
The Annals of Statistics
2022, Vol. 50, No. 1, 511–536
https://doi.org/10.1214/21-AOS2118
© Institute of Mathematical Statistics, 2022

ROBUST SUB-GAUSSIAN ESTIMATION OF A MEAN VECTOR IN NEARLY
LINEAR TIME

BY JULES DEPERSIN* AND GUILLAUME LECUÉ†

CREST, ENSAE, IPParis, *jules.depersin@ensae.fr; †guillaume.lecue@ensae.fr

We construct an algorithm for estimating the mean of a heavy-tailed ran-
dom variable when given an adversarial corrupted sample of N independent
observations. The only assumption we make on the distribution of the non-
corrupted (or informative) data is the existence of a covariance matrix �,
unknown to the statistician. Our algorithm outputs μ̂, which is robust to the
presence of |O| adversarial outliers and satisfies

(1) ‖μ̂ − μ‖2 �
√

Tr(�)

N
+

√
‖�‖opK

N

with probability at least 1 − exp(−c0K) − exp(−c1u), and runtime Õ(Nd +
uKd) where K ∈ {600|O|, . . . ,N} and u ∈ N

∗ are two parameters of the
algorithm. The algorithm is fully data-dependent and does not use (1) in its
construction, which combines recently developed tools for median-of-means
estimators and covering semidefinite programming. We also show that this
algorithm can automatically adapt to the number of outliers (adaptive choice
of K) and that it satisfies the same bound in expectation.

1. Introduction on the robust mean vector estimation problem. Estimating the mean
of a random variable in a d-dimensional space when given some of its realizations is arguably
the oldest and most fundamental problem of statistics. In the past few years, it has received
important attention from two communities: the statistics [7–9, 11, 13, 30, 39, 43–46] and
computer science [10, 12, 18, 19, 21–24] communities. Both communities consider the prob-
lem of robust mean estimation, focusing mainly on different definitions of robustness.

The first work to raise the question of robust mean estimation are Huber’s [31, 32], Tukey’s
[53, 54] or Hampel’s [28, 29]. Their concerns was more about robustness to model misspec-
ification and on the breakdown point property (“smallest amount of contamination necessary
to upset an estimator entirely” taken from [25]). The computational problem connected to this
issue was not of primary interest even though it was already raised, for instance, in Section 5.3
from [25] for the construction of Tukey contours (a d-dimensional definition of quantiles).

In recent years, many efforts have been made by the statistics community on the con-
struction of estimators performing in a sub-Gaussian way for heavy-tailed data. Such esti-
mators achieve the same statistical properties as the empirical mean X̄N of (X1, . . . ,XN), a
N -sample of i.i.d. Gaussian variables N (μ,�) where μ ∈ R

d and � � 0 is the covariance
matrix. In that case, for a given confidence 1 − δ, the sub-Gaussian rate as defined in [44] is
(up to an absolute multiplicative constant)

(2) rδ =
√

Tr(�)

N
+

√
‖�‖op log(1/δ)

N
,

where Tr(�) is the trace of � and ‖�‖op is the operator norm of �. Indeed, it follows from
Borell-TIS’s inequality (see Theorem 7.1 in [37] or pages 56–57 in [38]) that with probability
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at least 1 − δ,

‖X̄N − μ‖2 = sup
‖v‖2≤1

〈X̄N − μ,v〉 ≤ E sup
‖v‖2≤1

〈X̄N − μ,v〉 + σ
√

2 log(1/δ),

where σ = sup‖v‖2≤1

√
E〈X̄N − μ,v〉2 is the weak variance of the Gaussian process. It is

straightforward to check that E sup‖v‖2≤1〈X̄N − μ,v〉 ≤ √
Tr(�)/N and σ =

√
‖�‖op/N ,

which leads to the rate in (2) (up to the constant
√

2 on the second term in (2)). In most of
the recent works, the effort has been made to achieve the rate rδ for i.i.d. heavy-tailed data
even under the minimal requirement that the data only have a second moment. Under this
second-moment assumption only, the empirical mean cannot1 achieve the rate (2) and one
needs to consider other procedures. Over the years, some procedures have been proposed
to achieve such a goal: it started with [7] and [42], then a Le Cam test estimator, called
a tournament estimator in [44], a minmax median-of-means estimator in [43] and a PAC-
Bayesian estimator in [8] were constructed. The constructions in [42–44] are based on the
median-of-means principle, a technique that we will also use.

On the other side, the computer science (CS) community mostly considers a different
definition of robustness and targets a different goal. In many recent CS papers, tractable al-
gorithms (and not only theoretical estimators) have been constructed and proved to be robust
with respect to adversarial contamination of the data set that is when some of the data are
replaced by other data, which may have nothing to do with the original batch and which can
even be adversarial. This covers the Huber ε-contamination model [32] and also the O ∪ I
framework from [35, 36, 43]. We recall now this adversarial contamination model together
with the heavy-tailed setup, which will serve as our unique assumption in this work.

ASSUMPTION 1. There exists N random vectors (X̃i)
N
i=1 in R

d , which are independent
with mean μ and covariance matrix E(X̃i − μ)(X̃i − μ)� � � where � is an unknown
covariance matrix. The N random vectors (X̃i)

N
i=1 are first given to an “adversary” who is

allowed to modify up to |O| of these vectors. This modification does not have to follow any
rule. Then the “adversary” gives the modified data set (Xi)

N
i=1 to the statistician. Hence, the

statistician receives an “adversarially” contaminated data set of N vectors in R
d , which can

be partitioned into two groups: the modified data (Xi)i∈O, which can be seen as outliers and
the “good data” or inliers (Xi)i∈I such that ∀i ∈ I , Xi = X̃i . Of course, the statistician does
not know which data has been modified or not so that the partition O ∪ I = {1, . . . ,N} is
unknown to the statistician.

In the adversarial contamination model from Assumption 1, the set O can depend arbitrar-
ily on the initial data (X̃i)

N
i=1; the corrupted data (Xi)i∈O can have any arbitrary dependence

structure; and the informative data (Xi)i∈I may also be correlated (for instance, it is the case,
in general, when the |O| data X̃i with largest �d

2 -norm are modified by the adversary). The
computer science community looks at the problem of robust mean estimation from algorith-
mic perspectives such as the running time in this contamination model. A typical result in
this line of research is Theorem 1.3 from [10] that we recall now.

THEOREM 1.1 (Theorem 1.3, [10]). Let X1, . . . ,XN be a data points in R
d following

Assumption 1. We assume that the covariance matrix � of the inliers satisfies � � σ 2Id .
We assume that ε = |O|/N is such that 0 < ε < 1/3 and N � d log(d)/ε. There exists an

1Under only a second-moment assumption, the empirical mean achieves the rate
√

Tr(�)/(δN), which can not
be improved in general; see [7].
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algorithm running in Õ(Nd)/poly(ε), which outputs μ̂ε such that with probability at least
9/10, ‖μ̂ε − μ‖2 � σ

√
ε.

The notation Õ(Nd) stands for the computational running time of an algorithm up to
log(Nd) factors. The first result proving the existence of a polynomial time algorithm robust
to adversarial contamination may be found in [19] and the first achieving such a result un-
der only a second moment assumption may be found in [20]. Theorem 1.1 improves upon
many existing results since it achieves the optimal information theoretic-lower bound with a
(nearly) linear-time algorithm.

Finally, there are two recent papers for which both algorithmic and statistical considera-
tions are important. In [11, 30], algorithms achieving the sub-Gaussian rate in (2) have been
constructed. They both run in polynomial time: O(N24 +Nd) for [30] and O(N4 +N2d) for
[11] (see [11] for more details on these running times). They do not consider a contamination
of the data set even though their results easily extend to this setup. Some other estimators,
which have been proposed in the statistics literature, are very fast to compute but they do not
achieve the optimal sub-Gaussian rate from (2). A typical example is Minsker’s geometric
median estimator [45], which achieves the rate

√
Tr(�) log(1/δ)/N in linear time Õ(Nd).

All of the later three papers use the median-of-means principle. We will also use this princi-
ple. What we mainly borrow from the literature on MOM estimators is the advantage to work
with local block means instead of the data themselves. We will identify two such advantages
by doing so: a stochastic one and a computational one (see Remark 4 below for more details).

The aim of this work is to show that a single algorithm can answer the three problems:
robustness to heavy-tailed data, to adversarial contamination and computational cost. As-
sumption 1 covers the two concepts of robustness considered in the statistics and computer
science communities since the informative data (data indexed by I) are only assumed to have
a second moment and there are |O| adversarial outliers in the data set. Our aim is to show that
the rate of convergence (2), which is the rate achieved by the empirical mean in the ideal i.i.d.
Gaussian case, can be achieved in the corrupted and heavy-tailed setup from Assumption 1
with a fast algorithm: we construct an algorithm running in time Õ(Nd +u log(1/δ)d) which
outputs an estimator of the true mean achieving the sub-Gaussian rate (2) with confidence
1 − δ − (1/10)u (for exp(−c0N) ≤ δ ≤ exp(−c1|O|)) on a corrupted database and under a
second moment assumption only. It is therefore robust to heavy-tailed data and to contamina-
tion. Our approach takes ideas from both communities: the median-of-means principle which
has been recently used in the statistics community and a SDP relaxation from [10], which
can be theoretically computed fast. The baseline idea is to construct K equal size groups of
data from the N given ones and to compute their empirical means X̄k , k = 1, . . . ,K . These
K empirical means are used successively to find a robust descent direction thanks to a SDP
relaxation from [10]. We prove the robust sub-Gaussian statistical property of the resulting
descent algorithm under only the Assumption 1.

The paper is organized as follows. In the next section, we give a high-level description of
the algorithm and summarize its statistical and computation performance in our main result
Theorem 2.1. We also clearly identify how it improves upon existing results on the same
subject. In Section 3, we prove its statistical properties and give a precise definition of the
algorithm. In Section 4, we study the statistical performance of the SDP relaxation at the
heart of the descent direction. In Section 5, we fully characterize its computational cost. In
Section 6, we construct a procedure achieving the same statistical properties and can auto-
matically adapt to the number of outliers. This latter adaptive procedure is also proved to
satisfy estimation results in expectation.

We will use the following notation [n] = {1, . . . , n} for any n ∈ N and �d
2 stands for the

Euclidean space R
d endowed with its canonical Euclidean norm ‖ · ‖2 : x = (xj )

d
j=1 ∈ R

d →
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(
∑

j x2
j )1/2. A �d

2 -ball centered in x ∈ R
d with radius r > 0 is denoted by Bd

2 (x, r), the �d
2

unit ball is denoted by Bd
2 and the �d

2 unit sphere is denoted by Sd−1
2 .

