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Abstract

We consider median of means (MOM) versions of the Stahel-Donoho outlyingness (SDO) [63, 21] and of Median
Absolute Deviation (MAD) [28] functions to construct subgaussian estimators of a mean vector under adversarial
contamination and heavy-tailed data. We develop a single analysis of the MOM version of the SDO which covers
all cases ranging from the Gaussian case to the L2 case. It is based on isomorphic and almost isometric properties
of the MOM versions of SDO and MAD. This analysis also covers cases where the mean does not even exist
but a location parameter does; in those cases we still recover the same subgaussian rates and the same price for
adversarial contamination even though there is not even a first moment. These properties are achieved by the
classical SDO median and are therefore the first non-asymptotic statistical bounds on the Stahel-Donoho median
complementing the

√
n-consistency [54] and asymptotic normality [71] of the Stahel-Donoho estimators. We also

show that the MOM version of MAD can be used to construct an estimator of the covariance matrix under only
a L2-moment assumption or of a scale parameter if a second moment does not exist.

AMS subject classification: 62F35
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1 Introduction

Robust estimation of a mean vector has witnessed an important renewal during the last decade. Two communities
have looked at this problem from their own perspective. In the statistics literature, several works have considered
the problem of robustness with respect to heavy-tailed data. The aim here is to construct an estimator achieving
statistical bounds with the same confidence as if all the data were i.i.d. Gaussian even though the data at hand are
only assumed to have a second moment. Such estimators are called subgaussian estimators; they are said to be robust
to heavy-tailed data. The first seminal result showing the existence of such an estimator may be found in [6]. It is
also shown in [6] that the empirical mean does not achieve this goal: the rate achieved by the empirical mean in the
L2 setup cannot be better than σ

√
1/(δN) with probability at least 1− δ whereas it is of the order of σ

√
log(1/δ)/N

when the data are i.i.d. Gaussian. The rate σ
√

log(1/δ)/N is called the subgaussian rate for the mean estimation
problem in the one-dimensional case. It is this rate that has been first achieved in [6] by an M -estimator with a
specific score function. This rate was then achieved using a median-of-means principle in several works such as [17, 4].
It was then extended to the d-dimensional case in many other works [51, 52, 8, 30, 10, 15, 39, 12] since then.

For the mean estimation problem in Rd, most of the results have been given w.r.t. the Euclidean `d2 distance.
There is however no statistical justification for this choice but that the `d2 metric is simply the most natural Hilbert
metric in Rd and so it seems natural to use it as a way to measure the statistical performance of an estimator of
a d-dimensional vector. The resulting confidence sets have therefore the form µ̂ + r∗N,δB

d
2 where µ̂ is an estimator,

Bd2 = {x ∈ Rd : ‖x‖2 ≤ 1} is the unit Euclidean ball and r∗N,δ is the rate of convergence w.r.t. `d2 achieved by µ̂ with

confidence 1 − δ. When estimating w.r.t. the `d2 metric, confidence sets are therefore `d2-balls. One may wonder if
these confidence sets are the best from a statistical point of view, for instance, the one with smallest volume for a
fixed confidence 1 − δ. To answer this type of question, one usually go back to the ideal i.i.d. Gaussian case, and
use results obtained in that framework as benchmark results. We may also consider this model to design optimal
benchmark confidence sets, that could be used to define more appealing estimation metric of a mean vector in Rd.

Let us now see what are the ”best” (in some sense given later) confidence sets in the i.i.d. Gaussian case: let
X1, . . . , XN be i.i.d. distributed like N (µ,Σ) where µ ∈ Rd is the mean and Σ is a symmetric definite positive matrix
(we assume here that Σ is invertible). The MLE is the empirical mean X̄N and

√
N(X̄N − µ) ∼ N (0,Σ). The

1

mailto:jules.depersin@ensae.fr
mailto:lecueguillaume@gmail.com


later result holds asymptotically if the data are only assumed to be in L2 thanks to the CLT. The key observation
here is that Σ is the inverse of the Fisher information in this model and thus there are no regular asymptotically
normal M -estimator that can estimate the mean with an asymptotic covariance matrix better than Σ. Moreover,
level sets of the standard Gaussian density function are Euclidean Bd2 balls centered at zero. As a consequence, the
best confidence sets for µ with confidence 1−δ are ellipsoids Σ−1/2Bd2 with radius given by the quantile of order 1−δ
of a chi-square variable with parameter d centered at the estimator. This type of confidence region are equivalently
written as estimation results of µ with respect to the norm x ∈ Rd →

∥∥Σ−1/2x
∥∥

2
. It follows that the best metric –

that is the one leading to minimal volume confidence sets for a given confidence in the benchmark i.i.d. Gaussian
case – is the norm

∥∥Σ−1/2·
∥∥

2
whose unit ball is the ellipsoid Σ1/2Bd2 .

Regarding our robust mean estimation problem, the two next natural questions are the following: is it possible
to construct robust mean estimators w.r.t. the

∥∥Σ−1/2·
∥∥

2
metric? and what is the best convergence rate one can

hope for? In the literature [50, 16], one may find estimators which can estimate in a robust way a mean vector w.r.t.
any metric of the type u ∈ Rd → ‖u‖S = supv∈S

〈
v, u
〉

where S ⊂ Rd. In particular, for S = Σ1/2Bd2 , this metric

coincides with the one we want to use, i.e.
∥∥Σ−1/2·

∥∥
2
. It has also been proved that the optimal deviation minimax

rate (the one obtained in the benchmark i.i.d. Gaussian case) is for the mean estimation problem with respect to
‖·‖S given by (see [16]) √

`∗(Σ1/2S)

N
+ sup
v∈S

∥∥∥Σ1/2v
∥∥∥

2

√
log(1/δ)

N
. (1)

For instance, for S = Bd2 that is for ‖·‖S = ‖·‖2, the later rate is the classical
√

Tr(Σ)/N +
√
‖Σ‖op log(1/δ)/N rate.

The case that is interesting to us is when ‖·‖S =
∥∥Σ−1/2·

∥∥
2
, that is for S = Σ−1/2Bd2 . In that case, the subgaussian

rate is √
d

N
+

√
log(1/δ)

N
. (2)

This is the rate we will try to reach from an adversarial corrupted and heavy-tailed dataset. We will also have to
take into account the price for corruption. There are indeed known information theoretic lower bounds showing that
there are no statistics that can do better than (|O|/N)α where α ∈ [1/2, 1] is some exponent depending on properties
of the good data. For instance, α = 1 for Gaussian variables and α = 1/2 for some L2 variables. However, we will see
that the best possible cost |O|/N (i.e. for α = 1) can be achieved even variables which do not have a first moment
as long as the cdfs of all one-dimensional projections of the centered and normalized data are regular enough.

Unfortunately, all estimators known to achieve the subgaussian rate in (2) (the Le Cam test estimator in [50], the
minmax MOM estimator with loss function `(x, u) =

∥∥Σ−1/2(u− v)
∥∥ from [43] or the Fenchel-Legendre estimators

from [16]) are using the set S in their construction. This is something we cannot do here because S = Σ−1/2Bd2
depends on Σ which is unknown in general. One therefore has to consider other type of estimators than the ones
cited above. In this work, we will do it thanks to a notion of depth/outlyingness introduced at the beginning of the
80’s which, unlike the last cited estimators, uses a normalization by a robust estimation of the scale.

There are several ways to measure how ’deep’ is a vector with respect to a cloud of points, see for instance the
half-space depth of Tukey [64, 58], the simplicial depth [44, 46], Mahalanobis depth or the projection depth [45].
Taking a point with maximal depth is usually seen as a way to define a median in Rd (see Radon points [2] or Fermat
Points [27]). There are therefore several ways to define a median of a cloud of points in Rd. One depth has received a
particular attention both in theory and in practice and is known as the Stahel-Donoho outlyingness (SDO) [63, 23].
It can be used to construct estimators of multivariate location and scatter known as the Stahel-Donoho estimators
(SDE) which were the first equivariant estimators with a high breakdown point. The aim of this work is to show
that this notion of depth can be used to construct estimator of a mean vector in Rd which is robust to adversarial
contamination and to heavy-tailed data with respect to

∥∥Σ−1/2·
∥∥

2
. Let us now define this notion of depth1 and recall

some of its properties.
There is a common approach to many notion of depths for a general d-dimensional set of vectors: first, a definition

of depth in R is given and second, this notion is extended to Rd simply by applying this one-dimensional definition
to the set of one-dimensional projections of the data in all directions v ∈ Rd (or all v ∈ S for some subset S ⊂ Rd)
and then by taking the supremum over all v ∈ Rd (or v ∈ S). This approach is based on the idea that if a point in
Rd is an outlier then there must be some direction v such that it is an (univariate) outlier when projected into that
direction.

