > t) ≤ 2 exp(−ct2/‖X‖2ψ2
) ≤ 2 exp(−ct2/(L2‖X‖2L2

))

for a suitable absolute constant c.
It is standard to verify that for every f, g, ‖fg‖ψ1 . ‖f‖ψ2‖g‖ψ2 , and

that if X1, ..., XN are independent copies of X and 1 ≤ α ≤ 2, then

‖ max
1≤i≤N

Xi‖ψα . ‖X‖ψα log1/αN. (2.1)

An additional feature of ψα random variables is concentration, namely
that if (Xi)

N
i=1 are independent copies of a ψα random variable X, then

N−1
∑N

i=1Xi concentrates around EX. One example of such a concentration
result is the following Bernstein-type inequality (see, e.g., [15]).

Theorem 2.2 There exists an absolute constant c0 for which the following
holds. If X1, ..., XN are independent copies of a ψ1 random variable X, then
for every t > 0,

Pr

(∣∣∣∣∣ 1

N

N∑
i=1

Xi − EX

∣∣∣∣∣ > t‖X‖ψ1

)
≤ 2 exp(−c0N min{t2, t}).
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One important example of a probability space considered here is the dis-
crete space Ω = {1, ..., N}, endowed with the uniform probability measure.
Functions on Ω can be viewed as vectors in RN and the corresponding Lp
and ψα norms are denoted by ‖ · ‖LNp and ‖ · ‖ψNα .

A significant part of the proofs of Theorem A has to do with the be-
haviour of a monotone non-increasing rearrangement of vectors. Given
v ∈ RN , let (v∗i )

N
i=1 be a non-increasing rearrangement of (|vi|)Ni=1. It turns

out that the ψNα norm captures information on the coordinates of (v∗i )
N
i=1.

Lemma 2.3 For every 1 ≤ α ≤ 2 there exist constants c1 and c2 that depend
only on α for which the following holds. For every v ∈ RN ,

c1 sup
i≤N

v∗i
log1/α(eN/i)

≤ ‖v‖ψNα ≤ c2 sup
i≤N

v∗i
log1/α(eN/i)

.

Proof. We will prove the claim only for α = 2 as the other cases follow an
identical path.

Let v ∈ RN and denote by Pr the uniform probability measure on Ω =
{1, . . . , N}. By the tail characterization of the ψ2 norm,

N−1|{j : |vj | > t}| = Pr(|v| > t) ≤ 2 exp(−ct2/‖v‖2
ψN2

).

Hence, for ti = c−1/2‖v‖ψN2
√

log(eN/i), |{j : |vj | > ti}| ≤ 2i/e ≤ i, and for
every 1 ≤ i ≤ N , v∗i ≤ ti. Therefore,

sup
i≤N

v∗i√
log(eN/i)

≤ c−1/2‖v‖ψN2 ,

as claimed.
In the reverse direction, consider

B =
{
β > 0 : ∀ 1 ≤ i ≤ N, ‖v‖ψN2 ≥ βv

∗
i /
√

log(eN/i)
}
.

It is enough to show that B is bounded by a constant that is independent of
v. To that end, fix β ∈ B and without loss of generality, assume that β > 2.
Set B = supi≤N βv

∗
i /
√

log(eN/i) and since β ∈ B, ‖v‖ψN2 ≥ B.

Also, since 1/β2 < 1,

N∑
i=1

(
1

i

)1/β2

≤ 1 +

∫ N

1

(
1

x

)1/β2

dx ≤ N1−1/β2

1− 1/β2
.
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Therefore,

N∑
i=1

exp(v2i /B
2) =

N∑
i=1

exp((v∗i )
2/B2) ≤

N∑
i=1

exp(β−2 log(eN/i))

≤
N∑
i=1

(
eN

i

)1/β2

≤ (eN)1/β
2 · N

1−1/β2

1− 1/β2
≤ Ne1/β

2

1− 1/β2
< 2N,

provided that β ≥ c1. Thus, if β ≥ c1, ‖v‖ψN2 < B which is a contradiction,
showing that B is bounded by c1.

2.1 Empirical and Subgaussian processes

The sampling method used here is isotropic and L-subgaussian, meaning
that the vectors (ai)

N
i=1 are independent and distributed according to a prob-

ability measure µ on Rn that is both isotropic and L-subgaussian [15]:

Definition 2.4 Let µ be a probability measure on Rn and let a be distributed
according to µ. The measure µ is isotropic if for every t ∈ Rn, E

〈
a, t
〉2

=
‖t‖22. It is L-subgaussian if for every t ∈ Rn and every u ≥ 1, Pr(|

〈
a, t
〉
| ≥

Lu‖
〈
t, a
〉
‖2) ≤ 2 exp(−u2/2).

Given T ⊂ Rn, let dT = supt∈T ‖t‖2 and put k∗(T ) = (`(T )/dT )2. The
latter appears naturally in the context of Dvoretzky type theorems, and in
particular, in Milman’s proof of Dvoretzky’s Theorem (see, e.g., [11]).

Theorem 2.5 [10] For every L ≥ 1 there exist constants c1 and c2 that
depend only on L and for which the following holds. For every u ≥ c1,
with probability at least 1 − 2 exp(−c2u2k∗(T )), for every t ∈ T and every
I ⊂ {1, ..., N},(∑

i∈I

〈
t, ai

〉2)1/2

≤ Lu3
(
`(T ) + dT

√
|I| log(eN/|I|)

)
.

For every integer N , let jT be the largest integer j in {1, ..., N} for which

`(T ) ≥ dT
√
j log(eN/j).

It follows from Theorem 2.5 that if t ∈ T and |I| ≤ jT ,

(
∑
i∈I

〈
t, ai

〉2
)1/2 .L,u `(T ),
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and if |I| ≥ jT ,

(
∑
i∈I

〈
t, ai

〉2
)1/2 .L,u dT

√
|I| log(eN/|I|).

Therefore, if v = (
〈
t, ai

〉
)Ni=1 and (v∗i )

N
i=1 is a monotone non-increasing rear-

rangement of (|vi|)Ni=1, then

v∗i ≤

1

i

i∑
j=1

(v∗j )
2

1/2

.L,u


`(T )√
i

if i ≤ jT

dT
√

log(eN/i) otherwise.

(2.2)

This observation will be used extensively in what follows.
The next fact deals with product processes.

Theorem 2.6 [10] There exist absolute constants c0, c1 and c2 for which
the following holds. If T1, T2 ⊂ Rn, 1 ≤ 2j ≤ N and u ≥ c0, then with
probability at least 1− 2 exp(−c1u22j),

sup
t∈T1, s∈T2

∣∣∣∣∣
N∑
i=1

〈
ai, t

〉〈
ai, s

〉
− E

〈
a, t
〉〈
a, s
〉∣∣∣∣∣

≤c2L2u2
(
`(T1)`(T2) + u

√
N
(
`(T1)d(T2) + `(T2)d(T1) + 2j/2d(T1)d(T2)

))
and

sup
t∈T1, s∈T2

∣∣∣∣∣
N∑
i=1

|
〈
ai, t

〉〈
ai, s

〉
| − E|

〈
a, t
〉〈
a, s
〉
|

∣∣∣∣∣
≤c2L2u2

(
`(T1)`(T2) + u

√
N
(
`(T1)d(T2) + `(T2)d(T1) + 2j/2d(T1)d(T2)

))
.

