
Machine Learning (2020) 109:1635–1665
https://doi.org/10.1007/s10994-019-05863-6

Robust classification via MOMminimization

Guillaume Lecué1 ·Matthieu Lerasle1 · Timlothée Mathieu2

Received: 6 November 2018 / Revised: 19 September 2019 / Accepted: 28 November 2019 /
Published online: 27 April 2020
© The Author(s), under exclusive licence to Springer Science+Business Media LLC, part of Springer Nature 2020

Abstract
We present an extension of Chervonenkis and Vapnik’s classical empirical risk minimization
(ERM) where the empirical risk is replaced by a median-of-means (MOM) estimator of the
risk. The resulting new estimators are called MOM minimizers. While ERM is sensitive to
corruption of the dataset for many classical loss functions used in classification, we show that
MOMminimizers behave well in theory, in the sense that it achieves Vapnik’s (slow) rates of
convergence under weak assumptions: the functions in the hypothesis class are only required
to have a finite second moment and some outliers may also have corrupted the dataset. We
propose algorithms, inspired by MOM minimizers, which may be interpreted as MOM ver-
sion of block stochastic gradient descent (BSGD). The key point of these algorithms is that
the block of data onto which a descent step is performed is chosen according to its “ central-
ity” among the other blocks. This choice of “ descent block” makes these algorithms robust
to outliers; also, this is the only extra step added to classical BSGD algorithms. As a conse-
quence, classical BSGD algorithms can be easily turn into robust MOM versions. Moreover,
MOM algorithms perform a smart subsampling which may help to reduce substantially time
computations and memory resources when applied to non linear algorithms. These empirical
performances are illustrated on both simulated and real datasets.

Keywords Robust machine learning · Empirical process · Vapnik · Gradient descent

1 Introduction

The article presents a class of robust (to outliers and heavy-tailed data) estimators and algo-
rithms for the classification problem. Consider the classical binary classification problem, let

Editor: Gabor Lugosi.

B Guillaume Lecué
Guillaume.lecue@ensae.fr

Matthieu Lerasle
matthieu.lerasle@ensae.fr

Timlothée Mathieu
timothee.mathieu@u-psud.fr

1 CREST-ENSAE, IPParis, Palaiseau, France

2 Université Paris Orsay, Orsay, France

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10994-019-05863-6&domain=pdf
http://orcid.org/0000-0002-6391-8746


1636 Machine Learning (2020) 109:1635–1665

F denote a class of functions fromX to {±1}, the empirical risk minimizer (ERM) is defined
by

̂fERM ∈ argmin
f ∈F

1

N

N
∑

i=1

I {Yi �= f (Xi )} (1)

where I {Yi �= f (Xi )} = 1 if Yi �= f (Xi ) and 0 otherwise. In this paper, we are interested
in the case where the random variables f (Xi ) only satisfy a second moment assumption and
where the dataset {(Xi , Yi )i∈{1,...,N }}maycontain outliers. TheERMbehaveswell under these
assumptions (see Theorem 1 below). The reason is that the 0−1 loss �0−1

f (x, y) = I{y �= f (x)}
is bounded, which grants concentration no matter the distribution of X and a small number
of data cannot really impact the empirical mean performance. However, it is well known
that ERM is a theoretical estimators that can only be approximated in most situations by
efficient algorithms. Indeed, the minimization problem (1) is NP-hard even for classes F
of half-spaces indicators (Guruswami and Raghavendra 2009; Feldman et al. 2012). One of
the most classical way to approximate ERM is to choose a convex relaxation of the problem
(1) and design an algorithm solving the associated convex problem. The problem of these
approaches in the setting of this paper is that the relaxed criteria are unbounded and therefore
way more sensitive to outliers or heavy tailed inputs. This results into poor performance of
the algorithms on corrupted and/or heavy-tailed data. Figure 1 illustrates this problem on a
toy example where most data would be well separated by a linear classifier like Perceptron
(Rosenblatt 1958) or logistic classifier, but some anomalies flaw these algorithms.

The example in Fig. 1 is representative of a general problem that this paper intends to study.
Robust learning has received particular attention in recent years by practitioners working on
large datasets which are particularly sensitive to data corruption. Challenges recently posted
on “kaggle”, the most popular data science competition platform, have put forward this topic
(see, the 1.5 million dollars problem “Passenger Screening Algorithm Challenge” involves
the discovery of terrorist activity from 3D images or the challenge named “NIPS 2017:
Defense Against Adversarial Attack” consists in building algorithms robust to adversarial
data). Robust algorithms have also been studied theoretically both in statistical and computer
science communities. In statistics, robust results usually deal with issues arising when data
have heavy-tailed distribution (Lugosi and Mendelson 2017; Minsker 2015; Chen et al.
2018; Fan and Kim 2018). In computer science, most works deal with corrupted datasets,

Fig. 1 Scatter plot of the toy dataset, the color of the points gives their class. The background color gives the
linear separation provided by the perceptron (left) and the logistic regression (right) trained on this corrupted
dataset (Color figure online)
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in particular when this corruption arise from adversarial outliers (Diakonikolas et al. 2016,
2017; Cheng et al. 2019). Only few papers consider both problems simultaneously (Lecué
and Lerasle 2017, 2019).

In learning theory, most alternatives to ERM manage the problem of outliers and heavy
tail distributions for outputs only. These solutions are based on the pioneering work of Tukey
(1960, 1962), Huber (1964, 1967) and Hampel (1971, 1974), replacing the square loss by a
robust alternative like Huber loss or Tukey’s biweight loss. These methods do not allow to
treat the case where the inputs are with heavy tails or corrupted, which is a classical problem
in robust statistics also known as the “leverage point problem”, see Huber and Ronchetti
(2009).

In this article, we address this question by considering an alternative to M-estimators,
called median-of-means (MOM) minimizers. Several estimators based on MOM have
recently been proposed in the literature Minsker (2015), Lecué and Lerasle (2017, 2019),
Lugosi and Mendelson (2017, 2019a, b) and Mendelson (2017). To our knowledge, these
articles use the small ball hypothesis (Koltchinskii and Mendelson 2015; Mendelson 2014)
to treat problems of least squares regression or Lipschitzian loss regression. This assump-
tion is restrictive in some classic functional regression frameworks (Saumard 2018; Han and
Wellner 2017) or for problems such as the construction of recommendation system where
inputs are sampled in the canonical basis and therefore do not satisfy a small ball condition.

We construct a natural estimator based on the MOM principle, which is called MOM
minimizer. This estimator is studied here without the small ball hypothesis. Instead, we
assume an a priori bound on the L2-norm of learning functions. We can identify mainly
two streams of hypothesis in Learning theory: 1) boundedness with respect to some norm
of the class F of functions and the output Y , the typical example is the boundedness in
L∞ assumption or 2) norm equivalence assumption over the class F (or, more precisely,
on the shifted class F − f ∗ = { f − f ∗ : f ∈ F} where f ∗ is the oracle in F , i.e. the
minimizer of the theoretical risk among the functions in F) and Y , the typical example
being the subgaussian assumption, i.e. ‖ f − f ∗‖ψ2

≤ L ‖ f − f ∗‖L2 ,∀ f ∈ F where for
g ∈ F ‖g‖ψ2 = inf{t > 0 : E[exp(X2/t2)] ≤ 2}. The small ball assumption is a norm
equivalence assumption between the L1 and L2 norms and is concerned with the second
type of assumptions. Our approach here deals with the first type of assumption. As we only
assume boundedness in L2-norm, this can be seen as a significant relaxation upon the L∞
boundedness assumption. It turns out that, in this relaxed setting, MOM minimizers achieve
minimax rates of convergence (Devroye et al. 1997) in the absence of a margin condition
(Mammen and Tsybakov 1999) even under a L∞ assumption.

The estimation of the expectation of a univariate variable by median-of-means (MOM)
(Alon et al. 1999; Jerrum et al. 1986; Nemirovsky andYudin 1983) is done as follows: given a
partition of the dataset into blocks of the same size, an empirical mean is constructed on each
block and the MOM estimator is obtained by taking the median of these empirical means
(see Sect. 2.2 for details). These estimators are naturally resistant to the presence of a few
outliers in the dataset: if the number of these outliers does not exceed half the number of
blocks, more than half of these blocks are made of “clean” data and the median is a reliable
estimator.

On the practical side, we introduce algorithms inspired by the MOM minimizers. In
these algorithms, the MOM principle is used within algorithms originally intended for the
evaluation of ERM estimators associated to convex loss functions. In Sect. 4, we present a “
MOMversion” of gradient descent algorithms following this approach. The general principle
of this iterative algorithm is as follows: at iteration t , a dataset equipartition B1, . . . , BK is
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selected uniformly at random and the most central block Bmed is determined according to
the following formula

∑

i∈Bmed

� ft (Xi , Yi ) = median

⎛

⎝

∑

i∈Bk
� ft (Xi , Yi ) : k = 1, . . . , K

⎞

⎠ = MOMK
(

� ft

)

(2)

where � ft (Xi , Yi ) = �( ft (Xi ), Yi ) is the loss of the prediction ft (Xi ) of the label Yi . Next
iteration ft+1 is then produced by taking from ft a step down in the direction opposite to
the gradient of f → ∑

i∈Bmed
� f (Xi , Yi ) at ft , cf. Algorithm 1. The underlying heuristic is

that the data in the selected block Bmed are safe for estimating the risk of ft , in the sense that
empirical risk |Bmed|−1∑

i∈Bmed
� ft (Xi , Yi ) is a subgaussian estimator of E� f (Xi , Yi ), cf.

