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Abstract

Given a finite set F of functions and a learning sample, the aim of an aggre-
gation procedure is to have a risk as close as possible to risk of the best function
in F . Up to now, optimal aggregation procedures are convex combinations of
every elements of F . In this paper, we prove that optimal aggregation proce-
dures combining only two functions in F exist. Such algorithms are of particular
interest when F contains many irrelevant functions that should not appear in
the aggregation procedure. Since selectors are suboptimal aggregation proce-
dures, this proves that two is the minimal number of elements of F required
for the construction of an optimal aggregation procedure in every situations.
Then, we perform a numerical study for the problem of selection of the regular-
ization parameters of the Lasso and the Elastic-net estimators. We compare on
simulated examples our aggregation algorithms to aggregation with exponential
weights, to Mallow’s Cp and to cross-validation selection procedures.

Keywords. Aggregation ; Exact oracle inequality ; Empirical risk minimization ;
Emprical process theory ; Sparsity ; Lasso ; Lars

1 Introduction

Let (Ω, µ) be a probability space and ν be a probability measure on Ω × R such
that µ is its marginal on Ω. Assume (X,Y ) and Dn := (Xi, Yi)ni=1 to be n + 1
independent random variables distributed according to ν, and that we are given a
finite set F = {f1, . . . , fM} of real-valued functions on Ω, usually called a dictionary,
or a set of weak learners. This set of functions is often a set of estimators computed
on a training sample, which is independent of the sample Dn (learning sample).

We consider the problem of prediction of Y from X using the functions given in
F and the sample Dn. If f : Ω → R, we measure its error of prediction, or risk, by
the expectation of the squared loss

R(f) = E(f(X)− Y )2.

If f̂ depends on Dn, its risk is the conditional expectation

R(f̂) = E[(f̂(X)− Y )2|Dn].
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The aim of the problem of aggregation is to construct a procedure f̃ (called an
aggregate) using Dn and F with a risk which is very close to the smallest risk over
F . Namely, one wants to prove that f̃ satisfies an inequality of the form

R(f̃) ≤ min
f∈F

R(f) + r(F, n) (1)

with a large probability or in expectation. Inequalities of the form (1) are called exact
oracle inequalities and r(F, n) is called the residue. A classical result (Juditsky et al.
(2008)) says that aggregates with values in F cannot satisfy an inequality like (1)
with a residue smaller than ((logM)/n)1/2 for every F . Nevertheless, it is possible to
mimic the oracle (an oracle is a element in F achieving the minimal risk over F ) up
to the residue (logM)/n (see Juditsky et al. (2008) and Lecué and Mendelson (2009),
among others) using an aggregate f̃ that combines all the elements of F . In this case,
we say that f̃ is an optimal aggregation procedure. This notion of optimality is given
in Tsybakov (2003) and Lecué and Mendelson (2009), and it is the one we will refer
to in this paper.

Given the set of functions F , a natural way to predict Y is to compute the
empirical risk minimization procedure (ERM), the one that minimizes the empirical
risk

Rn(f) :=
1
n

n∑
i=1

(Yi − f(Xi))2

over F . This very basic principle is at the core of aggregation procedures (for regres-
sion with squared loss). An aggregate is typically represented as a convex combination
of the elements of F . Namely,

f̂ :=
M∑
j=1

θj(Dn, F )fj ,

where (θj(Dn, F ))Mj=1 is a vector of non-negative coordinates suming to 1. Up to
now, most of the optimal aggregation procedures are based on exponential weights:
aggregation with cumulated exponential weights (ACEW), see Catoni (2001); Yang
(2004, 2000); Juditsky et al. (2008, 2005); Audibert (2009) and aggregation with
exponential weights (AEW), see Leung and Barron (2006); Dalalyan and Tsybakov
(2007), among others. The weights of the ACEW are given by

θ
(ACEW)
j :=

1
n

n∑
k=1

exp(−Rk(fj)/T )∑M
l=1 exp(−Rk(fl)/T )

,

where T is the so-called temperature parameter. The weights of the AEW are given
by

θ
(AEW)
j :=

exp(−Rn(fj)/T )∑M
l=1 exp(−Rn(fj)/T )

.

The ACEW satisfies (1) for r(F, n) ∼ (logM)/n, see references above, so it is optimal
in the sense of Tsybakov (2003). The AEW has been proved to be optimal in the
regression model with deterministic design for large temperatures in Dalalyan and
Tsybakov (2007). Altough, for small temperatures, AEW can be suboptimal both in
expectation and with large probability (cf. Lecué and Mendelson (2010)).
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In these aggregates, no coefficient θj is equal to zero, although they can be very
small, depending on the value of Rn(fj) and T (this makes in particular the choice
of T of importance). So, even the worse elements of F have an influence on the
aggregate. This can be a problem when one wants to use aggregation to construct
adaptive procedures. Indeed, one could imagine large dictionaries containing many
different types of estimators (kernel estimators, projection estimators, etc.) with
many different parameters (smoothing parameters, groups of variables, etc.). Some
of the estimators are likely to be more adapted than the others, depending on the kind
of models that fits well the data - and, maybe, there are only few of them among
a large dictionary. An aggregate that combines only the most adapted estimators
from the dictionary and that removes the irrelevant ones is suitable in this case. The
challenge is then to find such a procedure which is still an optimal aggregate. An
improvement going in this direction has been made using a preselection step in Lecué
and Mendelson (2009). This preselection step allows to remove all the estimators
in F which performs badly on a learning subsample. In this paper, we want to go
a step further: we look for an aggregation algorithm that shares the same property
of optimality, but with as few non-zero coefficients θj as possible, hence the name
hyper-sparse aggregate. This leads to the following question:

Question 1. What is the minimal number of non-zero coefficients θj such that an
aggregation procedure f̃ =

∑M
j=1 θjfj is optimal?