Remark 2.7 Let (εi)
N
i=1 be independent, symmetric, {−1, 1}-valued random

variables. It follows from the results in [10] that with the same probability
estimate in Theorem 2.6 and relative to the product measure (ε⊗X)N ,

sup
t∈T1, s∈T2

∣∣∣∣∣
N∑
i=1

εi
〈
ai, t

〉〈
ai, s

〉∣∣∣∣∣
.L2u2

(
`(T1)`(T2) + u

√
N
(
`(T1)d(T2) + `(T2)d(T1) + 2j/2d(T1)d(T2)

))
.
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Assume that (k∗(T1))
1/2 = `(T1)/d(T1) ≥ `(T2)/d(T2). Setting 2j/2 =

`(T1)/d(T1), Theorem 2.6 and Remark 2.7 yield that with probability at
least 1− 2 exp(−c1u2k∗(T1)),

sup
t∈T1, s∈T2

∣∣∣∣∣
N∑
i=1

〈
ai, t

〉〈
ai, s

〉
− E

〈
a, t
〉〈
a, s
〉∣∣∣∣∣ . L2u2`(T1)

(
`(T2) + u

√
Nd(T2)

)
,

sup
t∈T1, s∈T2

∣∣∣∣∣
N∑
i=1

|
〈
ai, t

〉〈
ai, s

〉
| − E|

〈
a, t
〉〈
a, s
〉
|

∣∣∣∣∣ . L2u2`(T1)
(
`(T2) + u

√
Nd(T2)

)
and

sup
t∈T1, s∈T2

∣∣∣∣∣
N∑
i=1

εi
〈
ai, t

〉〈
ai, s

〉∣∣∣∣∣ . L2u2`(T1)
(
`(T2) + u

√
Nd(T2)

)
. (2.3)

One case which is of particular interest is when T1 = T2 = T , and then,
with probability at least 1− 2 exp(−c1u2k∗(T )),

sup
t∈T

∣∣∣∣∣
N∑
i=1

〈
ai, t

〉2 − E
〈
a, t
〉2∣∣∣∣∣ . L2u2

(
`2(T ) + u

√
Nd(T )`(T )

)
.

2.2 Monotone rearrangement of coordinates

The first goal of this section is to investigate the coordinate structure of
v ∈ Rm, given information on its norm in various Lmp and ψmα spaces. The

vectors we will be interested in are of the form (
〈
ai, t

〉
)Ni=1 for t ∈ T , and for

which, thanks to the results presented in Section 2.1, one has the necessary
information at hand.

It is standard to verify that if ‖v‖ψmα ≤ A, then ‖v‖p .p,α A·m1/p. Thus,
‖v‖Lmp .p ‖v‖ψmα .

It turns out that if the two norms are equivalent, v is regular in some
sense. The next lemma, which is a version of the Paley-Zygmund Inequality,
(see, e.g. [4]), describes the regularity properties needed here in the case
p = α = 1.

Lemma 2.8 For every β > 1 there exist constants c1 and c2 that depend
only on β and for which the following holds. If ‖v‖ψm1 ≤ β‖v‖Lm1 , there exists
I ⊂ {1, ...,m} of cardinality at least c1m, and for every i ∈ I, |vi| ≥ c2‖v‖Lm1 .
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Proof. Recall that ‖v‖ψm1 ∼ sup1≤i≤m v
∗
i / log(em/i). Hence, for every

1 ≤ j ≤ m,

j∑
`=1

v∗` . ‖v‖ψm1
j∑
`=1

log(em/`) . β‖v‖Lm1 j log(em/j).

Therefore,

m‖v‖Lm1 =
m∑
`=1

|v`| =
∑
`≤j

v∗` +
m∑

`=j+1

v∗` ≤ c0β‖v‖Lm1 j log(em/j) +
m∑

`=j+1

v∗` .

Setting c1(β) ∼ 1/(β log(eβ)) and j = c1(β)m,

c0β‖v‖Lm1 j log(em/j) ≤ (m/2)‖v‖Lm1 .

Thus,
∑m

`=j+1 v
∗
` ≥ (m/2)‖v‖Lm1 , while

v∗j+1 ≤
1

j + 1

∑
`≤j+1

v∗` . β log(eβ)‖v‖Lm1 .

Let I be the set of the m − j smallest coordinates of v. Fix η > 0
to be named later, put Iη ⊂ I to be the set of coordinates in I for which
|vi| ≥ η‖v‖Lm1 and denote by Icη its complement in I. Therefore,

(m/2)‖v‖Lm1 ≤
∑
`≥j+1

v∗` =
∑
`∈Iη

|v`|+
∑
`∈Icη

|v`| ≤ v∗j+1|Iη|+ η‖v‖Lm1 |I
c
η|

.‖v‖Lm1 |I|
(
β log(eβ)

|Iη|
|I|

+ η
|Icη|
|I|

)
.

Hence,

m

2
. |I|

(
β log(eβ)

|Iη|
|I|

+ η

(
1− |Iη|

|I|

))
. m

(
(β log(eβ)− η)

|Iη|
|I|

+ η

)
.

If η = min{1/4, (β/2) log(eβ)}, then |Iη| ≥ (η/2)|I| ≥ c2(β)m, as claimed.

Next, let us turn to decomposition results for vectors of the form (
〈
ai, t

〉
)Ni=1.

Recall that for a set T ⊂ RN , jT is the largest integer for which `(T ) ≥
dT
√
j log(eN/j).
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Lemma 2.9 For every L > 1 there exist constants c1 and c2 that depend
only on L and for which the following holds. Let T ⊂ Rn and set W =
{t/‖t‖2 : t ∈ T} ⊂ Sn−1. With probability at least 1− 2 exp(−c1`2(W )), for
every t ∈ T , (

〈
ai, t

〉
)Ni=1 = v1 + v2 and v1, v2 have the following properties:

1. The supports of v1 and v2 are disjoint.

2. ‖v1‖2 ≤ c2`(W )‖t‖2 and |supp(v1)| ≤ jW .

3. ‖v2‖ψN2 ≤ c2‖t‖2.

Proof. Fix t ∈ T and let Jt ⊂ {1, ..., N} be the set of the largest jW
coordinates of (|

〈
ai, t

〉
|)Ni=1. Set

v̄1 = (
〈
aj , t/‖t‖2

〉
)j∈Jt and v̄2 = (

〈
aj , t/‖t‖2

〉
)j∈Jct .

By Theorem 2.5 and the characterization of the ψN2 norm of a vector using
the monotone rearrangement of its coordinates (Lemma 2.3),

‖v̄1‖2 . L`(W ), and ‖v̄2‖ψN2 . L.

To conclude the proof, set v1 = ‖t‖2v̄1 and v2 = ‖t‖2v̄2.

Recall that for every R > 0,

T+,R =

{
t+ s

‖t+ s‖2
: t, s ∈ T, ‖t+ s‖2‖t− s‖2 ≥ R

}
,

and a similar definition holds for T−,R. Set j+,R = jT+,R , j−,R = jT+,R and
ER = max{`(T+,R), `(T−,R)}. Combining the above estimates leads to the
following corollary.

Corollary 2.10 For every L > 1 there exist constants c1, c2, c3 and c4
that depend only on L for which the following holds. Let T ⊂ Rn and
R > 0, and consider T+,R and T−,R as above. With probability at least
1− 4 exp(−c1L2 min{`2(T+,R), `2(T−,R)}), for every s, t ∈ T for which ‖t−
s‖2‖t+ s‖2 ≥ R,

1. (
〈
s − t, ai

〉
)Ni=1 = v1 + v2, for vectors v1 and v2 of disjoint supports

satisfying

|supp(v1)| ≤ j−,R, ‖v1‖2 ≤ c2`(T−,R)‖s−t‖2 and ‖v2‖ψN2 ≤ c2‖s−t‖2.
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2. (
〈
s + t, ai

〉
)Ni=1 = u1 + u2, for vectors u1 and u2 of disjoint supports

satisfying

|supp(u1)| ≤ j+,R, ‖u1‖2 ≤ c2`(T+,R)‖s+t‖2 and ‖u2‖ψN2 ≤ c2‖s+t‖2.