2. Construction of the algorithms and main result. The construction of our robust
sub-Gaussian descent procedure is using two ideas. The first one comes from the median-
of-means (MOM) approach which has recently received a lot of attention in the statistical
and machine learning communities [6, 17, 42, 45, 47]. The MOM approach [3, 4, 33, 48]
often yields robust estimation strategies (but usually at a high computational cost). Let us
give the general idea behind that approach: we first randomly split the data into K equal-size
blocks B1, . . . ,BK (if K does not divide N , we just remove some data). We then compute
the empirical mean within each block: for k = 1, . . . ,K ,

X̄k = 1

|Bk|
∑
i∈Bk

Xi,

where we set |Bk| = Card(Bk) = N/K . In the one-dimensional case, we then take the me-
dian of the latter K empirical means to construct a robust and sub-Gaussian estimator of the
mean [17]. It is more complicated in the multidimensional case, where there is no definitive
equivalent of the one-dimensional median but instead there are several candidates: coordi-
natewise median, the geometric median (also known as Fermat point), the Tukey median,
among many others (see [52]). The strength of this approach is the robustness of the median
operator, which leads to good statistical properties even on corrupted databases. For the con-
struction of our algorithm, we use the idea of grouping the data and compute iteratively some
median of the bucketed means X̄k , k = 1, . . . ,K .

In [11], the authors propose to use these block means for a gradient descent algorithm: at
the current point xc of the iterative algorithm, a “robust descent direction” well aligned with
xc − μ is constructed with high probability. Note that xc − EX is the best descent direction
towards EX starting from xc; we can also rewrite that as a matrix problem: a top eigenvector
(i.e., an eigenvector associated with the largest singular value) of (EX − xc)(EX − xc)

� is
the optimal descent direction (xc − EX)/‖xc − EX‖2. As a consequence, a top eigenvector
of a solution to the optimization problem

(3) argmax
M�0,Tr(M)=1

〈
M,(EX − xc)(EX − xc)

�〉

also yields the best descent direction we are looking for (note that 〈A,B〉 = Tr(A�B) is the
inner product between two matrices A and B). Optimization problem (3) may be seen as a
SDP relaxation for the problem of finding a top eigenvector and it is the reason why we go
into SDP optimization techniques. Recently, this SDP relaxation has been bypassed thanks to
the power method in [39] whose aims is also to approximate a top eigenvector.

Of course, we do not know (EX − xc)(EX − xc)
� in (3) but we are given a database of

N data X1, . . . ,XN (among which |I| of them have mean μ). We use these data to estimate
in a robust way the unknown quantity (EX − xc)(EX − xc)

� in (3). Ideally, we would like
to identify the informative data and their block means (1/|K|)∑k∈K(X̄k − xc)(X̄k − xc)

�,
where K = {k : Bk ∩ O = ∅}, to estimate this quantity but this information is not available
either.

To address this problem, we use a tool introduced in [10, 19] adapted to the block means.
The idea is to endow each block mean X̄k with a weight ωk taken in �K defined as

�K =
{
(ωk)

K
k=1 : 0 ≤ ωk ≤ 1

9K/10
,

K∑
k=1

ωk = 1

}
.
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Ideally, we would like to put 0 weights to all block means X̄k corrupted by outliers but we
cannot do it since K is unknown. To overcome this issue, we learn the optimal weights and
consider the following minmax optimization problem:

(Exc ) max
M�0,Tr(M)=1

min
w∈�K

〈
M,

K∑
k=1

ωk(X̄k − xc)(X̄k − xc)
�
〉
.

This is the dual problem from [10] adapted to the block means. The key insight from [10]
is that an approximate solution Mc of the maximization problem in (Exc ) can be obtained
in a reasonable amount of time using a covering SDP approach [10, 50] (see Section 4). We
expect a solution (in M) to (Exc ) to be close to a solution of the minimization problem in
(3)—which is M∗ = (μ − xc)(μ − xc)

�/‖μ − xc‖2
2—and the same for their top eigenvectors

(up to the sign). We note that in order to find a good descent direction the authors of [11] also
use a (different) SDP relaxation. Theirs costs O(N4 + Nd) to be computed.

At a high level description, the robust descent algorithm we perform outputs μ̂K after at
most logd iterations of the form xc − θcv1 where v1 is a top eigenvector of an approximate
solution Mc to the problem (Exc ) and θc is a step size. It starts at the coordinatewise median
of the bucketed means X̄1, . . . , X̄K . In Algorithm 4, we define precisely the step size and
the stopping criteria we use to define the algorithm (it requires too much notation to be de-
fined at this stage). This algorithm outputs the vector μ̂K whose running time and statistical
performance are gathered in the following result.

THEOREM 2.1. Grant Assumption 1. Let K ∈ {1, . . . ,N} be the number of equal-sized
blocks and assume that K ≥ 300|O|. Let u ∈ N

∗ be a parameter of the covering SDP used
at each descent step. With probability at least 1 − exp(−K/180,000) − (1/10)u, the descent
algorithm finishes in time Õ(Nd + Kud) and outputs μ̂K such that

‖μ̂K − μ‖2 ≤ 808
(

1200

√
Tr(�)

N
+

√
1200‖�‖opK

N

)
.

To make the presentation of the proof of Theorem 2.1 as simple as possible we did not op-
timize the constants (better constants have been obtained in [7, 8]). Theorem 2.1 generalizes
and improves Theorem 1.1 in several ways. We first improve the confidence from a constant
“9/10” to an exponentially large confidence 1 − exp(−c0K) (when u ∼ K), which was a
major technical challenge (note, however, that the confidence 9/10 in [10] can be increased
to any desired confidence at the expense of deteriorating the rate of convergence; see foot-
note of page 2 in [10]). We obtain the result for any covariance structure � and μ̂K does not
require the knowledge of � for its construction. We obtain a result which holds for any N

(even in the case where N ≤ d). The construction of μ̂K does not require the knowledge of
the exact proportion of outliers ε in the data set, but it requires an upper bound in the number
of outlier, so that we can chose K � |O|. Moreover, using a Lepskii adaptation method [40,
41], it is also possible to automatically choose K and, therefore, to adapt to the proportion
of outliers if we have some extra knowledge on Tr(�) and ‖�‖op (see Section 6 for more
details). Moreover, if we only care about constant 9/10 confidence, our runtime does not
depend on ε and is nearly linear Õ(Nd). We also refer the reader to Corollary 2 for more
comparison with Theorem 1.1.

REMARK 1 (Nearly linear time). We identify two important situations where the algo-
rithm from Theorem 2.1 runs in nearly-linear time, that is, in time Õ(Nd). First, when the
number of outliers is known to be less than

√
N , we can choose K ≤ √

N and u = K . In that
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case, the algorithm runs in time Õ(Nd) and the sub-Gaussian rate is achieved with probabil-
ity at least 1 − 2 exp(−c0K) for some constant c0 (see also Corollary 3 for an adaptive to K

version of this result). Another widely investigated situation is when we only want to have a
constant confidence like 9/10 as it is the case in the CS community such as in Theorem 1.1.
In that case, one may choose u = 1 and any values of K ∈ [N ] can be chosen (so we can
have any number of outliers up to a N/300) to achieve the rate in Theorem 2.1 with con-
stant probability and in nearly linear time Õ(Nd) (see also Corollary 2 for an adaptive to K

version of this result). Finally, it is possible to get a sub-Gaussian estimator for the all range
of K ∈ [N ], which is also robust to adversarial outliers up to a constant fraction of N when
we take u = K . In that case, the running time is Õ(Nd + K2d) which is at worst Õ(N2d).
So algorithm outputs μ̂K in time between Õ(Nd) and Õ(N2d) depending on the number of
outliers and the probability deviation certifying the result we want.

Theorem 2.1 improves the result from [11, 30] since μ̂K runs faster than the polynomial
times O(N24 + Nd) and O(N4 + Nd) in [30] and [11]. The algorithm μ̂K also does not
require the knowledge of Tr(�) and ‖�‖op. Finally, Theorem 2.1 provides running time
guarantees on the algorithm unlike in [8, 43, 44] and it improves upon the statistical per-
formance from [45]. The main technical novelty lies in Proposition 1, necessary to improve
analysis from [10] toward exponentially large confidence 1 − exp(−c0K). Proposition 1 may
be of independent interest. Theorem 2.1 also improves the running time in [10] Õ(Nd/ε6)

and the constant probability deviation (see Theorem 1.1 for more details)—both probability
estimates and computational time have been improved by using bucketed means in place of
the data themselves (see Remark 4 below for more details). The computational time improve-
ment from Theorem 2.1 upon the one in [11] is due to the use of covering SDP [1, 10, 50] at
each iteration of the robust gradient descent algorithm. Very recent works [12, 15, 39] obtain
similar results to the one of Theorem 2.1. They were also able to replace SDPs by spectral
methods for the computations of a robust descent direction at each step. Even though cov-
ering SDPs are from a theoretical point of view computationally efficient [1, 50] they are
notoriously difficult to implement in practice whereas the power methods used in [12, 15, 39]
open the door to implementable algorithms. For more references on robust mean estimation,
we refer the reader to the survey [22].

3. Proof of the statistical performance in Theorem 2.1. In this section, we prove the
statistical performance of μ̂K as stated in Theorem 2.1. We first identify an event E onto
which we will derive the rate of convergence of the order of (2). This event is also used to
compute the running time of μ̂K in the next section as announced in Theorem 2.1.

PROPOSITION 1. Denote by E the event onto which for all symmetric matrices M � 0
such that Tr(M) = 1; there are at least 9K/10 of the blocks for which ‖M1/2(X̄k −μ)‖2 ≤ 8r

where

(4) r = 1200

√
Tr(�)

N
+

√
1200‖�‖opK

N
.

If Assumptions 1 holds and K ≥ 300|O|, then P[E] ≥ 1 − exp(−K/180,000).

Proposition 1 contains all the stochastic arguments we will use in this paper (constants
have not been optimized). In other words, after identifying the event E , all the remaining
arguments do not involve any other stochastic tools. The proof of Proposition 1 is based on a
rounding argument similar to the one used to prove Grothendieck’s inequality [27, 51] or in
the Goemans and Williamson’s analysis of a SDP relaxation of the Max-Cut problem [26] or
in Nesterov’s theorem [49]. Before proving Proposition 1, let us first state a result that is of
particular interest beyond our problem.
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COROLLARY 1. On the event E , for all symmetric matrices M ∈ R
d×d such that M � 0

and Tr(M) = 1 there are at least 9K/10 blocks k for which ‖M1/2(X̄k − μ)‖2 ≤ 8r and for
all such k’s and all xc ∈ R

d ,

(5)
∥∥M1/2(μ − xc)

∥∥
2 − 8r ≤ ∥∥M1/2(X̄k − xc)

∥∥
2 ≤ ∥∥M1/2(μ − xc)

∥∥
2 + 8r.