Devroye et al. (2016a) and that data indexedby Bmed should not be outliers. Thedifferentiation
properties of f → MOMK

(

� f
)

are studied in Sect. 4.2. One additional advantage of our
algorithm is that it is based on a simple idea: select a “good” block of data in such as way
that it does not contain outliers and it is a subgaussian estimator of the risk. As a result, it
requires only little modifications on existing Gradient descent based algorithms tomake them
robust to outliers and heavy-tailed data. As a proof of concept, in this article, we perform this
“MOM modification” to the Logistic Regression, Perceptron and SVM-like algorithm.

In Sect. 5, the practical performances of thess algorithms are illustrated on several sim-
ulations, involving in particular different loss functions. These simulations illustrate not
surprisingly the gain of robustness that there is to use these algorithms in their MOM version
rather than in their traditional version, as can for example be appreciated on the toy-example
of Fig. 1 (see also Fig. 4 below). MOM estimators are compared to different learning algo-
rithms on real datasets that can be modeled by heavy tailed data, obtaining in each case
performances comparable to the best of these benchmarks.

Another advantage of our procedure is that it works on blocks of data. This can improve
speed of execution and reduce memory requirements, which can be decisive on massive
datasets and/or when one wishes to use non-linear algorithms as in Sect. 4.3. This principle
of dividing the dataset to calculate estimators more quickly and then aggregating them is
a powerful tool in statistics and machine learning (Jordan 2013). Among others, one can
mention bagging methods (Breiman 1996) or subagging—a variant of bagging where the
bootstrap is replaced by subsampling—(Bühlmann and Bin 2002). These methods are con-
sidered difficult to study theoretically in general and their analysis is often limited to obtaining
asymptotic guarantees. By contrast, the theoretical tools for non-asymptotic risk analysis of
MOM minimizers have already essentially been developed. Finally, subsampling by the
central block Bmed ensures robustness properties that cannot be guaranteed by traditional
alternatives.

Moreover, the algorithm provides an empirical notion of data depth: data providing good
risk estimates of f → E� f (X , Y ) are likely to be selected many times in the central block
Bmed along the descent, while outliers will be systematically ignored. This notion of depth,
based on the risk function, is very natural for prediction problems. It is complemented by an
outliers detection procedure: data that are selected a number of times below a predetermined
threshold are classified outliers. This procedure is evaluated on our toy example of Fig. 1—
for this example, data represented by the dots in the top right corner (the outliers) all end
with a null score (see Fig. 7 below). The procedure is then tested on a real dataset on which
the conclusions are more interesting. On this experiment, according to the theoretical upper
bounds in Theorem 2, MOM minimizer’s prediction qualities are deteriorated with large
values of K , and this result is verified in some practical cases cf. Fig. 10. On the other hand,
when there are enough data and when the data are not too heavy tailed (finite third moment
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of the f (Xi )), the article Minsker (2019) decouples K and N in the risk bound and find an
optimal scaling of K 
 √

N , and one might think that this decoupling ought to be possible
also in our context. On the other hand, outlier detection is best when the number of blocks is
large, cf. Fig. 8. Outlier resistance and anomaly detection tasks can therefore both be handled
using the MOM principle, but the main hyper-parameter K—the number of blocks of data—
for setting this method must be chosen carefully according to the objective. A number of
blocks as small as possible (about twice the number of outliers) will give the best predictions,
while large values of this number of blocks will accelerate the detection of anomalies. Note
that it is essential for outliers detection to use different (for instance, random) partitions at
each step of the descent to avoid giving the same score to an outlier and to all the data in the
same block containing it.

Detecting outliers is usually performed in machine learning via some unsupervised pre-
processing algorithm that detects outliers outside a bulk of data, see for example Hubert and
Van Driessen (2004), He and Fung (2000), Christophe and Catherine (2001), Gunduz and
Fokoué (2015) or other algorithms like DBSCAN (Birant and Kut 2007) or isolation forest
(Liu et al. 2008). These algorithms assume elliptical symmetry of the data, a solution for
skewed data can also be found in Hubert and Van Der Veeken (2010). These unsupervised
preprocessing removes outliers in advance, i.e. before starting any learning task. As expected,
these strategies work well in the toy example from Fig. 1. There are several cases where it
will fail though. First, as explained in Huber and Ronchetti (2009), this strategy classifies
data independently of the risk, it is likely to remove from the dataset outlier coming from
heavy-tailed distribution, yielding biased estimators. Moreover, a small group of misclassi-
fied data inside a bulk won’t be detected. Our notion of depth, based on the risk, seems more
adapted to the learning task than any preprocessing procedure blind to the risk.

The paper is organized as follows. Section 2 presents the classification problem, the ERM
and its MOM versions and gathers the assumptions granted for the main results. Section 3
presents theoretical risk bounds for the ERM estimator and MOM minimizers on corrupted
datasets. Section 4 deals with theoretical results on the algorithm computing MOM mini-
mizers. We present the algorithm, study the differentiation property of the objective function
f → MOMK

(

� f
)

and provide theoretical bounds on its complexity. Section 5 shows empir-
ical performance of our estimators in both simulated and real datasets. Proofs of the main
results are postponed to Sect. 6 where we also added heuristics on the practical choice of the
hyper-parameters.

2 Setting

2.1 Empirical risk minimization for binary classification

Consider the supervised binary classification problem,where one observes a sample (X1, Y1),
. . ., (XN , YN ) taking values in X × Y . The set X is a measurable space and Y = {−1, 1}.
The goal is to build a classifier—that is, a measurable map f : X → Y—such that, for any
new observation (X , Y ), f (X) is a good prediction for Y . For any classifier f , let

�0−1
f (x, y) = I {y �= f (x)}, R0−1( f ) = P�0−1

f = P(X ,Y )∼P
(

Y �= f (X)
)

.

The 0 − 1 risk R0−1(·) is a standard measure of the quality of a classifier. Following Cher-
vonenkis and Vapnik (2000), a popular way to build estimators is to replace the unknown
measure P in the definition of the risk by the empiricalmeasure PN defined for any real valued
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function g by PN g = N−1∑N
i=1 g(Xi , Yi ) and minimize the empirical risk. The empirical

risk minimizer for the 0− 1 loss on a class F of classifiers is ̂f 0−1
ERM ∈ argmin f ∈F {PN �0−1

f }.
The main issue with ̂f 0−1

ERM is that it cannot be computed efficiently in general. One source
of computational complexity is that both F and the 0− 1 loss function are non-convex. This
is why various convex relaxations of the 0−1 loss have been introduced in statistical learning
theory. These proceed in two steps. First,F should be replaced by a convex set F of functions
taking values in R. Then one builds an alternative loss function � for �0−1 defined for all
f ∈ F . The new function � should be convex and put less weight on those f ∈ F such that
f (Xi )Yi > 0, these loss functions are commonly called ”classification-calibrated losses”
in the literature. Classical examples include the hinge loss �

hinge
f (x, y) = (1 − y f (x))+, or

the logistic loss �
logistic
f (x, y) = log(1 + e−y f (x)). A couple (F, �) such that F is a convex

set of real valued functions and � is a convex function (i.e. for all y ∈ {−1, 1} and x ∈ X ,
f ∈ F → � f (x, y) is convex) such that � f (x, y) < � f (x,−y) whenever y f (x) > 0 will be
called a convex relaxation of (F, �0−1). Given a convex relaxation (F, �) of (F, �0−1), one
can define the associated empirical risk minimizer by

̂fERM ∈ argmin
f ∈F

PN � f . (3)

Note that ̂fERM does not build a classifier. To deduce, a classification rule from ̂fERM one can
simply consider its sign function defined for all x ∈ X by sign(̂fERM(x)) = 2(I {̂fERM(x) ≥
0}−1/2). The procedure ̂fERM is solution of a convex optimization problem that can therefore
be approximated using a descent algorithm. We refer for example to Bubeck (2015) for a
recent overview of this topic and Sect. 4 for more examples.

2.2 Corrupted datasets

In this paper, we consider a framework where the dataset may have been corrupted by outliers
(or anomalies). There are several definitions of outliers in the literature, here, we assume that
the dataset is divided into two parts. The first part is the set of inliers, indexed by I, data
(Xi , Yi )i∈I are hereafter always assumed to be independent and identically distributed (i.i.d.)
with common distribution P . The second one is the set of outliers, indexed by O ⊂ [N ]
which has cardinality |O|. Nothing is assumed on these data which may not be independent,
have distributions Pi totally different from P , satisfying Pi | f |α = ∞ for any α > 0,
etc…Doing no hypothesis on the outliers is commonly done in Machine Learning with
adversarial examples, see Gao et al. (2018) and Diakonikolas et al. (2017) for examples of
such application. In particular, this framework is sufficiently general to cover the case where
outliers are i.i.d. with distribution Q �= P as in the ε-contamination model (Huber and
Ronchetti 2009; Chen et al. 2017; Gao 2017; Donoho and Montanari 2015).