It turns out that the answer to Question 1 is two. Indeed, if every coefficient
is zero, excepted for one, the aggregate coincides with an element of F , and as we
mentioned before, such a procedure can only achieve the rate ((logM)/n)1/2 - unless
extra properties are satisfied by F and ν. In Definition 1 below (see Section 2) we
construct three procedures, where two of them (see (7) and (8)) only have two non-
zero coefficients θj . We prove in Theorem 1 below that these procedures are optimal,
since they achieve the rate (logM)/n.

2 Definition of the aggregates and results

First, we need to introduce some notations and assumptions. Let us recall that the
ψ1-norm of a random variable Z is given by ‖Z‖ψ1 := inf{c > 0 : E[exp(|Z|/c))] ≤ 2}.
We say that Z is sub-exponential when ‖Z‖ψ1 < +∞. We work under the following
assumptions.

Assumption 1. We can write

Y = f0(X) + ε, (2)

where ε is such that E(ε|X) = 0 and E(ε2|X) ≤ σ2
ε a.s. for some constant σε > 0.

Moreover, we assume that one of the following points holds.

• (Bounded setup) There is a constant b > 0 such that:

max
(
‖Y ‖∞, sup

f∈F
‖f(X)‖L∞

)
≤ b. (3)

• (Sub-exponential setup) There is a constant b > 0 such that:

max
(
‖ε‖ψ1 , sup

f∈F
‖f(X)− f0(X)‖L∞

)
≤ b. (4)
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Note that Assumption (4) allows for an unbounded output Y . The results given
below differ a bit depending on the considered assumption (there is an extra log n
term in the sub-exponential case). To simplify the notations, we assume from now
on that we have 2n observations from a sample D2n = (Xi, Yi)2n

i=1. Let us define our
aggregation procedures.

Definition 1 (Aggregation procedures). Follow the following steps:

(0. Initialization) Choose a confidence level x > 0. If (3) holds, define

φ = φn,M (x) = b

√
logM + x

n
.

If (4) holds, define

φ = φn,M (x) = (σε + b)

√
(logM + x) log n

n
.

(1. Splitting) Split the sample D2n into Dn,1 = (Xi, Yi)ni=1 and Dn,2 = (Xi, Yi)2n
i=n+1.

(2. Preselection) Use Dn,1 to define a random subset of F :

F̂1 =
{
f ∈ F : Rn,1(f) ≤ Rn,1(f̂n,1) + cmax

(
φ‖f̂n,1 − f‖n,1, φ2

)}
, (5)

where ‖f‖2n,1 = n−1
∑n
i=1 f(Xi)2, Rn,1(f) = n−1

∑n
i=1(f(Xi) − Yi)2, f̂n,1 ∈

argminf∈F Rn,1(f).

(3. Aggregation) Choose F̂ as one of the following sets:

F̂ = conv(F̂1) = the convex hull of F̂1 (6)

F̂ = seg(F̂1) = the segments between the functions in F̂1 (7)

F̂ = star(f̂n,1, F̂1) = the segments between f̂n,1 with the elements of F̂1, (8)

and return the ERM relative to Dn,2 :

f̃ ∈ argmin
g∈ bF Rn,2(g),

where Rn,2(f) = n−1
∑2n
i=n+1(f(Xi)− Yi)2.

These algorithms are illustrated in Figures 1 and 2. In Figure 1 we summarize
the aggregation steps in the three cases. In Figure 2 we give a simulated illustration
of the preselection step, and we show the value of the weights of the AEW for a
comparison. As mentioned above, the Step 3 of the algorithm returns, when F̂ is
given by (7) or (8), an aggregate which is a convex combination of only two functions
in F , among the ones remaining after the preselection step. The preselection step
was introduced in Lecué and Mendelson (2009), with the use of (6) only for the
aggregation step.

From the computational point of view, the procedure (8) is the most appealing:
an ERM in star(f̂n,1, F̂ ) can be computed in a fast and explicit way, see Algorithm 1
below. The next Theorem proves that each procedure given in Definition 1 are opti-
mal.
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Figure 1: Aggregation algorithms: ERM over conv(F̂1), seg(F̂1), or star(f̂n,1, F̂1).

Theorem 1. Let x > 0 be a confidence level, F be a dictionary with cardinality M
and f̃ be one of the aggregation procedure given in Definition 1. If (3) holds, we have,
with ν2n-probability at least 1− 2e−x:

R(f̃) ≤ min
f∈F

R(f) + cb
(1 + x) logM

n
,

where cb is a constant depending on b.
If (4) holds, we have, with ν2n-probability at least 1− 4e−x:

R(f̃) ≤ min
f∈F

R(f) + cσε,b
(1 + x) logM log n

n
.

Remark 1. Note that the definition of the set F̂1, and thus f̃ , depends on the confi-
dence x through the factor φn,M (x).
Remark 2. To simplify the proofs, we don’t give the explicit values of the constants.
However, when (3) holds, one can choose c = 4(1+9b) in (5) and c = c1(1+b) when (4)
holds (where c1 is the absolute constant appearing in Theorem 2). Of course, this is
not likely to be the optimal choice.

