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We obtain estimation error rates and sharp oracle inequalities for
regularization procedures of the form

f̂ ∈ argmin
f∈F

(
1

N

N∑
i=1

`f (Xi, Yi) + λ ‖f‖

)

when ‖·‖ is any norm, F is a convex class of functions and ` is a Lips-
chitz loss function satisfying a Bernstein condition over F . We explore
both the bounded and subgaussian stochastic frameworks for the dis-
tribution of the f(Xi)’s, with no assumption on the distribution of
the Yi’s. The general results rely on two main objects: a complexity
function, and a sparsity equation, that depend on the specific setting
in hand (loss ` and norm ‖·‖).

As a proof of concept, we obtain minimax rates of convergence
in the following problems: 1) matrix completion with any Lipschitz
loss function, including the hinge and logistic loss for the so-called
1-bit matrix completion instance of the problem, and quantile losses
for the general case, which enables to estimate any quantile on the
entries of the matrix; 2) logistic LASSO and variants such as the
logistic SLOPE, and also shape constrained logistic regression; 3)
kernel methods, where the loss is the hinge loss, and the regularization
function is the RKHS norm.

1. Introduction. Many classification and regression problems are solved
in practice by regularized empirical risk minimizers (RERM). The risk is
measured via a loss function. The quadratic loss function is the most popu-
lar function for regression. It has been extensively studied (cf. [29, 23] among
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others). Still many other loss functions are popular among practitioners and
are indeed extremely useful in specific situations.

First, let us mention the quantile loss in regression problems. The 0.5-
quantile loss (also known as absolute or L1 loss) is known to provide an
indicator of conditional central tendency more robust to outliers than the
quadratic loss. An alternative to the absolute loss for robustification is pro-
vided by the Huber loss. On the other hand, general quantile losses are
used to estimate conditional quantile functions and are extremely useful to
build confidence intervals and measures of risk, like Values at Risk (VaR) in
finance.

Let us now turn to classification problems. The natural loss in this con-
text, the so called 0/1 loss, leads very often to computationally intractable
estimators. Thus, it is usually replaced by a convex loss function, such as
the hinge loss or the logistic loss. A thorough study of convex loss functions
in classification can be found in [45].

All the aforementioned loss functions (quantile, Huber, hinge and logistic)
share a common property: they are Lipschitz functions. This motivates a
general study of RERM with any Lipschitz loss. Note that some examples
were already studied in the literature: the ‖·‖1-penalty with a quantile loss
was studied in [8] under the name “quantile LASSO” while the same penalty
with the logistic loss was studied in [44] under the name “logistic LASSO”
(cf. [43]). The ERM strategy with Lipschitz proxys of the 0/1 loss are studied
in [21]. The loss functions we will consider in the examples of this paper are:

1. hinge loss: `f (x, y) = (1 − yf(x))+ = max(0, 1 − yf(x)) for every
y ∈ {−1,+1}, x ∈ X , f : X → R,

2. logistic loss: `f (x, y) = log(1+exp(−yf(x))) for every y ∈ {−1,+1},
x ∈ X , f : X → R;

3. quantile regression loss: for some parameter τ ∈ (0, 1), `f (x, y) =
ρτ (y − f(x)) for every y ∈ R, x ∈ X , f : X → R where ρτ (z) =
z(τ − I(z ≤ 0)) for all z ∈ R.

The two main theoretical results of the paper, stated in Section 2, are
general in the sense that they do not rely on a specific loss function or a
specific regularization norm. We develop two different settings that handle
different assumptions on the design. In the first one, we assume that the
family of predictors is subgaussian; in the second setting we assume that
the predictors are uniformly bounded, this setting is well suited for classi-
fication tasks, including the 1-bit matrix completion problem. The rates of
convergence rely on quantities that measure the complexity of the model and
the “size” of the subdifferential of the norm (note that the subdifferential
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of a norm at a non zero point is a subset of the dual sphere. We informally
say that it is large when it covers a large part of the dual sphere without
quantifying it).

To be more precise, the method works for any regularization function as
long as it is a norm. Following [30], our approach will show a connection
between the excess risk bounds and the size of the subdifferential of the
regularization norm around the best predictor (the oracle). For example,
when the oracle f∗ is sparse, the subdifferential of the `1 norm at f∗ is
large, and the excess risk bound is small. We refer to these bounds as sparsity
dependent bounds. In general, good excess risk bounds will be obtained using
a regularizer that has some “sparsity inducing power”, like the `1 or nuclear
norms, and this will be expressed through the size of the subdifferential of
the regularizer around the oracle.

We study many applications that give new insights on diverse problems:
the first one is a classification problem with logistic loss and LASSO or
SLOPE regularizations. We prove that the `2 estimation rate achieved by
the logistic SLOPE estimator is the classical rate s log(p/s)/N . The second
one is about matrix completion. We derive new excess risk bounds for the 1-
bit matrix completion issue with both logistic and hinge loss. We also study
the quantile loss for matrix completion and prove it reaches sharp bounds.
We show several examples in order to assess the general methods as well
as simulation studies. The last example involves the SVM and proves that
“classic” regularization method with no special sparsity inducing power can
be analyzed in the same way as sparsity inducing regularization methods.
Note that all those results are obtained for a random design.

A remarkable fact is that no assumption on the output Y is needed (while
most results for the quadratic loss rely on - restrictive - assumptions of the
tails of the distribution of Y ). Neither do we assume any statistical model
relating the “output variable” Y to the “input variable” X.1

Mathematical background and notations. The observations are N i.i.d pairs
(Xi, Yi)

N
i=1 where (Xi, Yi) ∈ X × Y are distributed according to P . We con-

sider the case where Y is a subset of R and let µ denote the marginal
distribution of Xi. Let L2 be the set of real valued functions f defined on
X such that Ef(X)2 < +∞ where the distribution of X is µ. In this space,

1Of course, if Y and X are independent, our results are valid but useless. Our prediction
risk bounds (like Theorem 2.1) state that we learn to predict Y by the best possible f(X)
for f in a given class F . If there is no f ∈ F such that f(X) predicts Y well, our results
are useless. On the other hand, we point out that it is not necessary to make (restrictive)
parametric assumptions on (X,Y ) to ensure that there is a function f in a given class F
that will lead to acceptable predictions.
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we define the L2-norm as ‖f‖L2
= (Ef(X)2)1/2 and the L∞ norm such that

‖f‖L∞ = esssup(|f(X)|). We consider a set of predictors F ⊆ E, where E
is a subspace of L2 and ‖·‖ is a norm over E (actually, in some situations
we will simply have F = E, but in some natural examples we will con-
sider bounded set of predictors, in the sense that supf∈F ‖f‖L∞ <∞, which
implies that F cannot be a subspace of L2).

For every f ∈ F , the loss incurred when we predict f(x), while the true
output / label is actually y, is measured using a loss function `: `(f(x), y).
It will actually be conventient to use the notation `f (x, y) = `(f(x), y). In
this work, we focus on loss functions that are nonnegative, and Lipschitz, in
the following sense.

Assumption 1.1 (Lipschitz loss function). For every f1, f2 ∈ F , x ∈ X
and y ∈ Y, we have

∣∣`(f1(x), y)− `(f2(x), y)
∣∣ ≤ |f1(x)− f2(x)|.

Note that we chose a Lipschitz constant equal to one in Assumption 1.1.
This can always be achieved by a proper normalization of the loss function.

Remark 1.1. Examples were provided above: quantile losses, the hinge
loss or the Huber loss. Note that assuming that for any f ∈ F , ‖f‖∞ ≤
Cf < ∞ and that |Y | ≤ CY is bounded a.s, the squared loss `(f(X), Y ) =
(Y −f(X))2 satisfies |(y−f1(x))2−(y−f2(x))2| = |2y−f1(x)−f2(x)||f1(x)−
f2(x)| ≤ 2(CF + CY )|f1(x) − f2(x)|. It is then possible to use our results
in this context. However, we do not recommend this in general: this case
excludes classical examples such as Gaussian noise. Our study was partly
motivated by [29] that was dedicated to the square loss: in [29], sparse linear
regression is covered with a wide set of noises, including Gaussian but also
heavy-tailed noise.