Our first result shows that the rate of convergence of ̂f 0−1
ERM is not affected by this corruption

as long as |O| does not exceed N × (rate of convergence) see Theorem 1 and the remark
afterward. However, it is easy to remark that, when the number N of data is finite as it is
always the case in practice, even one aggressive outliers may yield disastrous breakdown of
the empirical mean’s statistical performance. Consequently, even if ̂f 0−1

ERM behaves correctly,
its proxy ̂fERM defined in (3) for a convex relaxation (F, �) can have disastrous statistical
performances, particularly when F and � are unbounded, cf. Fig. 4 for an illustration.

To bypass this problem, we consider in this paper an alternative to the empirical mean
called median-of-means (Alon et al. 1999; Jerrum et al. 1986; Nemirovsky and Yudin 1983).
Let K ≤ N denote an integer and let B1, . . . , BK denote a partition of {1, . . . , N } into bins
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Bk of equal size |Bk | = N/K . If K doesn’t divide N , one can always drop a few data. For any
function f : X × Y → R and any non-empty subset B ⊂ {1, . . . , N }, define the empirical
mean on B by PB f = |B|−1∑

i∈B f (Xi , Yi ). The median-of-means (MOM) estimator of
P f is defined as the empirical median of the empirical means on the blocks Bk

MOMK
(

f
) = median

{

PBk f : k = 1, . . . , K
}

.

As the classical Huber’s estimator (Huber 1964), MOM estimators interpolate between the
unbiased but non robust empirical mean (obtained for K = 1) and the robust but biased
median (obtained for K = N ). In particular, when applied to loss functions, these new
estimators of the risk P� f , f ∈ F suggest to define the following alternative to Chervonenkis
and Vapnik’s ERM estimator, called MOM minimizers

̂fMOM,K ∈ argmin
f ∈F

MOMK
(

� f
)

. (4)

From a theoretical point of view, we will prove that, when the number |O| of outliers is
smaller than N × (rate of convergence), ̂fMOM,K performs well under a second moment
assumptions on F and �. To illustrate our main assumptions and theoretical results, we will
regularly use the following classical example.

Example 1 (Linear classification) Let X = R
p and let ‖·‖2 denote the classical Euclidean

norm on Rp . Let F denote a set of linear functions

F = { ft : x �→ 〈

x, t
〉 : ‖t‖2 ≤ �} .

Let � denote either the hinge loss or the logistic loss defined respectively for any (x, y) ∈
X × Y and f ∈ F by

�
hinge
f (x, y) = (1 − y f (x))+, �

logistic
f (x, y) = log(1 + e−y f (x)) .

Remark that the case with an intercept is included in this linear case by adding an artificial
(p+1)th dimension: we consider x ′ = (x1, . . . , xp, 1)where x1, . . . , xp are the coordinated
of x , and then

〈

x ′, (t1, . . . , tp, tp+1
〉 = 〈

x, (t1, . . . , tp)
〉+ tp+1. In practice this correspond to

adding a column of 1 at the end of the design matrix.

2.3 Main assumptions

As already mentioned, data are divided into two groups, a subset {(Xi , Yi ) : i ∈ O} made of
outliers (on which we will make no assumption) and the remaining data {(Xi , Yi ) : i ∈ I}
contains all data that bring information on the target/oracle

f ∗ ∈ argmin
f ∈F

P� f .

Data indexed by I are therefore called inliers or informative data. To keep the presentation
as simple as possible, inliers are assumed to be i.i.d. distributed according to P although
this assumption could be relaxed as in Lecué and Lerasle (2017, 2019). Finally, note that
the O ∪ I = {1, . . . , N } partition of the dataset is of course unknown from the statistician.
Moreover, since no assumption is granted on the set of data indexed by O, this setup covers
the framework of adversarial attack where one may imagine that the data indexed byO have
been changed in the worst possible way by some malicious adverser.

Let us now turn to the set of assumptionswewill use to studyMOMminimizers procedures.
For any measure Q and any function f for which it makes sense, denote by Q f = ∫

f dQ.
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Denote also, for all q ≥ 1, by Lq the set of real valued functions f such that
∫ | f |qd P < ∞

and, for any f ∈ Lq , by

‖ f ‖Lq =
(∫

| f |qd P
)1/q

.

Our first assumption is an L2-assumption on the functions in F .

Assumption 1 For all f ∈ F , we have ‖ f ‖L2 ≤ θ2.

Of course, Assumption 1 is granted if F is a set of classifiers. It also holds for the linear
class of functions from Example 1 as long as P ‖X‖22 < ∞ with θ2 = �(P ‖X‖22)1/2. As
announced in the introduction, it is a boundedness assumption (w.r.t. the L2-norm) and not a
norm equivalence assumption. For instance, it covers cases that cannot be handled via norm
equivalence. A typical example is for matrix completion problems where X is uniformly
distributed over the canonical basis (Epq : p ∈ [m], q ∈ [T ]) of the linear space Rm×T of
m × T matrices. One has for f (·) = 〈·, E11

〉

and any r ≥ 1, ‖ f ‖Lr = (E| f (X)|r )1/r =
(1/(mT ))1/r . Hence, any norm equivalence assumption on the class F = { f A = 〈·, A〉 :
‖ f A‖L2 ≤ θ2} will depend on the dimension mT of the problem resulting either in wrong
rates of convergence or in assumption on the number of data. Our approach does not use any
norm equivalence assumption so that our rates of convergence do not depend on dimension
dependent ratio. Rates depend only on the L2 radius θ2 of F from Assumption 1.

The second assumption deals with the complexity of the class F . This complexity appears
in the upper bound of the risk. It is defined using only informative data. Let

K = {k ∈ {1, . . . , K } : Bk ∩ O = ∅} and J = ∪k∈KBk .

Definition 1 Let G denote a class of functions f : X → R and let (εi )i∈I denote i.i.d.
Rademacher random variables independent from (Xi , Yi )i∈I . The Rademacher complexity
of G is defined by

R(G) = max
A∈{I,J }E

[

sup
f ∈G

∑

i∈A

εi f (Xi )

]

.

The Rademacher complexity is a standard measure of complexity in classification prob-
lems (Bartlett andMendelson 2002). It can be upper bounded by comp/

√
N where comp is a

measure of complexity such as the square root of the VC dimension or the Dudley’s entropy
integral or the Gaussian mean width of the class F see for example Boucheron et al. (2005,
2013), Koltchinskii (2008), Bartlett and Mendelson (2002) and Devroye et al. (1997) for a
presentation of these classical bounds. Our second assumption is simply that the Rademacher
complexity of the class F is finite.

Assumption 2 The Rademacher complexity of F is finite, R(F) < ∞.

Assumption 2 holds in the linear classification example under Assumption 1 since it
follows fromCauchy-Schwarz inequality thatR(F) ≤ θ2

√|I|p. Finally, our last assumption
is that the loss function � considered is Lipschitz in the following sense.

Assumption 3 The loss function � satisfies for all (x, y) ∈ X × Y and all f , f ′ ∈ F ,

|� f (x, y) − � f ′(x, y)| ≤ L| f (x) − f ′(x)| .
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Assumption 3 holds for classical convex relaxation of the 0 − 1 loss such as hinge loss
�hinge or logistic loss �logistic as in Example 1. In these examples, the constant L can be chosen
equal to 1. It also covers non-convex loss functions such as the one in Baraud et al. (2017),
Catoni (2012) and Audibert and Catoni (2011) or sigmoid loss functions such as the one
used in Deep Learning. In particular, our results do not follow from other work on MOM
estimators using convex loss functions such as in Chinot et al. (2019).

3 Theoretical guarantees

Our first result follows Vapnik–Chervonenkis’s original risk bound for the ERM and shows
that ̂f 0−1

ERM is insensitive to the presence of outliers in the dataset. Moreover, it quantifies this
robustness property since Vapnik–Chervonenkis’s rate of convergence is still achieved by
̂f 0−1
ERM when there are less than (number of observations) times (Vapnik’s rate of convergence)

outliers.

Theorem 1 Let F denote a collection of classifiers. Let L0−1
F = {�0−1

f − �0−1
f ∗ : f ∈ F} be

the family of excess loss functions indexed by F where f ∗ ∈ argmin f ∈F R0−1( f ). For all

K > 0, with probability at least 1 − e−K , we have

R0−1(̂f 0−1
ERM) − inf

f ∈F R0−1( f ) ≤ 2R(L0−1
F )

N
+
√

K

2|I| + 2|O|
N

.

Theorem 1 is proved in Sect. 6.1. It is an adaptation of Vapnik–Chervonenkis’s proof of
the excess risk bounds satisfied by ̂f 0−1

ERM in the presence of outliers.

Remark 1 In the last result, one can easily bound the excess risk using R(F) instead of
R(L0−1

F ) since

R(L0−1
F ) = max

A∈{I,J }E
[

sup
f ∈F

∑

i∈A

εi ( f (Xi ) − f ∗(Xi ))

]

= R(F) .

The final bound is of similar flavor: for all K > 0, with probability at least 1− e−K , we have

R0−1( f̂ 0−1
ERM) − inf

f ∈F R0−1( f ) � max

(

R(F)

N
,

√

K

|I| ,
|O|
N

)

. (5)

Remark 2 WhenF is the class of all linear classifiers, that is whenF = {sgn(〈t, ·〉) : t ∈ R
p},

one has R(F) ≤ √|I|p [see Theorem 3.4 in Boucheron et al. 2005]. Therefore, when
|I| ≥ N/2, Theorem1 implies that for all 1 ≤ K ≤ p, with probability at least 1−exp(−K ),

R0−1( f̂ 0−1
ERM) − inf

f ∈F R0−1( f ) � max(
√

p/N , |O|/N ) .