Let us now turn to a proof of Proposition 1. We first remark that if we were to only consider
matrices M of rank 1, Proposition 1 would boil down to showing that for all v ∈ Sd−1

2 (the
unit sphere in �d

2 ) on more than 9K/10 blocks |〈v, X̄k − μ〉| ≤ 8r . This is a “classical” result
in the MOM literature, which has been proved in [44] and [43]. We recall now this result and
the short proof from [43] adapted to the adversarial contamination setup from Assumption 1.
We will use it to prove Proposition 1.

LEMMA 1. Grant Assumption 1 and assume that K ≥ 300|O|. With probability at least
1 − exp(−K/180,000), for all v ∈ Sd−1

2 , there are at least 99K/100 of the blocks k such that
|〈v, X̄k − μ〉| ≤ r .

PROOF. We use the notation introduced in Assumption 1 and we considered the follow-

ing bucketed means X̃k = |Bk|−1 ∑
i∈Bk

X̃i for k ∈ [K]. They are the K means constructed
on the N independent vectors X̃i, i ∈ [N ] before contamination (whereas X̄k are the ones
constructed after contamination).

In the following, we show that with probability at least 1 − exp(−K/180,000), for all
v ∈ Sd−1

2 ,

(6)
∑

k∈[K]
I
(∣∣〈X̃k − μ,v〉∣∣ > r

) ≤ 2K

300
.

The result from Lemma 1 follows from (6) because the adversary is allowed to change at most

|O| data points among the X̃i’s. Hence, there are at most |O| bucketed means X̃k containing

an outlier and so K − |O| ≥ 299K/300 means X̃k , which are unchanged, that is, for which

X̃k = X̄k . So, if (6) holds then they are at least 298K/300 means X̃k for which |〈X̃k −
μ,v〉| ≤ r and so, at least 297K/300 = 99K/100 means X̄k for which |〈X̄k − μ,v〉| ≤ r .

As in [34], we define φ(t) = 0 if t ≤ 1/2, φ(t) = 2(t − 1/2) if 1/2 ≤ t ≤ 1 and φ(t) = 1
if t ≥ 1. We have I (t ≥ 1) ≤ φ(t) ≤ I (t ≥ 1/2) for all t ∈ R and so∑

k∈[K]
I
(∣∣〈X̃k − μ,v〉∣∣ > r

)

≤ ∑
k∈[K]

I
(∣∣〈X̃k − μ,v〉∣∣ > r

)− P
[∣∣〈X̃k − μ,v〉∣∣ > r/2

]+ P
[∣∣〈X̃k − μ,v〉∣∣ > r/2

]

≤ ∑
k∈[K]

φ

( |〈X̃k − μ,v〉|
r

)
−Eφ

( |〈X̃k − μ,v〉|
r

)
+ P

[∣∣〈X̃k − μ,v〉∣∣ > r/2
]

≤ sup
v∈Sd−1

2

( ∑
k∈[K]

φ

( |〈X̃k − μ,v〉|
r

)
−Eφ

( |〈X̃k − μ,v〉|
r

))

+ ∑
k∈[K]

P
[∣∣〈X̃k − μ,v〉∣∣ > r/2

]
.
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For all k ∈ [K], we have

P
[∣∣〈X̃k − μ,v〉∣∣ > r/2

] ≤ E〈X̃k − μ,v〉2

(r/2)2 ≤ 4Kv��v

Nr2

≤
4K sup

v∈Sd−1
2

v��v

Nr2 = 4K‖�‖op

Nr2 ≤ 1

300

because r2 ≥ 1200K‖�‖op/N .
Next, we use several tools from empirical process theory and in particular, for a sym-

metrization argument, we consider a family of N independent Rademacher variables (εi)
N
i=1

independent of the (X̃i)
N
i=1. In (bdi) below, we use the bounded difference inequality (Theo-

rem 6.2 in [5]). In (sa-cp), we use the symmetrization argument and the contraction principle
(Chapter 4 in [38]); we refer to the Supplementary Material of [43] for more details. We have,
with probability at least 1 − exp(−K/180,000),

sup
v∈Sd−1

2

( ∑
k∈[K]

φ

( |〈X̃k − μ,v〉|
r

)
−Eφ

( |〈X̃k − μ,v〉|
r

))

(bdi)≤ E sup
v∈Sd−1

2

( ∑
k∈[K]

φ

( |〈X̃k − μ,v〉|
r

)
−Eφ

( |〈X̃k − μ,v〉|
r

))
+

√
K2

360,000

(sa-cp)≤ 4K

Nr
E sup

v∈Sd−1
2

〈
v,

∑
i∈[N]

εi(X̃i − μ)

〉
+ K

600

= 4K√
Nr

E

∥∥∥∥ 1√
N

∑
i∈[N]

εi(X̃i − μ)

∥∥∥∥
2
+ K

600
≤ K

300

because r ≥ 1200E‖∑i∈[N] εi(X̃i − μ∗)‖2/
√

N since

E

∥∥∥∥ 1√
N

∑
i∈[N]

εi(X̃i − μ)

∥∥∥∥
2
≤

√√√√E

∥∥∥∥ 1√
N

∑
i∈[N]

εi(X̃i − μ)

∥∥∥∥2

2
≤ √

Tr(�).

As a consequence, when K ≥ 300|O|, with probability at least 1 − exp(−K/180,000), for
all v ∈ Sd−1

2 ,

∑
k∈[K]

I
(∣∣〈X̃k − μ,v〉∣∣ > r

) ≤ |K|
300

+ K

300
≤ 2K

300
,

which is (6). �

PROOF OF PROPOSITION 1. Let M ∈ R
d×d be such that M � 0 and Tr(M) = 1. De-

note by AM = {k ∈ [K] : ‖M1/2(X̄k − μ)‖2 ≥ 8r} and assume that |AM | ≥ 0.1K . Let G

be a Gaussian vector in R
d with mean 0 and covariance matrix M (and independent from

X1, . . . ,XN ). We consider the random variable Z = ∑
k∈[K] I (|〈X̄k −μ,G〉| > 5r). We work

conditionally to X1, . . . ,XN in this paragraph.
For all k ∈ [K], 〈X̄k − μ,G〉 is a centered Gaussian variable with variance σ 2

k :=
‖M1/2(X̄k − μ)‖2

2. In particular, for all k ∈ AM , if we denote by g a standard real-valued
Gaussian variable, we have PG[|〈X̄k −μ,G〉| > 5r] ≥ PG[|〈X̄k −μ,G〉| > 5σk/8] = 2P[g >

5/8] ≥ 0.528 (where PG (resp., EG) denotes the probability (resp., expectation) w.r.t. G con-
ditionally on X1, . . . ,XN ). Hence, EGZ ≥ 0.528|AM | ≥ 0.0528K . Since |Z| ≤ K a.s., it
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follows from Paley–Zygmund inequality (see Proposition 3.3.1 in [14]) that

PG[Z > 0.01K] ≥ (EGZ − 0.01K)2

EGZ2 ≥ (0.0428)2 = 0.0018.

Moreover, it follows from the Borell-TIS inequality (see Theorem 7.1 in [37] or pages 56–
57 in [38]) that with probability at least 1−exp(−8), ‖G‖2 ≤ E‖G‖2 +4

√
‖M‖op. Moreover,

E‖G‖2 ≤ √
Tr(M) ≤ 1 and ‖M‖op ≤ Tr(M) ≤ 1, so ‖G‖2 ≤ 5 with probability at least 1 −

exp(−8) ≥ 0.9996. Since 0.9996 + 0.0018 > 1, there exists a vector GM ∈ R
d such that

‖GM‖2 ≤ 5 and
∑

k∈[K] I (|〈X̄k − μ,GM〉| > 5r) > 0.01K . We recall that this latter result
holds when we assume that |AM | ≥ 0.1K .

Next, we denote by �0 the event onto which for all v ∈ Sd−1
2 , there are at least

99K/100 blocks such that |〈X̄k − μ,v〉| ≤ r . We know from Lemma 1 that P[�0] ≥
1 − exp(−K/180,000). Let us place ourselves on the event �0 up to the end of the proof.
Let M ∈ R

d×d be such that M � 0 and Tr(M) = 1 and assume that |AM | ≥ 0.1K . It fol-
lows from the first paragraph of the proof that there exists GM ∈ R

d such that ‖GM‖2 ≤ 5
and

∑
k∈[K] I (|〈X̄k − μ,GM〉| > 5r) > 0.01K . Given that we work on the event �0, we

have for vM = GM/‖GM‖2, that for more than 99K/100 blocks |〈X̄k − μ,vM〉| ≤ r and so
|〈X̄k −μ,GM〉| ≤ ‖GM‖2r ≤ 5r which contradicts the fact that

∑
k∈[K] I (|〈X̄k −μ,GM〉| >

5r) > 0.01K . Therefore, we necessarily have |AM | ≤ 0.1K , which concludes the proof. �

PROOF OF COROLLARY 1. Let us assume that the event E holds up to the end of the
proof. Let M ∈R

d×d be such that M � 0 and Tr(M) = 1. Let KM = {k ∈ [K] : ‖M1/2(X̄k −
μ)‖2 ≤ 8r}. On the event E , we have |KM | ≥ 9K/10. Let xc ∈ R

d . For all k ∈ KM , we have
‖M1/2(μ − X̄k)‖2 ≤ 8r and so∥∥M1/2(X̄k − xc)

∥∥
2 ∈ ∥∥M1/2(μ − xc)

∥∥
2 + [−∥∥M1/2(μ − X̄k)

∥∥
2,
∥∥M1/2(μ − X̄k)

∥∥
2

]
⊂ ∥∥M1/2(xc − μ)

∥∥
2 + [−8r,8r]. �

Let us now turn to the study of the optimization problem (Exc ) on the event E . Like in
[10], we denote by OPTxc the optimal value of (Exc ) and by

hxc : M → min
w∈�K

〈
M,

∑
k∈[K]

ωk(X̄k − xc)(X̄k − xc)
�
〉

its objective function to be minimized over {M ∈ R
d×d : M � 0,Tr(M) = 1}.

REMARK 2. For a given M , the optimal choice of w ∈ �K in the definition of hxc(M)

is straightforward: one just has to put the maximum possible weight on the 9K/10 smallest
〈M,(X̄k − xc)(X̄k − xc)

�〉, k ∈ [K]. Formally, we set SM = σ({1,2, . . . ,9K/10}), where
σ is a permutation on [K] that arranges the (X̄k − xc)

�M(X̄k − xc), k ∈ [K] in ascending
order: ∥∥M1/2(X̄σ(1) − xc)

∥∥
2 ≤ ∥∥M1/2(X̄σ(2) − xc)

∥∥
2 ≤ · · · ≤ ∥∥M1/2(X̄σ(K) − xc)

∥∥
2.

Then we get hxc(M) = (1/|SM |)∑k∈SM
(X̄k − xc)

�M(X̄k − xc).

The first lemma deals with the optimal value of (Exc ) when the current point xc is far from
the mean μ.