We define the oracle predictor as

f∗ ∈ argmin
f∈F

P`f where2 P`f = E`f (X,Y )

and (X,Y ) is distributed like the (Xi, Yi)’s. One of the objectives of machine
learning is to provide an estimator f̂ that predicts almost as well as f∗. We

2Note that without any assumption on Y it might be that P`f = E`f (X,Y ) = ∞
for any f ∈ F . Our results remain valid in this case, but it is no longer possible to use
the definition f∗ ∈ argminf∈F P`f . A general definition is as follows: fix any f0 ∈ F .
For any f ∈ F , E[`f (X,Y ) − `f0(X,Y )]] ≤ E|(f − f0)(X)| < ∞ under the assumptions
on F that will be stated in Section 2. It is then possible to define f∗ as any minimizer
of E[`f (X,Y ) − `f0(X,Y )]]. This definition obviously coincides with the defintion f∗ ∈
argminf∈F P`f when P`f is finite for some f ∈ F .
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usually formalize this notion by introducing the excess risk E(f) of f ∈ F
by Lf = `f − `f∗ and E(f) = PLf . Thus we consider the estimator of the
form

(1) f̂ ∈ argmin
f∈F

{PN`f + λ ‖f‖}

where PN`f = (1/N)
∑N

i=1 `f (Xi, Yi) and λ is a regularization parameter to
be chosen. Such an estimator is usually called a Regularized Empirical Risk
Minimization procedure (RERM).

For the rest of the paper, we will use the following notations: let rB and
rS denote the radius r ball and sphere for the norm ‖·‖, i.e. rB = {f ∈
E : ‖f‖ ≤ r} and rS = {f ∈ E : ‖f‖ = r}. For the L2-norm, we write
rBL2 = {f ∈ L2 : ‖f‖L2

≤ r} and rSL2 = {f ∈ L2 : ‖f‖L2
= r} and so on

for the other norms.
Even though our results are valid in the general setting introduced above,

we will develop the examples mainly in two directions that we will refer to
vector and matrix. The vector case involves X as a subset of Rp; we then
consider the class of linear predictors, i.e. E = {

〈
t, ·
〉
, t ∈ Rp}. In this case,

we denote for q ∈ [1,+∞], the lq-norm in Rp as ‖·‖lq . The matrix case is

also referred as the trace regression model: X is a random matrix in Rm×T
and we consider the class of linear predictors E = {

〈
M, ·

〉
,M ∈ Rm×T }

where
〈
A,B

〉
= Trace(A>B) for any matrices A,B in Rm×T . The norms

we consider are then, for q ∈ [1,+∞[, the Schatten-q-norm for a matrix:
∀M ∈ Rm×T , ‖M‖Sq = (

∑
σi(M)q)1/q where σ1(M) ≥ σ2(M) ≥ · · · is the

family of the singular values of M . The Schatten-1 norm is also called trace
norm or nuclear norm. The Schatten-2 norm is also known as the Frobenius
norm. The S∞ norm, defined as ‖M‖S∞ = σ1(M) is known as the operator
norm.

The notation C will be used to denote positive constants, that might
change from one instance to the other. For any real numbers a, b, we write
a . b when there exists a positive constant C such that a ≤ Cb. When a . b
and b . a, we write a ∼ b.

The rest of the paper is organized as follows. In Section 2 we introduce the
concepts necessary to the general study of (1): namely, a complexity param-
eter, and a sparsity parameter. Thanks to these parameters, we define the
assumptions necessary to our general results: the Bernstein condition, which
is classic in learning theory to obtain fast rates [29], and a stochastic assump-
tion on F (subgaussian, or bounded). Our two general theorems themselves
are eventually presented - note that the proofs of the two main theorems
(and extended versions of them) are postponed to Section 9 of Supplement
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A. The remaining sections are devoted to applications of our results to differ-
ent estimation methods: the logistic LASSO and logistic SLOPE in Section
3, matrix completion in Section 4 and Support Vector Machines (SVM) in
Section 7 of Supplement A. For matrix completion, the minimax-optimality
of the rates for the logistic and the hinge loss, that were not known, is also
stated in Section 4; note that the proof of the optimality is postponed to
Section 10 in Supplement A and that an extensive simulation study3 may
also be found in Section 6 of Supplement A. In Section 8 of Supplement A ,
we discuss the Bernstein condition for the three main loss functions of inter-
est: hinge, logistic and quantile (the corresponding proofs are in Section 11
of Supplement A). Finally, Section 12 of Supplement A contains the study
of the (non-penalized) ERM, that is, the case λ = 0 under the same assump-
tions. We also provide a short application to shape-constrained estimation
in Section 12.

2. Theoretical Results.

2.1. Applications of the main results: the strategy. The two main the-
orems in Subections 2.5 and 2.6 below are general in the sense that they
allow the statistician to deal with any (nonnegative) Lipschitz loss function
and any norm for regularization, but they involve quantities that depend
on the loss and the norm. The aim of this subsection is first to provide the
definition of these objects and some hints on their interpretation, through
examples. The main theorems are then stated in both settings. Basically,
the assumptions for the theorems are of three types:

1. the so-called Bernstein condition, which is a quantification of the iden-
tifiability condition or a curvature assumption of the objective func-
tion f → P`f at its minimum f∗. Formally, it relates the excess risk
E(f) = PLf = P (`f − `f∗) to the L2 norm ‖f − f∗‖L2 through an
inequality of the form PLf & ‖f − f∗‖2κL2

.
2. a stochastic assumption on the distribution of the f(X)’s for f ∈ F . In

this work, we consider both a subgaussian assumption and a uniform
boundedness assumption. Analysis of the two setups differ only on
the way the “statistical complexity of F” is measured (cf. below the
functions r(·) in Definition 2.5 and Definition 2.7).

3. finally, we consider the sparsity parameter as introduced in [29]. It
reflects how the norm ‖ · ‖ used as a regularizer can induce sparsity
- for example, think of the “sparsity inducing power” of the l1-norm
used to construct the LASSO estimator.

3The code may be downloaded on the page https://sites.google.com/site/vincentcottet/code.
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Given a scenario, that is a loss function `, a random design X, a convex
class F and a regularization norm, statistical results (exact oracle inequali-
ties and estimation bounds w.r.t. the L2 and regularization norms) for the
associated regularized estimator together with the choice of the regulariza-
tion parameter follow from the derivation of the three parameters (κ, r, ρ∗)
as follows:

1. find the Bernstein parameters κ ≥ 1 and A > 0 associated to the
loss and the class F ;

2. compute the Complexity function

r(ρ) =

[
Aρcomp(B)√

N

]1/2κ

where comp(B) is defined either through the Gaussian mean width
w(B), in the subgaussian case, or the Rademacher complexity Rad(B),
in the bounded case;

3. Compute the sub-differential ∂ ‖·‖ (f∗) of ‖·‖ at the oracle f∗ (or in the
neighborhood f∗+(ρ/20)B for approximately sparse oracles) and solve
the sparsity equation “find ρ∗ such that ∆(ρ∗) ≥ 4ρ∗/5”, where ∆(·)
is defined in Definition 2.1 below.

4. Apply Theorem 2.1 in the subgaussian framework and Theorem 2.2 in
the bounded framework. In each case, with large probability,∥∥∥f̂ − f∗∥∥∥ ≤ ρ∗, ∥∥∥f̂ − f∗∥∥∥

L2

≤ r(2ρ∗) and E(f̂) ≤ C [r(2ρ∗)]2κ .

For the sake of simplicity, we present the two settings in different sub-
sections with both the exact definition of the complexity function and the
theorem. As the sparsity equation is the same in both settings, we define it
before even though it involves the complexity function.

2.2. The Bernstein condition. The first assumption needed is called Bern-
stein assumption and is very classic in order to deal with Lipschitz losses.

Assumption 2.1 (Bernstein condition). There exists κ ≥ 1 and A > 0
such that for every f ∈ F , ‖f − f∗‖2κL2

≤ APLf .

The most important parameter is κ and will be involved in the rate of
convergence. As usual fast rates will be derived when κ = 1. In many situa-
tions, this assumption is satisfied and we present various cases in Section 8
in Supplement A. In particular, it is satisfied with κ = 1 for the logistic
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loss in both bounded and Gaussian framework, and we exhibit explicit con-
ditions to ensure that Assumption 2.1 holds for the hinge and the quantile
loss functions.