The SDO of z ∈ R with respect to a dataset {a1, . . . , aK} in R is defined as

SDO(z; {a1, . . . , aK}) =
|z −Med(ak)|

Med(|ak −Med(ak)|)
(3)

1We speak here about depth instead of outlyningness : these two concepts are expressing the same notion but in reverse order.
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and a natural extension to Rd is using the previous one for all one-dimensional projections of the data and by taking
the supremum over all directions: for any ν ∈ Rd and a dataset {Z1, . . . , ZK} in Rd, we set

SDO(ν, {Z1, . . . , ZK}) = sup
v∈Rd

SDO(
〈
ν, v
〉
; {
〈
Z1, v

〉
, . . . ,

〈
ZK , v

〉
})

= sup
v∈Rd

|
〈
ν, v
〉
−Med(

〈
Zk, v

〉
)|

Med(|
〈
Zk, v

〉
−Med(

〈
Zk, v

〉
)|)
. (4)

A natural way to define a median of the Zk’s is obtained by taking a point with minimal outlyingness (i.e. maximal
depth):

µ̂SDO ∈ argmin
µ∈Rd

SDO(µ, {Z1, . . . , ZK}).

However µ̂SDO is not the most usual choice to estimate some location of the Zk’s when they are assumed to follow
a statistical model. The Stahel-Donoho location estimator is rather defined as a convex sums of the data:

µ̂SDEK =

∑K
k=1 wkZk∑K
k=1 wk

(5)

where the weights are some function of the outlyingness of the data, i.e. wk = w(SDO(Zk)) for some (decreasing)
weight function w : R+ → R+. The weights can also be used to estimate the scatter of the points by

Σ̂SDEK =

∑
k wk(Zk − µ̂SDE)(Zk − µ̂SDE)>∑

k wk
. (6)

Note that there is a more general definition of SDO than the one considered in (3) with general (one dimensional)
definitions of location and scale statistics; in (3), we used the median Med(ak) and Median Absolute Deviation
(MAD) Med(|ak −Med(ak)|) for these statistics [29].

As mentioned previously several results on the Stahel-Donoho Estimator (SDE) have been established during the
last forty years. They are affine equivariant meaning that for any affine transformation x ∈ Rd → Ax + b of the
dataset by a nonsingular matrix A ∈ Rd×d and a vector b ∈ Rd the location estimator µ̂SDEK is following the same

transformation and the scatter estimator Σ̂SDEK is transformed via M ∈ Rd×d → AMA>. SDE have been proved
to have a finite-sample breakdown point [22] which is the ”smallest amount of contamination necessary to upset an
estimator entirely” from [24] in [21]. In [65], it is proved that the SDE with MAD replaced by the average of the k1th
and k2th smallest absolute deviation about the median Med(ak) for k1 = d−1+[(K+1)/2] and k2 = d−1+[(K+2)/2]
achieves the best finite-sample replacement breakdown point among all affine equivariant estimators obtained in [13]
which is [(K − d + 1)/2]/K (this result holds when the weight function w is continuous and there is an absolute
constant c0 such that w(r) ≤ c0, w(r) ≤ c0/r

2 for all r ≥ 0). This result was later extended in Theorem 3.2 from
[71]. This is to our knowledge the only established non-asymptotic properties of Stahel-Donoho estimators.

There are however several asymptotic results for SDE such as a
√
n-consistency in [54]: if the Zk’s are i.i.d.

then
√
K
(

(µ̂SDEK , Σ̂SDEK )− (t,V)
)

tends to 0 in probability when K → +∞ where t and V are some location and

scatter parameters of the distribution of Z1. This result holds when the weight function w is such as |w(r)−w(r′)| ≤
γmin(1, 1/min(r, r′)3)|r − r′| for all r, r′ ∈ R and when for all v ∈ Rd the cumulative distribution function (cdf) of〈
Z1, v

〉
denoted by Fv satisfies the following assumption : there exists some absolute constants c0 > 0 and c1 > 0

such that for all |ε| ≤ c0

|Fv(Med(Fv) + ε)− Fv(Med(Fv))| ≥ c1|ε| and |Fv(Med(Fv)± σv + ε)− Fv(Med(Fv ± σv))| ≥ c1|ε| (7)

where Med(Fv) = inf(x ∈ R : Fv(x) ≥ 1/2) is the median of Fv and σv = Med(Gv) where Gv is the cumulative
distribution of the random variable MAD(

〈
Z1, v

〉
) := Med(|

〈
Z1, v

〉
−Med(

〈
Z1, v

〉
)|). A typical situation mentioned

in [54] where (7) holds is when the cdf F : Rd → [0, 1] of Z is such that F = (1− η)F0 + ηF ∗ where η < 1 and F ∗ is
any cdf and F0 is such that there exists c0 > 0 and c1 > 0 such that for all v ∈ Rd,

〈
Z1, v

〉
has a density denoted by

fv satisfying fv(t) ≥ c1 for all t ∈ [Med(Fv)± c0]∪ [Med(Fv)− σv ± c0]∪ [Med(Fv) + σv ± c0]. According to [54], the
later holds when F is spherical with positive density in a neighborhood of 0 and σe1e1 where e1 = (1, 0, · · · , 0) ∈ Rd.
We will come back later on these conditions since we will encounter similar assumptions for our analysis. Finally,
asymptotic normality of SDE location estimators have been obtained in [71] under great generality for the location
and scatter estimators as well as for the weight function including the median and MAD estimators as in (3) and
the projection depth obtained for the weight function w : r ∈ R+ → 1/(1 + r). From a stochastic point of view,
asymptotic results for µ̂SDEK hold when the cdf F is elliptically symmetric around µ which means that there exists a
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symmetric definite positive matrix Σ such that for all v ∈ Sd−1
2 := {v ∈ Rd : ‖v‖2 = 1},

〈
Σ−1/2(Z1 − µ), v

〉
has the

same distribution as
〈
Σ−1/2(Z1 − µ), e1

〉
which is a univariate symmetric variable with density function f . In that

case, asymptotic normality was obtained when f(0)f(σ) > 0 where σ = MAD(
〈
Σ−1/2(Z1 − µ), e1

〉
). Again we will

meet this type of condition in our analysis.
On the practical side, SDEs have been used a lot in practice and implementation on various languages such as

R exists; and that is one reason why the study of the SDO may be useful, maybe more than some other notions of
depth. In the original paper [63], the author proposes a random algorithm where the supremum over all directions
v ∈ Rd is approximated by subsampling orthogonal directions to d− 1 hyperplanes generated by d randomly chosen
points in the dataset. Other strategies mixing random and deterministic directions have been proposed for instance
in [60]. Several adaptations and extensions of this algorithm may be found in [14] for an extension to an arbitrary
kernel space or in [67, 66] for a ”cell-wise weights” extension of the SDO where each coordinate of each data receives
its own weight. However, only very little is known on the theoretical computational side. In Section 5 of [25], an
algorithm running in time O(Kd+1 logK) is mentioned but its time complexity is making this approach impractical
for dimensions larger than 5. There are to our knowledge no theoretical result of any kind on the convergence of
some approximate algorithm for the computation of the SDO of a point in Rd that could be used in practice. As
mentioned already in [25], ”some sort of computational breakthrough is necessary to make the estimators, as defined
here, really practical”. This looks to be still the case. We will however not discuss about this issue in the present
work and leave this question still opened.

The aim of this work is to construct mean vector estimators robust to adversarial outliers and heavy-tailed data
achieving the deviation-minimax subgaussian rate from (2) with respect to the metric

∥∥Σ−1/2·
∥∥

2
. On our way to our

goal, we complement the results on the
√
n-consistency and the asymptotic normality of SDE, by deriving the first

non-asymptotic convergence rate for the original SDO median (as well as its median of means version) as a robust
mean estimator in Rd under the following assumption.

Assumption 1. [Adversarial contamination and L2 inliers] There exists N random vectors (X̃i)
N
i=1 in Rd which

are independent with mean µ and covariance matrix Σ. The N random vectors (X̃i)
N
i=1 are first given to an ”ad-

versary” who is allowed to modify up to |O| of these vectors. This modification does not have to follow any rule.
Then, the ”adversary” gives back the modified dataset (Xi)

N
i=1 to the statistician. Hence, the statistician receives

an ”adversarially” contaminated dataset of N vectors in Rd which can be partitioned into two groups: the modified
data (Xi)i∈O, which can be seen as outliers and the ”good data” or inliers (Xi)i∈I such that ∀i ∈ I, Xi = X̃i. Of
course, the statistician does not know which data has been modified or not so that the partition O ∪ I = {1, . . . , N}
is unknown to the statistician.

The contamination model defined in Assumption 1 covers the Huber ε-contamination model from [31] and also the
O∪I contamination framework from [37]. It has been popularized by the Computer Science community in particular
in [19, 20]. In the adversarial contamination model from Assumption 1, the set O can depend arbitrarily on the initial
data (X̃i)

N
i=1; the corrupted data (Xi)i∈O can have any arbitrary dependence structure; and the informative data

(Xi)i∈I may also be correlated (for instance, it is the case, in general, when the |O| data X̃i with largest `d2-norm
are modified by the adversary).