LEMMA 2. On the event E , for all xc ∈R
d , if ‖xc − μ‖2 > 16r then

(8/9)
(‖xc − μ‖2 − 8r

)2 ≤ OPTxc ≤ (‖xc − μ‖2 + 8r
)2

.
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PROOF. Let M be a matrix such that M � 0 and Tr(M) = 1. Set KM = {k ∈ [K] :
‖M1/2(X̄k −μ)‖2 ≤ 8r}. On the event E , we have |KM | ≥ 9K/10 and it follows from Corol-
lary 1 that for all k ∈ KM and all xc ∈R

d ,

(7)
∥∥M1/2(μ − xc)

∥∥
2 − 8r ≤ ∥∥M1/2(X̄k − xc)

∥∥
2 ≤ ∥∥M1/2(μ − xc)

∥∥
2 + 8r.

Then we define a weight vector ω̃ ∈ �K by setting for all k ∈ [K]

ω̃k =
{

1/|KM | if k ∈ KM,

0 else.

It follows from the definition of hxc and (7) that

hxc(M) ≤ ∑
k∈[K]

ω̃k(X̄k − xc)
�M(X̄k − xc)

= 1

|KM |
∑

k∈KM

∥∥M1/2(X̄k − xc)
∥∥2

2 ≤ (∥∥M1/2(μ − xc)
∥∥

2 + 8r
)2

.

(8)

Taking the maximum over all M ∈ R
d such that M � 0 and Tr(M) = 1 on both sides of the

latter inequality yield the right-hand side inequality of Lemma 2.
For the left-hand side inequality of Lemma 2, we let xc ∈ R

d be such that ‖xc −μ‖2 > 16r

and let M be such that M � 0 and Tr(M) = 1. We use the notation and observation from
Remark 2: we note that |KM ∩ SM | ≥ 8K/10 so that it follows from Corollary 1 that

hxc(M) = 1

9K/10

∑
k∈SM

∥∥M1/2(X̄k − xc)
∥∥2

2 ≥ 1

9K/10

∑
k∈AM∩SM

∥∥M1/2(X̄k − xc)
∥∥2

2

≥ 8K/10

9K/10

(∥∥M1/2(μ − xc)
∥∥

2 − 8r
)2

.

Then, taking the maximum over all M � 0 such that Tr(M) = 1 on both sides, completes the
proof. �

The next lemma shows that the top eigenvector of an approximate solution to (Exc ) is
aligned with the best possible descent direction (μ − xc)/‖μ − xc‖2. It is taken from the
proof of Lemma 3.3 in [10]. We reproduce here a short proof for completeness.

PROPOSITION 2. On the event E , if M is a matrix such that M � 0, Tr(M) = 1 and
hxc(M) ≥ (β‖xc − μ‖2 + 8r)2 for some 1/

√
2 ≤ β ≤ 1, then any top eigenvector v1 of M

satisfies ∣∣∣∣
〈
v1,

xc − μ

‖xc − μ‖2

〉∣∣∣∣ >
√

2β2 − 1.

PROOF. Let M be a matrix such that M � 0, Tr(M) = 1 and hxc(M) ≥ (β‖xc − μ‖2 +
8r)2 for some 1/

√
2 ≤ β ≤ 1. We use the same argument as in the proof of Lemma 2: on

the event E , |KM | ≥ 9K/10 where KM = {k ∈ [K] : ‖M1/2(X̄k −μ)‖2 ≤ 8r} and so ω̃ ∈ �K

where for all k ∈ [K], ω̃k = 1/|KM | if k ∈ KM and ω̃k = 0 if k /∈ KM . It follows from the
definition of hxc that

hxc(M) ≤ ∑
k∈[K]

ω̃k(X̄k − xc)
�M(X̄k − xc) = 1

|KM |
∑

k∈KM

∥∥M1/2(X̄k − xc)
∥∥2

2

and so from Corollary 1, hxc(M) ≤ (‖M1/2(μ − xc)‖2 + 8r)2. Since we assumed that
hxc(M) ≥ (β‖xc − μ‖2 + 8r)2, it follows that ‖M1/2(μ − xc)‖2

2 ≥ β2‖μ − xc‖2
2.
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Let λ1 ≥ λ2 ≥ · · · ≥ λd ≥ 0 denote the eigenvalues of M and let v1, . . . , vd denote corre-
sponding eigenvectors. The conditions on M imply that

∑
j λj = 1 and BM = (v1, . . . , vd)

is an orthonormal basis of Rd . We denote v = (μ − xc)/‖μ − xc‖2. We decompose v in BM

as v = ∑
j αjvj with

∑
j α2

j = 1. Using this decomposition, we have v�Mv = ∑
j λjα

2
j .

We have λ1 = λ1
∑

j α2
j ≥ ∑

j λjα
2
j ≥ β2, so λ1 ≥ β2. Moreover, since

∑
j λj = 1, we

have β2 ∑
j α2

j ≤ ∑
j λjα

2
j ≤ λ1α

2
1 + (1 − λ1)(1 − α2

1) ≤ α2
1 + (1 − β2)

∑
j α2

j , so we have

α2
1 ≥ (2β2 − 1). As we know that α1 = 〈v1, v〉, we get the result. �

Proposition 2 is the first tool we need to construct a descent algorithm since it provides a
descent/ascent direction (depending on the sign of the top eigenvector of an approximate so-
lution to (Exc )). It remains to specify three other quantities to fully characterize our algorithm:
a starting point, a step size and a stopping criteria. We start with the starting point. Here, we
simply use the coordinatewise median-of-means. The following statistical guarantee on the
coordinatewise median-of-means is known or folklore but we want to put forward that in our
case it holds on the event E . This again shows that E is the only event we need to fully analyze
all the building blocks of the algorithm. We recall that the coordinatewise median-of-means
is the estimator μ̂(0) ∈ R

d whose coordinates are for all j ∈ [d], μ̂
(0)
j = med(X̄k,j : k ∈ [K])

where X̄k,j is the j th coordinate of the block mean X̄k for all k ∈ [K].

PROPOSITION 3. On the event E , we have ‖μ̂(0) − μ‖2 ≤ 8
√

dr .

PROOF. Let us place ourselves on the event E during all the proof. For all directions,
v ∈ Sd−1

2 , there are at least 9K/10 blocks k such that |〈X̄k − μ,v〉| ≤ 8r . In particular, for
all j ∈ [d], |〈X̄k − μ,ej 〉| ≤ 8r where (e1, . . . , ed) is the canonical basis of R

d . That is,
for at least 9K/10 blocks |X̄k,j − μj | ≤ 8r . In particular, the latter result is true for the

median of {X̄k,j : k ∈ [K]}, that is, for μ̂
(0)
j . We therefore have ‖μ̂(0) − μ‖∞ ≤ 8r and so

‖μ̂(0) − μ‖2 ≤ 8r
√

d . �

Proposition 3 guarantees that starting from the coordinatewise median-of-means we are
off by a

√
d proportional factor from the optimal rate r . This will play a key role to analyze

the number of steps we need to reach μ within the optimal rate r . Indeed, if we prove a
geometric decay of the distance to μ along the descent algorithm then only logd steps (up
to a multiplicative constants) would be enough to reach μ by a distance at most of the order
of r .

Let us now specify the step size we use at each iteration. At the current point xc we com-
pute a top eigenvector v1 of an approximate solution M to (Exc ) (i.e., M such that hxc(M) ≥
(β‖xc − μ‖2 + 8r)2 for some 1/

√
2 ≤ β ≤ 1). The next iteration is xc+1 = xc − θcv1 where

the step size is

(9) θc = −Med
(〈X̄k − xc, v1〉 : k ∈ [K]).

In particular, since θcv1 does not depend on the sign of v1 (the product θcv1 is the same if we
replace v1 by −v1), we do not care which top eigenvector of M we choose.

Let us now prove a geometric decay of the algorithm while xc is far from μ. Again, this
result is proved on the event E .

PROPOSITION 4. On the event E , the following holds. Let xc ∈R
d (be the current point of

the algorithm). Assume that M is an approximate solution of (Exc ): M is such that hxc(M) ≥
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(β‖xc −μ‖2 + 8r)2 for some 0.78 ≤ β ≤ 1 and let v1 be one of its top eigenvectors. Then we
have

‖xc+1 − μ‖2
2 ≤ 0.8‖xc − μ‖2

2 + 64r2

when xc+1 = xc − θcv1 for θc defined in (9).

PROOF. Let us assume that the event E holds up to the end of the proof. Let M be an
approximate solution to (Exc ) such that hxc(M) ≥ (β‖xc −μ‖2 +8r)2 for some 0.78 ≤ β ≤ 1
and let v1 be a top eigenvector of M .

In direction v1, there are at least 9K/10 blocks such that |〈X̄k − μ,v1〉| ≤ 8r (see
Lemma 1). Hence, on these blocks, we also have∣∣θc − 〈xc − μ,v1〉

∣∣ = ∣∣Med
(〈μ − X̄k, v1〉 : k ∈ [K])∣∣

≤ Med
(∣∣〈μ − X̄k, v1〉

∣∣ : k ∈ [K]) ≤ 8r.
(10)

Let v = (μ − xc)/‖μ − xc‖2 denote the optimal normalized descent direction. We write
v = λ1v1 + λ2v

⊥
1 where v⊥

1 is a normalized orthogonal vector to v1. We have λ2
1 + λ2

2 = 1

and it follows from Proposition 2 that |λ1| = |〈v1, v〉| >
√

2β2 − 1. We conclude that

‖xc+1 − μ‖2
2 = ‖xc − μ − θcv1‖2

2 = ∥∥(〈xc − μ,v1〉 − θc

)
v1 + 〈

xc − μ,v⊥
1
〉
v⊥

1
∥∥2

2

= (〈xc − μ,v1〉 − θc

)2 + 〈
xc − μ,v⊥

1
〉2 ≤ (8r)2 + λ2

2‖xc − μ‖2
2

As λ2
2 = 1 − λ2

1 < 2 − 2β2 < 0.8, we get the result. �

We now have almost all the building blocks to fully characterize the algorithm. The last
and final step is to find a stopping rule. The idea we use to design such a rule is based on
Proposition 4: we know that when the current point xc is not in a �d

2 -neighborhood of μ with
a radius 80r , then the �d

2 -distance between the next iteration xc+1 and μ should be less than√
0.81 times the �d

2 -distance between xc and μ; that is, a geometric decay of the distance to
μ. Moreover, if the current iteration xc is in a �d

2 -ball centered in μ with the radius 80r , then
it follows from Proposition 4 that the next iteration xc+1 will also be in a �d

2 -ball centered in
μ with radius at most 80r . So once the algorithm enters the ball Bd

2 (μ,80r), it never leaves
it. We therefore have a geometric decay of the distance to μ along the iterations until we
reach the ball Bd

2 (μ,80r). Starting from the coordinatewise median(-of-means), which is in
a 8

√
dr neighborhood of μ (see Proposition 3), we only have to do log(8

√
d)/ log(1/

√
0.81)

iterations to output a current point which at most 80r-close to μ w.r.t. the �d
2 -norm.