Now, we give details for the computation of the star-shaped aggregate, namely
the aggregate f̃ given by Definition 1 when F̂ is (8). Indeed, if λ ∈ [0, 1], we have

Rn,2(λf + (1− λ)g) = λRn,2(f) + (1− λ)Rn,2(g)− λ(1− λ)‖f − g‖2n,2,

so the minimum of λ 7→ Rn,2(λf + (1− λ)g) is achieved at

λn,2(f, g) = 0 ∨ 1
2

(Rn,2(g)−Rn,2(f)
‖f − g‖2n,2

+ 1
)
∧ 1,

where a ∨ b = max(a, b), a ∧ b = min(a, b). So,

min
λ∈[0,1]

Rn,2(λf + (1− λ)g) = Rn,2(λn,2(f, g)f + (1− λn,2(f, g))g),

which is equal to

Rn,2(g) if Rn,2(f)−Rn,2(g) > ‖f − g‖2n,2,
Rn,2(f) if Rn,2(f)−Rn,2(g) < −‖f − g‖2n,2,

5



0 20 40 60 80

40
60

80
10
0

Dictionary

Sum of squares
Threshold
Expo. weights

0 20 40 60 80

20
40

60
80

10
0

Dictionary

Sum of squares
Threshold
Expo. weights

0 20 40 60 80

40
60

80
10
0

12
0

Dictionary

Sum of squares
Threshold
Expo. weights

Figure 2: Empirical risk Rn,1(f), value of the threshold Rn,1(f̂n,1) + 2 max(φ‖f̂n,1 −
f‖n,1, φ2) and weights of the AEW (rescaled) for f ∈ F , where F is a dictionary
obtained using LARS, see Section 3 below. Only the elements of F with an empirical
risk smaller than the threshold are kept from the dictionary for the construction of
the aggregates of Definition (1). The first and third examples correspond to a case
where an aggregate with preselection step improves upon AEW, while in the second
example, both procedures behaves similarly.

and to
Rn,2(f) +Rn,2(g)

2
− (Rn,2(f)−Rn,2(g))2

4‖f − g‖2n,2
−
‖f − g‖2n,2

4

if |Rn,2(f) − Rn,2(g)| ≤ ‖f − g‖2n,2. This leads to the next Algorithm 1 for the
computation of f̃ .

3 Simulation study

In machine learning, the choice of the tuning parameters in a procedure based on pe-
nalization is a main issue. If the procedure is able to perform variable selection (such
as the Lasso, see Tibshirani (1996)), then the tuning parameters determines which
variables are selected. In many cases, including the Lasso, this choice is commonly
done using a Mallow’s Cp heuristic (see Efron et al. (2004)) or using the V -fold or the
leave-one-out cross validations. Since aggregation procedures are known (see refer-
ences above) to outperform selectors in terms of prediction error, it is tempting to use
aggregation for the choice of the tuning parameters. Unfortunately, as we mentioned
before, most aggregation procedures provide non-zero weights to many non relevant
element in a dictionary: this is a problem for variable selection. Indeed, if we use,
for instance, the AEW on a dictionary consisting of the full path of Lasso estimators
(provided by the Lars algorithm, see Efron et al. (2004)), then the resulting aggre-
gate is likely to select all the variables since the Lasso with a small regularization
parameter is very close (and equal if it is zero) to ordinary least-squares (which does
not perform any variables selection). So, in this context, the hyper-sparse aggregate
of Section 2 is of particular interest. In this section, we compare the prediction error
and the accuracy of variable selection of our star-shaped aggregation algorithm to
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Algorithm 1: Computation of the star-shaped aggregate.
Input: dictionary F , data (Xi, Yi)

2n
i=1, and a confidence level x > 0

Output: star-shaped aggregate f̃
Split D2n into two samples Dn,1 and Dn,2

foreach j ∈ {1, . . . ,M} do

Compute Rn,1(fj) and Rn,2(fj), and use this loop to find bfn,1 ∈ argminf∈F Rn,1(f)

end
foreach j ∈ {1, . . . ,M} do

Compute ‖fj − bfn,1‖n,1 and ‖fj − bfn,1‖n,2

end
Construct the set of preselected elements

bF1 =
n
f ∈ F : Rn,1(f) ≤ Rn,1( bfn,1) + cmax

`
φ‖ bfn,1 − f‖n,1, φ

2´o,
where φ is given in Definition 1.
foreach f ∈ bF1 do

compute
Rn,2(λn,2( bfn,1, f) bfn,1 + (1− λn,2( bfn,1, f))f)

and keep the element fb ∈ bF1 that minimizes this quantity
end
return

f̃ = λn,2( bfn,1, fb) bfn,1 + (1− λn,2( bfn,1, fb))fbj ,

Mallow’s Cp heuristic, leave-one-out cross-validation and 10-fold cross-validation. In
Section 3.2 we consider a dictionary consisting of the entire sequence of Lasso esti-
mators and a dictionary consisting of entire sequences of the elastic-net estimators
(see Zou and Hastie (2005)) corresponding to several ridge penalization parameters,
so this dictionary contains the Lasso, the elastic-net, the ridge and the ordinary
least-squares estimators.

Remark 3. Note that since an aggregation algorithm is “generic”, in the sense that
it can be applied to any dictionary, one could consider larger dictionaries, contain-
ing many instances of different type of estimators, for several choices of the tuning
parameters, like the Adaptive Lasso (see Zou (2006)) among many other instances
of the Lasso. We believe that the conclusion of the numerical study proposed here
would be the same as for a much larger dictionary. Indeed, let us recall that the focus
is here on the comparison of selection and aggregation procedures for the choice of
tuning parameters, and not on the comparison of the procedures inside the dictionary
themselves.

