DM 7

Exercice 1. Soient a, b deux réels et $(X_n)_{n \in \mathbb{N}}$ une suite de variables aléatoires définie par $X_0 = 0$, et pour $n \geq 0$,

$$X_{n+1} = aX_n + b + \xi_{n+1}$$

où $(\xi_n)_{n\geq 1}$ est une suite i.i.d. de $\mathcal{N}(0,1)$ (en particulier, ξ_{n+1} est indépendante de X_n).

- 1. Montrer que pour tout $n \geq 1$, X_n suit une loi gaussienne de moyenne μ_n et de variance σ_n^2 à déterminer.
- 2. En déduire la fonction caractéristique de X_n , puis les valeurs de a et b pour lesquelles la suite $(X_n)_{n\geq 1}$ converge en loi. On précisera la limite.
- 3. On suppose maintenant que |a| < 1.
 - (a) Montrer que, pour tout $n \ge 1$, le vecteur $Y_n = (X_n, X_{n+1})$ est un vecteur gaussien dont on calculera la moyenne et la matrice de covariance.
 - (b) Quelle est la fonction caractéristique de Y_n ? Montrer que $(X_n, X_{n+1})_{n \in \mathbb{N}}$ converge en loi vers un vecteur aléatoire admettant une densité sur \mathbb{R}^2 , que l'on précisera.
 - (c) En déduire que la suite $(X_n)_{n\in\mathbb{N}}$ ne peut pas converger en probabilité.

Solution. 1. On montre par récurrence que X_n est une v.a. gaussienne : en effet, si X_n est une v.a. gaussienne, comme ξ_{n+1} est indépendant de X_n , le vecteur (X_n, ξ_{n+1}) est un vecteur gaussien et donc $X_{n+1} = aX_n + b + \xi_{n+1}$ qui est une transformation affine de ce vecteur est une v.a. gaussienne (potentiellement dégénérée). Le même raisonnement montre que X_1 est une v.a. gaussienne.

En prenant la movenne et la variance dans la relation de récurrence, on obtient

$$\mu_{n+1} = a\mu_n + b$$

$$\sigma_{n+1}^2 = a^2\sigma_n^2 + 1$$

pour $n \ge 1$ (ou pour $n \ge 0$ si on pose $\mu_0 = 0$). Cette récurrence linéaire se résoud facilement en

$$\mu_n = \begin{cases} nb \text{ si } a = 1\\ \frac{b}{1-a}(1-a^n) \text{ si } a \neq 1 \end{cases} \text{ et } \sigma_n^2 = \begin{cases} n \text{ si } a^2 = 1\\ \frac{1-a^{2n}}{1-a^2} \text{ si } a^2 \neq 1; \end{cases}$$

il suffit en effet de remarquer que $\mu_{n+1} - \frac{b}{1-a} = a(\mu_n - \frac{b}{1-a})$ pour $a \neq 1$ et $\sigma_{n+1}^2 - \frac{1}{1-a^2} = a^2(\sigma_n^2 - \frac{1}{1-a^2})$.

- 2. D'après le cours, si $X \sim \mathcal{N}(m, \sigma^2)$, sa fonction caractéristique est donnée, pour $t \in \mathbb{R}$, par $\phi_X(t) = \mathbb{E}(e^{itX}) = e^{itm \frac{1}{2}\sigma^2t^2}$. On en déduit que $\phi_X(t) = e^{it\mu_n \frac{1}{2}\sigma_n^2t^2}$. Le théorème de Lévy dit alors que si $(X_n)_n$ converge en loi vers X alors ϕ_{X_n} converge simplement vers ϕ_X , donc ici pour que $(X_n)_n$ converge il faut que $(\mu_n)_n$ et $(\sigma_n^2)_n$ convergent, ce qui est vrai si et seulement si |a| < 1. Dans ce cas, on a $\lim_{n \to \infty} \mu_n = \mu = \frac{b}{1-a}$ et $\lim_{n \to \infty} \sigma_n^2 = \sigma^2 = \frac{1}{1-a^2}$, et pour tout $t \in \mathbb{R}$, la suite $\phi_{X_n}(t)$ caonverge vers $\phi_X(t) = e^{it\mu \frac{1}{2}\sigma^2t^2}$ qui est bien une fonction continue en 0, donc $(X_n)_n$ converge en loi vers une $\mathcal{N}(\mu, \sigma^2)$.
- 3. (a) Pour tout $n \geq 1$,