We call Assumption 2.1 a Bernstein condition following [6] and that it is
different from the margin assumption from [33, 42]: in the so-called margin
assumption, the oracle f∗ in F is replaced by the minimizer f of the risk
function f → P`f over all measurable functions f , sometimes called the
Bayes rules. We refer the reader to Section 8 in Supplement A and to the
discussions in [27] and Chapter 1.3 in [26] for more details on the difference
between the margin assumption and the Bernstein condition.

Remark 2.1. The careful reader will actually realize that the proof of
Theorem 2.1 and Theorem 2.2 requires only a weaker version of this as-
sumption, that is: there exists κ ≥ 1 and A > 0 such that for every f ∈ C,
‖f − f∗‖2κL2

≤ APLf , where C is defined in terms of the complexity function
r(·) and the sparsity parameter ρ∗ to be defined in the next subsections,

(2) C :=
{
f ∈ F : ‖f − f∗‖L2

≥ r(2 ‖f − f∗‖) and ‖f − f∗‖ ≥ ρ∗
}
.

Note that the set C appears to play a central role in the analysis of regu-
larization methods, cf. [29]. However, in all the examples presented in this
paper, we prove that the Bernstein condition holds on the entire set F .

2.3. The complexity function r(·). The complexity function r(·) is de-
fined by

∀ρ > 0, r(ρ) =

[
Aρcomp(B)√

N

]1/2κ

where A is the constant in Assumption 2.1 and where comp(B) is a measure
of the complexity of the unit ball B associated to the regularization norm.
Note that this complexity measure will depend on the stochastic assumption
of F . In the bounded setting, comp(B) = CRad(B) where C is an absolute
constant and Rad(B) is the Rademacher complexity of B (whose definition
will be reminded in Subsection 2.6). In the subgaussian setting, comp(B) =
CLw(B) where C is an absolute constant, L is the subgaussian parameter
of the class F − F and w(B) is the Gaussian mean-width of B (here again,
exact definitions of L and w(B) will be reminded in Subsection 2.5).

Note that sharper (localized) versions of r(·) are provided in Section 9 in
Supplement A. However, as it is the simplest version that is used in most
examples, we only introduce this (global) version for now.
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2.4. The sparsity parameter ρ∗. The size of the sub-differential of the
regularization function ‖·‖ in a neighborhood of the oracle f∗ play a central
role in our analysis. We recall now its definition: for every f ∈ F

∂ ‖·‖ (f) =
{
g ∈ E : ‖f + h‖ − ‖f‖ ≥

〈
g, h
〉

for all h ∈ E
}
.

It is well-known that ∂ ‖·‖ (f) is a subset of the unit sphere of the dual norm
of ‖·‖ when f 6= 0. Note also that when f = 0, ∂ ‖·‖ (f) is the entire unit dual
ball, a fact we will also use in two situations, either when the regularization
norm has no “sparsity inducing power” – in particular, when it is a smooth
function as in the RKHS case treated in Section 7 in Supplement A; or when
one wants extra norm dependent upper bounds (cf. [30] for more details
where these bounds are called complexity dependent) in addition to sparsity
dependent upper bounds. In the latter, the statistical bounds that we get are
the minimum between an error rate that depends on the notion of sparsity
naturally associated to the regularization norm (when it exists) and an error
rate that depends on ‖f∗‖.

Definition 2.1 (From [29]). The sparsity parameter is the function
∆(·) defined for any ρ > 0 by

∆(ρ) = inf
h∈ρS∩r(2ρ)BL2

sup
g∈Γf∗ (ρ)

〈
h, g
〉

where Γf∗(ρ) =
⋃
f∈f∗+(ρ/20)B ∂ ‖·‖ (f).

Note that there is a slight difference with the definition of the sparsity
parameter from [29] where there ∆(ρ) is defined taking the infimum over the
sphere ρS intersected with a L2-ball of radius r(ρ) whereas in Definition 2.1,
ρS is intersected with a L2-ball of radius r(2ρ). Up to absolute constants
this has no effect on the behavior of ∆(ρ) and the difference comes from
technical details in our analysis (a peeling argument that we use below
whereas a direct homogeneity argument was enough in [29]).

In the following, estimation rates with respect to the regularization norm
‖·‖, the norm ‖·‖L2

as well as sharp oracle inequalities are given. All the
convergence rates depend on a single radius ρ∗ that satisfies the sparsity
equation as introduced in [29].

Definition 2.2. The radius ρ∗ is any solution of the sparsity equation:

(3) ∆(ρ∗) ≥ (4/5)ρ∗.
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Since ρ∗ is central in the results and drives the convergence rates, finding
a solution to the sparsity equation will play an important role in all the
examples that we worked out in the following. Roughly speaking, if the
regularization norm induces sparsity, a sparse element in f∗+(ρ/20)B (that
is an element f for which ∂ ‖·‖ (f) is almost extremal – that is almost as
large as the entire dual sphere) yields the existence of a small ρ∗ satisfying
the sparsity equation.

In addition, if one takes ρ = 20 ‖f∗‖ then 0 ∈ Γf∗(ρ) and since ∂ ‖·‖ (0) is
the entire dual ball associate to ‖·‖, one has directly that ∆(ρ) = ρ and so
ρ satisfies the sparsity Equation (3). We will use this observation to obtain
norm dependent upper bounds, i.e. rates of convergence depending on ‖f∗‖
and that do not depend on any sparsity parameter. Such a bound holds for
any norm; in particular, for norms with no sparsity inducing power as in
Section 7 in Supplement A.

2.5. Theorem in the subgaussian setting. First, we introduce the sub-
gaussian framework (then we will turn to the bounded case in the next
section).

Definition 2.3 (Subgaussian class). We say that a class of functions
F is L-subgaussian (w.r.t. X) for some constant L ≥ 1 when for all f ∈ F
and all λ ≥ 1,

(4) E exp
(
λ|f(X)|/ ‖f‖L2

)
≤ exp

(
λ2L2

)
where ‖f‖L2

=
(
Ef(X)2

)1/2
.

We will use the following operations on sets: for any F ′ ⊂ E and f ∈ E,

F ′ + f = {f ′ + f : f ′ ∈ F ′}, F ′ − F ′ = {f ′1 − f ′2 : f ′1, f
′
2 ∈ F ′}

and dL2(F ′) = sup
(
‖f ′1 − f ′2‖L2

: f ′1, f
′
2 ∈ F ′

)
.

Assumption 2.2. The class F − F is L-subgaussian.

Note that there are many equivalent formulations of the subgaussian prop-
erty of a random variable based on ψ2-Orlicz norms, deviations inequalities,
exponential moments, moments growth characterization, etc. (cf., for in-
stance Theorem 1.1.5 in [14]). The one we will use later is as follows: there
exists some absolute constant C such that F − F is L-subgaussian if and
only if for all f, g ∈ F and t ≥ 1,

(5) P[|f(X)− g(X)| ≥ CtL ‖f − g‖L2
] ≤ 2 exp(−t2).
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There are several examples of subgaussian classes. For instance, when F
is a class of linear functionals F = {

〈
·, t
〉

: t ∈ T} for T ⊂ Rp and X is a
random variable in Rp then F − F is L-subgaussian in the following cases:

1. X is a Gaussian vector in Rp,
2. X = (xj)

p
j=1 has independent coordinates that are subgaussian, that

is, there are constants c0 > 0 and c1 > 0 such that ∀j, ∀t > c0,P[|xj | ≥
t(Ex2

j )
1/2] ≤ 2 exp(−c1t

2),

3. for 2 ≤ q <∞, X is uniformly distributed over p1/qBlq (cf. [4]),
4. X = (xj)

p
j=1 is an unconditional vector (meaning that for every signs

(εj)j ∈ {−1,+1}p, (εjxj)
p
j=1 has the same distribution as (xj)

p
j=1),

Ex2
j ≥ c2 for some c > 0 and ‖X‖l∞ ≤ R almost surely then one can

choose L ≤ CR/c (cf. [28]).

In the subgaussian framework, a natural way to measure the statistical
complexity of the problem is via Gaussian mean-width that we introduce
now.