We are now in a position to write an “almost final” pseudo-code of our algorithm. In the
next section, we will dive a bit deeper in this pseudo-code (and in particular on the covering
SDP algorithm used to construct an approximate solution to (Exc )) in order to provide a final
pseudo-code together with its total running time.

Algorithm 1 is “almost” our final algorithm. There is one last step we need to check care-
fully: given a current point xc we need to find a way to construct Mc satisfying “hxc(Mc) ≥
(0.78‖xc − μ‖2 + 8r)2” without knowing r or μ. This is the last issue we need to address in
order to explain how step 5 from Algorithm 1 can be realized in a fully data-dependent way
in a good time. This issue is answered in the next section together with the computation of its
running time.
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input : X1, . . . ,XN and a number K of blocks
output: A robust sub-Gaussian estimator of μ

1 Construct an equipartition B1 � · · · � BK = {1, . . . ,N}
2 Construct the K empirical means X̄k = (N/K)

∑
i∈Bk

Xi , k ∈ [K]
3 Compute μ̂(0) the coordinatewise median-of-means and put xc ← μ̂(0)

4 for T = 1,2, . . . , log(8
√

d)/ log(1/
√

0.81) do
5 Compute Mc an approximate solution to (Exc ) such that

hxc(Mc) ≥ (
0.78‖xc − μ‖2 + 8r

)2

6 Compute v1 a top eigenvector of Mc

7 Compute a step size θc = −Med(〈X̄k − xc, v1〉 : k ∈ [K])
8 Update xc ← xc − θcv1

9 end
10 Return xc

Algorithm 1: “Almost final” pseudo-code of the robust sub-Gaussian estimator of μ

4. Approximately solving the SDP (Exc ). The aim of this section is to show that, on
the event E , it is possible to construct in a reasonable amount of time a matrix Mc such that
“hxc(Mc) ≥ (0.78‖xc −μ‖2 +8r)2” without any extra information than the data. To that end,
we construct in an efficient way an approximate solution to the optimization problem (Exc )
using covering SDP as in [10]. The main result of this section is the following.

THEOREM 4.1. Let u ∈ N
∗. On the event E , for every xc ∈ R

d such that ‖xc − μ‖2 ≥
800r , given input xc, we can either compute, in time Õ(Kud), with probability > 1 −
(1/10)u+5/

√
d:

• A matrix Mc such that

hxc(Mc) ≥ (
0.78‖xc − μ‖2 + 8r

)2
.

• Or directly a sub-Gaussian estimate of μ, using only the block means X̄1, . . . , X̄K as in-
puts.

Theorem 4.1 answers the last issue raised at the end of Section 3 and provides the running
time for step 5 of Algorithm 1. It therefore concludes the statement that there exists a fully
data-driven robust sub-Gaussian algorithm for the estimation of a mean vector under the only
Assumption 1 (the total running time of Algorithm 1 is studied in Section 5).

REMARK 3. Theorem 4.1 states that we either find an approximate solution Mc to (Exc )
or a good estimate of μ (at the current point xc). As we will see in this section, this second
case is degenerate as it is not the typical situation.

Before turning to the proof of Theorem 4.1, we recall the definition of the following quan-
tities to ease the reading of the proof:

OPTxc = min
M�0:Tr(M)=1

hxc(M) where hxc : M → min
w∈�K

〈
M,

∑
k∈[K]

ωk(X̄k − xc)(X̄k − xc)
�
〉

and (Exc ) refers to the optimization problem minM(hxc(M) : M � 0,Tr(M) = 1).



524 J. DEPERSIN AND G. LECUÉ

We now turn to the proof of Theorem 4.1. It is decomposed into several lemmas adapted
from techniques developed by [10] to approximately solve the SDP problem (Exc ) in time
Õ(Kud) as announced in Theorem 1.1. To that end, we first introduce the following covering
SDP:

(Cρ)

minimize
M ′,y′ Tr

(
M ′)+ ∥∥y′∥∥

1

subject to M ′ � 0, y′ ≥ 0,

∀k ∈ [K], ρ(X̄k − xc)
�M ′(X̄k − xc) + 9K/10y′

k ≥ 1,

where ρ > 0 is some parameter that we will show how to fine-tune later. Then we show
that, for a good choice of ρ, we can turn a good approximate solution for (Cρ) into a good
approximate solution for (Exc ).

We denote by g(ρ) the optimal objective value of (Cρ). We begin with a first lemma that
shows how to link the two optimization problems (Exc ) and (Cρ). The proof can be found in
Lemma 4.2 from [10]. We adapt it here for our purpose.

LEMMA 3. Let ρ > 0. From a feasible solution (M ′, y′) for (Cρ) that achieves Tr(M ′)+
‖y′‖1 ≤ 1, we can construct a feasible solution M for (Exc ) with objective value hxc(M) ≥
1/ρ. The reverse is also true. In particular, if g(ρ) (resp., OPTxc ) denotes the optimal value
achieved by the objective function in (Cρ) (resp., (Exc )), we have g(ρ) ≤ 1 iff 1/ρ ≥ OPTxc .

PROOF. We first note that the optimization problem (Exc ) is equivalent to the following
one:

(Ẽxc )

maximize
M,y,z

z − ‖y‖1

9K/10

subject to M � 0,Tr(M) = 1, y ≥ 0, z ≥ 0

∀k ∈ [K], (X̄k − xc)
�M(X̄k − xc) + yk ≥ z.

Indeed, for a given M � 0 such that Tr(M) = 1, one can notice that the optimal value is
achieved in (Ẽxc ) for yk = max(0, z−(X̄k −xc)

�M(X̄k −xc)), k ∈ [K] and z = Q9/10((X̄k −
xc)

�M(X̄k − xc)) the 9/10th quantile of {(X̄k − xc)
�M(X̄k − xc) : k ∈ [K]}, so that z −

‖y‖1/(9K/10) = hxc(M), which gives the equivalence between (Exc ) and (Ẽxc ).
Then let a feasible solution (M ′, y′) for (Cρ) be such that Tr(M ′) + ‖y′‖1 ≤ 1. We define

M = M ′

Tr(M ′)
, z = 1

ρ Tr(M ′)
and y = (9K/10)

(ρ Tr(M ′))
y′.

We can check that (M,y, z) is feasible for (Ẽxc ) and z−‖y‖1/(9K/10) ≥ 1/ρ. Hence, given
the equivalence between (Exc ) and (Ẽxc ), we obtain that M is feasible for (Exc ) and that
hxc(M) ≥ 1/ρ.

Conversely, if M is feasible for (Exc ) such that hxc(M) ≥ 1/ρ, then we define y and
z such that for all k ∈ [K], yk = max(0, z − (X̄k − xc)

�M(X̄k − xc)), k ∈ [K] and z =
Q9/10((X̄k − xc)

�M(X̄k − xc)). We check that (M,y, z) is feasible for (Ẽxc ) with objective
values equals to hxc(M) and so it is larger than 1/ρ. Next, by defining

M ′ = M

ρz
and y′ = y

(9K/10)z
,

we see that (M ′, y′) is feasible for (Cρ) and its objective values is less than 1. �
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From Lemma 3, it is enough to solve (Cρ)—for a good choice of ρ—to find a good ap-
proximate solution for (Exc ). It therefore remains to find such a good ρ. To do so, we rely on
the next two lemmas. The first one is adapted from Lemma 4.3 in [10]; we recall that g(ρ) is
the optimal value achieved by the objective function in (Cρ).

LEMMA 4. For every ρ > 0 and α ∈ (0,1), g((1 − α)ρ) ≥ g(ρ) ≥ (1 − α)g((1 − α)ρ).

PROOF. A feasible pair (M ′, y′) for (C(1−α)ρ) is also feasible for (Cρ), which gives the
first inequality. If (M ′, y′) is a feasible pair for (Cρ), then (M ′/(1 − α), y′/(1 − α)) is a
feasible pair for (C(1−α)ρ), which gives the second inequality. �

It follows from Lemma 4 that g is continuous, nonincreasing and g(1/OPTxc) = 1 (this
follows from Lemma 3 since we have that g(ρ) ≤ 1 iff 1/ρ ≥ OPTxc and the continuity
of g). So in order to find a good solution, we must find a ρ such that g(ρ) is as close to 1 as
possible. Unfortunately, we do not know how to solve (Cρ) exactly for a given ρ > 0, but we
can compute efficiently a good approximation (M ′, y′) and a top eigenvector of M ′ thanks to
the following result which can be found in [50] or [2] and is detailed in [10] (see Section 4
and Remark 3.4).

LEMMA 5 ([2, 50]). Let u ≥ 1 be an integer. For every ρ > 0 and every fixed η > 0, we
can find with probability > 1− (1/10)u+10/d a feasible solution to (Cρ) that is η-close to the
optimal, that is to say a feasible pair (M ′, y′) so that Tr(M ′) + ‖y′‖1 ≤ (1 + η)g(ρ) in time
Õ(uKd). Moreover, it is possible to find an approximate top eigenvector of M ′ in Õ(Kd).

We compute (u+3 log(d)+10) times independently the (randomized) algorithm from [50]
(or the one from [2]) that has a runtime of Õ(Kd) and that outputs an η-close feasible solution
with probability 9/10. By taking the largest of the output’s objective value, we have an η-
close feasible solution with probability 1 − (1/10)u+3 log(d)+10, in time Õ(uKd), proving
Lemma 5.

Let us call ALGρ the algorithm from Lemma 5, that takes as input ((X̄k)
K
k=1, xc, ρ, η,u)

and returns a feasible pair (M ′, y′) for (Cρ) satisfying Tr(M ′) + ‖y′‖1 ≤ (1 + η)g(ρ) in
Õ(uKd), with probability > 1 − (1/10)u+10/d . Next, in order to find a good ρ, we have to
get some additional information on the function g. We will get it on the event E .

LEMMA 6. On the event E , for all xc ∈R
d , if ‖xc − μ‖2 > 8r then

g(ρ) ≤ 1

ρOPTxc

(
1 + ρOPTxc

(
9(‖xc − μ‖2 + 8r)2

8(‖xc − μ‖2 − 8r)2 − 1
))

.

PROOF. We use the same notation as in the proof of Lemma 3. For any ν > 0, we can
choose a triplet (M,y, z) feasible for (Ẽxc ) such that z − ‖y‖1/(9K/10) > OPTxc − ν and
z and y are the optimal solutions of the problem (Ẽxc ) given by yk = max(0, z − (X̄k −
xc)

�M(X̄k − xc)), k ∈ [K] and z = Q9/10((X̄k − xc)
�M(X̄k − xc)) the 9/10th quantile of

{(X̄k − xc)
�M(X̄k − xc) : k ∈ [K]}.