In the setup defined by Assumption 1, we will use the SDO as one of our building block to achieve our goal as
well as the Median-of-means principle [59, 1, 32]. This principle has been extensively used during the last decades in
particular for the problem of robust mean estimation [42, 18, 56, 50, 49, 52, 16, 30, 10]. The starting point of MOM
estimator is to chose an integer K ∈ [N ], split the dataset into K equal size blocks B1 t · · · t BK = [N ] (w.l.o.g.
we assume that N can be divided by K) and construct K empirical means X̄k = |Bk|−1

∑
i∈Bk

Xi, one over each
block. The Stahel-Donoho Median-of-Means that will be used to achieve the subgaussian rate (2) with respect to∥∥Σ−1/2·

∥∥
2

under in the adversarial and heavy-tailed setup from Assumption 1 is

µ̂SDOMOM,K ∈ argmin
µ∈Rd

sup
‖v‖2=1

|
〈
µ, v
〉
−Med(

〈
X̄k, v

〉
)|

Med(|
〈
X̄k, v

〉
−Med(

〈
X̄k, v

〉
)|)
.

Unlike recently introduced robust mean estimators, µ̂SDOMOM,K is using a robust scatter estimator for normalization.

Here its is a MOM version of MAD which is used to construct µ̂SDOMOM,K , i.e. v → Med(|
〈
X̄k, v

〉
−Med(

〈
X̄k, v

〉
)|). We

will show that this normalization plays a central role in the analysis when one wants results w.r.t. the
∥∥Σ−1/2·

∥∥
2
-norm.

But beyond this observation, we will show that MAD and its MOM version satisfy isomorphic and almost-isometric
properties that can be used for other task such as to construct estimator of the covariance under only a L2 assumption
as in Section 4 below.

The paper is organized as follows. In the next section, we consider the case where the good data have a Gaussian
distribution and the dataset has been adversarially corrupted. In that case, no need to construct bucketed means and
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the original Stahel-Donoho median is proved to achieve the subgaussian rate (2). The Section 3 considers the general
adversarial corrupted and heavy-tailed framework from Assumption 1 where the MOM version of the SDO is proved
to achieve the subgaussian rate. We also exhibit in this section a family of cdfs denoted here by (HN,K,v : v ∈ Sd−1

2 )
which plays a key role in our analysis. In particular, when the behavior of these function around 0 is similar to the
one described above in (7) then the same result as in the Gaussian case can be obtained and that may hold without
anymore than 2 moments (see Section 3.3). In Section 4, we show how to use the MOM version of MAD to construct
an estimator of the covariance matrix under L2. In Section 5, we explore the properties of the family of functions
(HN,K,v : v ∈ Sd−1

2 ). A conclusion and open questions are provided in Section 6 that are followed by the proofs of
all the results in Section 7.

Notations. We denote by x ∈ Rd → ‖x‖2 =
(∑

j x
2
j

)1/2

the Euclidean norm with associated unit sphere Sd−1
2 and

ball Bd2 . We also denote by g ∼ N (0, 1) a standard one-dimensional Gaussian variable and its associated standard

Gaussian cdf by Φ : t ∈ R→ P[g ≤ t] =
∫ t
−∞ φ(u)du where φ : u ∈ R→ (2π)−1/2 exp(−u2/2) is the one dimensional

Gaussian density function. We also set HG : t → 1 − Φ(t) and WG : p ∈ (0, 1) → H
(−1)
G (p) the inverse function of

HG so that W (p) = Φ−1(1− p).

2 The Gaussian case

In this section, we prove that the original SDO median achieves the (non-asymptotic) subgaussian rate (2) when the
dataset may have been corrupted by an adversary and when the good data have a Gaussian distribution; our main
model assumption is the following.

Assumption 2. [Adversarial contamination and Gaussian inliers] There exists N i.i.d. Gaussian vectors (Gi)
N
i=1

in Rd with mean µ and (unknown) covariance matrix Σ. We assume that Σ is invertible. The N random vectors
(Gi)

N
i=1 are first given to an ”adversary” who is allowed to modify up to |O| of these vectors. This modification does

not have to follow any rule. Then, the ”adversary” gives the modified dataset (Xi)
N
i=1 to the statistician.

We use the Gaussian case again as a benchmark case for the more involved heavy-tailed situation which requires
to bucket the data and some assumption on the distribution of the good data. When the ”good” data are Gaussian
there is no need to bucket the data and the elliptically symmetric property of the Gaussian variables is simplifying
the analysis. The mean estimator we use in this section is therefore the median of the original Stahel-Donoho
outlyingness function

SDO : µ ∈ Rd → sup
v∈Rd

|
〈
µ, v
〉
−Med(

〈
Xi, v

〉
)|

Med(|
〈
Xi, v

〉
−Med(

〈
Xi, v

〉
)|)

(8)

and the associated median is a point minimizing this outlyingness function:

µ̂SDO ∈ argmin
µ∈Rd

SDO(µ).

Our main result in the adversarial corruption setup with Gaussian inliers is the following:

Theorem 1. There are absolute constants c0, c1 and c2 such that the following holds. We assume that the adversarial
contamination with Gaussian inliers model Assumption 2 holds with a number of adversarial outliers denoted by |O|.
Let 0 < ε < Φ−1(3/4)/c1. We assume that |O| ≤ εN and N ≥ c0ε

−2d. For all 0 < u < c1ε
2N , with probability at

least 1− 2 exp(−u), ∥∥∥Σ−1/2(µ̂SDO − µ)
∥∥∥

2
≤ 2 (1 + c1ε)

(
C0

√
d+ 1

N
+

√
u

N
+
|O|
N

)
.

Let us first remark that if N < d then the N data X1, . . . , XN cannot span the entire Rd space and so there
exists a non zero vector v ∈ Rd which is orthogonal to all the data points. Hence, MAD(v) := Med(|

〈
Xi, v

〉
−

Med(
〈
Xi, v

〉
)|) = 0 a.s. and so SDO(µ) = +∞ for all µ ∈ Rd. Therefore, assuming that N ≥ d is a minimal

assumption when we work with the SDO function. We also note that the factor Φ−1(3/4) is sometimes used as a
renormalization factor in the definition of the Stahel-Donoho outlyingness function [62].

Theorem 1 shows that the SD median µ̂SDO is robust to adversarial contamination up to a proportion of N and
that the rate achieved remains the same as if there was no contamination when |O| .

√
N min(

√
u,
√
d). If we put

this result with regard to the finite-sample replacement breakdown point (RBP) achieved by the SDE with a slight
modification of MAD at the denominator as recalled in the Introduction, we see that the order of magnitude are
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the same: SDE and µ̂SDO can handle both a proportion of N adversarial outliers. The constant in the RBP (which
is close to 1/2 when N >> d) is certainly better than the one obtained in Theorem 1 but the result in the later
theorem shows that the estimator still achieve the deviation minimax rate (2) even up to εN outliers whereas RBP
can only insure that the estimator does not go to infinity; RBP does not ensure any statistical convergence rate after
data corruption unlike Theorem 1 does.

The rate of convergence obtained in Theorem 1 has been obtained by several other procedures. For instance, it
has been proved that the Tukey median achieves this rate in [8] when the covariance is proportional to the identity
and for the Huber-contamination setup. The same bound was also obtained by a polynomial time algorithm in [11]
when the covariance matrix Σ is known.

The proof of Theorem 1 (which may be found in Section 7) is based on two isomorphic principles of the MAD
and SDO functions. We will extend these two properties to the MOM versions of MAD and SDO in the next section.
For the moment, let us recall their definitions and write these two properties that are interesting beyond the proof
of Theorem 1.

The normalization factor in the SDO function (8) is called the MAD (median absolute deviation) [28]

MAD : v ∈ Rd → Med(|
〈
Xi, v

〉
−Med(

〈
Xi, v

〉
)|).

It plays a key role to get estimation result w.r.t. the
∥∥Σ−1/2·

∥∥
2

norm whereas Σ is unknown. However, this
normalization factor requires some more work than for the analysis of classical robust estimators that are only
focused on the estimation of the mean. Indeed, MAD(v) is actually a robust estimator of the scatter of

〈
G, v

〉
which

is Φ−1(3/4)
∥∥Σ1/2v

∥∥
2

(note that if g ∼ N (0, 1) then MAD(g) = Φ−1(3/4)). It is therefore a ’second order’ robust
estimator but since it appears in the denominator of the SDO function, we cannot only prove an upper estimate for
this quantity and we need an isomorphic result – that is upper and lower matching (up to constants) bounds – on the
MAD. This result is of independent interest and we are therefore stating it here. The proof is given in Section 7.1.
We also state a similar isomophic result for SDO which can be use to prove Theorem 1. We will see later in Section 5
that these metric properties of SDO and MAD can be extended to cases where the mean does not even exists (in
that case µ is a location parameter) showing that these properties have actually more to do with elliptical symmetry
than they have to do with concentration.

Proposition 1. There are absolute constants c1, c2 and c3 such that the following holds. Let 0 < ε < Φ−1(3/4)/c1.
We assume that the adversarial model with Gaussian inliers Assumption 2 holds with a number of adversarial outliers
|O| ≤ εN . We assume that N ≥ c2ε−2d. With probability at least 1− exp(−c3ε2N), for all v ∈ Rd,

(Φ−1(3/4)− c1ε)
∥∥∥Σ1/2v

∥∥∥
2
≤MAD(v) ≤ (Φ−1(3/4) + c1ε)

∥∥∥Σ1/2v
∥∥∥

2
.