Definition 2.4. Let H be a subset of L2. Let (Gh)h∈H be the canonical
centered Gaussian process indexed by H (in particular, the covariance struc-

ture of (Gh)h∈H is given by
(
E(Gh1 −Gh2)2

)1/2
=
(
E(h1(X)− h2(X))2

)1/2
for all h1, h2 ∈ H). The Gaussian mean-width of H is w(H) = E suph∈H Gh.

We refer the reader to Section 12 in [17] for the construction of Gaussian
processes in L2. There are many natural situations where Gaussian mean-
widths can be derived explicitely, cf. [19] or the examples in Section 3.

We are now in position to define the complexity parameter as announced
previously.

Definition 2.5. The complexity parameter is the non-decreasing
function r(·) defined for every ρ ≥ 0 by

r(ρ) =

(
ACLw(B)ρ√

N

) 1
2κ

where κ (the Bernstein parameter) and A are defined in Assumption 2.1, L
is the subgaussian parameter from Assumption 2.2 and C > 0 is an absolute
constant (the exact value of C can be deduced from the proof of Proposi-
tion 9.2 in Supplement A).

After the computation of the Bernstein parameter κ, the complexity func-
tion r(·) and the radius ρ∗, it is now possible to explicit our main result in
the subgaussian framework.
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Theorem 2.1. Assume that Assumption 1.1, Assumption 2.1 and As-
sumption 2.2 hold and let C > 0 from the definition of r(·) in Definition
2.5. Let the regularization parameter λ be

λ =
5

8

CLw(B)√
N

and ρ∗ satisfying (3). Then, with probability larger than

(6) 1−C exp
(
−CN1/2κ(ρ∗w(B))(2κ−1)/κ

)
we have∥∥∥f̂ − f∗∥∥∥ ≤ ρ∗, ∥∥∥f̂ − f∗∥∥∥

L2

≤ r(2ρ∗) =

[
ACLw(B)2ρ∗√

N

]1/2κ

and

E(f̂) ≤ r(2ρ∗)2κ

A
=
CLw(B)2ρ∗√

N

where C denotes positive constants that might change from one instance to
the other and depend only on A, κ, L and C.

Remark 2.2 (Deviation parameter). Replacing w(B) by any upper bound
does not affect the validity of the result. As a special case, it is possible to
increase the confidence level of the bound by replacing w(B) by w(B) + x:
then, with probability at least

1−C exp
(
−CN1/2κ(ρ∗[w(B) + x])(2κ−1)/κ

)
we have in particular∥∥∥f̂ − f∗∥∥∥

L2

≤ r(2ρ∗) =

[
ACL[w(B) + x]2ρ∗√

N

]1/2κ

and

E(f̂) ≤ r(2ρ∗)2κ

A
=
CL[w(B) + x]2ρ∗√

N
.

Remark 2.3 (Norm and sparsity dependent error rates). Theorem 2.1
holds for any radius ρ∗ satisfying the sparsity equation (3). We have noticed
in Section 2.4 that ρ∗ = 20 ‖f∗‖ satisfies the sparsity equation since in that
case 0 ∈ Γf∗(ρ

∗) and so ∆(ρ∗) = ρ∗. Therefore, one can apply Theorem 2.1
to both ρ∗ = 20 ‖f∗‖ (this leads to norm dependent upper bounds) and to
the smallest ρ∗ satisfying the sparsity equation (3) (this leads to sparsity
dependent upper bounds) at the same time. Both will lead to meaningful
results (a typical example of such a combined result is Theorem 9.2 from
[23] or Theorem 3.1 below).
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2.6. Theorem in the bounded setting. We now turn to the bounded frame-
work ; that is we assume that all the functions in F are uniformly bounded
in L∞. This assumption is very different in nature than the subgaussian as-
sumption which is in fact a norm equivalence assumption (i.e. Definition 2.3
is equivalent to ‖f‖L2

≤ ‖f‖ψ2
≤ L ‖f‖L2

for all f ∈ F where ‖·‖ψ2
is the

ψ2 Orlicz norm, cf. [36]).

Assumption 2.3 (Boundedness assumption). There exist a constant b >
0 such that for all f ∈ F , ‖f‖L∞ ≤ b.

The main motivation to consider the bounded setup is for sampling over
the canonical basis of a finite dimensional space like Rm×T or Rp. Note that
this type of sampling is stricto sensu subgaussian, but with a constant L
depending on the dimensions m and T , which yields sub-optimal rates. This
is the reason why the results in the bounded setting are more relevant in
this situation. This is especially true for the 1-bit matrix completion problem
that will be studied in depth in Section 4. For this example, the Xi’s are
chosen randomly in the canonical basis (E1,1, · · · , Em,T ) of Rm×T . Moreover,
in that example, the class F is the class of all linear functionals indexed by
bB∞: F = {

〈
·,M

〉
: maxp,q |Mpq| ≤ b} and therefore the study of this

problem falls naturally in the bounded framework studied in this section.
Under the boundedness assumption, the ”statistical complexity” cannot

be anymore characterized by Gaussian mean width. We therefore introduce
another complexity parameter known as Rademacher complexity. This com-
plexity measure has been extensively studied in the learning theory literature
(cf., for instance, [22, 23, 5]).

Definition 2.6. Let H be a subset of L2. Let (εi)
N
i=1 be N i.i.d. Rademacher

variables (i.e. P[εi = 1] = P[εi = −1] = 1/2) independent of the Xi’s. The
Rademacher complexity of H is

Rad(H) = E sup
f∈H

∣∣∣ 1√
N

N∑
i=1

εif(Xi)
∣∣∣.

Remark 2.4. The Rademacher complexity is often defined in the lit-

erature as Rad′(H) = E supf∈H

∣∣∣ 1
N

∑N
i=1 εif(Xi)

∣∣∣, namely, a factor
√
N

smaller than Rad(H). We chose to use Rad(H) =
√
NRad′(H) as this

allow a unified presentation with the subgaussian case where the complexity
is measured with the Gaussian mean width.



14 P. ALQUIER AND V. COTTET AND G. LECUÉ

Note that when (f(X))f∈H is a version of the isonormal process over L2

(cf. Chapter 12 in [17]) restricted to H then the Gaussian mean-width and
the Rademacher complexity coincide: w(H) = Rad(H). But, in that case,
H is not bounded in L∞ and, in general, the two complexity measures are
different.

There are many examples where Rademacher complexity have been cal-
culated (cf. [35]). Like in the previous subgaussian setting the statistical
complexity is given by a function r(·). Note that we use the same notation
r(·) in the two scenarii, namely the bounded and subgaussian case. We do
this because this r(·) function plays exactly the same role in both cases.
However, its definition is not the same in each scenario, as can be seen
below.

Definition 2.7. The complexity parameter is the non-decreasing
function r(·) defined for every ρ ≥ 0 by

r(ρ) =

(
CARad(B)ρ√

N

) 1
2κ

, where C =
1920

7
.

Theorem 2.2. Assume that Assumption 1.1, Assumption 2.1 and As-
sumption 2.3 hold. Let the regularization parameter λ be chosen as λ =
720Rad(B)/7

√
N . Then, with probability larger than

(7) 1−C exp
(
−CN1/2κ(ρ∗Rad(B))(2κ−1)/κ

)
we have∥∥∥f̂ − f∗∥∥∥ ≤ ρ∗, ∥∥∥f̂ − f∗∥∥∥

L2

≤ r(2ρ∗) =

[
CARad(B)2ρ∗√

N

]1/2κ

and

E(f̂) ≤ r(2ρ∗)2κ

A
=
CRad(B)2ρ∗√

N
,

where C denotes positive constants that might change from one instance to
the other and depend only on A, b, κ and r(·) is the function introduced in
Definition 2.7.

In Sections 3, 4 and Section 7 in Supplement A we compute r(ρ) either
in the subgaussian setup or in the bounded setup and solve the sparsity
equation in various examples, showing the versatility of the main strategy.
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3. Application to logistic LASSO and logistic SLOPE. The first
example of application of the main results in Section 2 involves one very pop-
ular method developed during the last two decades in binary classification
which is the Logistic LASSO procedure (cf. [32, 34, 41, 18, 38]).