On the event E , Lemma 2 yields OPTxc > (8/9)(‖xc − μ‖2 − 8r)2 and we have from
Corollary 1 that

z = Q9/10
(
(X̄k − xc)

�M(X̄k − xc)
) = Q9/10

(∥∥M1/2(X̄k − xc)
∥∥2

2

)
≤ (∥∥M1/2(xc − μ)

∥∥
2 + 8r

)2 ≤ (‖xc − μ‖2 + 8r
)2
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because M � 0 and Tr(M) = 1. Let M ′ = M/(ρz), y′ = y/[z(9K/10)]. Since (M ′, y′) is
feasible for (Cρ), we have

g(ρ) ≤ Tr
(
M ′)+ ∥∥y′∥∥

1 ≤ 1 + ρ‖y‖1/(9K/10)

ρz

<
1 + ρ(z − OPTxc + ν)

ρz
≤

1 + ρν + ρOPTxc (
9(‖xc−μ‖2+8r)2

8(‖xc−μ‖2−8r)2 − 1)

ρ(OPTxc − ν)
.

By taking ν → 0, we get the result. �

PROOF OF THEOREM 4.1. Let us place ourselves on the event E so that we can apply
Lemma 6. Let xc ∈ R

d and assume that ‖xc − μ‖2 > 800r . It follows from Lemma 6 that
g(ρ) ≤ 1/(ρOPTxc) + 0.171. Therefore, if we can find a ρ such that g(ρ) ≥ 1 − ε + 0.171
for some 0 < ε < 1, then necessarily 1/ρ ≥ OPTxc(1 − ε). Let us take ε = 0.173, and η =
0.0001. Then if ALGρ returns a feasible pair (M ′, y′) for (Cρ) so that 0.9981 ≤ Tr(M ′) +
‖y′‖1 ≤ 1, then, since 0.9981 > 1.0001 × 0.998 = (1 + η)(1 − ε + 0.171) we will know that,
with probability > 1 − (1/10)u+10/d ,

(1 + η)g(ρ) ≥ Tr
(
M ′)+ ∥∥y′∥∥

1 ≥ (1 + η)(1 − ε + 0.171),

hence 1/ρ ≥ OPTxc(1 − ε), and by Lemma 3, we can construct a feasible solution Mc for
(Exc ) with objective value satisfying hxc(Mc) ≥ OPTxc(1 − ε). Next, using Lemma 2, we
obtain that when ‖xc − μ‖2 ≥ 800r ,

hxc(Mc) ≥ OPTxc(1 − ε) ≥ (1 − ε)(8/9)
(‖xc − μ‖2 − 8r

)2 ≥ (
0.78‖xc − μ‖2 + 8r

)2

for ε = 0.173, solving step 5 from Algorithm 1.
Therefore, it only remains to show how to find a ρ such that ALGρ returns a pair (M ′, y′)

(feasible for (Cρ)) satisfying 0.9981 ≤ Tr(M ′) + ‖y′‖1 ≤ 1. We do it first by assuming that
we have access to an initial ρ0 such that ALGρ0 returns a feasible pair (M ′, y′) for (Cρ)
(for ρ = ρ0) so that Tr(M ′) + ‖y′‖1 ≤ 1 and to a maximal number T of iterations (we will
also see later how to choose such ρ0 and T ). The following algorithm (which is a binary
search) taking as input (X̄1, . . . , X̄K, xc, ρ0, u, T ) returns a feasible pair (M ′, y′) for (Cρ) so
that 0.9981 ≤ Tr(M ′) + ‖y′‖1 ≤ 1 (when T is large enough). This is simply due to the fact
that g is continuous, nonincreasing, g(0) = 10/9 > 1 and g(ρ) ≤ 2/8 when ρ → +∞ and
‖xc − μ‖2 > 800r (because of Lemma 6). For this to work, we need that for each iteration,
ALGρ returns a feasible pair (M ′, y′) for (Cρ) (for ρ = ρ0) so that Tr(M ′) + ‖y′‖1 ≤ (1 +
0.0001)g(ρ). We will suppose that it is the case for the rest of the proof. By union bound,
this happens with probability at least > 1 − T (1/10)u+10/d .

If we can find a ρ0 (such that ALGρ0 returns a feasible pair (M ′, y′) for (Cρ) so that
Tr(M ′) + ‖y′‖1 ≤ 1) and a large enough number of iterations T in BinarySerach, Algo-
rithm 2 returns a feasible pair (M ′, y′) for (Cρ) from which we can construct an approximat-
ing solution Mc for (Exc ) with objective value hxc(Mc) larger than (0.78‖xc − μ‖2 + 8r)2

whenever ‖xc − μ‖2 ≥ 800r . This is exactly what we expect in step 5 of Algorithm 1. Next,
the last and final step that remains to be explained is to show how one can get such a ρ0 and
T using only the block means (X̄k)

K
k=1 in Õ(Nd + uKd).

Let us consider μ̂(0) the coordinatewise median(-of-means) and let us define δ =
Med(‖X̄k − μ̂(0)‖2 : k ∈ [K])—both quantities can be computed in time Õ(Kd). On the
event E , it follows from Corollary 1 (for M = Id/d) and Proposition 3 that δ ≤ 16

√
d × r .
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input : X̄1, . . . , X̄K , xc, ρ0, u, T

output: A feasible pair (M ′, y′) for (Cρ) satisfying 0.9981 ≤ Tr(M ′) + ‖y′‖1 ≤ 1

1 ρm ← 0, ρM ← ρ0, V ← ALGρ0(xc, u, η = 0.0001) , i ← 0
2 while V /∈ [0.9981,1] and i < T do
3 if V < 0.9981 then
4 ρM ← (ρM + ρm)/2
5 end
6 else
7 ρm ← (ρM + ρm)/2
8 end
9 V ← objective(ALG ρm+ρM

2
(xc, u, η = 0.0001)) , i ← i + 1

10 end
11 Return ALG ρm+ρM

2
(xc, u, η = 0.0001)

Algorithm 2: The BinarySearch algorithm to find a ρ so that ALGρ returns a pair
(M ′, y′) feasible for (Cρ) satisfying 0.9981 ≤ Tr(M ′) + ‖y′‖1 ≤ 1

So if one takes ρ0 = d/δ2 ≥ 1/[(16)2r2], and if ‖xc − μ‖2 > 800r , Lemma 2 and Lemma 6
guarantee that OPTxc ≥ (8/9)(‖xc − μ‖2 − 8r)2 ≥ (8/9)(792)2r2 and so

g(ρ0) ≤ 1

ρOPTxc

+ 0.171 ≤ 162

(8/9)(792)2 + 0.171 < 0.18

so ALGρ0 ≤ (1 + η)g(ρ) < 1.0001 × 0.18 < 1 (for the same choice of η = 0.0001).
Now we tackle the question of the number T of iterations, which is crucial for the runtime.

We know from Lemma 4 and Lemma 6 that the interval I of all ρ’s such that 0.9981 ≤
objective(ALGρ) ≤ 1 is at least of size 0.001/OPTxc when ‖xc − μ‖2 > 800r . Indeed, since
g(ρ) ≤ objective(ALGρ) ≤ (1 + η)g(ρ), if ρ is such that 0.9981 ≤ g(ρ) ≤ 1/(1 + η) then
0.9981 ≤ objective(ALGρ) ≤ 1. Now, if we let ρ1 > 0 and 0 < α < 1 be such that g(ρ1) =
0.9981 and g((1 − α)ρ1) = 1/(1 + η) the interval I is at least of size αρ1. Moreover, from
Lemma 4 we have 1/(1 + η) ≤ g((1 −α)ρ1) ≤ g(ρ1)/(1 −α) and so 0.9981 = g(ρ1) ≥ (1 −
α)/(1+η), that is, α ≥ 1−0.9981(1+η) > 0.001. Finally, since g(ρ1) ≤ 1, g(1/OPTxc) = 1
and g is nonincreasing, we conclude that ρ1 ≥ 1/OPTxc and so the length of I is at least
αρ1 ≥ 0.001/OPTxc .

So, in the case where ‖xc − μ‖2 > 800r , log2(ρ0 × OPTxc/0.001) iterations are enough
to ensure that BinarySearch outputs (M ′, y′) (from ALGρ for a well-chosen ρ) feasible
for (Cρ) and such that 0.9981 ≤ Tr(M ′) + ‖y′‖1 ≤ 1. Moreover, on the event E it is possible
to show that for all iterations xc of the algorithm we have ‖xc − μ‖2 < C

√
dr for a constant

C ≤ 800 (we may take that as an induction hypothesis for the first iterates xc, and the proof
of Theorem 2.1 below in Section 5 shows that it will still holds for xc+1). So if δ > r/d then
ρ0 < d3/r2, and since OPTxc < (C2d + 8)r2 (this follows from Lemma 2), the binary search
ends in time T = log2(C̃d4) with C̃ < 106.

Thus, if the binary search has not ended in that time, we have either δ < r/d (which is
a degenerate case) or ‖xc − μ‖2 < 800r (or both). If ‖xc − μ‖2 > 800r and δ < r/d , then
taking ρ1 = 1/(dδ)2, we have by Lemma 6, ALGρ1 < 1/2. So, if we cannot end our binary
search in time log2(C̃d4), we compute ALG1/(dδ)2 : if this gives something smaller than 1,

that means that 1/(dδ)2 > 1/OPTxc ⇒ δ <
√

(C2d + 8)r/d < (C + 1)r/
√

d . We notice that
on E , ‖μ̂(0) − μ‖2 < δ + 8r , so if ALG1/(dδ)2 < 1, then μ̂(0) is a good estimate for μ. If on
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input : X̄1, . . . , X̄K , xc and u

output: A feasible solution for (Exc )

1 Compute the coordinatewise MOM μ̂(0) and δ = Med(‖X̄k − μ̂(0)‖2 : k ∈ [K])
2 T ← log(C̃d4), ρ0 ← d/δ2

3 (M ′, y′) ← BinarySearch(T ,ρ0, u, xc)

4 if Tr(M ′) + ‖y‖1 ∈ [0.9981,1] then
5 M ← M ′/Tr(M ′)
6 Return (True, M)
7 end
8 else
9 if ALG1/(dδ)2(xc, u, η = 0.0001) < 1 then

10 Return (False, μ̂(0))
11 end
12 else
13 Return (False, xc)
14 end
15 end

Algorithm 3: SolveSDP

the contrary, we have ALGρ1 > 1, it means that ‖xc − μ‖2 < 800r , so we stop the algorithm
and return xc. �

Let us write now in pseudo-code the procedure we just described. This is an algorithm,
named SolveSDP (Algorithm 3), running in Õ(Kud), which takes as inputs X̄1, . . . , X̄K ,
xc, u and which outputs, on the event E , with probability > 1 − log(C̃d4)(1/10)u+10/d , for
every xc ∈ R

d such that ‖xc − μ‖2 ≥ 800r either a matrix Mc such that

hxc(Mc) ≥ (
0.78‖xc − μ‖2 + 8r

)2

or a sub-Gaussian estimate of μ. It therefore describes step 5 from Algorithm 1.