3.1 Examples of models

We simulate n independent copies of the linear regression model

Y = β>X + ε,

where β ∈ Rp. Several settings are considered, see Models 1-6 below, including
sparse and non-sparse vectors β and several signal-to-noise ratios. Models 1-4 are
from Tibshirani (1996).
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Model 1 (A few effects). We set β = (3, 1.5, 0, 0, 2, 0, 0, 0), so p = 8, and we let
n to be 20 and 60. The vector X = (X1, . . . , Xd) is a centered normal vector
with covariance matrix Cov(Xi, Xj) = ρ|i−j|, with ρ = 1/2. The noise εi is
N(0, σ2) with σ equal to 1 or 3.

Model 2 (Every effects). This example is the same as Model 1, but with β =
(2, 2, 2, 2, 2, 2, 2, 2).

Model 3 (A single effect). This example is the same as Model 1, but with β =
(5, 0, 0, 0, 0, 0, 0, 0).

Model 4 (A larger model). We set β = (010, 210, 010, 210), where xy stands for
the vector of dimension y with each coordinate equal to x, so p = 40. We let
n to be 100 and 200. We consider covariates Xj

i = Zi,j + Zi where Zi,j and Zi
are independent N(0, 1) variables. This induces pairwise correlation equal to
0.5 among the covariates. The noise εi is N(0, σ2) with σ equal to 15 or 7.

Model 5 (Sparse vector in high dimension). We set β = (2.55, 1.55, 0.55, 0185),
so p = 200. We let n to be 50 and 100. The first 15 covariates (X1, . . . , X15)
and the remaining 185 covariates (X16, . . . , X200) are independent. Each of
these are Gaussian vectors with the same covariance matrix as in Model 1 with
ρ = 0.5. The noise is N(0, σ2) with σ equal to 3 and 1.5.

Model 6 (Sparse vector in high dimension, stronger correlation). This exam-
ple is the same as Model 5, but with ρ = 0.95.

3.2 Procedures

We consider a dictionary consisting of the entire sequence of Lasso estimators and
a dictionary with several sequences of elastic-net estimators, corresponding to ridge
parameters in the set of values {0, 0.01, 0.1, 1, 5, 10, 20, 50, 100} (these dictionaries are
computed with the lars and enet routines from R1). For each dictionary, we compute
the prediction errors |X(β̂−β)|2 (where X is the matrix with rows X>1 , . . . , X

>
n and

| · |2 is the `n2 -norm maybe this is the normalized euclidean norm Ln2?) of 200
replications (this makes the results stable enough), where β̂ is one of the following:

• β̂(Oracle) = the element of the dictionary with smallest prediction error

• β̂(Cp) = the Lasso estimator selected by Mallows-Cp heuristic

• β̂(10−Fold) = the element of the dictionary selected by 10-fold cross-validation

• β̂(Loo) = the element of the dictionary selected by leave-one-out cross-validation

• β̂(AEW) = The aggregate with exponential weights applied to the dictionary,
with temperature parameter equal to 4σ2, see for instance Dalalyan and Tsy-
bakov (2007)

• β̂(Star) = the star-shaped aggregate applied to the dictionary.
1www.r-project.org
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For the AEW and the star-shaped aggregate, the splits are chosen at random with size
[n/2] for training and n− [n/2] for learning. For both aggregates we use jackknife: we
compute the mean of 100 aggregates obtained with several splits chosen at random.
This makes the final aggregates less dependent on the split. As a matter of fact, we
observed in our numerical studies that Star-shaped aggregation with the preselection
step and without it (see Definition 1) provides close estimators. So, in order to
improve the computational burden, the numerical results of the Star-shaped aggregate
reproduced here are the ones obtained without the preselection step.

We need to explain how variable selection is performed based on J star-shaped
aggregates coming from J random splits (here we take J = 100). A Star-shaped
aggregate f̂ (j), corresponding to a split j, can be written as

f̂ (j) = λ̂(j)f̂
(j)
ERM + (1− λ̂(j))f̂ (j)

other,

where f̂ (j)
ERM is the ERM in F corresponding to the split j and f̂

(j)
other is the other

vertex of the segment where the empirical risk is minimized (recall that the aggregate
minimizes the empirical risk over the set of segments star(f̂ (j)

ERM, F )). For each split
j, we estimate the significance of each covariate using

π̂(j) = λ̂(j)1bβ(j)
ERM 6=0

+ (1− λ̂(j))1bβ(j)
other 6=0

,

where 1v 6=0 = (1v1 6=0, . . . ,1vd 6=0). The vector π̂(j) does a simple average of the con-
tributions of the supports of β̂(j)

ERM and β̂(j)
other, weighted by λ̂(j). To take into consid-

eration each split, we simply compute the mean of the significances of each split:

π̂ =
1
J

J∑
j=1

π̂(j).

The vector π̂ contains the final significances of each covariate. This procedure is close
in spirit to the stability selection procedure described in Meinshausen and Bühlmann
(2008), since each aggregate is related to a subsample. Finally, the selected covariates
are the one in

Ŝ =
{
k ∈ {1, . . . , p} : π̂k ≥ t̂

}
,

where t̂ is a random threshold given by

t̂ =
1
2

(
1 +

q̂2

p2β

)
,

where q̂ = min(ŝ,
√

0.7p), β = p/10 and ŝ = 1
J

∑J
j=1

∑p
k=1 π̂

(j)
k is the average sparsity

(number of non-zero coefficients) for each splits. This choice of threshold follows the
arguments from Meinshausen and Bühlmann (2008), together with some empirical
tuning.