$$\begin{pmatrix} X_n \\ X_{n+1} \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ a & 1 \end{pmatrix} \begin{pmatrix} X_n \\ \xi_{n+1} \end{pmatrix} + \begin{pmatrix} 0 \\ b \end{pmatrix} = A \begin{pmatrix} X_n \\ \xi_{n+1} \end{pmatrix} + \begin{pmatrix} 0 \\ b \end{pmatrix}.$$

Le vecteur $Y_n = (X_n, X_{n+1})$ est donc donné par une transformation affine du vecteur (X_n, ξ_{n+1}) qui est gaussien, c'est donc un vecteur gaussien, de moyenne $\mathbb{E}(Y_n) = m_n = (\mu_n, \mu_{n+1}) = (\mu_n, a\mu_n + b)$ et de matrice de covariance

$$\operatorname{Cov}(Y_n) = A \begin{pmatrix} \sigma_n^2 & 0 \\ 0 & 1 \end{pmatrix} A^t = \begin{pmatrix} \sigma_n^2 & a\sigma_n^2 \\ a\sigma_n^2 & a\sigma_n^2 + 1 \end{pmatrix} = \begin{pmatrix} \sigma_n^2 & a\sigma_n^2 \\ a\sigma_n^2 & \sigma_{n+1}^2 \end{pmatrix}.$$

(b) D'après le cours, la fonction caractéristique de Y_n est donnée, pour $u \in \mathbb{R}^2$ par

$$\phi_{Y_n}(u) = e^{i\langle u, m_n \rangle - \frac{1}{2}\langle u, \operatorname{Cov}(Y_n)u \rangle},$$

où $\langle \cdot \rangle$ est le produit scalaire de \mathbb{R}^2 , et $m_n = \mathbb{E}(Y_n)$.

Le vecteur $\mathbb{E}(Y_n)$ converge dans \mathbb{R}^2 vers le vecteur $m=(\mu,\mu)^t$ et la matrice $\mathrm{Cov}(Y_n)$ converge vers la matrice

$$\Gamma = \begin{pmatrix} \sigma^2 & a\sigma^2 \\ a\sigma^2 & \sigma^2 \end{pmatrix} = \frac{1}{1 - a^2} \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix}.$$

On en déduit, en utilisant le théorème de Lévy comme dans la question 2, que Y_n converge en loi vers un vecteur gaussien Y à valeurs dans \mathbb{R}^2 , de moyenne m et de matrice de covariance Γ . Or Γ est une matrice inversible (il est facile de voir que son déterminant est égal à $\frac{1}{1-a^2} \neq 0$), donc en utilisant la Propriété 3 des vecteurs gaussiens du cours, le vecteur Y est non dégénéré, i.e. sa loi admet une densité, donnée par

$$f_Y(x) = \frac{1}{2\pi\sqrt{\det\Gamma}} \exp\left(-\frac{1}{2}(x-m)^t\Gamma^{-1}(x-m)\right).$$

(c) Si $(X_n)_n$ convergeait en probabilité, alors d'après la question 2. elle convergerait vers un vecteur gaussien X de loi $\mathcal{N}(\mu, \sigma^2)$, et le vecteur (X_n, X_{n+1}) convergerait en probabilité (et donc aussi en loi) vers le vecteur (X, X) qui est un vecteur gaussien dégénéré (par exemple, parce que sa matrice de covariance qui vaut $\begin{pmatrix} \sigma^2 & \sigma^2 \\ \sigma^2 & \sigma^2 \end{pmatrix}$ est non inversible). Mais cela contredit le résultat de la question 3.(b).