3. If hs,t(a) =
〈

s+t
‖s+t‖2 , a

〉〈
s−t
‖s−t‖2 , a

〉
, then∣∣∣∣∣ 1

N

N∑
i=1

|hs,t(ai)| − E|hs,t|

∣∣∣∣∣ ≤ c3
(
ER√
N

+
E2
R

N

)
.

In particular, recalling that for every s, t ∈ T ,

E|
〈
s+ t, a

〉〈
s− t, a

〉
| ≥ κ0‖s+ t‖2‖s− t‖2,

it follows that if
√
N ≥ c4(L)ER/κ0 then

4.

κ0
2
‖s+ t‖2‖s− t‖2 ≤

1

N

N∑
i=1

|
〈
s+ t, ai

〉〈
s− t, ai

〉
| .L ‖s+ t‖2‖s− t‖2.

(2.4)

From here on, denote by Ω1,R the event on which Corollary 2.10 holds
for the sets T+,R and T−,R and samples of cardinality N &L E

2
R/κ

2
0.

Lemma 2.11 There exist constants c0 depending only on L and c1, κ1 that
depend only on κ0 and L for which the following holds. If N ≥ c0E

2
R/κ

2
0,

then for (ai)
N
i=1 ∈ Ω1,R, for every s, t ∈ T for which ‖s − t‖2‖s + t‖2 ≥ R,

there is Is,t ⊂ {1, ..., N} of cardinality at least κ1N , and for every i ∈ Is,t,

|
〈
s− t, ai

〉〈
s+ t, ai

〉
| ≥ c1‖s− t‖2‖s+ t‖2.

Lemma 2.11 is an empirical “small-ball” estimate, as it shows that with
high probability, and for every pair s, t as above, many of the coordinates
of (|

〈
ai, s− t

〉
| · |
〈
ai, s+ t

〉
|)Ni=1 are large.

Proof. Fix s, t ∈ T as above and set

y = (
〈
s− t, ai

〉
)Ni=1, and x = (

〈
s+ t, ai

〉
)Ni=1.
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Let y = v1+v2 and x = u1+u2 as in Corollary 2.10. Let j0 = max{j−,R, j+,R}
and put J = supp(v1) ∪ supp(u1). Observe that |J | ≤ 2j0 and that∑

j∈J
|y(j)| · |x(j)| ≤

∑
j∈supp(v1)

|v1(j)x(j)|+
∑

j∈supp(u1)

|y(j)u1(j)|

≤‖v1‖2

(
2j0∑
i=1

(x2(j))∗

)1/2

+ ‖u1‖2

(
2j0∑
i=1

(y2(j))∗

)1/2

.L`(T−,R)‖s− t‖2 ·
√
j0 log(eN/j0)‖s+ t‖2

+`(T+,R)‖s+ t‖2 ·
√
j0 log(eN/j0)‖s− t‖2

.LE
2
R‖s− t‖2‖s+ t‖2 ≤

κ0N

4
‖s− t‖2‖s+ t‖2,

because, by the definition of j0,
√
j0 log(eN/j0) . max{`(T−,R), `(T+,R)}

and since N ≥ c0E2
R/κ

2
0 for c0 = c0(L) large enough.

Thus, by (2.4),∑
j∈Jc
|y(j)x(j)| ≥ Nκ0‖s− t‖2‖s+ t‖2/4.

Set m = |Jc| and let z = (y(j)x(j))j∈Jc = (v2(j)u2(j))j∈Jc . Since N &L

E2
R/κ

2
0, it is evident that j0 ≤ N/2; thus N/2 ≤ m ≤ N and

‖z‖Lm1 =
1

m

∑
j∈Jc
|y(j)x(j)| ≥ N

4m
κ0‖s− t‖2‖s+ t‖2 & κ0‖s− t‖2‖s+ t‖2.

On the other hand,

‖z‖ψm1 ≤ ‖(v2u2(j))j∈Jc‖ψm1 . ‖v2‖ψm2 ‖u2‖ψm2 .L ‖s− t‖2‖s+ t‖2,

and z satisfies the assumption of Lemma 2.8 for β = c1(L, κ0). The claim
follows immediately from that lemma.

3 Proof of Theorem A

It is well understood that when analyzing properties of ERM relative to
a loss `, studying the excess loss functional is rather natural. The excess
loss shares the same empirical minimizer as the loss, but it has additional
qualities: for every x ∈ T , ELx ≥ 0 and Lx0 = 0.

17



Since 0 is a potential minimizer of {PNLx : x ∈ T}, the minimizer x̂
satisfies that PNLx̂ ≤ 0, giving one a way of excluding parts of T as potential
empirical minimizers. One simply has to show that with high probability,
those parts belong to the set {x : PNLx > 0}, for example, by showing that
PNLx is equivalent to ELx, as the latter is positive for points that are not
true minimizers.

The squared excess loss has a simple decomposition to two processes: a
quadratic process and a multiplier one. Indeed, given a class of functions F
and f ∈ F ,(
f(a)− y

)2 − (f∗(a)− y
)2

=
(
f(a)− f∗(a)

)2 − 2
(
f(a)− f∗(a)

)(
f∗(a)− y

)
.

where, as always, f∗ is a minimizer of the functional E
(
f(a)− y

)2
in F .

In the phase retrieval problem, y =
〈
x0, a

〉2
+ w for a noise w that is

independent of a, and each fx ∈ F is given by fx =
〈
x, ·
〉2

. Thus,

Lx(a, y) = `x(a, y)− `x0(a, y) =
(
fx(a)− y

)2 − (fx0(a)− y
)2

=
(〈
x− x0, a

〉〈
x+ x0, a

〉)2 − 2w
〈
x− x0, a

〉〈
x+ x0, a

〉
.

Since w is a mean-zero random variable that is independent of a, and by
Assumption 1.1,

ELx(a, y) = E|
〈
x− x0, a

〉〈
x+ x0, a

〉
| ≥ κ20‖x− x0‖22‖x+ x0‖22.

Therefore, E
(
fx(a)− y

)2
has a unique minimizer in F : f∗ = fx0 = f−x0 .

To show that PNLx > 0 on a large subset T ′ ⊂ T , it suffices to obtain a
high probability lower bound on

inf
x∈T ′

1

N

N∑
i=1

(〈
x− x0, ai

〉〈
x+ x0, ai

〉)2
that dominates a high probability upper bound on

sup
x∈T ′

∣∣∣∣∣ 2

N

N∑
i=1

wi
〈
x− x0, ai

〉〈
x+ x0, ai

〉∣∣∣∣∣ .
The set T ′ that will be used is TR = {x ∈ T : ‖x− x0‖2‖x+ x0‖2 ≥ R} for
a well-chosen R.
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Theorem 3.1 There exist a constant c0 depending only on L, and constants
c1, κ1 depending only on κ0 and L for which the following holds. For every
R > 0 and N ≥ c0E2

R/κ
2
0, with probability at least

1− 4 exp(−c1L2 min{`2(T+,R), `2(T−,R)}),

for every x ∈ TR,

1

N

N∑
i=1

〈
x0 − x, ai

〉2〈
x0 + x, ai

〉2 ≥ c1‖x0 − x‖22‖x0 + x‖22.

Theorem 3.1 is an immediate outcome of Lemma 2.11

Theorem 3.2 There exist absolute constants c1 and c2 for which the fol-
lowing holds. For every β > 1, with probability at least

1− 2 exp(−c1L2 min{`2(T+,R), `2(T−,R)})− 2N−(β−1),

for every x ∈ TR,∣∣∣∣∣ 1

N

N∑
i=1

wi
〈
x− x0, ai

〉〈
x+ x0, ai

〉∣∣∣∣∣ ≤ c2√β‖w‖ψ2

√
logN · ER√

N
‖x−x0‖2‖x+x0‖2.