For each of the Models 1-6, the boxplots of the 200 prediction errors are given
in Figures 3 and 4. Note that in a high dimensional setting (p > n), we don’t
reproduce the Cp’s prediction errors, since in this case the lars package does not
give it correctly. For the elastic-net dictionary, the boxplot of the predictions errors
are given for Models 1-4 in Figure 5. The results concerning variables selection for
the Lars and the Elastic-Net dictionaries are given in Tables 1 and 2. In these tables
we reproduce the number of selected variables by each procedure, and the number
of noise variables (the selected variables which are not active in the true model and
the active variables which are not selected?).
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3.3 Conclusion

In most cases, the Star-Shaped aggregate improves upon the AEW and the considered
selection procedures both in terms of prediction error and variable selection. The
proposed variable selection algorithm based on star-shaped aggregation and stability
selection tends to select smaller models than the Cp and cross-validation methods
(see Table 1, Models 1-4) leading to less noise variables. In particular, in high-
dimensional cases (p > n), it is much more stable regarding the sample size and
noise level, and provides better results most of the time (see Table 1, Models 5-
6). In terms of prediction error, the Star-Shaped always improve the AEW, and is
better than the Cp and cross-validations in most cases. We can say that, roughly,
the Cp and the cross-validations are better than the Star-Shaped aggregate only for
non-sparse vectors (since these selection procedures tend to select larger models),
in particular when n is small and σ is large. We can conclude by saying that, in
the worst cases, the Star-shaped algorithm has prediction and selection performances
which are comparable to cross-validations and Cp heuristic, but, on the other hand,
it can improve them a lot (in particular for sparse vectors). One can think of the
Star-Shaped aggregation algorithm as an alternative to cross-validation and Cp.

Table 1: Accuracy of variable prediction in Models 1 to 6 (Lars dictionary)

Model 1 Model 2
n = 20, σ = 3 n = 60, σ = 1 n = 20, σ = 3 n = 60, σ = 1

Selected Noise Selected Noise Selected Noise Selected Noise
Truth 3 0 3 0 8 0 8 0
10-fold 3.870 1.410 5.260 2.260 7.190 0 8 0
Loo 3.965 1.465 5.055 2.055 7.235 0 8 0
Cp 4.165 1.645 4.710 1.710 7.085 0 8 0
Star 2.860 0.675 4.355 1.355 6.250 0 8 0

Model 3 Model 4
n = 20, σ = 3 n = 60, σ = 1 n = 100, σ = 15 n = 200, σ = 7

Selected Noise Selected Noise Selected Noise Selected Noise
Truth 1 0 1 0 20 0 20 0
10-fold 2.365 1.365 2.980 1.980 21.610 6.955 28.405 8.415
Loo 2.440 1.440 2.645 1.645 22.295 7.305 28.480 8.495
Cp 2.965 1.965 2.650 1.650 23.860 8.175 29.715 9.720
Star 1.655 0.655 1.855 0.855 18.065 4.910 27.850 7.855

Model 5 Model 6
n = 100, σ = 1.5 n = 200, σ = 0.5 n = 100, σ = 1.5 n = 200, σ = 0.5

Selected Noise Selected Noise Selected Noise Selected Noise
Truth 15 0 15 0 15 0 15 0
10-fold 47.375 32.550 14.035 0 39.150 25.830 7.560 0
Loo 44.030 29.215 10.455 0 24.370 10.990 2.425 0
Star 15.690 1.245 17.780 2.780 13.175 0.055 15.145 0.150
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Figure 3: First line: prediction errors for Model 1, with n = 20, σ = 3 (left) and
n = 60, σ = 1 (right) ; Second line : prediction errors for Model 2, with n = 20,
σ = 3 (left) and n = 60, σ = 1 (right) ; thrid line: prediction errors for Model 3, with
n = 20, σ = 3 (left) and n = 60, σ = 1 (right)
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Figure 4: First line: prediction errors for Model 4, with n = 100, σ = 15 (left) and
n = 200, σ = 7 (right) ; Second line: Prediction errors for Model 5, with n = 50,
σ = 3 (left) and n = 100, σ = 1.5 (right) ; Third line: Prediction errors for Model 6,
with n = 50, σ = 1.5 (left) and n = 100, σ = 1.5 (right)
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Figure 5: Prediction errors for Models 1 to 4 using the elastic-net dictionary (upper
left: Model 1 with σ = 3, n = 20, upper right: Model 2 with σ = 3, n = 20, bottom
left: Model 3 with σ = 3, n = 20 and bottom right: Model 4 with n = 100, σ = 15).

Table 2: Accuracy of variable prediction in Models 1 to 4 (Elastic-Net dictionary)

Model 1 Model 2 Model 3 Model 4
n = 20, σ = 3 n = 20, σ = 3 n = 20, σ = 3 n = 100, σ = 15

Selected Noise Selected Noise Selected Noise Selected Noise
Truth 3 0 8 0 1 0 20 0
10-fold 5.040 2.155 7.450 0 3.045 2.045 25.575 9.475
Loo 4.940 2.065 7.460 0 2.980 1.980 25.535 9.660
Cp 4.490 1.660 7.335 0 2.760 1.760 24.345 8.470
Star 4.355 1.475 7.485 0 2.080 1.080 24.090 8.755
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4 Proofs

We will use the following notations. If fF ∈ argminf∈F R(f), we will consider the
excess loss

Lf = LF (f)(X,Y ) := (Y − f(X))2 − (Y − fF (X))2,

and use the notations

PLf := ELf (X,Y ), PnLf :=
1
n

n∑
i=1

Lf (Xi, Yi).