REMARK 4 (Two advantages of block means). During the whole algorithm, we solve
the program (Cρ) up to a factor (1 + η) where η is fixed (here we take it equal to 0.0001).
This differs crucially from the work of [10] where η depends on the fraction of outliers,
which decreases the performance of the algorithm in Lemma 5, the true running time being
Õ(Kd/Poly(η)). This is a first advantage of using bucketed means instead of the data them-
selves: we work with a constant fraction of corrupted blocks (we took it equal to 1/10). The
second advantages is of stochastic nature, it is revealed by Proposition 1 or Lemma 1: most of
the bucketed means have a nice sub-Gaussian behavior in all directions. Working with buck-
eted means has therefore two advantages: a stochastic one, which is to exhibit a sub-Gaussian
behavior for 9K/10 blocks even under a L2-moment assumption and a computational one,
which is to make the proportion of corrupted blocks constant.

5. The final algorithm and its computational cost: Proof of Theorem 2.1. We are
now in a position to fully describe our robust sub-Gaussian descent algorithm running in
Õ(Nd +uKd). One may check that its construction is fully data-dependent, in particular, we
do not need to know the value of r or the proportion of outliers.

PROOF OF THEOREM 2.1. From Theorem 4.1, we know that on E , when ‖xc − μ‖2 >

800r , we get with probability > 1 − (1/10)u+5/
√

d an Mc so that hxc(Mc) ≥ (0.8‖xc −
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μ‖2 + 8r)2 (or directly a sub-Gaussian estimate, in which case our work is done). Propo-
sition 4, states that in that case ‖xc+1 − μ‖2

2 ≤ 0.8‖xc − μ‖2
2 + 64r2 ≤ 0.81‖xc − μ‖2

2.
So we have a geometric decays and Proposition 3 guarantees that our starting point is
at most 8

√
dr far away from the mean so that in at most log(8

√
d)/ log(1/0.81)) steps

the algorithm outputs its current point, which is r-close to μ, with probability > 1 −
(1/10)u+5 log(8

√
d)/(log(1/0.81))

√
d) > 1 − (1/10)u (by union bound).

The last thing to do is to control what happens when ‖xc − μ‖2 < 800r . Then we have no
guarantees on v1, but using the similar argument as in the proof of Proposition 4 we know
that

(11)

∣∣θc − 〈xc − μ,v1〉
∣∣ = ∣∣Med

(〈μ − X̄k, v1〉 : k ∈ [K])∣∣
≤ Med

(∣∣〈μ − X̄k, v1〉
∣∣ : k ∈ [K]) ≤ 8r

and (for some v⊥
1 a normalized orthogonal vector to v1)

‖xc+1 − μ‖2
2 = ‖xc − μ − θcv1‖2

2 = ∥∥(〈xc − μ,v1〉 − θc

)
v1 + 〈

xc − μ,v⊥
1
〉
v⊥

1
∥∥2

2

= (〈xc − μ,v1〉 − θc

)2 + 〈
xc − μ,v⊥

1
〉2 ≤ (8r)2 + ‖xc − μ‖2

2.

Hence, ‖xc+1 − μ‖2 ≤ (8r) + ‖xc − μ‖2. Therefore, in the worst case scenario where ‖xc −
μ‖2 > 800r at the last iteration, the algorithm outputs the next iteration μ̂K = xc+1 so that
‖μ̂K − μ‖2 ≤ 808r .

We end this proof with the computation of the running time of Algorithm 4. We detail the
computation cost for each line of Algorithm 4: line 1 cost N , line 2 costs Nd , line 3 costs
O(dK log(K)). The while loop in line 5 is running at least logd times (up to constant) so
that the computational cost of all remaining lines of Algorithm 4 are at worst to be multiplied

input : X1, . . . ,XN , K ∈ [N ] and u ∈ N
∗

output: A robust sub-Gaussian estimator of μ

1 Construct an equipartition B1 � . . . � BK = {1, . . . ,N}
2 Construct the K empirical means X̄k = (N/K)

∑
i∈Bk

Xi, k ∈ [K]
3 Compute μ̂(0) the coordinatewise median
4 xc ← μ̂(0), Bool ← True, T ← 0
5 while Bool and T < log(8

√
d)/ log(1/0.81) do

6 Bool, A ← SolveSDP(X̄1, . . . , X̄K, xc, u)
7 if Bool then
8 Mc ← A

9 Compute v1 a top eigenvector of Mc

10 Compute a step size θc = −Med(〈X̄k − xc, v1〉 : k ∈ [K])
11 Update xc ← xc − θcv1
12 T ← T + 1
13 end
14 else
15 xc ← A

16 end
17 end
18 Return xc

Algorithm 4: Final Algorithm: covSDPofMeans
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by logd . Line 6 costs log(C̃d4) steps, each of cost Õ(Kud) (that comes from Lemma 5).
Line 9 can be computed in Õ(Nd) thanks to Lemma 5. Finally, line 10 costs O(Kd). Other
lines take time at most d . We thus recover the running time announced in Theorem 2.1. �

6. Adaptive choice of K and results in expectation. Given a number of blocks K ∈
{1, . . . ,N}, a parameter u ≥ 1 (so that the covering SDPs from [50] (used in Lemma 5)
run in u + 3 logd + 10 times) and the (adversarially corrupted and heavy-tailed) data set
{X1, . . . ,XN }, Algorithm 4 returns a vector μ̂K in R

d and Theorem 2.1 ensures that μ̂K

estimates the true mean μ at the sub-Gaussian rate (1) with large probability as long as
K ≥ 300|O|. As a consequence, we have certified statistical guarantees for μ̂K only when
some a priori knowledge on the number |O| of outliers is provided (such as “the corruption
of this database is less than 5%”) or if we choose K like N—but, in this later case the rate
(1) may be too pessimistic. The aim of this section is to overcome this issue by constructing a
procedure which can automatically adapt to the number of outliers. The resulting procedure

(denoted later by μ̂(Ĵ )) satisfies the same statistical bounds as μ̂K for all K ≥ 300|O| without
knowing |O| (up to constants). We also show that it satisfies results in expectation.

The adaptation method we use is based on the Lepski method [40, 41], which is another
tool used by the “statistical community” working on robustness issues since [7, 44]. The price
we pay for this adaptation is the a priori knowledge of the rate (1) for all K , which means that
we know in advance Tr(�) and ‖�‖op. This is for instance the case when it is known that
� is the identity matrix Id . Of course, one can design robust estimators for Tr(�) (see [16])
and ‖�‖op but this requires stronger assumptions (more than four moments) that we want to
avoid at this stage.

Lepski’s method proceeds as follows. We set for all K ∈ {1, . . . ,N} and all j ∈
{0,1, . . . , log2 N},

r∗
K = 808

(
1200

√
Tr(�)

N
+

√
1200‖�‖opK

N

)
and r(j) = r∗

�N/2j �

the rate of convergence from Theorem 2.1. For a given parameter uj ∈ N
∗, we construct from

Algorithm 4,

(12) μ̂(j) ← covSDPofMeans(X1, . . . ,XN,K = �N/2j�, u = uj ).

Classical Lepski’s method considers the largest J such that
⋂J

j=0 Bd
2 (μ̂(j), r(j)) is nonempty

and then take any point μ̂ in this nonempty intersection. Standard analysis of Lepski’s method
shows that μ̂ estimates μ at the rate r∗

K (up to an absolute constant) simultaneously for all K ∈
{300|O|, . . . ,N} without knowing |O|. Given that checking that the intersection of several
�d

2 -balls may not be straightforward, we use a slightly modified version of Lepski’s method
as described in the following algorithm.

Unlike for the traditional Lepski’s method, we check that μ̂(J ) is in
⋂J−1

j=0 Bd
2 (μ̂(j), r(J ) +

r(j)) instead of checking that
⋂J

j=0 Bd
2 (μ̂(j), r(j)) is nonempty—this simplifies the adap-

tation step. It is also possible to speed up the whole procedure by constructing itera-
tively the bucketed means. Indeed, given that we consider a dyadic grid for K , that is,
K ∈ {N, �N/2�, �N/4�, . . .}, for all j ∈ N, we can construct the block means {X̄(j+1)

k , k =
1, . . . , �N/2j+1�} at step K = �N/2j+1� using the block means from the previous step
K = �N/2j� by simply averaging two successive block means: X̄

(j+1)
k ← (X̄

(j)
2k + X̄

(j)
2k+1)/2.

Let us now turn to the statistical analysis of the output μ̂(Ĵ ) from Algorithm 5 where

Ĵ = max

(
J ∈ {0,1, . . . , log2 N} : μ̂(J ) ∈

J−1⋂
j=0

Bd
2
(
μ̂(j), r(J ) + r(j))).
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input : X1, . . . ,XN and {uj : j = 0,1,2, . . . , log2 N} ⊂N
∗

output: A robust sub-Gaussian estimator of μ with adaptive choice of K

init : J = 0 and μ̂(0) = covSDPofMeans(X1, . . . ,XN,K = N,u = u0)

1 while ‖μ̂(J ) − μ̂(j)‖2 ≤ r(J ) + r(j), j = J − 1, J − 2, . . . ,0 do
2 J ← J + 1
3 μ̂(J ) ← covSDPofMeans(X1, . . . ,XN,K = �N/2J �, u = uJ )

4 end
5 Return μ̂(J )

Algorithm 5: Adaptive choice of K in covSDPofMeans

THEOREM 6.1. Let {uj : j = 0,1,2, . . . , log2 N} ⊂N
∗ be the family of parameters used

to construct the family of estimators {μ̂(j), j = 0,1, . . .} in Algorithm 5 (see also (12)). For
all K ∈ {600|O|, . . . ,N}, with probability at least

(13) 1 − 2 exp(−K/360,000) −
log2(N/(K−1))∑

j=0

(1/10)uj

the output μ̂(Ĵ ) of Algorithm 5 is such that ‖μ̂(Ĵ ) − μ‖2 ≤ 3r∗
K .