Moreover, for all 0 < u < c1ε
2N , with probability at least 1− 2 exp(−u), for all v ∈ Rd, if

∥∥Σ−1/2(v − µ)
∥∥

2
≥ 2r∗

then ∥∥Σ−1/2(v − µ)
∥∥

2

2(Φ−1(3/4) + c1ε)
√
K/N

≤ SDOK(v) ≤
3
∥∥Σ−1/2(v − µ)

∥∥
2

2(Φ−1(3/4)− c1ε)
√
K/N

and if
∥∥Σ−1/2(v − µ)

∥∥
2
≤ 2r∗ then SDOK(v) ≤ 3r∗(Φ−1(3/4) − c1ε)

−1 where Φ−1 is the quantile function of

a standard Gaussian cdf and r∗ =
(
C0

√
(d+ 1)/N +

√
u/N + |O|/N

)
is the subgaussian rate from (2) with the

additive adversarial contamination term |O|/N .

The isomorphic properties of the MAD and SDO functions uniformly over Rd imply the robustness and subgaus-
sian properties of the SDO median in Theorem 1. Similar results for other depths may be found in the literature on
robust mean estimation such as the isomorphic property of the Tukey depth proved in [8].

3 The L2 case

In this section, we do not anymore assume that the good data follow a Gaussian distribution but we only assume that
they have a second moment (and that the dataset may still be contaminated by an adversary following Assumption 1
). Nevertheless, even though we are in the heavy tailed setup with adversarially corrupted data we still want to
achieve the subgaussian rate for the

∥∥Σ−1/2·
∥∥

2
-norm. To achieve such a result the median-of-means principle has been

proved to perform well. We will therefore use this principle together with the Stahel-Donoho concept of outlyingness.
We introduce now an estimator constructed according to these two principles.
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Let K ∈ [N ] be the number of blocks and let X̄k = (1/|Bk|)
∑
i∈Bk

Xi, k ∈ [K] be the bucketed means. Outly-

ingness / depth of a point µ ∈ Rd is measured with respect to the bucketed means:

SDOK(µ) = sup
v∈Rd

|
〈
µ, v
〉
−Med(

〈
X̄k, v

〉
)|

Med(|
〈
X̄k, v

〉
−Med(

〈
X̄k, v

〉
)|)

and the Stahel-Donoho Median of means is defined as

µ̂SDOMOM,K ∈ argmin
µ∈Rd

SDOK(µ).

As for the Gaussian case, the isomorphic and nearly-isometric properties of SDOK and its denominator, called
MOMADK , play a key role in our analysis. The MOMADK is a Median of means version of the Median Absolute
Deviation function. We denote it as MOMAD for Median Of Means Absolute Deviation:

MOMADK : v ∈ Rd → Med
(
|
〈
X̄k, v

〉
−Med(

〈
X̄k, v

〉
)|
)
. (9)

In the next section, we study metric properties of MOMADK and for SDOK that will useful for our analysis of
µ̂SDOMOM,K . Then, we will turn to the statistical bounds obtained for the median µ̂SDOMOM,K in the general heavy-tailed

L2 setup in Section 3.2 and then we will study some extra regularity assumption of the cdfs (HN,K,v : v ∈ Sd−1
2 ) at

0 that allows to get better rates in Section 3.3.

3.1 Some isomorphic and almost isometric properties of MOMADK and SDOK

In this section, we show that the MOM versions of the SDO and MAD operators (called SDOK and MOMADK)
satisfy an isomorphic and almost-isometry properties as the MAD and SDO do in Proposition 1 that holds only
under a L2 moment assumption.

We introduce two families of functions which play a central role in our analysis. They involve the non-corrupted
random variables X̃i, i ∈ [N ] (and not the corrupted data Xi, i ∈ [N ]).

Definition 1. For all v ∈ Sd−1
2 ,

Hv := HN,K,v : r ∈ R→ P

 1√
N/K

N/K∑
i=1

〈
Σ−1/2(X̃i − µ), v

〉
≥ r

 and Wv := WN,K,v : p ∈ (0, 1)→ H(−1)
v (p), (10)

where H
(−1)
v (p) = max(r ∈ R : Hv(r) ≥ p) is the generalized inverse of Hv.

As already observed in the proof of the
√
n-consistency of SDE from [54] as well as its asymptotic normality in

[71], the behavior of the one-dimensional projection cdfs at the median and the two 1/4 and 3/4 quartiles play a
central role in the analysis of SDO based estimators. This will also be the case for the MOM version of the SD
median. It will appear in Section 5 that taking bucketed mean may force toward the Gaussian case for which all
these conditions are naturally satisfied because of the elliptical symmetry of Gaussian variables. Let us now state
our main assumption on the behavior of the one-dimensional quantile functions (Wv : v ∈ Sd−1

2 ).

Assumption 3. There exists some 0 < ε < 1/8 and some absolute constants 0 < ϕl(ε) < ϕu(ε) such that for all
v ∈ Sd−1

2 ,

max

(
Wv

(
1

4
− 2ε

)
−Wv

(
1

2
+ 2ε

)
,Wv

(
1

2
− 2ε

)
−Wv

(
3

4
+ 2ε

))
≤ ϕu(ε)

and

min

(
Wv

(
1

4
+ 2ε

)
−Wv

(
1

2
− 2ε

)
,Wv

(
1

2
+ 2ε

)
−Wv

(
3

4
− 2ε

))
≥ ϕl(ε).

Assumption 3 is a pretty weak assumption since, intuitively, it requires that the distribution of the centered and

variance one real-valued random variables
〈
Σ−1/2(X̃i−µ), v

〉
have their 1/4-quartiles and medians constant far away

as well as for their 3/4-quartiles and medians, and this has to hold uniformly in all directions v ∈ Sd−1
2 . For instance,

in the Gaussian case, Assumption 3 holds for ϕu(ε) = Φ−1(3/4) + c0ε and ϕl(ε) = Φ−1(3/4)− c0ε for some absolute
constant c0 and for all 0 < ε < 1/10 (where we recall that Φ : t→ P[g ≤ t] where g ∼ N (0, 1)).
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Proposition 2. There are absolute constants c0, c1 and c2 such that the following holds. We assume that Assump-
tion 3 holds for some 0 < ε < 1/8 and constants ϕl(ε) and ϕu(ε). We assume that the adversarial contamination
with L2 inliers model from Assumption 1 holds with a number of adversarial outliers |O| ≤ εK. We assume that
K ≥ c0ε−2d. With probability at least 1− exp(−c1ε2K), for all v ∈ Rd,

ϕl(ε)

√
K

N

∥∥∥Σ1/2v
∥∥∥

2
≤MOMADK(v) ≤ ϕu(ε)

√
K

N

∥∥∥Σ1/2v
∥∥∥

2
.

Proposition 2 shows that MOMADK is equivalent to v →
√
K/N

∥∥Σ1/2v
∥∥

2
up to the two constants ϕu(ε) and

ϕl(ε). We will be interested in two situations regarding these constants. The first one is when their ratio is upper
bounded by some absolute constant: there exists some absolute constant c0 such that

ϕu(ε)

ϕl(ε)
≤ c0. (11)

This condition will be enough to obtain robust optimal subgaussian bounds for µ̂SDOMOM,K in the two following theorems.

If condition (11) holds we say that MOMADK is isomorphic to v →
√
K/N

∥∥Σ1/2v
∥∥

2
. The second condition, that

will be of interest to us is when we will estimate Σ using MOMADK in Section 4, is when the two constants ϕu(ε)
and ϕl(ε) can be made arbitrarily close to the same constant by taking ε small enough, that is when there exists
some absolute constants φ0 and c1 > 0 such that for all 0 < ε < φ0/c1,

ϕl(ε) = φ0 − c1ε and ϕu(ε) = φ0 + c1ε. (12)

In that case, we speak about an almost-isometric property of MOMADK . The later condition is stronger than an
isomorphic property but it allows to solve a higher order moment problem. In Section 5, we provide several examples
where these conditions hold as well as other properties of the family of cdfs (Hv : v ∈ Sd−1

2 ) even when there is not
even a first moment.

We finish this section with an isomorphic result for SDOK . The rate of convergence appears in this result: it
is the level r∗ above which SDOK is isomorphic to ν ∈ Rd →

∥∥Σ−1/2(ν − µ)
∥∥

2
/
√
K/N . One can define it as a

solution to

C0

(√
d+ 1

K
+

√
u

K

)
+ sup
‖v‖2=1

HN,K,v(r
∗) +

|O|
K

<
1

2
(13)

where u is a confidence parameter and C0 a constant appearing in (28).