We consider the vector framework, where (X1, Y1), . . . , (XN , YN ) are N
i.i.d. pairs with values in Rp×{−1, 1} distributed like (X,Y ). Both bounded
and subgaussian frameworks can be analyzed in this example. Since an ex-
ample in the bounded case is provided in the next section, only the subgaus-
sian case is considered here and we leave the bounded case to the interested
reader. We therefore shall apply Theorem 2.1 to get estimation and predic-
tion bounds for the well known logistic LASSO and the new logistic SLOPE.

In this section, we consider the class of linear functionals indexed by RBl2
for some radius R ≥ 1 and the logistic loss:

(8) F =
{〈
·, t
〉

: t ∈ RBl2
}
, `f (x, y) = log(1 + exp(−yf(x))).

As usual the oracle is denoted by f∗ = argminf∈F E`f (X,Y ), we also intro-
duce t∗ ∈ RB`2 such that f∗ =

〈
·, t∗
〉
.

3.1. Logistic LASSO. The logistic loss function is Lipschitz with con-
stant 1, so Assumption 1.1 is satisfied. It follows from Proposition 8.2 in
Supplement A that Assumption 2.1 is satisfied when the design X is the
standard Gaussian variable in Rp and the class F defined in (8) - note that
this fact is not obvious, and is new up to our knowledge. In that case, the
Bernstein parameter is κ = 1 and A = c0/R

3 for some absolute constant
c0 > 0 which can be deduced from the proof of Proposition 8.2. We con-
sider the l1 norm

∥∥〈·, t〉∥∥ = ‖t‖l1 for regularization. We will therefore obtain

statistical results for the RERM estimator f̂L =
〈
t̂L, ·

〉
that is defined by

t̂L ∈ argmin
t∈RBl2

(
1

N

N∑
i=1

log
(
1 + exp(−Yi

〈
Xi, t

〉)
+ λ ‖t‖l1

)

where λ is a regularization parameter to be chosen according to Theorem 2.1.
The two final ingredients needed to apply Theorem 2.1 are 1) the compu-

tation of the Gaussian mean width of the unit ball Bl1 of the regularization
function ‖·‖l1 2) find a solution ρ∗ to the sparsity equation (3).

Let us first deal with the complexity parameter of the problem. If one
assumes that the design vector X is isotropic, i.e. E

〈
X, t

〉2
= ‖t‖2l2 for

every t ∈ Rp then the metric naturally associated with X is the canonical
l2-distance in Rp. In that case, it is straightforward to check that w(Bl1) ≤
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c1
√

log p for some (known) absolute constant c1 > 0 and so we define, for
all ρ ≥ 0,

(9) r(ρ) = C

(
ρ

√
log p

N

)1/2

for the complexity parameter of the problem (from now and until the end
of Section 3, the constants C depends only on L, C, c0 and c1).

Now let us turn to a solution ρ∗ of the sparsity equation (3). First note
that when the design is isotropic the sparsity parameter is the function

∆(ρ) = inf

{
sup

g∈Γt∗ (ρ)

〈
h, g
〉

: h ∈ ρSl1 ∩ r(2ρ)Bl2

}

where Γt∗(ρ) =
⋃
f∈t∗+(ρ/20)Bl1

∂‖ · ‖(f).

A first solution to the sparsity equation is ρ∗ = 20 ‖t∗‖l1 because it leads
to 0 ∈ Γt∗(ρ

∗). This solution is called norm dependent.
Another radius ρ∗ solution to the sparsity equation (3) is obtained when t∗

is close to a sparse-vector, that is a vector with a small support. We denote
by ‖v‖0 := |supp(v)| the size of the support of v ∈ Rp. Now, we recall a
result from [29].

Lemma 3.1 (Lemma 4.2 in [29]). If there exists some v ∈ t∗+ (ρ/20)Bl1
such that ‖v‖0 ≤ c0(ρ/r(ρ))2 then ∆(ρ) ≥ 4ρ/5 where c0 is an absolute
constant.

In particular, we get that ρ∗ ∼ s
√

(log p)/N is a solution to the sparsity
equation if there is a s-sparse vector which is (ρ∗/20)-close to t∗ in l1. This
radius leads to the so-called sparsity dependent bounds.

After the derivation of the Bernstein parameter κ = 1, the complexity
w(B) and a solution ρ∗ to the sparsity equation, we are now in a position
to apply Theorem 2.1 to get statistical bounds for the Logistic LASSO.

Theorem 3.1. Assume that X is a standard Gaussian vector in Rp. Let
s ∈ {1, . . . , p}. Assume that there exists a s-sparse vector in t∗+Cs

√
(log p)/NBl1.

Then, with probability larger than 1−C exp (−Cs log p), for every 1 ≤ q ≤ 2,
the logistic LASSO estimator t̂L with regularization parameter

λ =
5c1CL

8

√
log p

N
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satisfies

∥∥t̂L − t∗∥∥lq ≤ Cmin

(
s1/q

√
log p

N
, ‖t∗‖1/ql1

(
log p

N

) 1
2
− 1

2q

)

and the excess logistic risk of t̂L is such that

Elogistic(t̂L) = R(t̂L)−R(t∗) ≤ Cmin

(
s log(p)

N
, ‖t∗‖l1

√
log(p)

N

)
.

Note that an estimation result for any lq-norm for 1 ≤ q ≤ 2 follows from

results in l1 and l2 and the interpolation inequality ‖v‖lq ≤ ‖v‖
−1+2/q
l1

‖v‖2−2/q
l2

.
Estimation results for the logistic LASSO estimator in the generalized

linear model have been obtained in [44] under the assumption that the basis
functions and the oracle are bounded. This assumption does not hold here
since the basis functions – defined here by ψk(·) =

〈
ek, ·

〉
where (ek)

p
k=1

is the canonical basis of Rp – are not bounded when the design is X ∼
N (0, Ip×p). Moreover, we do not make the assumption that f∗ is bounded
in L∞. Nevertheless, we recover the same estimation result for the l2-loss
and l1-loss as in [44]. But we also provide a prediction result since an excess
risk bound is also given in Theorem 3.1.

Note that Theorem 3.1 recovers the classical rates of convergence for the
logistic LASSO estimator that have been obtained in the literature so far in
the case of the square loss (see, [29]). This rate is the minimax rate obtained
over all s-sparse vectors w.r.t. the `q distance for every 1 ≤ q ≤ 2 as long
as log(p/s) behaves like log p when the oracle t∗ is the one associated with
the square loss (see, [7]). This is indeed the case when s� p – which is the
classic setup in high-dimensional statistics. But when s is proportional to p
this rate is not minimax since there is a logarithmic loss. To overcome this
issue we introduce a new estimator: the logistic SLOPE.

3.2. Logistic Slope. The construction of the logistic Slope is similar to
the one of the logistic LASSO except that the regularization norm used in
this case is the SLOPE norm (cf. [40, 9]): for every t = (tj) ∈ Rp,

(10) ‖t‖SLOPE =

p∑
j=1

√
log(ep/j)t]j

where t]1 ≥ t
]
2 ≥ · · · ≥ 0 is the non-increasing rearrangement of the absolute

values of the coordinates of t and e is the base of the natural logarithm.
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Using this estimator with a regularization parameter λ ∼ 1/
√
N we recover

the same result as for the logistic LASSO case except that one can get, in
that case, the classical (minimax, for the square loss) rate

√
(s/N) log(ep/s))

for any s ∈ {1, . . . , p}.
Indeed, it follows from Lemma 5.3 in [29] that the Gaussian mean width

of the unit ball BSLOPE associated with the SLOPE norm is of the order of
a constant. The sparsity equation is satisfied by the radius

(11) ρ∗ ∼ s√
N

log
(ep
s

)
as long as there is a s-sparse vector in t∗+(ρ∗/20)BSLOPE . The norm depen-
dent radius is as usual of order ‖t∗‖SLOPE . Then, the next result follows from
Theorem 2.1. It improves the best known bounds on the logistic LASSO.