Proof. By standard properties of empirical process, and since w is mean-
zero and independent of a, it suffices to estimate

sup
x∈TR

∣∣∣∣∣ 1

N

N∑
i=1

εi|wi|
〈
x− x0, ai

〉〈
x+ x0, ai

〉∣∣∣∣∣ ,
for independent signs (εi)

N
i=1. By the contraction principle for Bernoulli

processes (see, e.g., [9]), it follows that for every fixed (wi)
N
i=1 and (ai)

N
i=1,

Prε

(
sup
x∈TR

∣∣∣∣∣ 1

N

N∑
i=1

εi|wi|
〈 x− x0
‖x− x0‖2

, ai
〉〈 x+ x0
‖x+ x0‖2

, ai
〉∣∣∣∣∣ > u

)

≤2Prε

(
max
i≤N
|wi| · sup

x∈TR

∣∣∣∣∣ 1

N

N∑
i=1

εi
〈 x− x0
‖x− x0‖2

, ai
〉〈 x+ x0
‖x+ x0‖2

, ai
〉∣∣∣∣∣ > u

2

)
.

Applying Remark 2.7, if N &L ER then with (ε⊗a)N -probability of at least
1− 2 exp(−c1L2 min{`2(T+,R), `2(T−,R)}),

sup
x∈TR

∣∣∣∣∣ 1

N

N∑
i=1

εi
〈 x− x0
‖x− x0‖2

, ai
〉〈 x+ x0
‖x+ x0‖2

, ai
〉∣∣∣∣∣ ≤ c2L2 ER√

N
.
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Also, because w is a ψ2 random variable,

Pr(w∗1 ≥ t‖w‖ψ2) ≤ 2N exp(−t2/2),

and thus, w∗1 ≤
√

2β logN‖w‖ψ2 with probability at least 1− 2N−β+1.
Combining the two estimates and a Fubini argument, it follows that with

probability at least 1− 2 exp(−c1L2 min{`2(T+,R), `2(T−,R)})− 2N−β+1, for
every x ∈ TR,∣∣∣∣∣ 1

N

N∑
i=1

wi
〈
x− x0, ai

〉〈
x+ x0, a

〉∣∣∣∣∣ ≤ c3L2
√
β‖w‖ψ2

√
logN

ER√
N
·‖x−x0‖2‖x+x0‖2.

On the intersection of the two events appearing in Theorem 3.1 and
Theorem 3.2, if N &κ0,L E

2
R and setting

ρ = ‖x− x0‖2‖x+ x0‖2 ≥ R ≥ r2(c1κ0/(c2L2
√
β)),

then for every x ∈ TR,

PNLx ≥
(
c1κ

2
0ρ− c2L2

√
β‖w‖ψ2

√
logN

ER√
N

)
ρ

≥
(
c1κ

2
0R− c2L2

√
β‖w‖ψ2

√
logN

ER√
N

)
R.

Therefore, if N &L,κ0 E
2
R and

ER ≤ c3(L, κ0)
R

‖w‖ψ2

√
N

β logN
, (3.1)

then PNLx > 0 and x̂ 6∈ TR. Theorem A follows from the definition of r2(γ)
for a well chosen γ.

4 Proof of Theorem B

Most of the work required for the proof of Theorem B has been carried out
in Section 3. A literally identical argument, in which one replaces the sets
T+,R and T−,R with T+,R(x0) and T−,R(x0) may be used, leading to an anal-
ogous version of Theorem A, with the obvious modifications: the complexity
parameter is max{`(T+,R(x0)), `(T−,R(x0))} for the right choice of R, and
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the probability estimate is 1−2 exp(−c0 min{`2(T+,R(x0)), `
2(T−,R(x0))})−

N−β+1.
All that remains to complete the proof of Theorem B is to analyze the

structure of the local sets and identify the fixed points r0 and r2. A first
step in that direction is the following:

Lemma 4.1 There exist absolute constants c1 and c2 for which the following
holds. For every R > 0 and ‖x0‖2 ≥

√
R/4,

1. If ‖x0‖2 min{‖x−x0‖2, ‖x+x0‖2} ≥ R then ‖x−x0‖2‖x+x0‖2 ≥ c1R.

2. If ‖x−x0‖2‖x+x0‖2 ≥ R then ‖x0‖2 min{‖x−x0‖2, ‖x+x0‖2} ≥ c2R.

Moreover, if ‖x0‖2 ≤
√
R/4 then ‖x − x0‖2‖x + x0‖2 ≥ R if and only if

‖x‖2 &
√
R.

Proof. Assume without loss of generality that ‖x− x0‖2 ≤ ‖x+ x0‖2.
If ‖x− x0‖2 ≤ ‖x0‖2 then

‖x0‖2 ≤ 2‖x0‖2 − ‖x− x0‖2 ≤ ‖x+ x0‖2 ≤ ‖x− x0‖2 + 2‖x0‖2 ≤ 3‖x0‖2.

Hence, ‖x0‖2 ∼ ‖x+ x0‖2, and

‖x0‖2 min{‖x− x0‖2, ‖x+ x0‖2} ∼ ‖x− x0‖2‖x+ x0‖2.

Otherwise, ‖x− x0‖2 > ‖x0‖2.
If, in addition,

‖x0‖2 ≥ (‖x− x0‖2‖x+ x0‖2)1/2/4,

then
4‖x0‖2 ≥ (‖x− x0‖2‖x+ x0‖2)1/2 ≥ ‖x0‖1/22 ‖x+ x0‖1/22 ,

and thus ‖x + x0‖2 ≤ 16‖x0‖2. Since ‖x0‖2 < ‖x − x0‖2 ≤ ‖x + x0‖2, it
follows that ‖x+ x0‖2 ∼ ‖x− x0‖2 ∼ ‖x0‖2, and again,

‖x0‖2 min{‖x− x0‖2, ‖x+ x0‖2} ∼ ‖x− x0‖2‖x+ x0‖2.

Therefore, the final case, and the only one in which there is no point-wise
equivalence between ‖x−x0‖2‖x+x0‖2 and ‖x0‖2 min{‖x−x0‖2, ‖x+x0‖2},
is when min{‖x − x0‖2, ‖x + x0‖2} ≥ ‖x0‖2 and ‖x0‖2 ≤ (‖x − x0‖2‖x +
x0‖2)1/2/4. In that case, if ‖x0‖2 ≥

√
R/4 then

‖x0‖2 min{‖x− x0‖2, ‖x+ x0‖2} ≥ ‖x0‖22 ≥ R/16,
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and
‖x− x0‖2‖x+ x0‖2 ≥ 4‖x0‖22 ≥ R/4,

from which the first part of the claim follows immediately.
For the second one, observe that

‖x‖22 − 2‖x0‖2‖x‖2 ≤ ‖x− x0‖2‖x+ x0‖2 ≤ ‖x‖22 + 2‖x‖2‖x0‖2 + ‖x0‖22,

and if ‖x0‖2 ≤
√
R/4, the equivalence is evident.

In view of Lemma 4.1, the way the product ‖x − x0‖2‖x + x0‖2 relates
to min{‖x− x0‖2, ‖x+ x0‖2} depends on ‖x0‖2. If ‖x0‖2 ≥

√
R/4, then

{x ∈ T : ‖x−x0‖2‖x+x0‖2 ≤ R} ⊂ {x ∈ T : min{‖x−x0‖2, ‖x+x0‖2} ≤ c1R/‖x0‖2},

and if ‖x0‖2 ≤
√
R/4,

{x ∈ T : ‖x− x0‖2‖x+ x0‖2 ≤ R} ⊂ {x ∈ T : ‖x‖2 ≤ c1
√
R},

for a suitable absolute constant c1.
When T is convex and centrally-symmetric, the corresponding complex-

ity parameter - the gaussian average of T+,R(x0) = T−,R(x0) is

ER(x0) .


