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We apply Theorem A to the problem of Convex aggregation and
show that the optimal rate of Convex aggregation for non-exact oracle
inequalities is much faster than the optimal rate for exact oracle
inequalities.

We apply Theorem B to show that regularized procedures based
on a nuclear norm criterion satisfy oracle inequalities with a residual
term that decreases like 1/n for every Lq-loss functions (q ≥ 2),
while only assuming that the tail behaviour of the input and output
variables are well behaved. In particular, an RIP type of assumption
or an “incoherence condition” are not needed to obtain fast residual
terms in this setup.

Finally, we relate the problem of Model Selection to the problem
of regularization and apply Theorem B to obtain non-exact oracle
inequalities in the Model Selection setup.

1. Application to the prediction of low-rank matrices. For this
application, we observe n i.i.d. couples input/output (Xi, Yi)1≤i≤n where the
input variables X1, . . . , Xn take their values in the space X =Mm×T of all
m × T matrices with entries in R and the output variables Y1, . . . , Yn are
real-valued. Being given a new input X, the goal is to predict the output
Y using a linear function of X when (X,Y ) is assumed to have the same
probability distribution as the (Xi, Yi)’s. In this setup, it is now common to
assume that there are more covariables than observations (mT >> n) and
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thus more information on the best linear prediction of Y by X is required.
A common assumption is that Y can be well predicted by a function of the
form

〈
X,A0

〉
= Tr(X>A0) where A0 is an m× T matrix of low rank. Once

again we will not have to make such an assumption, but it helps to keep this
low-dimensional structure in mind.

Indeed, with a “small rank” intuition, it is natural to penalize linear esti-
mators

〈
X,A

〉
by rank(A). Unfortunately, since the rank(·) function is not

convex it cannot be used in practice as a criterion. A more popular choice is
to use a convex relaxation of the rank(·) function: the S1 norm (“Schatten
one” norm) (see [1, 3, 4, 5, 7, 11, 8, 10, 18, 20, 13] and references therein),
which is the `1-norm of the singular values of a matrix. Formally, for every
A ∈Mm×T , ‖A‖S1

=
∑m∧T
i=1 si(A), where s1(A), . . . , sm∧T (A) are the singu-

lar values of A and, in general for p ≥ 1, ‖A‖Sp =
(∑m∧T

i=1 si(A)p
)1/p

. The
S1-norm was originally used in this type of problems to study exact recon-
struction (see, for example, [7, 19, 6]), but other regularizing functions have
been used in this context (e.g. [12, 9, 8]) for the prediction and estimation
problems.

In the following result, we apply Theorem B to obtain non-exact oracle
inequalities for an S1-based criterion RERM procedure, under an Lq-loss
function for some q ≥ 2. For every A ∈Mm×T let

R(q)(A) = E|Y −
〈
X,A

〉
|q and R(q)

n (A) =
1
n

n∑
i=1

|Yi −
〈
Xi, A

〉
|q.

Again, it seems more “statistically relevant” to assume that |Y | and ‖X‖S2

are almost surely bounded rather than bounded in ψq for q > 2, and the
two most interesting cases are the uniformly bounded one and q = 2. We
have stated the results under the more general ψq assumption to point out
the places in which the decay properties of the functions involved are really
needed – in the hope that it would be possible to improve and extend the
results at a later date, by relaxing the ψq boundedness assumption.