Theorem 3.2. Assume that X is a standard Gaussian vector in Rp. Let
s ∈ {1, . . . , p}. Assume that there exists a s-sparse vector in t∗+(ρ∗/20)BSLOPE
for ρ∗ as in (11). Then, with probability larger than 1−C exp (−Cs log(p/s)),
the logistic SLOPE estimator

t̂S ∈ argmin
t∈RBl2

(
1

N

N∑
i=1

log
(
1 + exp(−Yi

〈
Xi, t

〉)
+

C√
N
‖t‖SLOPE

)

satisfies

∥∥t̂S − t∗∥∥SLOPE ≤ Cmin

(
s√
N

log
(ep
s

)
, ‖t∗‖SLOPE

)
and ∥∥t̂S − t∗∥∥l2 ≤ Cmin

(√
s

N
log
(ep
s

)
,

√
‖t∗‖SLOPE√

N

)
and the excess logistic risk of t̂S is such that

Elogistic(t̂S) = R(t̂S)−R(t∗) ≤ Cmin

(
s log(ep/s)

N
, ‖t∗‖l1

√
log(ep/s)

N

)
.

Let us comment on Theorem 3.2 together with the fact that we do not
make any assumption on the output Y all along this work. Theorem 3.2
proves that there exists an estimator achieving the rate s log(ep/s)/N for
the `2-estimation risk (to the square) with absolutely no assumption on
the output Y . In the case where a statistical model Y = sign(

〈
X, t∗

〉
+ ξ)



REGULARIZED PROCEDURES WITH LIPSCHITZ LOSS FUNCTIONS 19

holds, where ξ is independent of X then Theorem 3.2 shows that the RERM
with logistic loss and SLOPE regularization achieves the rate s log(ep/s)/N
under no assumption on the noise ξ. In particular, ξ does not need to have
any moment and, for instance, the mimimax rate s log(ep/s)/N can still be
achieved when the noise has a Cauchy distribution. Moreover, this estimation
rate holds with exponentially large probability as if the noise had a Gaussian
distribution (cf. [28]).

LASSO SLOPE

w(B)
√

log p 1

ρ∗
s√
N

√
log p

s√
N

log
ep

s

r(ρ∗)
s

N
log p

s

N
log

ep

s
Table 1

Key quantities involved in the study of the Logistic LASSO and SLOPE.

In Table 1, the different quantities playing an important role in our anal-
ysis have been collected for the `1 and SLOPE norms: the Gaussian mean
width w(B) of the unit ball B of the regularization norm, a radius ρ∗ satis-
fying the sparsity equation and finally the L2 estimation rate of convergence
r(ρ∗) summarizing the two quantities. As mentioned in Figure 1, having a
large sub-differential at sparse vectors and a small Gaussian mean-width
w(B) is a good way to construct “sparsity inducing”regularization norms as
it is, for instance the case of “atomic norms” (cf. [15]).

t∗ t∗0 0

G G

∂ ‖·‖1 (t∗) ∂ ‖·‖SLOPE (t∗)

Fig 1. Gaussian complexity and size of the sub-differential for the `1 and SLOPE
norms: A “large” sub-differential at sparse vectors and a small Gaussian mean width of
the unit ball of the regularization norm is better for sparse recovery. In this figure, G
represents a “typical” Gaussian vector used to compute the Gaussian mean width of the
unit regularization norm ball.
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4. Application to matrix completion via S1-regularization. The
second example involves matrix completion and uses the bounded setting
from Section 2.6. The goal is to derive new results on two ways: the 1-
bit matrix completion problem where entries are binary, and the quantile
completion problem. The main theorems in this section yield upper bounds
on completion in Sp norms (1 ≤ p ≤ 2) and on various excess risks. We also
propose algorithms in order to compute efficiently the RERM in the matrix
completion issue but with non differentiable loss and provide a simulation
study that is postponed to Section 6. We first present a general theorem and
then turn to specific loss functions because they induce a discussion about
the Bernstein assumption and the κ parameter and lead to more particular
theorems.

4.1. General result. In this section, we consider the matrix completion
problem. The class is F =

{〈
·,M

〉
: M ∈ bB∞

}
, where bB∞ = {M =

(Mpq) ∈ Rm×T : maxp,q |Mpq| ≤ b} and b > 0. In matrix completion, we write
the observed location as a mask matrix X: it is an element of the canonical
basis (E1,1, · · · , Em,T ) of Rm×T where for any (p, q) ∈ {1, . . . ,m}×{1, . . . , T}
the entry of Ep,q is 0 everywhere except for the (p, q)-th entry where it equals
to 1. We assume that there are constants 0 < c ≤ c̄ <∞ such that, for any
(p, q), c/(mT ) ≤ P(X = Ep,q) ≤ c̄/(mT ) (this extends the uniform sampling
distribution for which c = c̄ = 1). These assumptions are encompassed in
the following definition.

Assumption 4.1 (Matrix completion design). The variable X takes
value in the canonical basis (E1,1, · · · , Em,T ) of Rm×T . There are positive
constants c, c̄ such that for any (p, q) ∈ {1, . . . ,m} × {1, . . . , T}, c/(mT ) ≤
P(X = Ep,q) ≤ c̄/(mT ).

As the design X takes its values in the canonical basis of Rm×T , the
boundedness assumption is satisfied. The penalty is taken as the nuclear
norm. Thus, the RERM is given by

(12) M̂ ∈ argmin
M∈bB∞

(
1

N

N∑
i=1

`(
〈
Xi,M

〉
, Yi) + λ ‖M‖S1

)
.

Statistical properties of (12) will follow from Theorem 2.2 since one can
recast this problem in the setup of Section 2.6. The oracle matrix M∗ is
defined by f∗ = 〈·,M∗〉, that is, M∗ = argminM∈bB∞ E`(

〈
M,X

〉
, Y ).

Let us also introduce the matrix M = argminM∈Rm×T E`(
〈
M,X

〉
, Y ).

Note that
〈
M, ·

〉
= f = arg minf measurable E`(f(X), Y ) (because X takes
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its values in a finite set). Our general results usually are on f∗ rather than
on f as it is usually impossible to provide rates on the estimation of f
without stringent assumptions on Y and F . However, M̄p,q = P[Y = 1|X =
Ep,q] ∈ [0, 1] for all p, q and so M = M∗ without any extra assumption when
b = 1 (this is a favorable case). On the other hand, to get fast rates in matrix
completion with quantile loss requires that M = M∗ (which is a stringent
assumption in this setting).

Complexity function. We first compute the complexity parameter r(·) as
introduced in Definition 2.7. To that end, one just needs to compute the
global Rademacher complexity of the unit ball of the regularization function
which is BS1 = {A ∈ Rm×T : ‖A‖S1

≤ 1}:

Rad(BS1) = E sup
‖A‖S1≤1

∣∣∣ 1√
N

N∑
i=1

εi
〈
Xi, A

〉∣∣∣ = E

∥∥∥∥∥ 1√
N

N∑
i=1

εiXi

∥∥∥∥∥
S∞

≤ c0(c, c̄)

√
log(m+ T )

min(m,T )
(13)

where ‖·‖S∞ is the operator norm (i.e. the largest singular value), the last
inequality follows from Lemma 1 in [24] and c0(c, c̄) > 0 is some constant
that depends only on c and c̄.

The complexity parameter r(·) is derived from Definition 2.7: for any
ρ ≥ 0,

(14) r(ρ) =

[
CAρRad(BS1)√

N

] 1
2κ

= C

[
ρ

√
log(m+ T )

N min(m,T )

] 1
2κ

where from now the constants C depend only on c, c̄, b, A and κ.

Sparsity parameter. The next important quantity is the sparsity parameter.
Its expression in this particular case is such that, for any ρ > 0,

∆(ρ) ≥ inf

{
sup

G∈ΓM∗ (ρ)

〈
H,G

〉
: H ∈ ρSS1 ∩ ((

√
mT/c)r(2ρ))BS2

}
where ΓM∗(ρ) is the union of all the sub-differential of ‖·‖S1

of points in a
S1-ball of radius ρ/20 centered in M∗. Note that the normalization factor√
mT in the localization (

√
mTr(2ρ))BS2 comes from the “non normalized

isotropic” property of X: c ‖M‖2S2
/(mT ) ≤ E

〈
X,M

〉2 ≤ c̄ ‖M‖2S2
/(mT )

for all M ∈ Rm×T . Now, we use a result from [29] to find a solution to the
sparsity equation.
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Lemma 4.1 (Lemma 4.4 in [29]). There exists an absolute constant c1 >
0 for which the following holds. If there exists V ∈ M∗ + (ρ/20)BS1 such

that rank(V ) ≤
(
c1ρ/(

√
mTr(ρ))

)2
then ∆(ρ) ≥ 4ρ/5.