‖x0‖2
R · `(2T ∩ (c1R/‖x0‖2)Bn

2 ) if ‖x0‖2 ≥
√
R,

1√
R
`(2T ∩ c1

√
RBn

2 ) if ‖x0‖ <
√
R.

The fixed point conditions appearing in Theorem A now become

r0 = inf{R : ER(x0) ≤ c2
√
N} (4.1)

and
r2(γ) = inf{R : ER(x0) ≤ γ

√
NR}, (4.2)

where one selects the slightly suboptimal γ = c2/σ
√

logN . The assertion of
Theorem A is that with high probability, ERM produces x̂ for which

‖x̂− x0‖2‖x̂+ x0‖2 ≤ max{r2(γ), r0}.

If ‖x0‖2 ≥
√
R, the fixed-point condition (4.1) is

`(2T ∩ (c1R/‖x0‖2)Bn
2 ) ≤ c3

(
R

‖x0‖2

)√
N (4.3)
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while (4.2) is,

‖x0‖2
R

`(2T ∩ (c1R/‖x0‖2)Bn
2 ) ≤ (c4/σ

√
logN) ·

√
NR. (4.4)

Recall that
r∗N (Q) = inf{r > 0 : `(T ∩ rBn

2 ) ≤ Qr
√
N},

and
s∗N (η) = inf{s > 0 : `(T ∩ sBn

2 ) ≤ ηs2
√
N}.

Therefore, it is straightforward to verify that

r0 = 2‖x0‖2r∗N (c3) and r2
(
c2/(σ

√
logN)

)
= 2‖x0‖2s∗N (c4‖x0‖2/σ

√
logN).

Setting R = 2‖x0‖2 max{r∗N (c3), s
∗
N (c4‖x0‖2/σ

√
logN)}, it remains to en-

sure that ‖x0‖22 ≥ R; that is,

2 max{s∗N (c4‖x0‖2/σ
√

logN), r∗N (c3)} ≤ ‖x0‖2. (4.5)

Observe that if
r∗N (c3) ≤

c3σ

c4‖x0‖2

√
logN, (4.6)

then r∗N (c3) ≤ s∗N (c4‖x0‖2/σ
√

logN). Indeed, applying the convexity of T ,
it is standard to verify that r∗N (Q) is attained and r∗N (Q) ≤ ρ if and only
if `(T ∩ ρBn

2 ) ≤ Qρ
√
N – with a similar statement for s∗N (see, e.g., the

discussion in [7]). Therefore, s∗N (η) ≥ r∗N (Q) if and only if `(T ∩ r∗N (Q)) ≥
η(r∗N (Q))2

√
N . The latter is evident because `(T ∩ r∗N (Q)) = Qr∗N (Q)

√
N

and recalling that Q = c3 and η = c4‖x0‖2/σ
√

logN .
Under (4.6), an assumption which has been made in the formulation

of Theorem B, (4.5) becomes 2s∗N (c4‖x0‖2/σ
√

logN) ≤ ‖x0‖2 and, by the
definition of s∗N , this is the case if and only if

`(T ∩ ‖x0‖2Bn
2 ) ≤ c4‖x0‖2

σ
√

logN
· ‖x0‖22

√
N ;

that is simply when ‖x0‖2 ≥ v∗N (ζ) for ζ = c4/σ
√

logN .
Hence, by Theorem A, combined with Lemma 4.1, it follows that with

high probability,

min{‖x̂− x0‖2, ‖x̂+ x0‖2} ≤ 2s∗N (c4‖x0‖2/σ
√

logN).

The other cases, when either ‖x0‖2 is ‘small’, or when r0 dominates r2 are
treated is a similar fashion, and are omitted.
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5 Minimax lower bounds

In this section we study the optimality of ERM as a phase retrieval pro-
cedure, in the minimax sense. The estimate obtained here is based on the
maximal cardinality of separated subsets of the class with respect to the
L2(µ) norm.

Definition 5.1 Let B be the unit ball in a normed space. For any subset A
of the space, let M(A, rB) be the maximal cardinality of a subset of A that
is r-separated with respect to the norm associated with B.

Observe that if M(A, rB) ≥ L there are x1, ..., xL ∈ A for which the sets
xi+(r/3)B are disjoint. A similar statement is true in the reverse direction.

Let F be a class of functions on (Ω, µ) and let a be distributed according
to µ. For f0 ∈ F and a centred gaussian variable w, which has variance σ
and is independent of a, consider the gaussian regression model

y = f0(a) + w. (5.1)

Any procedure that performs well in the minimax sense, must do so for any
choice of f0 ∈ F in (5.1).

Following [7], there are two possible sources of ‘statistical complexity’
that influence the error rate of gaussian regression in F .

1. Firstly, that there are functions in F that, despite being far away from
f0, still satisfy f0(ai) = f(ai) for every 1 ≤ i ≤ N , and thus are
indistinguishable from f0 on the data.

This statistical complexity is independent of the noise, and for every
f0 ∈ F and A = (ai)

N
i=1, it is captured by the L2(µ) diameter of the

set
K(f0,A) = {f ∈ F : (f(ai))

N
i=1 = (f0(ai))

N
i=1},

which is denoted by d∗N (A).

2. Secondly, that the set (F − f0) ∩ rD = {f − f0 : f ∈ F, ‖f − f0‖L2 ≤ r}
is ‘rich enough’ at a scale that is proportional to its L2(µ) diameter r.

The richness of the set is measured using the cardinality of a maximal
L2(µ)-separated set. To that end, let D be the unit ball in L2(µ), set

C(r, θ0) = sup
f0∈F

r log1/2M(F ∩ (f0 + θ0rD), rD)

and put
q∗N (η) = inf

{
r > 0 : C(r, θ0) ≤ ηr2

√
N
}
. (5.2)
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Theorem 5.2 [7] For every f0 ∈ F let P⊗Nf0 be the probability measure that

generates samples (ai, yi)
N
i=1 according to (5.1). For every θ0 ≥ 2 there exists

a constant θ1 > 0 for which

inf
f̂

sup
f0∈F

P⊗Nf0
(∥∥∥f0 − f̂∥∥∥

2
≥ max{q∗N (θ1/σ), (d∗N (A)/4)}

)
≥ 1/5 (5.3)

where inf f̂ is the infimum over all possible estimators constructed using the
given data.

Earlier versions of this minimax bound may be found in [14], [16] and [1].

To apply this general principle to the phase recovery problem, note that
the regression function is f0(x) =

〈
x0, x

〉2
:= fx0(x) for some unknown

vector x0 ∈ T ⊂ Rn, while the estimators are f̂ =
〈
x̂, ·
〉2

. Also, observe that
for every x1, x2 ∈ T ,

‖fx0 − fx1‖
2
L2(µ) = E

(〈
x0, a

〉2 − 〈x1, a〉2)2 = E
〈
x0 − x1, a

〉2〈
x0 + x1, a

〉2
and therefore, one has to identify the L2 structure of the set

F − fx0 = {
〈
x, ·
〉2 − 〈x0, ·〉2 : x ∈ T}.

To obtain the desired bound, it suffices to assume the following:

Assumption 5.1 There exist constants C1 and C2 for which, for every
s, t ∈ Rn,

C2
1‖s− t‖22‖s+ t‖22 ≤ E

〈
s− t, a

〉2〈
s+ t, a

〉2 ≤ C2
2‖s− t‖22‖s+ t‖22.