Proposition 3. There are absolute constants c0, c1 and c2 such that the following holds. We assume that Assump-
tion 3 holds for some 0 < ε < 1/8 and constants ϕl(ε) and ϕu(ε). We assume that the adversarial contamination
with L2 inliers model from Assumption 1 holds with a number of adversarial outliers denoted by |O|. We assume
that |O| ≤ εK and K ≥ c0ε

−2d. Let u > 0 and r∗ be such that (13) holds. Then, with probability at least
1− exp(−u)− exp(−c1ε2K), for all ν ∈ Rd, if

∥∥Σ−1/2(ν − µ)
∥∥

2
≥ 2
√
K/Nr∗ then∥∥Σ−1/2(ν − µ)

∥∥
2

2ϕu(ε)
√
K/N

≤ SDOK(ν) ≤
3
∥∥Σ−1/2(ν − µ)

∥∥
2

2ϕl(ε)
√
K/N

and if
∥∥Σ−1/2(ν − µ)

∥∥
2
≤ 2
√
K/Nr∗ then SDOK(ν) ≤ (3/ϕl(ε))r

∗.

Proposition 3 may be seen as a MOM version holding in the heavy-tailed case of the Proposition 1 obtained in
the Gaussian case. Such an extension from the Gaussian case to the L2 heavy-tail case is made possible only thanks
to the median-of-means principle and the use of the bucketed means instead of the data themselves. However, we will
identify situations where condition (11) and (13) with an optimal choice of rate r∗ (that is for the subgaussian rate
(2)) hold for K = N even when a first moment do not exist. In that case, one can get a contamination price down to
|O|/N instead of the information theoretic lower bound in the general L2 case given by

√
|O|/N (see Section 3.3).

We start with the general L2 case and then we will consider an extra assumption that allows for such better bounds.

3.2 The general L2 case

Unlike in Section 2 or Section 3.3 below where, we demand that for all v ∈ Sd−1
2 and for values of 0 < r < c0 the

deviation function HN,K,v(r) is less than 1/2 − c1r here we simply use Markov inequality to control the function
HN,K,v around 0. The price we pay by using this approach is that we will not have anymore estimation results for
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the SDO MOM over K blocks which hold for all deviation parameter u up to K but only for u ∼ K. The other
price we pay here is for the adversarial contamination cost that will be of the order of

√
|O|/N whereas as proved

by Theorem 4 below it can be better up to |O|/N (as in the Gaussian case from Theorem 1). We will be able to
achieve this result thanks to an extra regularity assumption of the cdfs Hv of all one-dimensional projections around
0 (see Assumption 4 below). But, for the moment, we do not grant this type of assumption in this section and obtain
a general result under only the existence of a second moment as well as Assumption 3. Subgaussian rates can be
derived out of this result when condition (11) holds (we refer to Section 5 where this condition is studied).

In this section, the bound we use is simply the one deduced from Markov’s inequality that is for all r > 0 and
K ∈ [N ]:

HN,K,v(r) = P

 1√
N/K

N/K∑
i=1

〈
Σ−1/2(X̃i − µ), v

〉
≥ r

 ≤ 1

1 + r2
. (14)

(Note that we used a slightly modification of Markov’s inequality: if Z is a centered variance one real-valued random
variable then P[Z ≥ r] = mina∈R P[Z + a ≥ r+ a] ≤ (1 + r2)−1). Our main result in the general L2 setup will follow
from this bound and a general result stated in Section 7. It is now stated in the following theorem.

Theorem 2. There are absolute constants c0, c1 and c2 such that the following holds. We assume that Assumption 3
holds for some 0 < ε < 1/8. We assume that the adversarial contamination with L2 inliers model from Assumption 1
holds with a number of adversarial outliers |O| ≤ c0εK. We assume that c0K ≥ ε−2d. With probability at least
1− 2 exp(−c0ε2K), ∥∥∥Σ−1/2(µ̂SDOMOM,K − µ)

∥∥∥
2
≤ 4ϕu(ε)

ϕl(ε)

√
K

N
.

The rate of convergence in Theorem 2 can be written like the one in Theorem 1 and Theorem 4 below where the
three terms: complexity, deviation and price for adversarial corruption appear. Indeed, one should notice here that
the deviation probability in Theorem 2 is fixed equal to 1 − 2 exp(−c0ε2K) because we had to take the deviation
parameter u equal to K because of the approach based on Markov’s inequality (14). It is however, equivalent to
replace

√
K/N by

√
d/(ε2N) +

√
u/N +

√
|O|/(εN) for u = K since the two quantities are equivalent under the

assumptions of Theorem 2. In that case, one may recognize the complexity term
√
d/N , the deviation term

√
u/N

as well as the price for adversarial corruption
√
|O|/N . In particular, we see that the price we pay for the corruption

is of the order of
√
|O|/N which is larger than the |O|/N term in the Gaussian case from Theorem 1 and it is the

worst case of Theorem 4 below. Indeed, in Theorem 2 we did not exploit any other property than the existence of a
second moment whereas the two other two Theorems 1 and Theorem 4 exploit some regularity assumption around
0 of the family of functions HN,K,v, v ∈ Sd−1

2 .

Adaptation to K via Lepski’s method. It follows from Theorem 2 that µ̂SDOMOM,K is an estimator which depends
on the deviation parameter. Therefore, we need to construct an adaptive to K version of this estimator to disentangle
the estimator from the deviation parameter. The classical way to do it is via Lepski’s method [40, 41]. Usually, the
price we pay to make this approach work is some extra knowledge on Σ such as its trace and operator norm. But
here for the SDO type estimator we are using together with the isomorphic property of the SDOK we only need
knowledge on ϕu(ε) and ϕl(ε). Let us now construct this adaptive scheme: the number of blocks is chosen via

K̂ = min

(
K ∈ [N ] : SDOk(µ̂SDOMOM,K − µ̂SDOMOM,k) ≤ max

(
9

ϕl(ε)
,

6ϕu(ε)

ϕ2
l (ε)

(
1 +

√
K

k

))
,∀k = N, · · · ,K

)
. (15)

Theorem 3. There are absolute constants c0, c1 and c2 such that the following holds. We assume that Assumption 3
holds for some 0 < ε < 1/8 and all K ∈ [N ]. We assume that the adversarial contamination with L2 inliers model
from Assumption 1 holds with a number of adversarial outliers denoted by |O|. Then, for all K ≥ max(c0ε

−2d, c0|O|)
with probability at least 1− 2 exp(−c0ε2K),

∥∥∥Σ−1/2(µ̂SDO
MOM,K̂

− µ)
∥∥∥

2
≤ 28ϕ2

u(ε)

ϕ2
l (ε)

√
K

N
.

where K̂ is the adaptive choice of number of blocks from (15).
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3.3 The L2 case under an extra regularity condition around 0 of the Hv’s

In this section, we obtain estimation bound for the MOM version of the SDO median in the adversarial corruption
with heavy-tailed L2 inliers model under an extra assumption on the regularity at 0 of the family of functions
Hv, v ∈ Sd−1

2 that is stated now.

Assumption 4. There exists some absolute constants c0, c1 > 0 and c2 > 0 such that for all v ∈ Sd−1
2 and all

(2C0/c1)
√

(d+ 1)/K ≤ r ≤ c0

HN,K,v(r) = Hv(r) := P

 1√
N/K

N/K∑
i=1

〈
Σ−1/2(X̃i − µ), v

〉
≥ r

 ≤ 1

2
− c2r.

This assumption is about the behavior around the origin of the cdf of all one-dimensional projections of the

random vectors (N/K)−1/2
∑N/K
i=1 Σ−1/2(X̃i−µ) where the X̃i are the non-corrupted data. The term 1

2 − c2r in the
bound above is the behavior of regular in 0 cdfs such as in the Gaussian case (see Section 5 for more details and
more examples).

Our main result in the adversarial corruption and heavy-tailed L2 model under Assumption 4 is the following
theorem. The proof may be found in Section 7.

Theorem 4. There are absolute constants c0, c1 and c2 such that the following holds. We assume that Assumption 3
holds for some 0 < ε < 1/4 and that Assumption 4 holds as well. We assume that the adversarial contamination
with L2 inliers model from Assumption 1 holds with a number of adversarial outliers |O| ≤ c0εK. We assume that
c0K ≥ ε−2d. For all 0 < u ≤ c0ε2K, with probability at least 1− 2 exp(−u),∥∥∥Σ−1/2(µ̂SDOMOM,K − µ)

∥∥∥
2
≤ c1ϕu(ε)

ϕl(ε)

(√
d

N
+

√
u

N
+
|O|√
NK

)
. (16)

We recover the optimal subgaussian rate (2) in Theorem 4 when for some 0 < ε < 1/8, condition (11) holds
and |O| .

√
Kd. The term |O|/

√
KN appearing in the convergence rate of Theorem 4 is the price we pay for the

adversarial contamination. It is between
√
|O|/N when K ∼ |O| and |O|/N when K ∼ N . Usually when the inliers

are only in L2, the information theoretic lower bound is known to be of the order of
√
|O|/N and not like |O|/N .

We get a better rate in Theorem 4 thanks to Assumption 4 which is using in some more efficient way the regularity
of the Hv functions at 0.

Unlike typical results in the MOM literature except for the one obtained in [55], the deviation rate in Theorem 4
is 1 − 2 exp(−u) for all u . K, in particular it does not have to depend on parameter K. As a consequence, the
estimator µ̂SDOMOM,K does not depend on the deviation parameter. Usually, results for MOM estimators constructed
on K blocks are given with probability at least 1− exp(−c0K) and then a Lepski’s method is used to construct an
adaptive to K procedure. This is not the case here nor it is for the Gaussian case in Section 2 (as we did in the
previous section). This is again because Assumption 4 is using more efficiently the behavior of HN,K,v around 0.