As a consequence, when the number of outliers is such that |O| � N × √
p/N , Vapnik–

Chervonenkis’s classical “slow” rate of convergence
√
p/N is still achieved by the ERM

estimator even if |O| outliers have polluted the dataset. The interested reader can also check
that “fast rates” p/N could also be achieved by the ERM estimator in the presence of outliers
if |O| � p and when the so-called strong margin assumption holds (see, Boucheron et al.
2005). Note also that the previous remark also holds if F is a class with VC dimension p
beyond the case of indicators of half spaces.
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The conclusion of Theorem 1 can be misleading in practice. Indeed, theoretical perfor-
mance of the ERM estimator for the 0− 1 loss function are not downgraded by outliers, but
its proxies based on convex relaxation (F, �) of (F, �0−1) are. This can be seen on the toy
example in Fig. 1 and in Fig. 4 fromSect. 5. In this work, we propose a robust surrogate, based
on MOM estimators of the risk and defined in (2), to the natural empirical risk estimation
of the risk which works for unbounded loss functions. In the next result, we prove that the
MOM minimizer f̂MOM,K defined as

f̂MOM,K ∈ argmin
f ∈F

MOMK
(

� f
)

(6)

satisfies an excess risk bound under weak assumptions introduced in Sect. 2.

Theorem 2 Grant Assumptions 1, 2 and 3. Assume that N > K > 4|O| and let � =
1/4 − |O|/K. Then, with probability larger than 1 − 2 exp

(−2�2K
)

, we have

R( f̂MOM,K ) ≤ inf
f ∈F R( f ) + 4L max

(

4R(F)

N
, 2θ2

√

K

N

)

.

Theorem 2 is proved in Sect. 6.2. Compared to Theorem 1, f̂MOM,K achieves the same rate
(R(F)/N ) ∨ (

√
K/N ) under the same conditions on the number of outliers with the same

exponential control of the probability as for the ERM estimator f 0−1
ERM. The main difference

is that the loss function may be unbounded, which is often the case in practice. Moreover,
unlike classical analysis of ERM obtained by minimizing an empirical risk associated with
a convex surrogate loss function, we only need a second moment assumption on the class F .

These theoretical improvements have already been noticed in previous works (Minsker
2015; Devroye et al. 2016b; Lugosi andMendelson 2017, 2019a, b; Lecué and Lerasle 2017,
2019; Mendelson 2017). Contrary to tournaments of Lugosi and Mendelson (2017), Le Cam
MOMestimators of Lecué andLerasle (2019) orminmaxMOMestimators Lecué andLerasle
2019, Theorem 2 does not require the small ball assumption on F but only shows “slow rates”
of convergence. These slow rates areminimax optimal in the absence of amargin or Bernstein
assumption (Bartlett and Mendelson 2006; Mammen and Tsybakov 1999). Removing the
small ball assumption may be useful in some examples. As an illustration, consider the toy
example where the design

X =
⎡

⎢

⎣

1W∈I1
...

1W∈Id

⎤

⎥

⎦

where I1, . . . , Id is a partition of a measurable set W into subsets such that P(W ∈ Ii ) =
1/d for each i ∈ {1, . . . , d}. Then X = [0, 1]d and one can consider the set F of linear
functions f (X) = 〈

t, X
〉

, where the Euclidean norm of t satisfies ‖t‖ ≤ B
√
d. Then, as

‖〈t, ·〉‖2
L2 = ∑d

i=1 t
2
i P(W ∈ Ii ) = ‖t‖2/d , Assumption 1 holds with θ2 = B. In this

example, Assumption 2 holds withR(F) ≤ θ2
√|I|d ≤ B

√
Nd . It follows from Theorem 2

that the remainder term in this example is bounded from above by

4LBmax

(

4

√

d

N
, 2θ2

√

K

N

)

.

In particular, it converges to 0 if d ∨ K � N . By comparison, in the same example, it is
shown in Chinot et al. (2019) that the remainder term converges to 0 only if d �

√
N .
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Proof of Theorem 2 does not enable fast rates to be obtained. Indeed, the non-linearity
of the median excludes the possibility of using localization techniques leading to these fast
rates. However, we show in the simulation study (cf. left side picture of Fig. 12) that fast
rates seem to be reached by the MOM minimizer.

Remark 3 The MOM principle has been used together with Lipschitz loss functions recently
in Chinot et al. (2019). In this paper, a minmax MOM estimator is constructed which can
achieve fast rates of convergence under a margin condition. The argument from Chinot et al.
(2019) relies heavily on the convexity of the loss—an assumption we do not have here. The
reason why the convexity of the loss is so important in Chinot et al. (2019) is that it allows
to exclude (as potential minmax MOM estimator) all the functions in F outside a L2-ball
centered in f ∗ with radius r if all the functions in F in the sphere f ∗ + rS2 are excluded.
Therefore, thanks to convexity, the latter “ homogeneity argument” reduces the problem to
the study of the sub-model F ∩ ( f ∗ + rS2) (which is bounded in L2 with the right radius r ).
Here, no such homogeneity argument can be used because we did not assume the loss to be
convex. Nevertheless, if we assume that the loss is convex then we may still apply Theorem 4
in Chinot et al. (2019) and replace all the localized sets by the entire set F and the variance
term by the L2 uniform bound θ2 coming from Assumption 1 to obtain a similar result as
Theorem 2 for a minmax MOM estimator. These stronger results require the convexity of
the loss and a Bernstein assumption that may be satisfied only under strong assumptions as
discussed in the toy example.

Finally, the main advantage of our approach is its simplicity, we just have to replace
empirical means by their MOM alternative in the definition of the ERM estimator. Moreover,
as expected, this simple alternative to ERM estimators yields a systematically way to modify
algorithms designed for approximating the ERM estimator. The resulting “MOM versions”
of these algorithms are both faster and more robust than their original “ERM version”.
Before illustrating these facts on simulations, let us describe algorithms approximatingMOM
minimizers.

4 Computation of MOMminimizers

In this section, we present a generic algorithm to provide a MOM version of descent algo-
rithms. We study the differentiation property of the objective function f → MOMK

(

� f
)

.
Then we check on simulated and real databases the robustness and outlier detection property
of these MOM algorithms.

4.1 MOM algorithms

The general idea is that any descent algorithms such as gradient descent, Newton method,
alternate gradient descent, etc. (cf. Moulines and Bach 2011; Bubeck 2015; Boyd and Van-
denberghe 2004; Bach et al. 2012) can easily be turned into a robust MOM-version. To
illustrate this idea, a basic gradient descent is analyzed in the sequel. We start with a block
splitting policy of the database.

The choice of blocks greatly influences the practical performance of the algorithm. In
particular, a recurring flaw is that iterations tend to get stuck in local minima, which greatly
slows the convergence of the alogorithm. To overcome this default and improve the stability
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of the procedure, a new partition is constructed at each iteration by drawing it uniformly at
random, cf. step 2 of Algorithm 1.

Let SN denote the set of permutations of {1, . . . , N }. For each σ ∈ SN , let B0(σ ) ∪ · · · ∪
BK−1(σ ) = {1, . . . , N } denote an equipartition of {1, . . . , N } defined for all j ∈ �0, K − 1�
by

Bj (σ ) = {σ(K j + 1), . . . , σ (K ( j + 1))} = σ ({K j + 1, . . . , K ( j + 1)}) .

To simplify the presentation, let us assume the class F to be parametrized F = { fu : u ∈
R

p}, for some p ∈ N
∗. Let’s assume that the function u �→ fu is as regular as needed and

convex (a typical example is fu(x) = 〈

u, x
〉

for all x ∈ R
p). Denote by ∇u� fu the gradient

or a subgradient of u �→ � fu in u ∈ R
p . The step-sizes sequence is denoted by (ηt )t≥0 and

satisfies the classical conditions:
∑∞

t=1 ηt = ∞ and
∑∞

t=1 η2t < ∞. Iterations will go on until
a stopping time T ∈ N

∗ has been achieved. With these notations, a generic MOM version
of a gradient descent algorithm (with random choice of blocks) is detailed in Algorithm 1
below.

input : u0 ∈ R
p , K ∈ �3, N/2�, T ∈ N

∗ and (ηt )t∈{0,...,T−1} ∈ R
T+

output: a MOM version of BSGD

1 for t = 0, · · · , T − 1 do
2 choose a permutation at random: σt ∼ Unif(SN ),
3 build a partition of the dataset: B0(σt ), . . . , BK−1(σt ),
4 find a median block: kmed(t) s.t. MOMK

(

� fut

) = PBkmed (t)(σt )

(

� fut

)

,

5 do a descent step on the median block

ut+1 = ut − ηt∇t where ∇t =
∑

i∈Bkmed (t)(σt )

∇ut � fut (Xi , Yi ).

6 end
7 Return uT

Algorithm 1:MOM gradient descent algorithm.

Remark 4 (MOM gradient descent algorithm and stochastic block gradient descent) Algo-
rithm 1 can be seen as a stochastic block gradient descent (SBGD) algorithm minimizing
the function t → E�t (X , Y ) using a given dataset. The main difference with the classical
SBGD is that the choice of the block along which the gradient direction is performed is
chosen according to a centrality measure computed thanks to the median operator in step 4
of Algorithm 1.