Theorem D For every q ≥ 2 there are constants c0 and c1 depending
only on q for which the following holds. Let m and T as above and assume
that ‖Y ‖ψq ,

∥∥∥‖X‖S2

∥∥∥
ψq
≤ K(mT ) for some constant K(mT ) which depends

only on the product mT . Let x > 0 and 0 < ε < 1/2, and put λ(n,mT, x) =
c0K(mT )q(log n)(4q−2)/q(x+ log n). Consider the RERM procedure

Ân ∈ Arg min
A∈Mm×T

(
R(q)
n (A) + λ(n,mT, x)

‖A‖qS1

nε2

)



NON-EXACT ORACLE INEQUALITIES 3

Then, with probability greater than 1−10 exp(−x), the Lq-risk of Ân satisfies
for ηε(n,mT, x) = c1K(mT )q(log n)(4q−2)/q(x+ log n)

R(q)(Ân) ≤ inf
A∈Mm×T

(
(1 + 2ε)R(q)(A) + η(n,mT, x)

(1 + ‖A‖qS1
)

nε2

)
.

Sketch of the proof of Theorem D. The proof of Theorem D follows
the same line as the one of Theorem C. The only different ingredient is an
entropy estimate that can be found in [8] on the complexity of the Schatten
S1-ball.

Proposition 1.1 ([8]). There exists an absolute constant c0 > 0 such
that the following holds. Assume that

∥∥∥‖X‖S2

∥∥∥
ψ2

≤ K(mT ). Then,

(
Eγ2

2(rB(S1), ‖·‖∞,n)
)1/2 ≤ c0K(mT )r log n.

Once again, in the same spirit as in Theorem C, it can be interesting to
note that for the quadratic loss (q = 2), the resulting estimator is

Ân ∈ Arg min
A∈Mm×T

( 1
n

n∑
i=1

(Yi −
〈
Xi, A

〉
)2 + λ(n,mT, x)

‖A‖2S1

nε2

)
where the regularizing function uses the square of the S1-norm unlike the
classical estimator for this problem which uses the S1 norm itself as a regu-
larizing function.

The first results in the direction of matrix completion have focused on the
exact reconstruction of a low-rank matrix A0 where Y =

〈
X,A0

〉
[3, 4, 7, 19,

10]. The best results [19, 10] to date are that if the number of measurements
n is larger than rank(A0)(m+ T ) log(m+ T ) and if the “incoherence condi-
tion” holds (see [7] for more details), then with high probability, a constraint
nuclear norm minimization algorithm can reconstruct A0 exactly.

Prediction results and statistical estimation involving low-rank matrices
has become a very active field. The most popular methods are RERM based
on S1-norm penalty functions (see for instance [1, 2, 3, 4, 18, 20, 8, 12,
13, 20]). To specify some results, fast rates for the noisy matrix completion
problem are derived in [20] – in the context of empirical prediction and under
an RIP-type assumption. In [13] the authors prove exact oracle inequalities
for the prediction error E

〈
X, Ân − A0

〉2 when E
(
Y |X

)
=
〈
X,A0

〉
and A0
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is either of low-rank or of a small S1-norm, and when the design of X is
known. In [18], optimal rates for the quadratic risk were obtained under a
“spikiness assumption” on the SVD of A0, and in [12], fast convergence rates
were derived for RERM based on the von Neuman entropy penalization and
for a known design. However, so far only a few results have been obtained
for the prediction risk as considered here. Probably the closest result in this
setup is an exact oracle inequality with slow rates satisfied by a RERM using
a mixture of several norms in [8].

Note that for the two applications in Theorem C and D, we obtain fast
convergence rates under only tail assumptions on the design X and the
output Y for every Lq-loss (for q ≥ 2). In particular, one does not need to
assume that E

(
Y |X

)
is a linear combination of the covariables of X, nor

that Y has any low-dimensional structure. If one happens to be in a low-
dimensional situation, the residual terms of Theorem C and D will be small.
Hence, the `1 and S1 based RERM procedures used there automatically
adapt to this low-dimensional structure.

2. Non-exact oracle inequalities for the Convex aggregation prob-
lem. The problem of Convex aggregation is the following: consider a finite
model F = {f1, . . . , fM} for some M ∈ N and try to find a procedure that is
“as good as” the best convex combination of elements in F . To define what
is meant by “as good as”, we introduce some notation.