4 Estimation of Σ under a L2-moment assumption with MOMAD

In this section, we show that it is possible to estimate the covariance matrix Σ using the MOMAD estimator. In
particular, given that the isomorphic property of MOMAD hold under Assumption 3 which does not require more
moment than L2 moment, we show that it is possible to estimate Σ without requiring more moment than 2 that
is just under the assumption that Σ exists. This differs from approaches based on the empirical covariance matrix
where at best a L2+δ-moment assumption for some positive δ is granted for the estimation of the covariance matrix
[47, 5, 48].

We show that for the estimation of Σ via the MOMAD, the properties of ϕl(ε) and ϕu(ε) introduced in Assump-
tion 3 play a key role. Let us first have a look at these quantities in the Gaussian case. In that case, there are some
absolute constants φ0 and c1 > 0 such that for all 0 < ε < φ0/c1,

ϕl(ε) = φ0 − c1ε and ϕu(ε) = φ0 + c1ε (17)

where φ0 = Φ−1(3/4) (see Section 5 or the proof of Proposition 1 for more details). This later result holds in the Gaus-
sian case first because the two interquartile intervals have the same length: Φ−1(0)−Φ−1(1/4) = Φ−1(3/4)−Φ(0) = φ0

and, second, because the Gaussian density function is uniformly lower bounded by an absolute positive constant lo-
cally around the two 1/4 and 3/4 quartiles Φ−1(1/4) and Φ−1(3/4) as well as around the median Φ−1(1/2) = 0.
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If this last condition were not true at some q ∈ {W (1/4),W (1/2),W (3/4)} where W = WN,K,v for some direction
v ∈ Sd−1

2 then there will be some plateau of the cdf r ∈ R → 1 −HN,K,v(r) starting at q and thus there would be
a constant factor gap between W (`/4 − 2ε) and W (`/4 + 2ε) for some ` ∈ {1, 2, 3}. In that case, there would be
some absolute constants c0 > 0 and c1 > 0 such that |ϕl(ε)− ϕl(ε)| ≥ c0 for all 0 < ε ≤ c1. In particular, we would
only have an isomorphic property for the MOMAD and thus its is not clear how to estimate Σ using MOMAD at a
better rate than a constant rate. Typical values of φ0 in (17) will be φ0 = W (1/4)−W (1/2) = W (1/2)−W (3/4). In
particular, the interquartile interval lengths have to be equal in all directions v ∈ Sd−1

2 ; this will hold, in particular,
under a spherical symmetry assumption of the Σ−1/2(X̃i − µ) (see Section 5 for more formal statement).

Assumption 5. For the same choice of K as in Assumption 3 where ε > 0 → ϕl(ε), ϕu(ε) are defined, there are
absolute constants φ0, c0 > 0 and c1 > 0 such that for all v ∈ Sd−1

2 and all 0 < ε < c0, ϕl(ε) = φ0 − c1ε and
ϕu(ε) = φ0 + c1ε.

Let us now turn to the construction of an estimator of the covariance matrix Σ using MOMAD under Assumption 5
(as well as Assumption 3). Because of the constant factor φ0 in Assumption 5 we will provide an estimator of the
scatter matrix φ2

0Σ (according to [53], a scatter matrix is any matrix proportional to the covariance matrix).
It follows from Proposition 2 that MOMADK is isomorphic to v ∈ Rd → φ0

√
K/N

∥∥Σ1/2v
∥∥

2
and that under

Assumption 5 it becomes an almost isometry, that is, with probability at least 1− exp(−c0ε2K), for all v ∈ Rd,∣∣∣∣∣MOMADK(v)− φ0

√
K

N

∥∥∥Σ1/2v
∥∥∥

2

∣∣∣∣∣ ≤ c1ε
√
K

N

∥∥∥Σ1/2v
∥∥∥

2
(18)

as long as |O| ≤ εK and K ≥ c2ε
−2d. In the Gaussian case and other spherical cases as in Section 5, this almost

isometric property holds for K = N (and MOMADN = MAD) and any 0 < ε < 1/4: it follows from Proposition 1
that with probability at least 1− exp(−c0ε2N), for all v ∈ Rd,∣∣∣MAD(v)− Φ−1(3/4)

∥∥∥Σ1/2v
∥∥∥

2

∣∣∣ ≤ c1ε∥∥∥Σ1/2v
∥∥∥

2
. (19)

We may use (18) to estimate directly the entries of Σ following an idea from [26]. Let (ej)
d
j=1 denote the canonical

basis of Rd. We have, for all i, j ∈ [d],

4Σij = 4
〈
ei,Σej

〉
=
∥∥∥Σ1/2(ei + ej)

∥∥∥2

2
−
∥∥∥Σ1/2(ei − ej)

∥∥∥2

2
.

As a consequence, a natural estimator of φ2
0Σ based on MOMADK is the matrix Σ̂ whose entries are defined for all

i, j ∈ [d] by

Σ̂ij =
N

4K

(
MOMAD2

K(ei + ej)−MOMAD2
K(ei − ej)

)
.

Note that Σ̂ is symmetric but it may not be a SDP. To overcome this issue, a projection method has been introduced
in [48] which may also be used as well for Σ̂. Our main statistical bound for Σ̂ is the following.

Proposition 4. Assume that Assumption 1 holds. Let K ∈ [N ], ϕl and ϕu be such that Assumption 3 and Assump-
tion 5 hold. Then, for all 0 < ε < c0 such that |O| ≤ εK and K ≥ c2ε−2d, with probability at least 1− exp(−c3ε2K),

max
i,j∈[d]

∣∣∣∣∣φ2
0Σij − Σ̂ij
Σii + Σjj

∣∣∣∣∣ ≤ sup
‖u‖1=‖v‖1=1

∣∣∣∣∣
〈
u, (φ2

0Σ− Σ̂)v
〉∑

i(|ui|+ |vi|)Σii

∣∣∣∣∣ ≤ c1ε(c1ε+ φ0)/2.

In particular, if one can choose K = N so that Assumption 3 and Assumption 5 hold – for instance, in the
Gaussian case or for other spherical variables as in Section 5 – then the MOMADN estimator becomes the classical
MAD one and for ε2 = c2d/N we have that with probability at least 1− exp(−c4d),

max
i,j∈[d]

∣∣∣∣∣φ2
0Σij − Σ̂ij
Σii + Σjj

∣∣∣∣∣ ≤ sup
‖u‖1=‖v‖1=1

∣∣∣∣∣
〈
u, (φ2

0Σ− Σ̂)v
〉∑

i(|ui|+ |vi|)Σii

∣∣∣∣∣ ≤ c5
√

d

N
.

as long as |O| ≤ c6d.
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5 Study of the HN,K,v, v ∈ Sd−1
2 functions

The functions HN,K,v, v ∈ Sd−1
2 play a key role in our analysis. Their behavior in a neighborhood of their 1/4 and 3/4

quartiles and medians should be controlled so that Assumption 3 may hold: they are driving the isomoprhic properties
and almost isometric properties of the MOMADK and SDOK functions and so of the statistical performance of the
Stahel Donoho Median and Median of Means. Their behavior around 0 also drives the improved rates obtained under
Assumption 4. From our perspective, it is of the utmost importance to understand the behavior of these functions
at these particular points.

Let us first settle down the properties of theHN,K,v functions desirable for our analysis. We set Zi = Σ−1/2(X̃i−µ)
for all i ∈ [N ] so that the Zi’s are independent centered isotropic vectors in Rd and n = N/K. We want to identify
conditions on the distributions of the Zi’s such that

• for Assumption 4: there exists some absolute constants c0, c1 > 0 such that for all v ∈ Sd−1
2 and all 0 < r < c0,

Hn,v(r) := P

[
1√
n

n∑
i=1

〈
Zi, v

〉
≥ r

]
≤ 1

2
− c1r. (20)

• for Assumption 3: there exists some absolute constants c0 > 0 and 0 < ε < 1/8 such that ϕl(ε) and ϕu(ε) exist
and are such that

ϕu(ε)

ϕl(ε)
≤ c0 (21)

or there are absolute constants φ0 and c1 > 0 such that for all 0 < ε < φ0/c1,

ϕl(ε) = φ0 − c1ε and ϕu(ε) = φ0 + c1ε (22)

which are respectively Condition 11 (insuring an isomorphic property of MOMADK and SDOK as well as
optimal subgaussian rates for SD median and median of means) and Condition 17 (insuring almost isometric
property of MOMADK as well as estimation properties for Σ̂ in Section 4).

Let us first study the Gaussian case which is our benchmark situation. We will then study other cases where the
family of functions HN,K,v, v ∈ Sd−1

2 satisfies these conditions.