In Sect. 5, we use the MOM principle (as in the generic Algorithm 1) to construct MOM
versions for various classical algorithms such as Perceptron, Logistic Regression, Kernel
Logistic Regression, SGD Classifiers or Multi-layer Perceptron.

4.2 Differentiation properties of f → MOMK
(
�f

)
, randompartition and localminima

Let us try to explain the choice of the descent direction ∇t in step 5 of Algorithm 1. In
the previous sections, we introduced and studied MOM minimization procedures which are
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minimizers of f → MOMK
(

� f
)

over F . The optimization problem that needs to be solved
to construct a MOMminimizer is not convex, in general. It therefore raises difficulties since
classical tools and algorithms from the convex optimization toolbox cannot be used a priori.
Nevertheless, one may still try to do a gradient descent algorithm for this (non-convex)
optimization problem with objective function given by f → MOMK

(

� f
)

. To do so, we first
need to check the differentiation properties of f → MOMK

(

� f
)

over F .
First observe that the descent direction ∇t is the gradient of the empirical risk constructed

on the median block of data Bkmed (t)(σt ) at fut (we recall that F is parametrized like { fu :
u ∈ R

p}). A classical Gradient Descent algorithm on f → MOMK
(

� f
)

starting from fut
would use a gradient at fut of the objective function. Let us first identify situations where
this is indeed the case i.e. when ∇t is the gradient of f → MOMK

(

� f
)

in fut .

Assumption 4 For almost all datasetsDN = {(Xi , Yi ) : i = 1, . . . , N } and Lebesgue almost
all u ∈ R

p , there exists an open convex set B containing u such that for any equipartition
of {1, . . . , N } into K blocks B1, . . . , BK there exists kmed ∈ {1, · · · , K } such that for all
v ∈ B, PBkmed

(� fv ) ∈ MOMK
(

� fv

)

.

In other word, under Assumption 4, for almost all u0 ∈ R
p , the median block Bkmed

achieving MOMK
(

� fu0

)

is the same as the one achieving MOMK
(

� fu

)

for all u in an open

and convex neighborhood B of u0. It means that the objective function u → MOMK
(

� fu

)

is
equal to the empirical risk function over the same block of data Bkmed : u → PBkmed

� fu , on
B. Since B is an open set and that u → PBkmed

� fu is differentiable in u0 then the objective

function u → MOMK
(

� fu

)

is also differentiable in u0 and the two gradients coincide:

∇ (

u → MOMK
(

� fu

))

|u0 = ∇
(

u → PBkmed
� fu

)

|u0
. (7)

Under Assumption 4, Algorithm 1 is indeed a gradient descent algorithm performed on the
objective function u ∈ R

p → MOMK
(

� fu

)

.
Let us give an example where Assumption 4 is satisfied. Let B1 ∪ · · · ∪ BK = {1, . . . , N }

be an equipartition and let ψ be defined for all x = (xi )Ni=1 ∈ R
N and u ∈ R

p by,

ψu(x) = MOMK
(

fu(x)
) = median

⎛

⎝

K

N

∑

i∈Bk
fu(xi ), 1 ≤ k ≤ K

⎞

⎠ = PB(K/2)(u)( fu),

where for all blocks B ⊂ {1, . . . , N }, PB fu = |B|−1∑
i∈B fu(xi ) and the blocks

B(k)(u), k = 1, . . . , K are rearranged blocks defined such that PB(1)(u)( fu) ≥ · · · ≥
PB(K )(u)( fu). Proposition 1 below shows that Assumption 4 is satisfied in several situations.
Its proof can be found in Section 6.

Proposition 1 Let X1, . . . , XN be N real-valued random variables, suppose K is odd and
N is a multiple of K . Let ( fu)u∈Rd be a family of functions with values in R. Assume that for
all x ∈ R, the function u �→ fu(x) is Lipschitz and the probability distribution of fu(X1)

has a law absolutely continuous with respect to Lebesgue measure. Then, with probability
1, Assumption 4 is satisfied, in particular, the partial derivative of u �→ ψ fu ((Xi )

N
i=1) =

MOMK ( fu((Xi )
N
i=1)) with respect to the j th coordinate is given for almost all X1, . . . , XN

by

∂ jψ fu ((Xi )
N
i=1) = K

N

∑

i∈B(�K/2�)(u)

∂ j fu(Xi )

where ∂ j denote the derivative with respect to the j th coordinate of u.
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Fig. 2 Partition of Rp at step t by the median operator and iteration number t − 2, t − 1, t and t + 1 of the
MOM gradient descent algorithm. Under Assumption 4, there is a natural descent direction given at step t by
−∇u(u → PBkmed (t)(σt )

(

� fu
)

))|u=ut

Under Assumption 4, the picture of the MOM gradient descent algorithm is pretty simple
and depicted in Fig. 2. At every step t , the median operator makes a partition of Rp into K
cells Ck(t) = {u ∈ R

p : MOMK
(

� fu

) = PBk � fu } for k = 1, . . . , K—this partition changes
at every step because the blocks B1, . . . , BK are chosen randomly at the beginning of every
step according to the random partition σt . We want every iteration ut of the MOM algorithm
to be in the interior of a cell and not on a frontier in order to differentiate the objective function
u → MOMK

(

� fu

)

at ut . This is indeed the case under Assumption 4, given that in that case,
there is an open neighbor B of ut such that for all v ∈ B, MOMK

(

� fv

) = PBk � fv where
the index k = kmed of the block is common to every v ∈ B. Therefore, to differentiate the
objective function u → MOMK

(

� fu

)

at ut one just needs to differentiate u → PBk � fu at ut .
The objective function to minimize is differentiable almost everywhere under Assumption 4
and a gradient of the objective function is given by ∇(u → PBk � fu )|u=ut , that is ∇t from
step 5 of Algorithm 1.

Under Assumption 4, the importance of partitioning the dataset at each new iteration
is more transparent. Indeed, if we were to perform the MOM gradient descent such as in
Algorithm 1 but without a new partition at each step then local minima of the K empirical
risks u → PBk � fu , k ∈ [K ] may mislead the descent algorithm. Indeed, if a minimum of
u → PBk � fu for some k ∈ [K ] is in the cell Ck then the algorithm will reach this minimum
without noticing that a “ better” minimum is in another cell. That is why re-partitioning
the dataset of every iteration avoid this effect and speed up the convergence (see Lecué and
Lerasle 2017 for experiments).

4.3 Complexity of MOM risk minimization algorithms

In this section, we compute the computational cost of several MOM versions of some clas-
sical algorithms. Let C(m) be the computational complexity of a single standard gradient
descent update step on a dataset of size m and let L(m) be the computational complexity
of the evaluation of the empirical risk (1/m)

∑

i∈B � f (Xi , Yi ) of some f ∈ F on a dataset
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B containing m data. Here the computational complexity is simply the number of basic
operations needed to perform a task (Arora and Barak 2009).

For each epoch, we begin by computing the “MOM empirical risk”. We perform K times
N/K evaluations of the loss function, then we sort the K means of these blocks of loss
to finally get the median. The complexity of this step is then O(K L(N/K ) + K ln(K )),
assuming that the sort algorithm is in O(K ln(K )) (like quick sort (Hoare 1962)). Then we
do the gradient step on a sample of size N/K . Hence, the time complexity of this algorithm
is

O(T (K L(N/K ) + K ln(K ) + C(N/K ))).

Example 2 (Linear complexity “ ERM version” algorithms) For example, if the standard
gradient step and the loss function evaluation have linear complexity—like Perceptron or
Logistic Regression—the complexity of theMOMalgorithm is O(T (N+K log(K ))) against
O(T N ) for the ERM algorithm. Therefore, the two complexities are of the same order and
the only advantage of MOM algorithms lies in their robustness to outliers and heavy-tailed
properties.

Example 3 (Super-linear complexity “ ERM version” algorithms) If, on the other hand, the
complexity is more than linear as for Kernel Logistic Regression (KLR), taking into account
the matrix multiplications whose complexity can be found in Le Gall (2014), the complexity
of the MOM version of KLR, due to the additional need of the computation of the kernel
matrix, is O(N 2+T (N 2/K+K log(K )+(N/K )2.373)) against O(T N 2.373) for the standard
“ ERM version”. MOM versions of KLR are therefore faster than the classical version of
KLR on top of being more robust. This advantage comes from the fact that MOM algorithms
work on blocks of data instead on the entire dataset at every step. More informations about
Kernel Logistic Regression can be found in Roth (2001) for example.

In this last example, the complexity comes in part from the evaluation of the kernel
matrix that can be computationally expensive. Following the idea that MOM algorithms are
performing ERM algorithm restricted to a wisely chosen block of data, then one can modify
our generic strategy in this particular example to reduce drastically its complexity. The idea
here is that we only need to construct the kernel matrix on the median block. The resulting
algorithm, called Fast KLR MOM is described in Fig. 2.