It is straightforward to verify that if a is an L-subgaussian vector on
Rn that satisfies Assumption 1.1, then it automatically satisfies Assumption
5.1.

The norm ‖x0‖2 plays a central role in the analysis of the rates of con-
vergence of the ERM in phase recovery. Therefore, the minimax lower
bounds presented here are not only for the entire model T but for every
shell V0 = T ∩ R0S

n−1. A minimax lower bound over T follows by taking
the supremum over all possible choices of R0.

To apply Theorem 5.2, observe that by Assumption 5.1, for every u, v ∈
T ,

C1‖u− v‖2‖u+ v‖2 ≤ ‖fv − fu‖L2 ≤ C2‖u− v‖2‖u+ v‖2.
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Fix R0 > 0 and consider V0 = T ∩ R0S
n−1. Clearly, for every r > 0 and

every x0 ∈ V0,{
u ∈ V0 : ‖u− x0‖2‖u+ x0‖2 ≤

θ0r

C2

}
⊂ {u ∈ V0 : fu ∈ F ′ ∩ (fx0 + θ0rD)}

(5.4)
where F ′ = {fu : u ∈ V0}.

Fix θ0 > 2 to be named later, and let θ1 be as in Theorem 5.2. If there
are x0 ∈ V0 and {x1, ..., xM} ⊂ V0 that satisfy

1. ‖xi − x0‖2‖xi + x0‖2 ≤ θ0r/C2,

2. for every 1 ≤ i < j ≤M , ‖xi − xj‖2‖xi + xj‖2 ≥ r/C1, and

3. logM > N(θ1r/σ)2,

then supf0∈F ′ r log1/2M(F ′ ∩ (f0 + θ0rD), rD) > θ1r
√
N/σ, and the best

possible rate in phase recovery in V0 is larger than r.
Fix x0 ∈ V0 and r > 0, and let R = r/C2. We will present two different

estimates, based on R0 = ‖x0‖2, the ‘location’ of x0.

Centre of ‘small norm’. Recall that θ0 > 2 and assume first that R0 =
‖x0‖2 ≤

√
θ0R/4. Note that

V0 ∩ (
√
R/8)Bn

2 ⊂
{
u ∈ V0 : ‖u− x0‖2‖u+ x0‖2 ≤

θ0r

C2

}
,

and thus it suffices to constructed a separated set in V0 ∩ (
√
R/8)Bn

2 .
Set x1, ..., xL to be a maximal c3

√
R-separated subset of V0∩ (

√
R/8)Bn

2

for a constant c3 that depends only on C1 and C2 and which will be specified
later; thus, L = M(V0 ∩ (

√
R/8)Bn

2 , c3
√
RBn

2 ).

Lemma 5.3 There is a subset I ⊂ {1, ..., L} of cardinality M ≥ L/2 − 1
for which (xi)i∈I satisfies 1. and 2..

Proof. Since xi ∈ (
√
R/8)Bn

2 and ‖x0‖2 ≤
√
θ0R/4,

‖xi − x0‖2‖xi + x0‖2 ≤ ((
√
θ0 + 1)

√
R/4)2 ≤ θ0R = θ0r/C2,

and thus 1. is satisfied for every 1 ≤ i ≤ L.
To show that 2. holds for a large subset, it suffices to find I ⊂ {1, ..., L}

of cardinality at least L/2− 1 such that for every i, j ∈ I,

‖xi − xj‖2 ≥ c3
√
R/2 and ‖xi + xj‖2 ≥ c3

√
R/2
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for a well-chosen c3.
To construct the subset, observe that if there are distinct integers 1 ≤

i, j, k ≤ L for which ‖xi + xj‖2 < c3
√
R/2 and ‖xi + xk‖2 < c3

√
R/2, then

‖xj − xk‖2 < c3
√
R, which is impossible. Therefore, for every xi there is at

most a single index j ∈ {1, ..., L}\{i} satisfying that ‖xi + xj‖2 < c3
√
R/2.

With this observation the set I is constructed inductively.
Without loss of generality, assume that I = {1, ...,M} for M ≥ L/2− 1.

If i 6= j and 1 ≤ i, j ≤M ,

‖xi − xj‖2‖xi + xj‖2 ≥ c23R/4 ≥ 2r/C1,

for the right choice of c3, and thus (xi)
M
i=1 satisfies 2..

Centre of ‘large norm’. Next, assume that R0 = ‖x0‖2 ≥
√
θ0R/4. By

Lemma 4.1, there is an absolute constant c4 < 1/32, for which, if ‖x0‖2 ≥√
ρ/4 and ‖x0‖2 min{‖x−x0‖2, ‖x+x0‖2} ≤ c4ρ, then ‖x−x0‖2‖x+x0‖2 ≤ ρ.

Therefore, applied to the choice ρ = θ0R,

(V0 ∩ (x0 + (c4θ0R/‖x0‖2)Bn
2 )) ∪ (V0 ∩ (−x0 + (c4θ0R/‖x0‖2)Bn

2 ))

⊂{u ∈ V0 : ‖x0 − u‖2‖x0 + u‖2 ≤ θ0R} ,

and it suffices to a find a separated set in the former.
Note that if x ∈ V0 ∩ (x0 + (c4θ0R/‖x0‖2)Bn

2 ) then

‖x‖2 ≥ ‖x0‖2 − c4θ0R/‖x0‖2 ≥ ‖x0‖2/2 ≥
√
θ0R/4/4

because one can choose c4 ≤ 1/32, and ‖x‖2 ≤ 3‖x0‖2/2. Moreover, if
x1, x2 ∈ V0 ∩ (x0 + (c4θ0R/‖x0‖2)Bn

2 ), then

‖x1 + x2‖2 ≥ 2‖x0‖2 − 2c4θ0R/‖x0‖2 ≥ ‖x0‖2.

Applying Lemma 4.1, there is an absolute constant c5, for which, if

‖x0‖2 min {‖xi − xj‖2, ‖xi + xj‖2} ≥ θ0R/4, (5.5)

then
‖xi − xj‖2‖xi + xj‖2 ≥ c5θ0R/4.

Hence, if x1, ..., xM ∈ V0∩(x0 +(c4θ0R/‖x0‖2)Bn
2 ) is θ0R/4‖x0‖2-separated,

then (5.5) holds, and

‖xi − xj‖2‖xi + xj‖2 ≥ c5θ0R/4 ≥ r/C1,

provided that θ0 is a sufficiently large constant that depends only on C1 and
C2.
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Corollary 5.4 There exist absolute constants θ1, c1, c2 and c3 that depend
only on C1 and C2 and for which the following holds. Let R0 > 0 and set
V0 = T ∩R0S

n−1. Define

q′(r) =


logM(V0 ∩ c1

√
rBn

2 , c2
√
rBn

2 ) if R0 ≤ c3
√
r,

supx0∈V0 logM
(
V0 ∩

(
x0 + c1

(
r
R0

)
Bn

2

)
, c2

r
R0
Bn

2

)
if R0 > c3

√
r

If q′(r) ≥ θ1(r/σ)2N , then the minimax rate in V0 is larger than r.

Now, a minimax lower bound for the risk min{‖x̃− x0‖2 , ‖x̃+ x0‖2} for
all shells V0 (and therefore, for T ) may be derived using Lemma 4.1. To
that end, let c0 be a large enough absolute constant and

C(R0, r) = sup
x0∈T :‖x0‖2=R0

r log1/2M
(
(T ∩R0S

n−1) ∩ (x0 + c0rB
n
2 ), rBn

2 ).