For any λ = (λ1, . . . , λM ) ∈ RM , let fλ =
∑M
j=1 λjfj and the convex

hull of F is the set conv(F ) =
{
fλ :

∑M
j=1 λj = 1 and λj ≥ 0

}
. There

are many different ways of defining the convex aggregation problem. The
one that we will be interested in is the following: for some 0 ≤ ε ≤ 1/2
construct a procedure f̃n such that, for any x > 0 with probability larger
than 1− exp(−x),

(2.1) R(f̃n) ≤ (1 + ε) inf
f∈conv(F )

R(f) + rn(M)

where the residual term rn(M) should be as small as possible. From both
mathematical and statistical point of view, the most interesting case to study
is for ε = 0. In this case, it follows from classical minimax results (cf. [21])
that no algorithm can do better than the rate

(2.2) ψCn (M) =

 M/n if M ≤
√
n,√

log
(
eM/
√
n
)

n otherwise.

It is shown in [21] that there is a procedure f̃n achieving this rate in expec-
tation: ER(f̃n) ≤ inff∈conv(F )R(f)+ψCn (M) and in [14], the ERM is proved



NON-EXACT ORACLE INEQUALITIES 5

to achieve this optimal rate in deviation (we refer to [21] and [14] for more
details).

In this setup, we apply Theorem A to obtain inequalities like (2.1) with
0 < ε < 1/2 for the ERM over conv(F ):

(2.3) f̃ERM−Cn ∈ Arg min
f∈conv(F )

Rn(f).

To make the argument simple, we consider the bounded regression frame-
work with respect to the square loss: |Y |, supf∈F |f(X)| ≤ 1 a.s. and `f (x, y) =
(y − f(x))2, ∀f ∈ F,∀(x, y) ∈ X × R.

Theorem E. There exists an absolute constant c0 such that the following
holds. For any 0 < x < log n and 0 < ε < 1/2, with probability greater than
1− 8 exp(−x),

R(f̃ERM−Cn ) ≤ (1 + 3ε) inf
f∈conv(F )

R(f) +
c0(logM)(log n)

nε
.

Sketch of the proof of Theorem E. The proof of Theorem E and
Theorem C are closely related. In the case of Theorem C, the result follows
from the analysis of the loss functions classes indexed for the family of
models (rBd

1)r≥0. In the case of Theorem E, the result follows from the
analysis of the loss function class indexed by the model Λ = {λ ∈ RM : λj ≥
0, ‖λ‖`1 = 1} (we identify every function fλ ∈ conv(F ) with its parameter
λ ∈ Λ) which is included in BM

1 . Therefore, the proof of Theorem E follows
the same path as the proof of Theorem C but since we assume boundedness
some extra logarithms appearing in Theorem C can be saved here. Indeed,
for the loss functions class `conv(F ) = {`f : f ∈ conv(F )}, we can apply
Theorem A with bn(`conv(F )) = 1, Bn = 1 and the isomorphic function
ρn(x) ≡ c0(logM)(log n)/n.

Note that the residual term of the non-exact oracle inequality satisfied
by f̃ERM−Cn in Theorem E is of the order of (logM)(log n)/n and is thus
uniformly better than the optimal rate ψCn (M) for exact oracle inequalities
in this setup. Up to logarithms, this residual term can even be the square of
ψCn (M) when M ≥

√
n.

In this example, the gap between the rates obtained in the non-exact and
exact cases is not due to a difference in the Bernstein condition, since it
holds in both: for any f ∈ conv(F ),

E`2f ≤ E`f and EL2
f ≤ BELf ,
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where the latter follows from the convexity of conv(F ). Therefore, to explain
this gap one has to look elsewhere, and it appears that the reason is com-
plexity. Indeed, it follows from Proposition 2.5 that (up to some logarithmic
factors), for any λ > 0,

E ‖P − Pn‖V (`conv(F ))λ
.

√
λ

n
.