In Fig. 2, we compute only the block kernel matrices, denoted by N 1, . . . , Nk and con-
structed from the samples in the block Bk . We also denote by Nk

i the i th row in Nk .
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input : α0 ∈ R
p , K ∈ �3, N/2�, T ∈ N

∗, (ηt )t∈{0,...,T−1} ∈ R
T+, β ∈ R

∗+,
κ : X × X → R a positive definite kernel and a bloc decomposition
B1, . . . , BK of {1, . . . , N }.

output: a MOM version of KLR classifiers

1 Construct the bloc Kernel matrices Nk = (κ(Xi , X j ))i, j∈Bk for 1 ≤ k ≤ K ,
2 for t = 0, · · · , T − 1 do
3 find a median block: kmed(t) s.t. MOMK

(

� fαt

) = PBkmed (t)

(

� fαt

)

with

4

PBk (� fαt ) = 1

|Bk |
∑

i∈Bk
ln(1 + e−Nk

i αk
t Yi ) + β

K
∑

k=1

(αk
t )

T Nkαk
t ,

where αk
t is the vector in R

|Bk | made of the coordinates of αt with indices in Bk .
5 Do an IRLS descent step for KLR with weight matrice Wkmed (t), design matrice

Xkmed (t) and labels ykmed (t) on Bkmed (t)

α
kmed (t)
t+1 = α

kmed (t)
t (1 − ηt ) + ηt (X

T
kmed (t)Wkmed (t)Xkmed (t))

−1XT
kmed (t)Wkmed (t)ykmed (t).

αk
t+1 = αk

t (1 − ηt ), ∀k �= kmed(t).6

7 end
8 Return αT , Nkmed (T )

Algorithm 2: Description of Fast KLR MOM algorithm.

There are several drawbacks in the approach of Algorithm 2. First, the blocks are fixed at
the beginning of the algorithm; therefore the algorithm needs a bigger dataset to work well
and it may converge to a local minimum. Nonetheless, from the complexity point of view,
this algorithm will be much faster than both the classical KLR and MOM KLR (see below
for a computation of its complexity) which is important given the growing use of kernel
methods on very large databases for example in biology. The choice of K should ultimately
realize a trade-off between complexity and performance (in term of accuracy for example)
when dealing with big databases containing few outliers.

Example 4 (Complexity of Fast KLR-MOM algorithm) The complexity of Fast KLR-MOM
is O(N 2/K + T (N 2/K + K log(K ) + (N/K )2.373)) against O(T N 2.373) for the ERM
version.

5 Implementation and simulations

5.1 Basic results on a toy dataset

The toy model we consider models outliers due to human or machine errors we would like
to ignore in our learning process. It is also a dataset corrupted to make linear classifiers
fail. The dataset is a 2D dataset constituted of three “labeled Gaussian distribution”. Two
informativeGaussiansN ((−1,−1), 1.4I2) andN ((1, 1), 1.4I2)with label respectively 1 and
−1 and one outliers GaussianN ((24, 8), 0.1I2) with label 1. In other words, the distribution
of informative data is given by L(X |Y = 1) = N ((−1,−1), 1.4I2), L(X |Y = −1) =
N ((1, 1), 1.4I2) and P(Y = 1) = P(Y = −1) = 1/2. Outliers data have distribution given
by Y = 1 a.s. and X ∼ N ((24, 8), 0.1I2).
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Fig. 3 Scatter plot of 630 samples from the training dataset (600 informative data, 30 outliers), the color of
the points correspond to their labels (Color figure online)

Fig. 4 Scatter plot of 500 samples from the test dataset (500 informative data), the color of the points correspond
to their labels and the background color correspond to the prediction. The score in the title of each subfigure
is the accuracy of the algorithm (Color figure online)

The algorithms we study are the MOM adaptations of Perceptron, Logistic Regression
and Kernel Logistic Regression.

Based on our theoretical results, we know that the number of blocks K has to be larger than
4 times the number of outliers for our procedure to be on the safe side. The value K = 120 is
therefore used in all subsequent applications of MOM algorithms on the toy dataset except
when told otherwise. To quantify performance, we compute the miss-classification error on
a clean dataset made of data distributed like the informative data.

For Kernel Logistic Regression, we study here a linear kernel because outliers in this
dataset are clearly adversarial when dealing with linear classifiers. The algorithm can also
use more sophisticated kernels, a comparison of the MOM algorithms with similar ERM
algorithms is represented in Fig. 4, the ERM algorithms are taken from the python library
scikit-learn (Pedregosa et al. 2011) with their default parameters.

Figure4 illustrates resistance to outliers of MOM’s algorithms compared to their classical
version.
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Fig. 5 Comparison of the MOM algorithms and their counterpart with the boxplots of the accuracy on the test
dataset from 50 runs of the algorithms on 50 sample of the training/test toy dataset (one run for each dataset
sampled)

Table 1 Time of different algorithms on a simulated dataset

Algorithm Perceptron MOM Log. Reg. MOM KLR MOM Fast KLR MOM

Time (s) 1.06 1.05 13.6 1.2

Algorithm Rand. Forest SVM SGD Hub. loss

Time (s) 0.21 9.0 0.0078

These first results are completed in Fig. 5 where we computed accuracy on several run of the
algorithms. These results confirm the visual impression of our first experiment.

Finally, we illustrate our results regarding complexities of the algorithms on a simulated
example. MOM algorithms have been computed together with state-of-the art algorithms
from scikit-learn (Pedregosa et al. 2011) (we use Random forest, SVM classifier as well
as SGD classifier optimizing Huber loss which entail a robustness in Y but not in X , see
Huber and Ronchetti 2009, Chapter 7) on a simulated dataset composed of two Gaussian
blobsN ((−1,−1), 1.4I2) andN ((1, 1), 1.4I2)with label respectively 1 and−1.We sample
20000 points for the training dataset and 20000 for the test dataset. The parameters used in the
algorithms are those for which we obtained the optimal accuracy, (this accuracy is illustrated
in the next section). Time of training plus time of evaluation on the test dataset are gathered
in Table 1.

Not surprisingly, very efficient versions of linear algorithms from Python’s library are
extremely fast (results are sometimes provided before we even charged the dataset in some
experiments). The performance of our algorithm are nevertheless acceptable in general
(around 5 times longer than random forest for example). The important fact here is that
non linear algorithms such as SVM take much more time to provide a result. FAST KLR
MOM is able to reduce substantially the execution time of SVM with comparable predictive
performance.

5.2 Applications on real datasets

We used the HTRU2 dataset, also studied in Lyon et al. (2015), that is provided by the UCI
Machine Learning Repository. The goal is to detect pulsars (a rare type of Neutron star)
based on radio emission detectable on earth from which features are extracted to gives us

123



Machine Learning (2020) 109:1635–1665 1653

Fig. 6 Comparison of the MOM algorithms and common algorithms with the boxplots and the medians of the
accuracy 1

n
∑n

i=1 1{ f̂ (xi ) = yi } on the test dataset from 50 runs of the algorithms on 100 sample of a 4/5
cut of the dataset HTRU2 (one run is trained on a sample of 4/5 of the dataset and tested on the remaining
1/5)

this dataset. The problem is that most of the signal comes from noise and not pulsar, the goal
is then to classify pulsar against noise, using the 17 898 points in the dataset.

The accuracy of different algorithms is obtained using on several runs of the algorithms
each using 4/5 of the datasets for training and 1/5 for testing algorithms. Boxplots presenting
performance of various algorithms are displayed in Fig. 6. To improve performance, RBF
kernel was used both for KLR MOM and Fast KLR MOM.

5.3 Outlier detection with MOM algorithms

When we run MOM version of a descent algorithm, we select at each step a block of data
points realizing the median of a set of “local/block empirical risk” at the current iteration of
the algorithm. The number of times a point is selected by the algorithm can be used as a depth
function measuring reliability of the data. Note that this definition of depth of a data point
has the advantage of taking into account the learning task we want to solve, that is the loss
� and the class F . It means that outliers are considered w.r.t. the problem we want to solve
and not w.r.t. some a priori notion of centrality of points in R

d unrelated with the problem
considered at the beginning.

We apply this idea on the toy datasetwith theLogisticRegressionMOMalgorithm.Results
are gathered in a sorted histogram given in Fig. 7. Red bars represent outliers in the original
datasets.

Quite remarkably, outliers are in fact those data that have been used the smallest number of
times. The method targets a very specific type of outliers, those disturbing the classification
task at hand. If there was a point very far away from the bulk of data but in the half-space of
its label, it wouldn’t be detected.

This detection algorithm doesn’t scale well when the dataset gets bigger as a large number
of iterations is necessary to choose each point a fair number of times. For bigger datasets,
we suggest to adapt usual outlier detection algorithms (Aggarwal 2013). We emphasize that
clustering techniques and K-Means are rather easy to adapt in a MOM algorithm and detect
points far from the bulk of data. This technique might greatly improve usual K-Means as
MOM K-Means is more robust.
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Fig. 7 Sorted Histogram of the score (number of times a data belongs to the selected median block) of each
points in a Logistic Regression MOM algorithm on a toy dataset. Red is an outlier and blue is an informative
sample. K = 120 and T = 2000 (Color figure online)

Fig. 8 Sorted Histogram on the score (number of times a data is selected in a median block) of each points in
a Logistic Regression MOM algorithm on the pulsar dataset for various values of K and T = 20 × K (only
the 1000 smaller counts among the 17898 sample of the pulsar dataset are represented)

Let us now analyze the effect of K on the outlier detection task. The histogram of the
1000 smaller counts of points of HTRU2 dataset as K gets bigger is plotted in Fig. 8.

It appears from Fig. 8 that K measures the sensitivity of the algorithm. Severe outliers (as
in the toy example) are detected for small K while mild outliers are only discovered as K
gets bigger.
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It seems therefore that the optimal choice of K in MOM depends on the task one is
interested in. For classification, K should be as small as possible to get better risk bounds
(but it still should be larger than the number of outliers) whereas for detecting outliers we
may want to choose K much larger to even detect an outlier, (but it should also be small
enough for the underlying classification to perform correctly). As a proof of concept, for
Pulsar database, we got optimal results choosing K = 10 for classification whereas we only
detect a significant amount of outliers when K is around 1000.