4.1 Proof of Theorem 1

Let us prove the result in the ψ1 case, the other case is similar. Fix x > 0 and let
F̂ be either (6), (7) or (8). Set d := diam(F̂1, L2(µ)). Consider the second half of
the sample Dn,2 = (Xi, Yi)2n

i=n+1. By Corollary 1 (see Appendix 4.2 below), with
probability at least 1− 4 exp(−x) (relative to Dn,2), we have for every f ∈ F̂

∣∣∣ 1
n

2n∑
i=1+n

L bF (f)(Xi, Yi)− E
(
L bF (f)(X,Y )|Dn,1

)∣∣∣ ≤ c(σε + b) max(dφ, bφ2),

where L bF (f)(X,Y ) := (f(X)−Y )2−(f bF (X)−Y )2 is the excess loss function relative
to F̂ , f bF ∈ argminf∈ bF R(f) and where φ =

√
((logM + x) log n)/n. By definition of

f̃ , we have 1
n

∑2n
i=n+1 L bF (f̃)(Xi, Yi) ≤ 0, so, on this event (relative to Dn,2)

R(f̃) ≤ R(f bF ) + E
(
L bF (f̃)|Dn,1

)
− 1
n

2n∑
i=n+1

L bF (f̃)(Xi, Yi) (9)

≤ R(f bF ) + c(σε + b) max(dφ, bφ2)

= R(fF ) +
(
c(σε + b) max(dφ, bφ2)−

(
R(fF )−R(f bF )

))
=: R(fF ) + β,

and it remains to show that

β ≤ cb,σε

(1 + x) logM log n
n

.

When F̂ is given by (6) or (7), the geometrical configuration is the same as in Lecué
and Mendelson (2009), so we skip the proof. Let us turn out to the situation where
F̂ is given by (8). Recall that f̂n,1 is the ERM on F̂1 using Dn,1. Consider f1 such
that ‖f̂n,1 − f1‖L2(µ) = maxf∈ bF1

‖f̂n,1 − f‖L2(µ), and note that

‖f̂n,1 − f1‖L2(µ) ≤ d ≤ 2‖f̂n,1 − f1‖L2(µ).

The mid-point f2 := (f̂n,1 + f1)/2 belongs to star(f̂n,1, F̂1). Using the parallelogram
identity, we have for any u, v ∈ L2(ν):

Eν
(u+ v

2

)2

≤ Eν(u2) + Eν(v2)
2

−
‖u− v‖2L2(ν)

4
,

14



where for every h ∈ L2(ν), Eν(h) = Eh(X,Y ). In particular, for u(X,Y ) = f̂n,1 − Y
and v(X,Y ) = f1(X) − Y , the mid-point is (u(X,Y ) + v(X,Y ))/2 = f2(X) − Y .
Hence,

R(f2) = E(f2(X)− Y )2 = E
( f̂n,1(X) + f1(X)

2
− Y

)2

≤ 1
2

E(f̂n,1(X)− Y )2 +
1
2

E(f1(X)− Y )2 − 1
4
‖fn,1 − f1‖2L2(µ)

≤ 1
2
R(f̂n,1) +

1
2
R(f1)− d2

16
,

where the expectations are taken conditioned onDn,1. By Lemma 3 (see Appendix 4.2
below), since f̂n,1, f1 ∈ F̂1, we have

1
2
R(f̂n,1) +

1
2
R(f1) ≤ R(fF ) + c(σε + b) max(φd, bφ2),

and thus, since f2 ∈ F̂

R(f bF ) ≤ R(f2) ≤ R(fF ) + c(σε + b) max(φd, bφ2)− cd2.

Therefore,

β = c(σε + b) max(dφ, bφ2)−
(
R(fF )−R(f bF )

)
≤ c(σε + b) max(φd, bφ2)− cd2.

Finally, if d ≥ cσε,bφ then β ≤ 0, otherwise β ≤ cσε,bφ
2. It concludes the proof of

Theorem 1. �

4.2 Tools from empirical process theory and technical results

The following Theorem is a Talagrand’s type concentration inequality (see Talagrand
(1996)) for a class of unbounded functions.

Theorem 2 (Theorem 4, Adamczak (2008)). Assume that X,X1, . . . , Xn are inde-
pendent random variables and F is a countable set of functions such that Ef(X) =
0,∀f ∈ F and ‖ supf∈F f(X)‖ψ1 < +∞. Define

Z := sup
f∈F

∣∣∣ 1
n

n∑
i=1

f(Xi)
∣∣∣

and
σ2 = sup

f∈F
Ef(X)2 and b := ‖ max

i=1,...,n
sup
f∈F
|f(Xi)|‖ψ1 .

Then, for any η ∈ (0, 1) and δ > 0, there is c = cη,δ such that for any x > 0:

P
[
Z ≥ (1 + η)EZ + σ

√
2(1 + δ)

x

n
+ cb

(x
n

)]
≤ 4e−x

P
[
Z ≤ (1− η)EZ − σ

√
2(1 + δ)

x

n
− cb

(x
n

)]
≤ 4e−x.
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Now we state some technical Lemmas, used in the proof of Theorem 1. Given a
sample (Zi)ni=1, we set the random empirical measure Pn := n−1

∑n
i=1 δZi . For any

function f define (P −Pn)(f) := n−1
∑n
i=1 f(Zi)−Ef(Z) and for a class of functions

F , define ‖P −Pn‖F := supf∈F |(P −Pn)(f)|. In all what follows, we denote by c an
absolute positive constant, that can vary from place to place. Its dependence on the
parameters of the setting is specified in place.