(5.6)

Definition 5.5 Fix R0 > 0. For every α, β > 0 set

q∗N (α) = inf
{
r > 0 : C(R0, r) ≤ αr2

√
N
}

and put
t∗N (β) = inf

{
r > 0 : C(R0, r) ≤ βr3

√
N
}
.

Note that for any c > 0, if t∗N (c) ≤ 1 then t∗N (c) ≥ q∗N (c) and q∗N
(
cR0/σ

)
≥

t∗N (c/σ) if and only if q∗N
(
cR0/σ

)
≥ R0.

Theorem C. There exists an absolute constant c1 for which the following
holds. Let R0 > 0.

1. If R0 ≥ t∗N
(
c1/σ

)
, then for any procedure x̃, there exists x0 ∈ T with

‖x0‖2 = R0 and for which, with probability at least 1/5,

‖x̃− x0‖2 ‖x̃+ x0‖2 ≥ ‖x0‖2 q
∗
N

(c1 ‖x0‖2
σ

)
and

min{‖x̃− x0‖2 , ‖x̃+ x0‖2} ≥ q
∗
N

(c1 ‖x0‖2
σ

)
.
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2. If R0 ≤ t∗N
(
c1/σ

)
then for any procedure x̃ there exists x0 ∈ T with

‖x0‖2 = R0 for which, with probability at least 1/5,

‖x̃− x0‖2 ‖x̃+ x0‖2 ≥
(
t∗N

(c1
σ

))2
and

‖x̃‖2 , ‖x̃− x0‖2 , ‖x̃+ x0‖2 ≥ t
∗
N

(c1
σ

)
.

Theorem C is a general minimax bound, and although it seems strange
at first glance, the parameters appearing in it are very close to those used in
Theorem C. Following the same path as in [7], let us show that Theorem C
and Theorem C are almost sharp, under some mild structural assumptions
on T .

First, recall Sudakov’s inequality (see, e.g., [9]):

Theorem 5.6 If W ⊂ Rn and ε > 0 then

cε log1/2M(W, εBn
2 ) ≤ `(W ),

where c is an absolute constant.

Fix R0 > 0 set V0 = T ∩R0B
n
2 , and put

s∗N = s∗N
(
c1R0/(σ

√
logN)

)
and v∗N = v∗N

(
c1R0/(σ

√
logN)

)
.

Assume that there is some x0 ∈ T , with the following properties:

1. ‖x0‖2 = R.

2. The localized sets V0 ∩ (x0 + s∗NB
n
2 ) and V0 ∩ (x0 + v∗NB

n
2 ) satisfy that

`(V0 ∩ (x0 + s∗NS
n−1)) ∼ `(T ∩ s∗NBn

2 )

and that
`(V0 ∩ (x0 + v∗NS

n−1)) ∼ `(T ∩ v∗NBn
2 ),

which is a mild assumption on the complexity structure of T .

3. Sudakov’s inequality is sharp at the scales s∗N and v∗N , namely,

s∗N log1/2M(V0 ∩ (x0 + c0s
∗
NB

n
2 ), s∗NB

n
2 ) ∼ `(V0 ∩ (x0 + s∗NB

n
2 )) (5.7)

and a similar assertion holds for v∗N .
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In such a case, the rates of convergence obtained in Theorem B are minimax
(up to the an extra

√
logN factor) thanks to Theorem C.

When Sudakov’s inequality is sharp as in (5.7), we believe that ERM
should be a minimax procedure in phase recovery, despite the logarithmic
gap between Theorem B an Theorem C. A similar conclusion for linear
regression was obtained in [7].

Sudakov’s inequality is sharp in many cases - most notably, when T =
Bn

1 , but not always. It is not sharp even for standard sets like the unit ball
in `np for 1 + (log n)−1 < p < 2.

6 Examples

Here, we will present two simple applications of the upper and lower bounds
on the performance of ERM in phase recovery. Naturally, there are many
other examples that follow in a similar way and that can be derived using
very similar arguments. The choice of the examples has been made to il-
lustrate the question of the optimality of Theorem A, B and C, as well as
an indication of the similarities and differences between phase recovery and
linear regression. Since the estimate used in these examples are rather well
known, some of the details will not be presented in full.

6.1 Sparse vectors

The first example we consider represents classes with a local complexity that
remains unchanged, regardless of the choice of x0.

Let T = Wd be the set of d-sparse vectors in Rn (for some d ≤ N/4)
– that is, vectors with at most d non-zero coordinates. Clearly, for every
R > 0 T+,R, T−,R ⊂W2d∩Sn−1. Also, for any x0 ∈ T and any I ⊂ {1, ..., n}
of cardinality d that is disjoint of supp(x0),

(1/
√

2)SI ⊂
{

(x− x0)i∈I
‖x− x0‖2

: x ∈Wd

}
,

{
(x+ x0)i∈I
‖x+ x0‖2

: x ∈Wd

}
,

where SI is the unit sphere supported on the coordinates I.
With this observation, a straightforward argument shows that,

`(T+,R), `(T−,R) ∼
√
d log(en/d).

Applying Theorem A, if follows that for N & d log
(
en/d

)
, with probability
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at least 1− 2 exp(−c(d log(en/d)))−N−β+1, ERM produces x̂ that satisfies

‖x̂− x0‖2‖x̂+ x0‖2 .κ0,L,β σ

√
d log(en/d)

N

√
logN = (∗). (6.1)

Moreover, with the same probability estimate, if ‖x0‖22 & (∗) then by Lemma
4.1,

min{‖x̂− x0‖2, ‖x̂+ x0‖2} .κ0,L,β
σ

‖x0‖2

√
d log(en/d)

N

√
logN (6.2)

and if ‖x0‖22 . (∗) then

‖x̂‖22 , ‖x̂− x0‖
2
2, ‖x̂+ x0‖22 .κ0,L σ

√
d log(en/d)

N

√
logN. (6.3)

In particular, when ‖x0‖2 is of the order of a constant, the rate of con-
vergence in (6.1) and (6.2) is identical to the one obtained in [7] in the linear
regression (up to a

√
logN term). In the latter, ERM achieves the minimax

rate (with the same probability estimate) of

‖x̂− x0‖2 .L σ

√
d log(en/d)

N
.

Otherwise, when ‖x0‖2 is large, the rate of convergence of the ERM in (6.2)
is actually better than in linear regression, but, when ‖x0‖2 is small, it is
worse - deteriorating to the square root of the rate in linear regression (up
to logarithmic terms).

When the noise level σ tends to zero, the rates of convergence in linear
regression and phase recovery tend to zero as well. In particular, exact
reconstruction happens – that is x̂ = x0 in linear regression and x̂ = x0 or
x̂ = −x0 in phase recovery – when N & d log

(
en/d

)
.

For the lower bound, it is well known that log1/2M(Wd∩ c0rBn
2 , rB

n
2 ) ∼√

d log(en/d) for every r > 0 (and c0 ≥ 2). Combined with the results of the
previous section, this suffices to show that the rate obtained in Theorem A
is the minimax one (up to a

√
logN term in the “large noise” regime) and

that the ERM is a minimax procedure for the phase retrieval problem when
the signal x0 is known to be d-sparse and N & d log

(
en/d

)
.

6.2 The unit ball of `n1

Consider the set T = Bn
1 , the unit ball of `n1 . Being convex and centrally

symmetric, it is a natural example of a set with changing ‘local complexity’ –
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which becomes very large when x0 is close to 0. Moreover, it is an example
in which one may obtain sharp estimates on `(Bn

1 ∩ rBn
2 ) at every scale.

Indeed, one may show (see, for example, [5]) that

`
(
Bn

1 ∩ rBn
2

)
∼


√

log(enr2) if r2n ≥ 1

r
√
n otherwise.