6 Proofs

6.1 Proof of Theorem1

We adapt Vapnik–Chervonenkis’s classical analysis (Vapnik 1998) of excess risk bound of
ERM to a dataset corrupted by outliers. We first recall that f ∗ ∈ argmin f ∈F R0−1( f ) and

for all f ∈ F , the excess loss function of f is L0−1
f = �0−1

f −�0−1
f ∗ . For simplicity we denote

f̂ = ̂f 0−1
ERM and for all f ∈ F , L0−1

f = L f and R( f ) = R0−1( f ).
It follows from the definition of the ERM estimator that PNL f̂ ≤ 0. Therefore, if we

denote by PI (resp. PO) the empirical measure supported on {(Xi , Yi ) : i ∈ I} (resp.
{(Xi , Yi ) : i ∈ O}), we have

R( f̂ ) − R( f ∗) = (P − PN )L f̂ + PNL f̂ ≤ (P − PN )L f̂

= |I|
N

(P − PI)L f̂ + |O|
N

(P − PO)L f̂

≤ |I|
N

sup
f ∈F

(P − PI)L f + 2|O|
N

because |L f̂ | ≤ 1 a.s.. Then, by the bounded difference inequality (Boucheron et al. 2013,
Theorem 6.2), since all f ∈ F satisfies −1 ≤ L f ≤ 1, one has, for any x > 0,

P

(

sup
f ∈F

(P − PI)L f ≥ E[ sup
f ∈F

(P − PI)L f ] + x

)

≤ e−2|I|x2 .

Furthermore, by the symmetrization argument (cf. Chapter 4 in Ledoux and Talagrand
2011),

E

[

sup
f ∈F

(P − PI)L f

]

≤ 2
R(LF )

|I| .

Therefore, for any x > 0, with probability larger than 1 − e−2|I|x2 ,

R( f̂ ) − R( f ∗) ≤ 2R(LF )

N
+ x + 2|O|

N
.

The proof is completed by choosing x = √
K/(2|I|).
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6.2 Proof of Theorem2

Let f ∗ ∈ argmin f ∈F P� f . By definition, one has MOMK
(

�
̂fMOM,K

) ≤ MOMK
(

� f ∗
)

, there-
fore,

R(̂fMOM,K ) − R( f ∗) ≤ P�
̂fMOM,K

− MOMK
(

�
̂fMOM,K

) − (

P� f ∗ − MOMK
(

� f ∗
))

. (8)

Let us now control the two expressions in the right-hand side of (8). Let x > 0. We have

P
[

P� f ∗ − MOMK
(

� f ∗
)

> x
] = P

[

K
∑

k=1

I (P� f ∗ − PBk � f ∗ > x) ≥ K

2

]

=
K
∑

k=K/2

(

K

k

)

pk(1 − p)K−k ≤ pK/22K

where p = P[P� f ∗ − PBk � f ∗ > x]. Using Markov inequality together with var(� f ∗) ≤
2L2

E( f ∗(X))2 ≤ 2L2θ2, we obtain

P
[

P� f ∗ − MOMK
(

� f ∗
)

> x
] ≤

(

4var(� f ∗)K

Nx2

)K/2

≤
(

8L2θ2K

Nx2

)K/2

= exp(−K/2)

when x = 2Lθ
√
2eK/N .

Now, for any x > 0, one has sup f ∈F MOMK
(

P� f − � f
)

> x iff

sup
f ∈F

K
∑

k=1

I
{

(P − PBk )� f > x
} ≥ K

2
. (9)

Let us now control the probability that (9) holds via an adaptation of the small ball method
(Koltchinskii andMendelson 2015;Mendelson 2015). Let x > 0 and let φ(t) = (t−1)I {1 ≤
t ≤ 2} + I {t ≥ 2} be defined for all t ∈ R. As φ(t) ≥ I {t ≥ 2}, one has

sup
f ∈F

K
∑

k=1

I
{

(P − PBk )� f > x
}

≤ sup
f ∈F

∑

k∈K
E
[

φ
(

2(P − PBk )� f /x
)] + |O|

+ sup
f ∈F

∑

k∈K

(

φ
(

2(P − PBk )� f /x
) − E

[

φ
(

2(P − PBk )� f /x
)])

where we recall that K = {k ∈ {1, · · · , K } : Bk ∩ O = ∅}}.
Since, φ(t) ≤ I {t ≥ 1} and for all f ∈ F , Var(� f ) ≤ 2L2

E f (X)2 ≤ 2L2θ22 , we have for
all f ∈ F and k ∈ K,

E
[

φ
(

2(P − PBk )� f /x
)] ≤ P

(

(P − PBk )� f ≥ x

2

)

≤ 4Var(� f )

x2|Bk | ≤ 8L2θ22 K

x2N
.
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One has therefore

sup
f ∈F

K
∑

k=1

I
{

(P − PBk )� f > x
}

≤ K

(

8L2θ22 K

x2N
+ |O|

K
+ sup

f ∈F
1

K

∑

k∈K

(

φ

(

2(P − PBk )� f

x

)

−E

[

φ

(

2(P − PBk )� f

x

)]))

.

As 0 ≤ φ(·) ≤ 1, by the bounded-difference inequality, for any y > 0, with probability
larger than 1 − e−2y2K ,

sup
f ∈F

1

K

∑

k∈K

(

φ

(

2(P − PBk )� f

x

)

− E

[

φ

(

2(P − PBk )� f

x

)])

≤ E

[

sup
f ∈F

1

K

∑

k∈K

(

φ

(

2(P − PBk )� f

x

)

− E

[

φ

(

2(P − PBk )� f

x

)])

]

+ y .

Now, by the symmetrization inequality,

E

[

sup
f ∈F

1

K

∑

k∈K

(

φ

(

2(P − PBk )� f

x

)

− E

[

φ

(

2(P − PBk )� f

x

)])

]

≤ 2E

[

sup
f ∈F

1

K

∑

k∈K
εkφ

(

2(P − PBk )� f

x

)

]

.

Since φ is 1-Lipschitz and φ(0) = 0, by the contraction principle (see Ledoux and Talagrand
2011, Chapter 4 or more precisely equation (2.1) in Koltchinskii 2011),

E

[

sup
f ∈F

1

K

∑

k∈K
εkφ

(

(P − PBk )� f

x

)

]

≤ E

[

sup
f ∈F

1

xK

∑

k∈K
εk(P − PBk )� f

]

.

By the symmetrization principle,

E

[

sup
f ∈F

2

xK

∑

k∈K
εk(P − PBk )� f

]

≤ 2

xN
E

⎡

⎣sup
f ∈F

∑

i∈J
εi� f (Xi , Yi )

⎤

⎦ .

Finally, since � is L-Lipschitz, by the contraction principle (see equation (2.1) in Koltchinskii
2011),

E

⎡

⎣sup
f ∈F

∑

i∈J
εi� f (Xi , Yi )

⎤

⎦ ≤ 2LR(F) .

Thus, for any y > 0, with probability larger than 1 − exp(−2y2K ),

sup
f ∈F

K
∑

k=1

I
{

(P − PBk )� f > x
} ≤ K

(

8L2θ22 K

x2N
+ |O|

K
+ y + 4LR(F)

xN

)

.
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Let � = 1/4 − |O|/K and let y = � and x = 8L max
(

θ2
√
K/N , 4R(F)/N

)

so

P

(

sup
f ∈F

K
∑

k=1

I
{

(P − PBk )� f > x
}

<
K

2

)

≥ 1 − e−�2K/8 .

Going back to (9), this means that

P

(

sup
f ∈F

MOMK
(

� f − P� f
) ≤ 4L max

(

θ2

√

K

N
,
4R(F)

N

))

≥ 1 − exp(−2�2K ) . (10)

Plugging this result in (8) concludes the proof of the theorem.

6.3 Proof of Proposition 1

Wedenote by B(1)(u), . . . , B(K )(u) the blocks such that the corresponding empiricalmeans
PB(k)(u)( fu(XN

1 )), k = 1, . . . , K are sorted: PB(1)(u)( fu(XN
1 )) ≥ · · · ≥ PB(K )(u)( fu(XN

1 )).
Denote J ∈ N such that K = 2J + 1.

The goal is to show that u �→ ψ fu ((Xi )
N
i=1) = MOMK ( fu((Xi )

N
i=1)) is differentiable

and to compute its partical derivatives. To that end, it suffices to show that for all ε with
‖ε‖2 sufficiently small, we have B(J )(u) = B(J )(u + tε) for all t ∈ [0, 1] and for that it is
sufficient to check that the same order of the K empirical means is preserved for all fu+tε:

∀1 ≤ k ≤ K − 1,∀t ∈ [0, 1], PB(k)(u)( fu+tε) − PB(k+1)(u)( fu+tε) > 0. (11)

We decompose this difference in three parts,

PB(k)(u)( fu+tε) − PB(k+1)(u)( fu+tε) ≥PB(k)(u)( fu) − PB(k+1)(u)( fu)

− ∣

∣PB(k)(u)( fu) − PB(k)(u)( f (u+tε)
∣

∣

− ∣

∣PB(k+1)(u)( fu+tε) − PB(k+1)(u)( fu)
∣

∣

The two last terms are controlled by the Lipshitz property of u �→ fu ,

∀t ∈ [0, 1], PB(k)(u)( fu+tε) − PB(k+1)(u)( fu+tε)

≥ PB(k)(u)( fu) − PB(k+1)(u)( fu) − 2t L‖ε‖2.
We denote by

hk(‖ε‖2) = P
(∀t ∈ [0, 1], PB(k)(u)( fu) − PB(k+1)(u)( fu) − 2t L‖ε‖2 ≥ 0

)

for all 1 ≤ k ≤ K − 1, hk is an non-decreasing function. Because for all 1 ≤ k ≤ K ,
PB(k)(u)( fu) has a uniformly continuous law with respect to the Lebesgue measure (because
its density is a convolution of several copies of the density of fu(X)), there is no jump in the
c.d.f and then hk verifies that

hk(‖ε‖2) −−−−→‖ε‖2→0
1.