It follows from Lemma 4.1 that the sparsity equation (3) is satisfied by ρ∗

when it exists V ∈M∗+(ρ∗/20)BS1 such that rank(V ) = c1

(
ρ∗/(
√
mTr(ρ∗))

)2
.

Note obviously that V can be M∗ itself, in this case, ρ∗ can be taken such

that rank(M∗) = c1

(
ρ∗/(
√
mTr(ρ∗))

)2
. However, when M∗ is not low-rank,

it might still be that a low-rank approximation V of M∗ is close enough to
M∗ w.r.t. the S1-norm. As a consequence, if for some s ∈ {1, . . . ,min(m,T )}
there exists a matrix V with rank at most s in M∗ + (ρ∗s/20)BS1 where

(15) ρ∗s = C (smT )
κ

2κ−1

(
log(m+ T )

N min(m,T )

) 1
2(2κ−1)

.

then ρ∗s satisfies the sparsity equation.
Following the remark at the end of Subsection 2.4, another possible choice

is ρ∗ = 20‖M∗‖S1 in order to get norm dependent rates. In the end, we choose
ρ∗ = Cmin [ρ∗s, ‖M∗‖S1 ]. We are now in a position to apply Theorem 2.2 to

derive statistical properties for the RERM M̂ defined in (12).

Theorem 4.1. Assume that Assumption 1.1, 4.1 and 2.1 hold. Consider
the estimator in (12) with regularization parameter

(16) λ =
c0(c, c̄)720

7

√
log(m+ T )

N min(m,T )

where c0(c, c̄) are the constants in Assumption 4.1. Let s ∈ {1, . . . ,min(m,T )}
and assume that there exists a matrix with rank at most s in M∗+(ρ∗s/20)BS1.
Then, with probability at least 1−C exp (−Cs(m+ T ) log(m+ T )), we have

∥∥∥M̂ −M∗∥∥∥
S1

≤ Cmin

{
(smT )

κ
2κ−1

(
log(m+ T )

N min(m,T )

) 1
2(2κ−1)

, ‖M∗‖S1

}
,∥∥∥M̂ −M∗∥∥∥

S2√
mT

≤ Cmin


(
s(m+ T ) log(m+ T )

N

) 1
2(2κ−1)

,

(
‖M∗‖S1

√
log(m+ T )

N min(m,T )

) 1
2κ


E(M̂) ≤ Cmin

{(
s(m+ T ) log(m+ T )

N

) κ
2κ−1

, ‖M∗‖S1

√
log(m+ T )

N min(m,T )

}
.
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Note that the interpolation inequality also allows to get a bound for the
Sp norm, when 1 ≤ p ≤ 2:∥∥∥M̂ −M∗∥∥∥

Sp

(mT )
1
p

≤ Cmin

{[(
s2(p−1)+κ(2−p)(m+ T )p−1

min(m,T )
2−p
2

) 1
p
√

log(m+ T )

N

] 1
2κ−1

,

‖M∗‖
p−1+κ(2−p)

pκ

S1

(
log(m+ T )

N min(m,T )

) p−1
2κp
(

1

mT

) 2−p
p

}
.

Theorem 4.1 shows that the sparsity dependent error rate in the excess
risk bound is (for s = rank(M∗))(

rank(M∗)(m+ T ) log(m+ T )

N

) κ
2κ−1

which is the classic excess risk bound under the margin assumption up to a
log factor (cf. [3]). As for the S2-estimation error, when κ = 1, we recover
the classic S2-estimation rate√

rank(M∗)(m+ T ) log(m+ T )

N

which is minimax in general (up to log terms, e.g. take the quadratic loss
when Y is bounded and compare to [37]).

4.2. 1-bit matrix completion. In this subsection we assume that Y ∈
{−1,+1}, and we challenge two loss functions: the logistic loss, and the hinge
loss. It is worth noting that the minimizerM = argminM∈Rm×T E`(

〈
M,X

〉
, Y )

is not the same for both losses. For the hinge loss, it is known that it is the
matrix formed by the Bayes classifier. This matrix has entries bounded by
1 so M∗ = M as soon as b = 1. In opposite to this case, the logistic loss
leads to a matrix M with entries formed by the odds ratio. It may even be
infinite when there is no noise.

Logistic loss. Let us start by assuming that ` is the logistic loss. Thanks
to Proposition 8.2 in Supplement A we know that κ = 1 for any b (A
is also known, A = 4 exp(2b)) and therefore the next result follows from
Theorem 4.1. Note that we do not assume that M is in F and therefore our
results provides estimation and prediction bounds for the oracle M∗.

Theorem 4.2 (1-bit Matrix Completion with logistic loss). Assume that
Assumption 4.1 holds. Let s ∈ {1, . . . ,min(m,T )} and assume that there
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exists a matrix with rank at most s in M∗ + (ρ∗s/20)BS1 where ρ∗s is defined
in (15). With probability at least 1−C exp (−Csmax(m,T ) log(m+ T )), the
estimator

(17) M̂ ∈ argmin
M∈bB∞

(
1

N

N∑
i=1

log
(
1 + exp

(
−Yi

〈
Xi,M

〉))
+ λ ‖M‖S1

)
with λ as in Equation (16) satisfies∥∥∥M̂ −M∗∥∥∥

S1

mT
≤ Cmin

{
s

√
log(m+ T )

N min(m,T )
,
‖M∗‖S1

mT

}
,∥∥∥M̂ −M∗∥∥∥

S2√
mT

≤ Cmin

{√
smax(m,T ) log(m+ T )

N
, ‖M∗‖

1
2
S1

(
log(m+ T )

N min(m,T )

) 1
4

}

Elogistic(M̂) ≤ Cmin

{
smax(m,T ) log(m+ T )

N
, ‖M∗‖S1

√
log(m+ T )

N min(m,T )

}
.

Using an interpolation inequality, it is easy to derive estimation bound in
Sp for all 1 ≤ p ≤ 2 as in Theorem 4.1 so we do not reproduce it here. Also,

note that our bound on
∥∥∥M̂ −M∗∥∥∥

S2

is of the same order as the one in [25].

We actually now prove that this rate is minimax-optimal (up to log terms).

Theorem 4.3 (Lower bound with logistic loss). For a given matrix M ∈
B∞, define P⊗NM as the probability distribution of the N -uplet (Xi, Yi)

N
i=1 of

i.i.d. pairs distributed like (X,Y ) such that X is uniformly distributed on the
canonical basis (Ep,q) of Rm×T and PM (Y = 1|X = Ep,q) = exp(Mpq)/[1 +
exp(Mpq)] for every (p, q) ∈ {1, . . . ,m}×{1, . . . , T}. Fix s ∈ {1, . . . ,min(m,T )}
and assume that N ≥ s(m+ T ) log(2)/(8b2). Then

inf
M̂

sup
M∗ ∈ bB∞

rank(M∗) ≤ s

P⊗NM∗

(
1√
mT

∥∥∥M̂ −M∗∥∥∥
S2

≥ c
√

(m+ T )s

N

)
≥ β

for some universal constants β, c > 0.

Also, as pointed out in the introduction, the quantity of interest is not
the logistic excess risk, but the classification excess risk: let us remind that
R0/1(M) = P[(Y 6= sign(〈M,X〉)] for all M ∈ Rm×T . Even if we assume

that M∗ = M , all that can be deduced from Theorem 2.1 in [45] is that

E0/1(M̂) = R0/1(M̂)− inf
M∈Rm×T

R0/1(M) ≤ C

√
Elogistic(M̂)
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≤ C

√
rank(M)(m+ T ) log(m+ T )

N
.

But this rate on the excess 0/1-risk may be much better under the margin
assumption [33, 42] (cf. Equation (36) in Supplement A). This motivates the
use of the hinge loss instead of the logistic loss, for which the results in [45]
do not lead to a loss of a square root in the rate.

Hinge loss. As explained above, the choice b = 1 ensures M = M∗ with-
out additional assumption. Thanks to Proposition 8.3 in Supplement A we
know that as soon as infp,q |Mp,q − 1/2| ≥ τ for some τ > 0, the Bernstein
assumption is satisfied by the hinge loss with κ = 1 and A = 1/(2τ). This
assumption seems very mild in many situations and we derive the results
with it.