Therefore, the fixed point λ∗ε defined in Theorem A and associated with the
loss functions class `conv(F ) will be of the order of 1/n (up to some logarithmic
factors). On the other hand, if g1, ..., gM are independent, standard Gaussian
random variables, conv

(
{f(X) : f ∈ F}

)
= {

∑M
j=1 λjgj : λ ∈ BM

1 } and
Y = gM+1, one can show that for any µ ≥ 1/M ,

E ‖P − Pn‖V (Lconv(F ))µ
&

1√
n
.

Hence, the fixed point µ∗ of Theorem 6.1 associated with the excess loss
class Lconv(F ) is of the order of 1/

√
n when M ≥

√
n.

To conclude, in Convex aggregation, the complexity of the localized classes
V (`conv(F ))λ and V (Lconv(F ))µ for all λ > 0 plays a key role in understanding
the difference between exact and non-exact oracle inequalities. The results
of [17] show that this is a generic situation, and that one should expect a gap
between the two inequalities even if the loss and excess loss classes satisfy a
Bernstein condition.

3. Model Selection and regularization. In this section, we obtain
results on Model Selection by applying Theorem B.

The first step is to show that any RERM procedure is a Model Selection
procedure for a particular class of models M and some penalty function.
Then, one may apply Theorem B and derived non-exact oracle inequalities
for the penalized estimators (see [16] for the terminology of this section)
associated with the class M and the penalty.

For the sake of completeness, we will show that the converse is also true,
and any penalized estimator is a RERM procedure for some particular class
F and regularizing function.

Recall the setup of Model Selection from [16]. One is given a collection of
models, denoted by M, and a penalty function pen : M → R+. For every
model m ∈M, an ERM procedure is constructed:

(3.1) f̂m ∈ Arg min
f∈m

Rn(f).
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Then a model m̂ is empirically selected by

(3.2) m̂ ∈ Arg min
m∈M

(
Rn(f̂m) + pen(m)

)
.

The penalized estimator studied in Model Selection is f̂m̂, where, as before,
we assume that the infimum in (3.1) and in (3.2) are achieved. The next
result shows that the penalized estimator f̂m̂ is an RERM.

Lemma 3.1. Define a class F and a regularizing function by

(3.3) F =
⋃

m∈M
m and reg(f) = inf

{m∈M:f∈m}
pen(m).

Then the penalized estimator f̂m̂ satisfies

f̂m̂ ∈ Arg min
f∈F

(
Rn(f) + reg(f)

)
.

Proof. By definition of f̂m̂, for any m ∈M and f ∈ m,

(3.4) Rn(f̂m̂) + pen(m̂) ≤ Rn(f) + pen(m).

Therefore, given f ∈ F , (3.4) is true for any m ∈ M such that f ∈ m.
Taking the infimum over all m ∈M for which f ∈ m in the right hand side
of (3.4), we obtain

(3.5) Rn(f̂m̂) + pen(m̂) ≤ Rn(f) + reg(f).

Since (3.5) holds for any f ∈ F , thus the claim follows since f̂m̂ ∈ m̂ and
thus reg(f̂m̂) ≤ pen(m̂).

It follows from Lemma 3.1 that any Model Selection procedure is an
RERM procedure over the function class F and for the regularizing function
defined in (3.3). The next lemma proves the converse.

Lemma 3.2. Let F be a class of function and reg : F → R+ be a
regularizing function such that for any f ∈ F , reg(f) < ∞. Assume that
there exists f̂RERMn ∈ F minimizing f −→ Rn(f) + reg(f) over F . Denote
by reg(F) ⊂ R+ the range of reg. For any r ∈ reg(F) define the model
mr = {f ∈ F : reg(f) ≤ r}. If

(3.6) M = {mr : r ∈ reg(F)} and pen : mr ∈M −→ r ∈ R+,

then f̂RERMn is a penalized estimator for the class of models M endowed
with the penalty function pen.
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Proof. Let r̂ = reg(f̂RERMn ), set m̂ = mr̂ and for any m ∈ M, let f̂m
be the output of an ERM performed in m. Thus, for any f ∈ m̂,

Rn(f̂RERMn ) + reg(f̂RERMn ) ≤ Rn(f) + reg(f) ≤ Rn(f) + r̂.