The Gaussian case. We recall that Φ : t ∈ R→ P[g ≤ t] =
∫ t
−∞ φ(u)du where φ : u ∈ R→ (2π)−1/2 exp(−u2/2) is

the Gaussian density function. We also denote HG : t→ 1−Φ(t) and WG : p ∈ (0, 1)→ H
(−1)
G (p) the inverse function

of HG so that WG(p) = Φ−1(1−p). It follows from the mean value theorem that for all t, ε ∈ R, |HG(t+ε)−HG(t)| ≤
max(−φ(t),−φ(t + ε))ε so that around 0 we have for all c0 > 0 and 0 < r < c0, HG(r) ≤ 1/2 − φ(c0)r. As a
consequence, (20) holds in the Gaussian case for instance with c0 = 1 and c1 = φ(1). Let us now look at the two
other conditions in the Gaussian case. From the mean value theorem, we have for all p ∈ [1/2, 1) and ε ≥ 0 such
that p + ε ∈ [1/2, 1), ε/φ(WG(p)) ≤ WG(p) −WG(p + ε) ≤ ε/φ(WG(p + ε)) and for all p ∈ (0, 1/2] and ε ≥ 0 such
that p − ε ∈ (0, 1/2], ε/φ(WG(p)) ≤ WG(p − ε) −WG(p) ≤ ε/φ(WG(p + ε)). We conclude that there are absolute
constants c0, c1 > 0 such that for all 0 ≤ ε ≤ c0,

ϕu(ε) = Φ−1(3/4) + 2ε

(
1

φ(Φ−1(3/4))
+

1

φ(0)

)
+ c1ε

2

and

ϕl(ε) = Φ−1(3/4)− 2ε

(
1

φ(Φ−1(3/4))
+

1

φ(0)

)
− c1ε2.

So that both conditions (20) and (22) hold with φ0 = Φ−1(3/4). In particular, we see that the values of the density
function φ at the 1/4 and 3/4 quartiles (here we used that φ(Φ−1(3/4)) = φ(Φ−1(1/4))) and at the median φ(0)
(here we used that Φ−1(1/2) = 0) play a key role.

In the following, we identify situations where the HN,K,v, v ∈ Sd−1
2 functions and their pseudo inverses mimic the

HG and WG functions from the Gaussian case. There are at least two reasons: the first one is that we are projecting
random vectors leaving in Rd onto one dimensional subspaces; the second reason is that we are averaging random
variables having a second moment. We will explore these two observations in the two following paragraphs.
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One dimensional projections and elliptically contoured distributions. The fact that the Hv functions
deal only with one-dimensional marginals is making these functions likely to behave as in the Gaussian case since
one-dimensional projections of sufficiently spherically symmetric random vectors in Rd are expected to behave like
one-dimensional Gaussian variables and this phenomenon is even more accentuated when d is large (this is one
particular situation where large dimension d may help in Statistics). Indeed, one may have in mind an observation
– sometimes attributed to H. Poincaré – that the density function of the one-dimensional projection

〈√
dU, e1

〉
–

where
√
dU is uniformly distributed over

√
dSd−1

2 and (ej)
d
j=1 is the canonical basis of Rd – converges to the density

of a N (0, 1) when d → ∞ (see page 16 in [38] or Chapter 4 in [3]). One may also have in mind that there are
directions such as v = (1/

√
d, . . . , 1/

√
d) which are mixing the coordinates of Σ−1/2(X̃1 − µ) when projected onto v

and therefore may have the tendency to mimic a standard Gaussian variable because of the CLT. Note that all these
observations hold for N = K that is even for n = 1: because of the one-dimensional projections we may not even
have to average the Zi’s to mimic the Gaussian case. Therefore, Theorem 5 can be extended beyond the Gaussian
case when this phenomenon occurs.

Let us now consider an example of elliptically contoured distributions where this happens to be true. Our aim is
to show that Condition (11) and Assumption 4 (and so Theorem 4) may hold for K = N (i.e. n = 1) even when the
X̃i’s do not have a first moment.

We assume that the X̃i’s are i.i.d. and that Σ−1/2(X̃1−µ) has a spherically symmetric distribution; in that case,
X̃1 − µ is sometimes said to have an elliptically contoured distribution. Then, there exists a non-negative random
variable R such that Σ−1/2(X̃1 − µ) is distributed according to RU where U is uniformly distributed on Sd−1

2 and
is independent of R (see Chapter 4 in [3]). In that case, all the

〈
Σ−1/2(X̃1 − µ), v

〉
for v ∈ Sd−1

2 have the same

distribution as
〈
Σ−1/2(X̃1 − µ), e1

〉
(where (ej)

d
j=1 is the canonical basis of Rd) which is distributed according to

R
〈
U, e1

〉
. Now, using that

〈
U, e1

〉
is absolutely continuous w.r.t. the Lebesgue measure with density function given

by, when d ≥ 2,

t ∈ R→ Cd(1− t2)
d−3
2 I(|t| ≤ 1) where Cd =

(∫ 1

−1

(1− t2)
d−3
2 dt

)−1

=
2Γ(d/2)

Γ((d− 1)/2)
√
π

and Γ is the Gamma function, we can deduce that (even for K = N), Hv is independent of v ∈ Sd−1
2 and is such

that for all r ≥ 0, Hv(−r) = 1−Hv(r) and

Hv(r) = H(r) := Cd

∫ 1

0

P[R ≥ r/x]
(
1− x2

) d−3
2 dx.

In particular, we recover that H(0) = 1/2 since R ≥ 0 a.s.. Let us now consider a simple example for the distribution
of R. In that example, R takes values r1 < r2 < · · · such that αj = P[R = rj ] for all j ∈ N∗ so that for all q > 0,
ERq =

∑
j r

q
jαj which may be infinite even for q = 1 (that is when there is not even a first moment). For this

example, we have for all r ≥ 0,

H(r) = Cd

∞∑
j=1

αj

∫ 1

r/rj

(1− x2)
d−3
2 dxI(r ≤ rj).

In particular, H is differentiable and R
〈
U, e1

〉
is absolutely continuous w.r.t. the Lebesgue measure with a density

function given by

f : r ∈ R→ −H ′(r) = Cd

∞∑
j=1

αj
rj

[
1−

(
r

rj

)2
] d−3

2

I(r ≤ rj).

In particular, for r∞ = limj→∞ rj , H is strictly decreasing on [0, r∞) from H(0) = 1/2 to H(r∞) = 0 and beyond
r∞ it is constant equal to 0. Therefore, for all v ∈ Sd−1

2 , the generalized inverse Wv of Hv is independent of v and it
is the inverse of H: for all p ∈ (0, 1/2] there is a unique element W (p)(= Wv(p)) in [0, r∞) such that H(W (p)) = p
and W (1− p) = −W (p).

Now, let us choose rj = 2jCd and αj = 2−j for all j ∈ N. We also assume d ≥ 4 to make the presentation simpler
(the cases d = 1, 2, 3 can be treated separately). In that case, ER = +∞ and so the mean and covariance matrix
do not exist. Nevertheless, one may still assume that there exists µ ∈ Rd and Σ ∈ Rd×d definite positive such that
Σ−1/2(X̃1 − µ) is spherically symmetric (without having µ to be a mean vector and Σ to be a covariance matrix).
Then, Theorem 4 still applies.

Let us first check Condition (20). We have H(0) = 1/2 and for all 0 ≤ r ≤ Cd/
√
d− 3,

f(r) ≥
∞∑
j=1

1

22j

[
1− d− 3

2C2
d

( r
2j

)2
]
≥ 1

3
. (23)
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Moreover, we see that
√
d ≤ Cd ≤ 6

√
d, hence, (23) holds for all 0 ≤ r ≤ 1. Which is according to the means value

theorem enough to show that Condition (20) holds (see (25) below for more details).
Let us now check conditions (21) and (22). It follows from Proposition 5 below that, it is enough to lower bound the

density function f in a neighborhood of p for p ∈ {W (1/4),W (1/2),W (3/4)} and thatW (1/4)−W (3/4) is an absolute
constant. But, given that W (1/2) = 0 and (23) holds, that f is symmetric about 0 and that W (1/4) = −W (3/4),
we only have to checked that f(q) ≥ c0 for all q ∈ [W (1/4)− 2ε,W (1/4) + 2ε] for some 0 < ε < 1/8 and an absolute
constant c0 and that W (1/4) is an absolute constant. We first have to find W (1/4) which is the unique solution r
such that H(r) = 1/4. We see that f is symmetric unimodal with maximal value at 0 given by f(0) = 4/3 and we
showed that f(r) ≥ 1/3 for all 0 ≤ r ≤ 1 in (23). Therefore, H(1/8) ≥ 1/3 and H(1 − 1/10) ≤ 3/15 < 1/4, hence,
W (1/4) ∈ [1/8, 1 − 1/10]. It follows from (23) that f(q) ≥ 1/3 for all q ∈ [W (1/4) − 1/10,W (1/4) + 1/10]. We
conclude that both conditions (21) and (22) hold thanks to Proposition 5 below.

For this example, one can take ϕu(ε) = W (1/4) − (4/3)ε and ϕl(ε) = W (1/4) + (4/3)ε for all 0 < ε < 1/16. In
that case, MOMADK is an almost isometry and we can state a result like Theorem 1 where Φ−1(3/4) is replaced
by W (1/4) and µ and Σ are not anymore the mean and covariance matrix since they do not exist but ’location’ and
’scale’ parameters defined such that Σ−1/2(X̃i − µ) are spherically symmetric. As a consequence, the phenomenon
underlying the Gaussian case from Section 2 has nothing to do with concentration but it is more about elliptical
symmetry.