Theorem 4.4 (1-bit Matrix Completion with hinge loss). Assume that
Assumption 4.1 holds. Assume that infp,q |P (Y = 1|X = Ep,q) − 1/2| ≥ τ
for some τ > 0. Let s ∈ {1, . . . ,min(m,T )} and assume that there exists
a matrix with rank at most s in M + (ρ∗s/20)BS1 where ρ∗s is defined in
(15). With probability at least 1 − C exp (−Csmax(m,T ) log(m+ T )), the
estimator

(18) M̂ ∈ argmin
M∈B∞

(
1

N

N∑
i=1

(
1− Yi

〈
Xi,M

〉)
+

+ λ ‖M‖S1

)

with λ as in Equation (16) satisfies

1

mT

∥∥∥M̂ −M∥∥∥
S1

≤ Cmin

{
s

√
log(m+ T )

N min(m,T )
,

∥∥M∥∥
S1

mT

}
,

1√
mT

∥∥∥M̂ −M∥∥∥
S2

≤ Cmin

{√
s(m+ T ) log(m+ T )

N
,
∥∥M∥∥ 1

2

S1

(
log(m+ T )

N min(m,T )

) 1
4

}

Ehinge(M̂) ≤ Cmin

{
s(m+ T ) log(m+ T )

N
,
∥∥M∥∥

S1

√
log(m+ T )

N min(m,T )

}
.

In this case, [45] implies that the excess risk bound for the classification
error (using the 0/1-loss) is the same as the one for the hinge loss: it is
therefore of the order of rank(M)(m+ T ) log(m+ T )/N .

First, note that [39], obtained a rate in
√

rank(M)(m+ T )/N up to log

terms without this assumption infp,q |P (Y = 1|X = Ep,q) − 1/2| ≥ τ for
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some τ > 0, and proved that this rate is optimal in this case; [10] also
obtained a rate in 1/

√
N . The rate rank(M)(m+ T ) log(m+ T )/N for the

classification excess error was only reached in [16] up to our knowledge (using
the PAC-Bayesian technique from [13, 12, 1, 31, 2]), in the very restrictive
noiseless setting - that is, P (Y = 1|X = Ep,q) ∈ {0, 1} which is equivalent
to P (Y = sign(

〈
M,X

〉
) = 1. Here this rate is proved to hold in a much

general case infp,q |P (Y = 1|X = Ep,q) − 1/2| ≥ τ even when τ > 0 is very
small. Finally, we prove that our rate is actually the minimax rate in this
case.

Theorem 4.5 (Lower bound with hinge loss). For a given matrix M ∈
B∞, let E⊗NM be the expectation w.r.t. the N -uplet (Xi, Yi)

N
i=1 of i.i.d. pairs

distributed like (X,Y ) such that X is uniformly distributed on the canonical
basis (Ep,q) of Rm×T and PM (Y = 1|X = Ep,q) = Mpq for every (p, q) ∈
{1, . . . ,m} × {1, . . . , T}. Fix s ∈ {1, . . . ,min(m,T )} and assume that N ≥
smax(m,T ) log(2)/8. Then, for some universal constant c > 0,

inf
M̂

sup
M∗ ∈ B∞

rank(M∗) ≤ s

E⊗NM∗
(
Ehinge(M̂)

)
≥ csmax(m,T )

N
.

Theorem 4.5 provides a minimax lower bound in expectation whereas
Theorem 4.4 provides an excess risk bound with large deviation. The two
residual terms of the excess hinge risk from Theorem 4.5 and Theorem 4.4
match up to the log(m+ T ) factor.

4.3. Quantile loss and median matrix completion. The matrix comple-
tion problem with continuous entries has almost always been tackled with a
penalized least squares estimator [11, 24, 20, 29, 31], but the use of other loss
functions may be very interesting in this case too. Our last result on matrix
completion is a result for the quantile loss ρτ for τ ∈ (0, 1). Let us recall that
ρτ (u) = u(τ − I(u ≤ 0)) for all u ∈ R and `M (x, y) = ρτ (y−

〈
M,x

〉
). While

the aforementionned references provid ways to estimate the conditional mean
of Y |X = Ep,q, here, we thus provide a way to estimate conditional quantiles
of order τ . When τ = 0.5, it actually estimates the conditional median, which
is known to be an indicator of central tendency that is more robust than
the mean in the presence of outliers. On the other hand, for large and small
τ ’s (for example the 0.05 and 0.95 quantiles), this allows to build confidence
intervals for Y |X = Ep,q. Confidence bounds for the entries of matrices in
matrix completion problems are something new up to our knowledge.

The following result studies a particular case in which the Bernstein As-
sumption is proved in Proposition 8.4 in Supplement A. Following [43], it
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assumes that the conditional distribution of Y given X is continuous and
that the density is not too small on the domain of interest – this ensures that
Bernstein’s condition is satisfied with κ = 1 and A depending on the lower
bound on the density, see Section 7 in Supplement A for more details. It can
easily be derived for a specific distribution such as Gaussian, Student and
even Cauchy. But we also have to assume that M ∈ bB∞, or in other words
M = M∗, which is a more stringent assumption: in practice, it means that
we should know a priori an upper bound b on the quantiles to be estimated.

Theorem 4.6 (Quantile matrix completion). Assume that Assumption 4.1
holds. Let b > 0 and assume that M ∈ bB∞. Assume that for any (p, q),
Y |(X = Ep,q) has a density g with respect to the Lebesgue measure such that
g(u) > 1/c for some constant c > 0 for any u such that |u−Mp,q| ≤ 2b. Let
s ∈ {1, . . . ,min(m,T )} and assume that there exists a matrix with rank at
most s in M+(ρ∗s/20)BS1 where ρ∗s is defined in (15). Then, with probability
at least 1−C exp (−Csmax(m,T ) log(m+ T )), the estimator

(19) M̂ ∈ argmin
M∈bB∞

(
1

N

N∑
i=1

ρτ (Yi −
〈
Xi,M

〉
) + λ ‖M‖S1

)

with λ = c0(c, c̄)
√

log(m+ T )/(N min(m,T )) satisfies

1

mT

∥∥∥M̂ −M∥∥∥
S1

≤ Cmin

{
s

√
log(m+ T )

N min(m,T )
,

∥∥M∥∥
S1

mT

}
,

1√
mT

∥∥∥M̂ −M∥∥∥
S2

≤ Cmin

{√
s(m+ T ) log(m+ T )

N
,
∥∥M∥∥ 1

2

S1

(
log(m+ T )

N min(m,T )

) 1
4

}

Equantile(M̂) ≤ Cmin

{
s(m+ T ) log(m+ T )

N
,
∥∥M∥∥

S1

√
log(m+ T )

N min(m,T )

}
.

We obtain the same rate as for the penalized least squares estimator that
is
√
s(m+ T ) log(m+ T )/N (cf. [37, 24]).

5. Discussion. This paper covers several aspects of the regularized em-
pirical risk estimator (RERM) with Lipschitz loss. This Lipschitz property
is commonly shared by many loss functions used in practice for robust es-
timation such as the hinge loss, the logistic loss or the quantile regression
loss. This work offers a general method to derive estimation bounds as well
as excess risk upper bounds. Two main settings are covered: the subgaus-
sian framework and the bounded framework. The first one is illustrated by
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the classification problem with logistic loss. In particular, the s log(p/s)/N
`2-estimation rate can be achieved when using the SLOPE regularization
norm for estimating an approximately sparse oracle. The second framework
is used to derive new results on matrix completion. Finally, Kernel methods
are analyzed in Supplement A.

A possible extension of this work is to study other regularization norms.
In order to do that, one has to compute the complexity parameter in one
of the settings and a solution of the sparsity equation. The latter usually
involves to understand the sub-differential of the regularization norm and in
particular its singularity points which are related to the sparsity equation
and to the general sparsity structure we aim at recovering.

SUPPLEMENTARY MATERIAL

Supplement A: Supplementary material to “Estimation bounds
and sharp oracle inequalities of regularized procedures with Lips-
chitz loss functions”
(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). In the
supplementary material, we provide a simulation study on the different pro-
cedures that have been introduced for matrix completion. The example of
kernel estimation is also developed. All the proofs have been gathered in
this supplementary material. We finally propose a brief study of the ERM
without penalization.
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