Therefore, Rn(f̂RERMn ) ≤ inff∈m̂Rn(f) and f̂RERMn is an ERM over m̂, that
is, f̂RERMn = f̂m̂.

It remains to show that m̂ ∈ Arg minm∈M
(
Rn(f̂m) + pen(m)

)
, which is

evident because

Rn(f̂m̂) + pen(m̂) = Rn(f̂RERMn ) + reg(f̂RERMn ) = min
f∈F

(
Rn(f) + reg(f)

)
= min

r∈reg(F)
min

f∈F :reg(f)≤r

(
Rn(f) + reg(f)

)
= min

r∈reg(F)
min
f∈mr

(
Rn(f) + reg(f)

)
≤ min

r∈reg(F)
min
f∈mr

(
Rn(f) + r

)
= min

r∈reg(F)

(
min
f∈mr

Rn(f) + pen(mr)
)

= min
m∈M

(
min
f∈m

Rn(f) + pen(m)
)

= min
m∈M

(
Rn(f̂m) + pen(m)

)
.

With this equivalence in mind, one can apply Theorem B to obtain results
on RERM procedures, then construct a class M and a penalty function
according to (3.6) and finally use Lemma 3.2 to obtain oracle inequalities
for the penalized estimator f̂m̂ constructed in this framework.

As an example of application, we will use the Model Selection problem
studied in Chapter 8 of [16] for Vapnik-Chervonenkis models.

Consider the loss function `f (x, y) = 1If(x)6=y defined for any (x, y) ∈
X ×{0, 1} and measurable function f : X → {0, 1}. One is given a countable
setM of countable models (that is, a countable set of measurable functions
from X to {0, 1}) and any m ∈ M has a finite VC dimension denoted by
Vm. In this setup, Theorem B can be applied without any extra assumption.
In particular, we will not require any Margin assumption or Bernstein con-
dition. Let the penalty function be the one used in pg. 285 of [16], that is,
for any m ∈M,

(3.7) pen(m) = 2

√
2Vm(1 + log(n/Vm))

n
+

√
log n
2n

and recall that the penalized estimator f̂m̂ satisfies the following risk bound
([16], pg. 285):

(3.8) ER(f̂m̂) ≤ inf
m∈M

(
inf
f∈m

R(f) + pen(m)
)

+
√
π

2n
.
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To apply Theorem B, we consider the following regularization setup de-
fined by

F =
⋃

m∈M
m and crit(f) = min

m∈M

(
Vm ∧ n : f ∈ m

)
and to make things simpler assume that

(3.9) M = {mk : k ∈ N} such that m0 ⊂ m1 ⊂ m2 ⊂ · · · .

Theorem B allows one to calibrate the regularization term using the iso-
morphic profile of the family of loss functions classes (`Fr)r∈N where for any
r ∈ N (note that crit takes its values in N) Fr = {f ∈ F : crit(f) ≤ r}.

It follows from assumption (3.9) that Fr = mk(r) where k(r) = max(k ∈
N : Vmk ∧ n ≤ r). The isomorphic function associated with the family of
models (Fr)r∈N can be obtained in this context following the same strategy
used to get Equation (1.3) in the main paper of this supplementary material:
we obtain, for any r ∈ N,

(3.10) λ∗ε (r) =
c0(Vmk(r) ∧ n) log

(
en/(Vmk(r) ∧ n)

)
ε2n

.