PROOF. For all j ∈ {0,1, . . . , log2 N} denote by Ej the event onto which Theorem 2.1 is
valid for K = �N/2j� and for u = uj : that is, on Ej , if �N/2j� ≥ 300|O|, ‖μ̂(j) −μ‖2 ≤ r(j)

and P[Ej ] ≥ 1 − exp(−�N/2j�/180,000) − (1/10)uj . Let K ∈ {600|O|, . . . ,N} and J ∈
{0,1, . . . , log2 N} be such that �N/2J � ≤ K < �N/2J−1�. On the event

⋂J
j=0 Ej , we have

‖μ̂(j) − μ‖2 ≤ r(j) for all j = 0,1, . . . , J , in particular, for all j = 0,1, . . . , J − 1, ‖μ̂(J ) −
μ̂(j)‖2 ≤ r(J ) + r(j) and so μ̂(J ) ∈ ⋂J−1

j=0 Bd
2 (μ̂(j), r(J ) + r(j)). As a consequence, Ĵ ≥ J

therefore ‖μ̂(Ĵ ) − μ̂(J )‖2 ≤ r(Ĵ ) + r(J ) ≤ 2r(J ) ≤ 2r∗
K . Finally, we have

P

[
J⋂

j=0

Ej

]
≥ 1 −

J∑
j=0

exp
(−⌈

N/2j⌉/180,000
) − (1/10)uj

≥ 1 − 2 exp(−K/360,000) −
log2(N/(K−1))∑

j=0

(1/10)uj .
�

We can see in Algorithm 5 that μ̂(Ĵ ) does not use any information on the number of outliers
|O| for its construction but it can still estimate μ at the optimal rate r∗

K for all deviation pa-
rameters K in {600|O|, . . . ,N}. The maximum total running time of Algorithm 5 is achieved
when Ĵ = log2 N ; in that case, it is at most Õ(Nd +∑log2 N

j=0 �N/2j�ujd). In particular, if one

chooses uj = 2j for all j = 0,1, . . . , log2 N then the total running time for the construction

of μ̂(Ĵ ) is nearly linear Õ(Nd). For this choice of uj , the probability deviation in (13) is
constant and so one should choose the smallest possible K allowed in Theorem 6.1, that is,
K = 600|O|. Let us write formally this result.

COROLLARY 2. If one takes uj = 2j for all j = 0,1, . . . , log2 N in Algorithm 5, then
in nearly linear time Õ(Nd), with probability at least 1 − 2 exp(−600|O|/360,000) − 1/11,
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the output μ̂(Ĵ ) from Algorithm 5 satisfies

∥∥μ̂(Ĵ ) − μ
∥∥

2 ≤ 2r∗
600|O| = 1616

(
1200

√
Tr(�)

N
+ 850

√
‖�‖op|O|

N

)
.

In particular, considering the setup from Theorem 1.1, if |O| = εN for some ε ≤ 1/600

then the rate achieved by μ̂(Ĵ ) in Corollary 2 is of the order of

(14)

√
Tr(�)

N
+

√
‖�‖opε

which is like
√

‖�‖opε when N ≥ (Tr(�)/‖�‖op)/ε. As a consequence, the result from
Corollary 2 improves the one from Theorem 1.1 by removing an extra logd factor in the
sample complexity in the case considered in Theorem 1.1 that is when � � σ 2Id . More-
over, Corollary 2 also shows that the sample complexity depends on the effective rank
Tr(�)/‖�‖op of �. This ratio can be much smaller than d if the spectrum of � decays
sufficiently fast. Finally, Corollary 2 also covers the case where the sample size N is less
than the sample complexity, that is, when N ≤ (Tr(�)/‖�‖op)/ε. In that case, the estimation
rate is given by

√
Tr(�)/N, which is the complexity coming from the estimation of μ in

the noncorrupted case. As a consequence, Corollary 2 exhibits a phase transition happening
at N ∼ (Tr(�)/‖�‖op)/ε above which corruption is the main source of estimation mistakes
and below, which corruption does not play any role.

Corollary 2 covers the case where μ̂(Ĵ ) is computed in nearly linear time and with statis-
tical guarantees happening with constant probability. In the following final result, we show

that μ̂(Ĵ ) can estimate μ at the optimal rate r∗
K for all K ≥ 600|O| with a sub-Gaussian de-

viation 1 − 2 exp(−K/360,000) if we perform more iterations uj of the covering SDP from

Lemma 5. The price we pay for this sub-Gaussian behavior of μ̂(Ĵ ) is on the total running
time, which goes from nearly linear time Õ(Nd) to Õ(N2d) by taking uj = �N/2j� for
j = 0,1, . . . , log2 N (uj = N would do as well). We write formally this statement in the next
corollary which follows directly from Theorem 6.1.

COROLLARY 3. If one takes uj = �N/2j� for all j = 0,1, . . . , log2 N in Algorithm 5,
then in time Õ(N2d) for all K ≥ 600|O|, with probability at least 1 − 4 exp(−K/360,000),

the output μ̂(Ĵ ) from Algorithm 5 satisfies

∥∥μ̂(Ĵ ) − μ
∥∥

2 ≤ 2r∗
K = 1616

(
1200

√
Tr(�)

N
+

√
1200‖�‖opK

N

)
.

As a consequence μ̂(Ĵ ) is a sub-Gaussian estimator of μ for all range of K from 600|O| to
N , which can handle up to |O| outliers in the database (even when |O| ∼ N ) and that can be
constructed in time Õ(N2d). It does not require any knowledge on |O| for its construction.

Let us now show that the algorithm μ̂(Ĵ ) constructed in Corollary 3 also satisfies esti-
mation results in expectation. So far all the statistical properties have been given with large

probability; for μ̂(Ĵ ), it is also possible to obtain a result in expectation.
The benchmark result we use here is the rate achieved by the empirical mean in a noncor-

rupted setup but unlike the result in deviation we don’t need i.i.d. Gaussian variables since

E‖X̃n − μ‖2 ≤ √
Tr(�)/N where X̃n = n−1 ∑

i X̃i and X̃1, . . . , X̃N are the noncorrupted
data points from Assumption 1. Hence,

√
Tr(�)/N is the rate we aim to achieve but we also

may expect a price to pay for the adversarial corruption, in particular, when ε = |O|/N is
above the phase transition exhibited in (14), that is, for ε ≥ (Tr(�)/‖�‖op)/N .
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THEOREM 6.2. Under Assumption 1, and if N ≥ 600|O|, the following holds. If one
takes uj = �N/2j� for all j = 0,1, . . . , log2 N in Algorithm 5 then, in time Õ(N2d), Algo-

rithm 5 outputs μ̂(Ĵ ) satisfying

E
∥∥μ̂(Ĵ ) − μ

∥∥
2 ≤ (

3 + 16c2
0
)
r∗

600|O| ≤
(
3 + 16c2

0
)
808 × 1200

(√
Tr(�)

N
+

√
‖�‖op|O|

2N

)

as long as and N ≥ 4c0 log(c0d + c0) where c0 = 360,000.

PROOF. We denote μ̃ = μ̂(Ĵ ) and c0 = 360,000. We know from Corollary 3 that for all
600|O| ≤ K ≤ N , with probability at least 1 − 4 exp(−K/c0), ‖μ̃−μ‖2 ≤ 2r∗

K . So we know
how to control the estimation property of μ̃ up to an event of probability measure at most
4 exp(−N/c0). On that event, we only need a crude upper bound on ‖μ̃ − μ‖2 to get the
result. This is what we do now.

We know that by construction that μ̃ ∈ Bd
2 (μ̂(N),2r∗

N). Moreover, μ̂(N) starts from μ̂
(N)
0 ,

the coordinatewise median of the data Xi (because K = N blocks here) and makes at most
T = log(8

√
d)/ log(1/0.81) descent iterations like xc+1 = xc − θcv1 where v1 ∈ Sd−1

2 and
θc = −Med(〈Xi − xc, v1〉 : i ∈ [N ]). In particular, one has at every iteration

‖xc+1 − μ‖2 ≤ 2‖xc − μ‖2 + Med
(‖Xi − μ‖2 : k ∈ [K]).

Hence, μ̂(N) satisfies∥∥μ̂(N) − μ
∥∥

2 ≤ 2T +1(∥∥μ̂(j)
0 − μ

∥∥
2 + Med

(‖Xi − μ‖2 : i ∈ [N ]))
≤ 16d

(∥∥μ̂(N)
0 − μ

∥∥∞ + Med
(‖Xi − μ‖∞ : i ∈ [N ])).(15)

In the adversarial contamination model from Assumption 1, as we assumed that N ≥
600|O|, there are at least N − |O| ≥ (599/600)N indices i such that Xi = X̃i ; hence, for
at least (599/600)N i’s we have, for all p ∈ [d],

|Xi,p − μp| ≤ max
i∈[N] |X̃i,p − μp| and ‖Xi − μ‖∞ ≤ max

i∈[N] ‖X̃i − μ‖∞,

where Xi,p (resp., μp) denotes the pth coordinate of Xi (resp., μ). Hence, in (15), we get∥∥μ̂(N) − μ
∥∥

2 ≤ 32d max
i∈[N] max

p∈[d] |Xi,p − μp|.
Let us now turn to the stochastic argument to upper bound the right-hand side in the last
inequality,

E

(
max
i∈[N] max

p∈[d] |Xi,p − μp|2
)

≤ E

(
max
i∈[N] ‖Xi − μ‖2

2

)
≤ N Tr(�).

Hence,

(16) E
(‖μ̃ − μ‖2

2
) ≤ 2048d2N Tr(�) + 8

(
r∗
N

)2
.

We are now in a position to obtain an estimation result in expectation for μ̃. We denote
KO = 600|O|:

E‖μ̃ − μ‖2 =
N−1∑

k=KO

E
[‖μ̃ − μ‖2I

(
2r∗

k ≤ ‖μ̃ − μ‖2 ≤ 2r∗
k+1

)]

+E
[‖μ̃ − μ‖2I

(‖μ̃ − μ‖2 ≤ 2r∗
KO

)]+E
[‖μ̃ − μ‖2I

(‖μ̃ − μ‖2 ≥ 2r∗
N

)]

≤ 2r∗
KO +

N−1∑
k=KO

2r∗
k+1 × 4 exp(−k/c0) +E

[‖μ̃ − μ‖2I
(‖μ̃ − μ‖2 ≥ 2r∗

N

)]

≤ 2r∗
KO + 16c2

0r
∗
KO exp(−KO/c0) + 25c0d

√
N Tr(�) exp

(−N/(2c0)
)
,
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where, in the last inequality, we used that

E
[‖μ̃ − μ‖2I

(‖μ̃ − μ‖2 ≥ 2r∗
N

)] ≤ (
E
[‖μ̃ − μ‖2

2
])1/2(

P
[‖μ̃ − μ‖2 ≥ 2r∗

N

])1/2

≤ (
64d

√
N Tr(�) + 3r∗

N

)× 2 exp
(−N/(2c0)

)
≤ 25c0d

√
N Tr(�) exp

(−N/(2c0)
)

from (16). When N ≥ 4c0 log(c0d + c0), then N ≥ 2c0 log[c0dN ], so E‖μ̃ − μ‖2 ≤ (3 +
16c2

0)r
∗
KO . �

We therefore recover the same rate of convergence in expectation in Theorem 6.2 as the

one in deviation in Corollary 3 for the adaptive estimator μ̂(Ĵ ), it is also the rate achieved by
the nonadaptive estimator μ̂K for the minimal value of K = 600|O|. In particular, the same
phase transition phenomena occurs in expectation as in the discussion following equation
(14).
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