And again because for all 1 ≤ k ≤ K , PB(k)(u)( fu) has a uniformly continuous law with
respect to the Lebesgue measure, we also have that

hk(‖ε‖2) = P
(∀t ∈ [0, 1], PB(k)(u)( fu) − PB(k+1)(u)( fu) − 2t L‖ε‖2 > 0

)

.
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Then, taking the union bound for 1 ≤ k ≤ K − 1,

h(‖ε‖2) :=P
(∀1≤k≤K − 1,∀t ∈[0, 1], PB(k)(u)( fu) − PB(k+1)(u)( fu) − 2t L‖ε‖2>0

)

≥ 1 −
K−1
∑

k=1

(1 − hk(‖ε‖2)) .

Moreover, h can be rewritten as a probability that the blocks don’t change using the reasoning
leading to Eq. (11), hence

h(‖ε‖2) = P (∀1 ≤ k ≤ K − 1, B(k)(u) = B(k)(u + tε)) ≤ P (∀t ∈ [0, 1],
B(J )(u) = B(J )(u + tε)) .

We now compute the partial derivatives of the median of meansψ fu . Let e1, . . . , ep ∈ R
p

be the canonical basis of Rp . For all m ∈ N, we define ε
j
m = δme j with (δm)m a decreasing

sequence of R∗+ such that for all 1 ≤ k ≤ K − 1 we have hk(δm) ≥ 1 − 2−m , δm exists
because hk(δ) → 1 when δ → 0. Then,

h(‖ε j
m‖2) ≥ 1 − K2−m . (12)

We denote by A j
m the event A j

m :=
{

∀t ∈ [0, 1], B(J )(u) = B(J )(u + tε j
m′)

}

and we study

the limiting event � j = limm→∞A j
m .

First, let us note that for all 1 ≤ j ≤ p, the sequence of set (A j
m)n is non-increasing,

hence

� j = limm→∞A j
m = limm→∞A j

m = (limm→∞(A j
m)c)c,

then, for all 1 ≤ j ≤ d , we can study the limm→∞(A j
m)c with Borel-Cantelli Lemma. Indeed,

we have from Eq. (12), P((A j
m)c) ≤ K2−m . Hence, the series

∑

m P((A j
m)c) converges and

by Borel Cantelli Lemma, P(limm→∞(A j
m)c) = 0, then for all 1 ≤ i ≤ p, P(� j ) = 1. In

other words, we have that for all ω ∈ � j , there exists m ≥ 1 such that ω ∈ A j
m . Hence, there

exists m ≥ 1 such that for all t ∈ [0, 1], B(J )(u) = B(J )(u + tε j
m), which implies that

for all 1 ≤ j ≤ p,

∂ jψ fu (X) = lim
t→0

ψ f
u+tε

j
m
(X) − ψ fu (X)

t
= lim

t→0

PB(J )(u)( fu+tε j
m
) − PB(J )(u)( fu)

t

= 1

N/K
lim
t→0

∑

i∈B(J )(u)

f
u+tε j

m
(Xi ) − fu(Xi )

t
= 1

N/K

∑

i∈B(J )(u)

∂ j fu(Xi ).

7 Annex

7.1 Choice of the number of blocks

Let us study the behaviour of our algorithms when the number of blocks changes. We plot
the accuracy as a function of K averaged on 50 runs to have a good idea of the evolution of
the performance with respect to K , the result is represented in Fig. 9.

There is a clear separation around 2|O| = 60 that is consistent with the theory. On the
other hand the accuracy doesn’t decrease when K gets bigger one would expect. This may
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Fig. 9 Plot of the accuracy on the toy dataset of Logistic Regression MOM as a function of K

Fig. 10 Plot of the accuracy on HTRU2 dataset of Logistic Regression MOM as a function of K

be due to the symmetry of the dataset. If we run the same experiment on the real dataset, we
get a much more regular plot, see Fig. 10.

Figure10 confirms our predictions on clean datasets, the accuracy getting better as K gets
smaller (the MOMminimizer is the ERM estimator when K = 1 and ERM is optimal in the
i.i.d. setup, Lecué and Mendelson 2013). This may be due to the small number of outliers in
this dataset.

7.2 Illustration of convergence rate

In this section, we estimate the rate of convergence of the MOM risk minimization algorithm
Logistic Regression on two databases (see Fig. 11). The first dataset is composed of points
located on two interlaced half-circle with a Gaussian noise of standard deviation 0.3, the
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(a) Scatter plot of the Moons dataset (b) Scatter plot of the Gaussians dataset

Fig. 11 Scatter plot of the two dataset used in this section, the color represent the class of the points (Color
figure online)

(a) Convergence rate for the Moons dataset (b) Convergence rate for the Gaussians dataset

Fig. 12 Plot of the logarithm of the excess risk as a function of log(n) in two cases: a where the margin
assumption does not hold and b where the margin assumption holds. A linear regression is fitted on the curve,
its slope is printed at the top of each figure revealing a slow n−0.51 rate of convergence in case a and a fast
n−1.1 in case b

two “moons” are each of a different class. We assume that these moons don’t satisfy the
margin property (we checked that the rate was slow for ERM algorithms, using the vanilla
logistic regression). The second dataset is composed of two GaussiansN ((−1,−1), 1.42 I2)
and N ((1, 1), 1.42 I2) with respective label 1 and 0, we can prove that this dataset verifies
the margin property needed to obtain fast rate in ERM

There are no outliers in the datasets because we only want to test the rate of con-
vergence. To illustrate the rates of convergence of our algorithms, we plot the curve

log
(∣

∣

∣R̂0−1( f̂K )) − R̂0−1( f ∗)
∣

∣

∣

)

as a function of log(n)where the risk is estimated byMonte-

Carlo. The figure obtained for Logistic Regression MOM is represented in Fig. 12. It seems
that MOM minimizers can achieve fast rates of convergence even if we did not prove them.

Remark 5 We used random blocks sampled at each iteration for this application because it is
the algorithm that we described earlier but even if we use one partition of blocks for the whole
algorithm (as in the theory we developed) we obtain nonetheless fast rate for the Gaussians
dataset.
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Fig. 13 Boxplot of the accuracy obtained on 50 training/test run (1000 training sample, 2% corruption) of
each algorithms on a 2-dimensional toy dataset

7.3 Comparison with robust algorithms based onM-estimators

In this sectionwe compare the algorithmLogisticRegressionMOMwith twoother algorithms
based onM-estimators, these algorithms are studied on the toy dataset presented in Section 5.

One algorithm is a gradient on the Huber estimation of the loss function, it follows the
same reasoning as MOM risk minimization and minimizes E[l f (X , Y )] using as a proxy
the Huber estimator for this quantity. The Huber estimator is then defined as a M-estimator,
denoted here μ̂ f , solution of

n
∑

i=1

ψc(μ̂ f − l( f (Xi ), Yi )) = 0

where ψc = max(−c,min(c, x)) is the Huber function, c > 0. Using this definition of μ̂ f ,
it is then easy to compute the gradient ∇μ̂ f and then use a gradient descent algorithm. The
theory behind this algorithm is studied further in Brownlees et al. (2015).

The second algorithm uses a “redescending” loss function, in short we do ERM with a
bounded loss function. Here we use Tukey biweight loss function rescaled by MADN scale
estimator and IRLS algorithm to optimize the empirical risk.

Figure 13 shows that all algorithmsperform similarly on this easy, lowdimensional dataset.
The situation is quite different in higher dimension. In Fig. 14 we used a 200 dimensional
dataset and the algorithm using a redescending loss function does not perform well. This
may be due to local minima in which the algorithm gets stuck, as local minima are multiplied
when the dimension gets higher. The other algorithms don’t suffer this drawback since they
use a “projection by the loss function” that makes the problem one dimensional.

The algorithm using redescending loss functions is a simple gradient descent that has lin-
ear complexity. The Huber gradient algorithm estimates at each iteration a Huber estimator
of location. The complexity of this estimator depends on the algorithm used but for most M-
estimators a commonly used algorithm is an iteratively reweighted algorithmwhose complex-
ity is linear in the sample size. In practice we can nonetheless notice a great complexity of the
Huber estimator in some cases where data are not well spread. Inmost cases, Logistic Regres-
sion MOM is the fastest among these three algorithms and the gradient Huber is the slowest,
even though logistic regression may need a lot more iterations than the other algorithms.
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Fig. 14 Boxplot of the accuracy obtained on 50 training/test run (2000 training sample, 2% corruption) of
each algorithms on a 200-dimensional toy dataset
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