Moreover, we can check that bn(`Fr) = 1, Bn(r) = 1 for any r ≥ 0 and that
αn ≡ n is a valid choice for the auxiliary function αn since crit(f) ≤ n, ∀f ∈
F . We can now apply Theorem B: let 0 < x ≤ log n and 0 < ε < 1/2 and
consider the RERM f̂RERMn associated with the regularizing function

(3.11) reg(f) =
c1Vm(f) log

(
en/Vm(f)

)
ε2n

where m(f) = max
(
m ∈M : Vm ≤ crit(f) + 1

)
. It follows from Theorem B

that with probability greater than 1− 12 exp(−x),
(3.12)

R(f̂RERMn ) + c0reg(f̂RERMn ) ≤ (1 + 3ε) inf
f∈F

(
R(f) + c1reg(f)

)
+
c2(x+ 1)

n
.

From this result, we can now derive a non-exact regularized oracle inequality
for the penalized estimator associated with the class of models M′ and the
penalty function pen′ as defined in (3.6):

(3.13) M′ = {mr : r ∈ reg(F)} and pen′(mr) = r, ∀r ∈ reg(F)

where reg(F) = {r0, . . . , rN}, N = max(k ∈ N : Vmk ≤ n) and

ri =
c1Vm′i log

(
en/Vm′i

)
ε2n

, ∀0 ≤ i ≤ N,
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for m′N = mN ,m
′
i = max

(
m ∈ M : Vm < Vm′i+1

)
, ∀0 ≤ i ≤ N − 1. In other

words,M′ is a the largest subset ofM of models with strictly increasing VC
dimension smaller than n and with the largest possible models for each VC
dimension. Each one of these models of VC dimension V is then penalized by
c1V log(en/V )/(ε2n). We can now state a result for the penalized estimator
associated with the class M′ and the penalty function pen′.

Theorem F. There exists some absolute constants c1, c2, c3 and c4 such
that the following holds. Let M = {m0, · · · ,mN} be a family of models such
that m0 ⊂ · · · ⊂ mN and Vm0 < Vm1 < · · · < VmN ≤ n where for any m ∈
M, Vm is the VC dimension of m. Let 0 < ε < 1/2. Consider the penalty
function pen : F → R+ defined by pen(m) = c1Vm log

(
en/Vm

)
/(ε2n). Then

the penalized estimator f̂m̂ is such that for any 0 < x ≤ log n, with probability
greater than 1− 12 exp(−x),

R(f̂m̂) + c2pen(m̂) ≤ (1 + 3ε) min
m∈M

(
inf
f∈m

R(f) + c3pen(m)
)
.

In particular, it is interesting to note that, up to a logarithmic factor,
the penalty function in (3.7) is of the order of

√
V/n whereas, in the same

framework (up to the structural assumption (3.9)), the penalty function
defined in Theorem F is of the order of V/n. This difference comes from the
Bernstein conditions since for the loss functions class: E`2f ≤ BE`f , ∀f ∈ F is
trivially satisfied in the setup of Theorem F; whereas the Bernstein condition
for the excess loss functions classes: EL2

f,m ≤ BELf,m, ∀f ∈ m,∀m ∈ M
(where Lf,m = `f − `f∗m and f∗m ∈ argminf∈mR(f)) is not true in general
and is somehow “required” to obtain fast rates for exact oracle inequalities.

Finally, note that a direct approach based on the computation of isomor-
phic functions for the family of loss functions class (`m)m∈M would provide
a way of constructing penalty functions and obtaining oracle inequalities
for the penalized estimator associated with this penalty function. This ap-
proach do not require the structural assumption (3.9). Nevertheless, we did
not prove such a result which would mainly follow the same line as the proof
of Theorem B combined with the approach in [16] (cf. Section 3.6 in [15]
for such a result). Somehow, we found more interesting to prove that Model
Selection methods can be seen as regularized procedures and that Theorem
B, which was originally designed for regularized estimators, can also be used
to prove results for penalized estimators.
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