It follows that for Bn
1 , one has

r∗N (Q)


∼
(

1
Q2N

log
(

n
Q2N

))1/2
if n ≥ C0Q

2N

. 1
N if C1Q

2N ≤ n ≤ C0Q
2N

= 0 if n ≤ C1Q
2N.

where C0 and C1 are absolute constants. The only range in which this
estimate is not sharp is when n ∼ Q2N , because in that range, r∗N (Q)
decays to zero very quickly. A more accurate estimate on `(Bn

1 ∩ rBn
2 ) can

be performed when n ∼ Q2N (see [8]), but since it is not our main interest,
we will not pursue it further, and only consider the cases n ≤ C1Q

2N and
n ≥ C0Q

2N .
A straightforward computation shows that the two other fixed points

satisfy:

s∗N (η) ∼


(

1
η2N

log
(

n2

η2N

))1/4
if n ≥ η

√
N

√
n

η2N
if n ≤ η

√
N

and

v∗N (ζ) ∼


(

1
ζ2N

log
(
n3

ζ2N

))1/6
if n ≥ ζ2/3N1/3

(
n
ζ2N

)1/4
if n ≤ ζ2/3N1/3.

The estimates above will be used to derive rates of convergence for the ERM
x̂ (for the squared loss) of the form

min{‖x̂− x0‖2 , ‖x̂+ x0‖2} ≤ rate.

Upper bounds on the rate of convergence rate follow from Theorem B, and
hold with high probability as stated in there. For the sake of brevity, we
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will not present the probability estimates, but those can be easily derived
from Theorem B.

Thanks to Theorem B, obtaining upper bounds on rate involves the
study of several different regimes, depending on ‖x0‖2, the noise level σ and
the way the number of observations N compares with the dimension n.

The noise-free case: σ = 0. In this case, rate is upper bounded by r∗N (Q),
for Q that is an absolute constant. In particular, when n ≥ C0Q

2N , the
rate is less than (

N−1 log
(
n/N

))1/2
.

At this point, it is natural to wonder whether there is a procedure that
outperforms ERM in the noise-free case. The minimax lower bound d∗N (A)
in Theorem 5.2 may be used to address this question, as no algorithm can
do better than d∗N (A)/4, with probability greater than 1/5.

In the phase recovery problem and using the notation of section 5, one
has

d∗N (A) = sup {‖fx − fx0‖2 : x ∈ Bn
1 , fx(ai) = fx0(ai) , i = 1, . . . , N}

∼ sup
{
‖x− x0‖2 ‖x+ x0‖2 : x ∈ Bn

1 , |
〈
ai, x

〉
| = |

〈
ai, x0

〉
|, i = 1, . . . , N

}
& inf

L:Rn→RN
sup {‖x− x0‖2 ‖x+ x0‖2 : x ∈ Bn

1 , L(x) = L(x0)}

with an infimum taken over all linear operators L : Rn → RN .
By Lemma 4.1, for x0 = (1/2, 0, . . . , 0) ∈ Bn

1 (in fact, any vector x0 in
Bn

1 for which ‖x0‖2 is a positive constant smaller than 1/2 would do)

d∗N (A) & inf
L:Rn→RN

sup
x∈Bn1 ∩(kerL−x0)

min{‖x− x0‖2 , ‖x+ x0‖2}

& inf
L:Rn→RN

sup
x,y∈Bn1 ∩kerL

‖x− y‖2 = cN (Bn
1 )

which is the Gelfand N -width of Bn
1 . By a result due to Garnaev and

Gluskin (see [3]),

cN (Bn
1 ) ∼


min

{
1,

√
1
N log

(
en
N

)}
if N ≤ n

0 otherwise.

which is of the same order as r∗N (except when n ∼ N , which is not treated
here). Therefore, no algorithm can outperform ERM and ERM is a minimax
procedure in this case.
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Note that when n ≤ c1Q2N , exact reconstruction of x0 or −x0 is possible
and it can happens only in that case (i.e. σ = 0 and n ≤ c1Q

2N) because
of the minimax lower bound provided by d∗N (A).

The noisy case: σ > 0. According to Theorem B, the rate of convergence
rate depends on r∗N = r∗N (Q) for some absolute constant Q, s∗N = s∗N (η) for
η = c1 ‖x0‖2 /(σ

√
logN) and on v∗N = v∗N (ζ) for ζ = c1/(σ

√
logN). The

outcome of Theorem B is presented in Figure 1.

rate . σ/ ‖x0‖2 ≤ c0r∗N/
√

logN σ/ ‖x0‖2 ≥ c0r∗N/
√

logN

‖x0‖2 ≤ v∗N r∗N s∗N
‖x0‖2 ≥ v∗N r∗N v∗N

Figure 1: High probability bounds on the rate of convergence of the ERM
x̂ for the square loss in phase recovery: min{‖x̂− x0‖2 , ‖x̂+ x0‖2} ≤ rate.

As the proof of all the estimates is similar, a detailed analysis is only
presented when ζ2/3N1/3 ≤ η

√
N ≤ C1Q

2N , which is equivalent to(σ2 logN

c1N

)1/6
≤ ‖x0‖2 ≤

c1Q
2σ
√
N logN

c1
.

The upper bounds on rate change according to the way the number of
observations N scales relative to n:

1. n ≥ C0Q
2N . In this situation, r∗N ∼

(
log(n/N)/N

)1/2
. Therefore, if

σ/ ‖x0‖2 .
√

log(n/N)/(N logN) then rate ≤
(

log(n/N)/N
)1/2

, and

if σ/ ‖x0‖2 &
√

log(n/N)/(N logN),

rate ≤


(
σ2 logN

‖x0‖22N
log
(

σ2n2

‖x0‖22N

))1/4
if ‖x0‖2 ≥

(
σ2 logN

N log
(
σ2n3

N

))1/6
(
σ2 logN

N log
(
σ2n3

N

))1/6
otherwise.

(6.4)

2. c1 ‖x0‖2 /(σ
√

logN)
√
N ≤ n ≤ C1Q

2N . In that case r∗N = 0. In
particular σ/ ‖x0‖2 > c0r

∗
N/
√

logN and therefore, the rate is upper
bounded as in (6.4).

3.
(
c1/(σ

√
logN)

)2/3
N1/3 ≤ n ≤ c1 ‖x0‖2 /(σ

√
logN)

√
N . Again, in

this case, r∗N = 0. Therefore, one is in the situation of the small
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signal-to-noise ratio and

rate ≤


σ
‖x0‖2

√
n logN
N if ‖x0‖2 ≥

(
σ2 logN

N log
(
σ2n3

N

))1/6
(
σ2 logN

N log
(
σ2n3

N

))1/6
otherwise.

4. n ≤
(
c1/(σ

√
logN)

)2/3
N1/3. Once again, r∗N = 0, and

rate ≤


σ
‖x0‖2

√
n logN
N if ‖x0‖2 ≥

(
σ
√

n logN
N

)1/2
(
σ
√

n logN
N

)1/2
otherwise.

One may ask whether these estimates are optimal in the minimax sense,
or perhaps there is another procedure that can outperform ERM. It appears
that (up to an extra

√
logN factor), ERM is indeed optimal.

To see that, it is enough to apply Theorem C and verify that Sudakov’s
inequality is sharp in the following sense: (see the discussion following The-
orem C): that if ‖x0‖1 ≤ 1/2, then for every ε < 1/4

ε log1/2M(Bn
1 ∩ (x0 + c0εB

n
2 ), εBn

2 ) ∼ `
(
Bn

1 ∩ εBn
2

)
.

This fact is relatively straightforward to verify (see, e.g., Example 2 in [10]).
Therefore, up to the extra

√
logN factor, which we believe is parasitic,

ERM is a minimax phase-recovery procedure in Bn
1 .
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