Lemma 1. Define

d(F ) := diam(F,L2(µ)), σ2(F ) = sup
f∈F

E[f(X)2], C = conv(F ),

and LC(C) = {(Y − f(X))2 − (Y − fC(X))2 : f ∈ C}, where fC ∈ argming∈C R(g).
If (3) holds, we have

E
[

sup
f∈F

1
n

n∑
i=1

f2(Xi)
]
≤ cmax

(
σ2(F ),

b2 logM
n

)
, and

E‖Pn − P‖LC(C) ≤ cb
√

logM
n

max
(
b

√
logM
n

, d(F )
)
.

If (4) holds, we have

E
[

sup
f∈F

1
n

n∑
i=1

f2(Xi)
]
≤ cmax

(
σ2(F ),

b2 logM
n

)
, and

E‖Pn − P‖LC(C) ≤ cb
√

logM log n
n

max
(
b

√
logM log n

n
, d(F )

)
.

Proof. First, consider the case (4). Define

r2 = sup
f∈F

1
n

n∑
i=1

f(Xi)2,

and note that EX(r2) ≤ EX‖P − Pn‖F 2 + σ(F )2, where F := {f2 : f ∈ F}. Using
the Giné-Zinn symmetrization argument, see Giné and Zinn (1984), we have

EX‖P − Pn‖F 2 ≤ c

n
EXEg

[
sup
f∈F

∣∣∣ n∑
i=1

gif
2(Xi)

∣∣∣],
where (gi) are i.i.d. standard normal. The process f 7→ Z2,f =

∑n
i=1 gif

2(Xi) is
Gaussian, with intrinsic distance

Eg|Z2,f − Z2,f ′ |2 =
n∑
i=1

(f(Xi)2 − f ′(Xi)2)2 ≤ dn,∞(f, f ′)2 × 4nr2,

where dn,∞(f, f ′) = maxi=1,...,n |f(Xi)− f ′(Xi)|. Using (4) we have dn,∞(f, f ′) ≤ 2b
for any f, f ′ ∈ F , so using Dudley’s entropy integral, we have

Eg‖P − Pn‖F 2 ≤ c√
n

∫ 2b

0

√
logN(F, dn,∞, t)dt ≤ cr

√
logM
n

.
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So, we get

EX‖P − Pn‖F 2 ≤ cb
√

logM
n

EX [r] ≤ cb
√

logM
n

√
EX [r2],

which entails that

EX(r2) ≤ cmax
(b2 logM

n
+ σ(F )2

)
.

Let us turn to the part of the Lemma concerning E‖P − Pn‖LC(C). Recall that C =
conv(F ) and write for short Lf (X,Y ) = LC(f)(X,Y ) = (Y −f(X))2− (Y −fC(X))2

for each f ∈ C, where we recall that fC ∈ argming∈C R(g). Using the same argument
as before we have

E‖P − Pn‖LC(C) ≤
c

n
E(X,Y )Eg

[
sup
f∈C

∣∣∣ n∑
i=1

giLf (Xi, Yi)
∣∣∣].

Consider the Gaussian process f ∈ C → Zf :=
∑n
i=1 giLf (Xi, Yi) indexed by C. For

every f, f ′ ∈ C, the intrinsic distance of (Zf )f∈C satisfies

Eg|Zf − Zf ′ |2 =
n∑
i=1

(Lf (Xi, Yi)− Lf ′(Xi, Yi))2

≤ max
i=1,...,n

|2Yi − f(Xi)− f ′(Xi)|2 ×
n∑
i=1

(f(Xi)− f ′(Xi))2

= max
i=1,...,n

|2Yi − f(Xi)− f ′(Xi)|2 × Eg|Z ′f − Z ′f ′ |2,

where Z ′f :=
∑n
i=1 gi(f(Xi) − fC(Xi)). Therefore, by Slepian’s Lemma, we have for

every (Xi, Yi)ni=1:

Eg
[

sup
f∈C

Zf

]
≤ max
i=1,...,n

sup
f,f ′∈C

|2Yi − f(Xi)− f ′(Xi)| × Eg
[

sup
f∈C

Z ′f

]
,

and since for every f =
∑M
j=1 αjfj ∈ C, where αj ≥ 0,∀j = 1, . . . ,M and

∑
αj = 1,

Z ′f =
∑M
j=1 αjZfj , we have

Eg
[

sup
f∈C

Z ′f

]
≤ Eg

[
sup
f∈F

Z ′f

]
.

Moreover, we have, using Dudley’s entropy integral argument,

1
n

Eg
[

sup
f∈F

Z ′f

]
≤ c√

n

∫ ∆n(F ′)

0

√
N(F, ‖ · ‖n, t)dt ≤ c

√
logM
n

r′,

where F ′ := {f − fC : f ∈ F} and ∆n(F ′) := diam(F ′, ‖ · ‖n) and

r′2 := sup
f∈F ′

1
n

n∑
i=1

f(Xi)2.

Hence, we proved that

E‖P − Pn‖LC(C) ≤ c
√

logM
n

√
E
[

max
i=1,...,n

|2Yi − f(Xi)− f ′(Xi)|2
]√

E(r′2).
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Using Pisier’s inequality for ψ1 random variables and the fact that E(U2) ≤ 4‖U‖ψ1

for any ψ1-random variable U , together with (4), we obtain that

E
[

max
i=1,...,n

sup
f,f ′∈C

|2Yi − f(Xi)− f ′(Xi)|2
]
≤ cb2 log(n). (10)

So, we finally obtain

E‖P − Pn‖LC(C) ≤ c
√

log n logM
n

√
E(r′2),

and the conclusion follows from the first part of the Lemma, since σ(F ′) ≤ d(F ). The
case (3) is easier and follows from the fact that the left hand side of (10) is smaller
than 4b.

Lemma 1 combined with Theorem 2 leads to the following corollary.

Corollary 1. Let d(F ) = diam(F,L2(µ)), C := conv(F ) and Lf (X,Y ) = (Y −
f(X))2 − (Y − fC(X))2 for any f ∈ C.

If (4) holds, we have, with probability larger than 1− 4e−x, that for every f ∈ C:∣∣∣ 1
n

n∑
i=1

Lf (Xi, Yi)− ELf (X,Y )
∣∣∣

≤ c(σε + b)

√
(logM + x) log n

n
max

(
b

√
(logM + x) log n

n
, d(F )

)
.

If (3) holds, we have, with probability larger than 1− 2e−x, that for every f ∈ C:

∣∣∣ 1
n

n∑
i=1

Lf (Xi, Yi)− ELf (X,Y )
∣∣∣ ≤ cb√ logM + x

n
max

(
b

√
logM + x

n
, d(F )

)
.

Proof. Applying Theorem 2 to

Z := sup
f∈C

∣∣∣ 1
n

n∑
i=1

Lf (Xi, Yi)− ELf (X,Y )
∣∣∣,

we obtain that, with a probability larger than 1− 4e−x:

Z ≤ c
(
EZ + σ(C)

√
x

n
+ bn(C)x

n

)
,

where

σ(C)2 = sup
f∈C

E[Lf (X,Y )2], and

bn(C) =
∥∥ max
i=1,...,n

sup
f∈C
|Lf (Xi, Yi)− E[Lf (X,Y )]|

∥∥
ψ1
.

Since

Lf (X,Y ) = 2ε(fC(X)− f(X)) + (fC(X)− f(X))(2f0(X)− f(X)− fC(X)), (11)

18



we have using Assumptions 1 and (4):

E[Lf (X,Y )2] ≤ (4σ2
ε + 2b2)‖f − fC‖2L2(µ),

meaning that
σ(C)2 ≤ (4σ2

ε + 2b2)d(F ).

Since E(|Z|) ≤ ‖Z‖ψ1 , we have bn(C) ≤ 2 log(n+1)‖ supf∈C |Lf (X,Y )|‖ψ1 . Moreover,
using again (11), we obtain that

bn(C) ≤ 16 log(n+ 1)b2.

Putting all this together, and using Lemma 1, we arrive at

Z ≤ c(σε + b)

√
(logM + x) log n

n
max

(
b

√
(logM + x) log n

n
, d(F )

)
,

with probability larger than 1 − 4e−x for any x > 0. In the bounded case (3) the
proof is easier, and one can use the original Talagrand’s concentration inequality.

Lemma 2. Let Lf (X,Y ) = (Y − f(X))2 − (Y − fF (X))2 for any f ∈ F .
If (4) holds, we have with probability larger than 1− 4e−x, that for every f ∈ F :∣∣∣ 1
n

n∑
i=1

Lf (Xi, Yi)− ELf (X,Y )
∣∣∣

≤ c(σε + b)

√
(logM + x) log n

n
max

(
b

√
(logM + x) log n

n
, ‖f − fF ‖

)
.

Also, with probability at least 1− 4e−x, we have for every f, g ∈ F :∣∣‖f − g‖2n − ‖f − g‖2∣∣
≤ cb

√
(logM + x) log n

n
max

(
b

√
(logM + x) log n

n
, ‖f − g‖

)
.

If (3) holds, we have, with probability larger than 1− 2e−x, that for every f ∈ F :

∣∣∣ 1
n

n∑
i=1

Lf (Xi, Yi)− ELf (X,Y )
∣∣∣ ≤ cb√ logM + x

n
max

(
b

√
logM + x

n
, ‖f − fF ‖

)
,

and with probability at least 1− 2e−x, that for every f, g ∈ F :

∣∣‖f − g‖2n − ‖f − g‖2∣∣ ≤ cb√ logM + x

n
max

(
b

√
logM + x

n
, ‖f − g‖

)
.

Proof of Lemma 2. The proof uses exactly the same arguments as that of Lemma 1
and Corollary 1, and thus is omitted.

Lemma 3. Let F̂1 be given by (5) and recall that fF ∈ argminf∈F R(f) and let
d(F̂1) = diam(F̂1, L2(µ)).
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If (4) holds, we have with probability at least 1 − 4 exp(−x) that fF ∈ F̂1, and
any function f ∈ F̂1 satisfies

R(f) ≤ R(fF ) + c(σε + b)

√
(logM + x) log n

n
max

(
b

√
(logM + x) log n

n
, d(F̂1)

)
.

If (3) holds, we have with probability at least 1 − 2 exp(−x) that fF ∈ F̂1, and
any function f ∈ F̂1 satisfies

R(f) ≤ R(fF ) + cb

√
logM + x

n
max

(
b

√
logM + x

n
, d(F̂1)

)
.

Proof. The proof follows the lines of the proof of Lemma 4.4 in Lecué and Mendelson
(2009), together with Lemma 2, so we don’t reproduce it here.
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