Gaussian approximation. In cases where there is some lack of spherical symmetry of Σ−1/2(X̃1 − µ) one may
study the Hv functions for a smaller number K of blocks so that n = N/K may be large enough to see some
averaging effect. In that case and because Gaussian variables satisfy all the properties we need, it is tempting to use
a Gaussian approximation result such as a Berry-Esseen bound (see [61, 9, 7]) to approximate the Hv functions by
1 − Φ for n = N/K large enough. This strategy has been used several times in Minsker and co-authors works on
Median-of-means and Catoni’s type of estimators (see for instance [55, 57]).

For instance, when for all v ∈ Sd−1
2 ,

〈
Σ−1/2(X̃i − µ), v

〉
, i ∈ [n] are (independent, centered and variance one)

real-valued random variables in L2+δ such that
∥∥∥〈Σ−1/2(X̃i − µ), v

〉∥∥∥
2+δ
≤ κ (uniformly in v ∈ Sd−1

2 ) for some δ > 0

then, it follows from Theorem 5.7 in [61] that there is an absolute constant c0 > 0 such that for all v ∈ Sd−1
2 and all

r ∈ R,

|HN,K,v(r)− P[g ≥ r]| ≤ c1κ
2+δ

nδ/2
:= cn (24)

It follows that for all p ∈ (0, 1) and ε ∈ R satisfying p+ ε ∈ (0, 1) that

Φ−1 (1− p− ε− cn) ≤W (p+ ε) ≤ Φ−1 (1− p− ε+ cn) .

In particular, for all 0 < ε < 1/16, if n is large enough so that cn ≤ ε then one can take ϕu(ε) = Φ−1(3/4) − c0ε
and ϕl(ε) = Φ−1(3/4)− c0ε. So that the ratio ϕu(ε)/ϕl(ε) is constant; in that case, the MOMADK and SDOk are
isomorphism (see Proposition 2) and we recover a subgaussian rate in Theorem 4.

However, a Gaussian approximation result such as the one in (24) is not enough for Assumption 4. Indeed, it
follows from (24) that for all 0 ≤ r ≤ c0, Hv(r) ≤ HG(r)+cn ≤ 1/2−c1r+cn for some absolute constants c0 > 0 and
c1 > 0. It appears that our analysis used to prove Theorem 4 does not stand this extra error term cn compare with
Assumption 4. Gaussian approximation does not help in this case: indeed Assumption 4 is more about the existence
of a uniform lower bound around 0 of the density functions of the one-dimensional projections

〈
n−1/2

∑
i Zi, v

〉
as

we are considering now.

Beyond the Gaussian behavior. In the later two paragraphs, we identified situations where the n−1/2
∑n
i=1

〈
Zi, v

〉
for v ∈ Sd−1

2 behave like Gaussian variables. We saw that this may be the case because we are considering one-
dimensional projections of d-dimensional vectors and/or we are taking empirical means over n variables. But proper-
ties we are looking for the Hn,v, v ∈ Sd−1

2 functions (see (20), (21) and (22)) are all dealing only with their behavior
around 3 (or 4 when the median is not 0) points. So that only the behavior of these functions at these points play a
role and there is no need to mimic the Gaussian case for all values of r in R. We now state a general result going in
this direction. In particular, we recover the conditions from [54] and [71] recalled in the Introduction section.

Let us assume that the n−1/2
∑n
i=1

〈
Zi, v

〉
for v ∈ Sd−1

2 are absolutely continuous w.r.t. the Lebesgue measure
with a density function denoted by fv. By the mean value theorem, we have for all r ≥ 0, all p ∈ (0, 1) and ε ≥ 0
such that p+ ε ∈ (0, 1),

Hv(r) ≤ Hv(0)− min
0≤t≤r

fv(t)r and
ε

maxq∈[p,p+ε] fv(Wv(q))
≤Wv(p)−Wv(p+ ε) ≤ ε

minq∈[p,p+ε] fv(Wv(q))
. (25)
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In particular, the values of the density functions fv, v ∈ Sd−1
2 at 0,W (1/4),W (1/2) and W (3/4) drives the quality

of inequalities from (25) and, as noted in previous works on the Stahel-Donoho outlyingness function, are enough to
insure all the conditions we need on Hv and Wv recalled in (20), (21) and (22).

Proposition 5. Let K ∈ [N ] be such that N/K ∈ N. We assume that the original non-corrupted data X̃i, i ∈
[N ] are independent and that there exists µ ∈ Rd and Σ ∈ Rd×d definite positive so that for all v ∈ Sd−1

2 ,√
K/N

∑N/K
i=1

〈
Σ−1/2(X̃i − µ), v

〉
are absolutely continuous real valued random variables with a density denoted by

fv.
If there exists 0 < ε < 1/8 and c0 > 0 such that for all v ∈ Sd−1

2 , all p ∈ {Wv(1/4),Wv(1/2),Wv(3/4)} and all
q ∈ [p− 2ε, p+ 2ε], fv(q) ≥ c0 then for Iv = max (Wv(1/4)−Wv(1/2),Wv(1/2)−Wv(3/4))

ϕu(ε) = max
v∈Sd−1

2

(Iv + 4ε/c0) and ϕl(ε) = min
v∈Sd−1

2

(Iv − 4ε/c0) .

We also have
ϕu(ε)

ϕl(ε)
≤

maxv∈Sd−1
2
Iv

minv∈Sd−1
2
Iv

(
1 +

16ε

c0 minv∈Sd−1
2
Iv

)
when 4ε ≤ c0 minv Iv. Moreover, if (c0/4) maxv Iv < 1/8 and minv Iv ≥ c1, for some absolute constant c1 > 0, then
condition (21) holds (and so we recover the optimal subgaussian rates in Theorem 2 and Theorem 3) and if for all
v ∈ Sd−1

2 , Iv := φ0 then condition (22) holds and so does Proposition 4.
If for all v ∈ Sd−1

2 , Hv(0) ≤ 1/2 and there are absolute constants c0 > 0 and c1 > 0 so that for all 0 < r < c0,
fv(v) ≥ c1 then Assumption 4 holds (that is (22) holds) and so does Theorem 4.

Note that in Proposition 5, µ and Σ do not have to be the mean and covariance matrix of the X̃i’s. In that
case, µ and Σ are sometimes called location and scale and so Theorem 4 still apply for the robust to adversarial
contamination and heavy-tail estimation of location, even in situations where there is not even a first moment.

Proposition 5 gives an alternative to Gaussian approximation which does not, in general, allow to check Assump-
tion 4 because of the residual terms in Esseen or Berry-Esseen type inequalities. The assumptions in Proposition 5
are all granting that the density functions fv are locally lower bounded around the ’critical’ 1/4 and 3/4 quartiles
and medians. They are natural assumptions that already appeared in several studies of estimators based on the
SDO. In Proposition 5 we show that by using the median-of-means principle these assumptions are dealing with the
density functions on the bucketed means and not the data themselves. However, Proposition 5 may also be applied
in the K = N case as for elliptically contoured distributions.

6 Conclusion

We showed that it is possible to estimate a mean vector in Rd w.r.t. the metric
∥∥Σ−1/2·

∥∥
2

even though Σ is unknown,
the data set is corrupted by an adversary and the data are heavy-tailed. The rate obtained are the (deviation) minmax
one in the ideal i.i.d. Gaussian case. The estimator used to achieve this rate is a deepest point with respect a median-
of-means version of the Stahel-Donoho outlyingness functional. When the data are spherical enough there is no need
to bucket the data and then the estimator is using the classical Stahel-Donoho outlyingness. Our analysis shows that
the two cases can be handled using the same methodology and that the family of cdfs (HN,K,v : v ∈ Sd−1

2 ) plays a
key role in this analysis, in particular, their behavior around 0, the median and the 1/4 and 3/4 quartiles.

In this work, we have not deal with several research opportunities opened by the SDO. We now list some of them
that may be considered in future works. a) It may look possible to use the isomorphic properties of the MOMADK

and SDOK to study the Stahel-Donoho estimator (SDE) or a median-of-means version of the SDE defined as

µ̃SDEMOM,K =

∑K
k=1 ŵkX̄k∑K
k=1 ŵk

(26)

where (ŵk)Kk=1 are non-negative weights such that ŵk depends on the outlyingness of the k-th bucketed mean X̄k.
For instance,

ŵk =

{
1 if SDOK(X̄k) ≤ α̂K
0 otherwise.

where α̂k = Med(SDOK(X̄k)). (27)

b) Similarly, the isomorphic or almost-isometry properties of MOMADK and SDOK may also be used to study the
properties of a MOM version of the SDE of the covariance matrix:

Σ̂ =
2

K

K∑
k=1

ŵk(X̄k − µ̃SDEMOM,K)(X̄k − µ̃SDEMOM,K)>.
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c) From a computational point of view, it is still an open question to construct an approximate solution to the SDO.
The original or MOM version of the Stahel-Donoho median could be approximated via a robust gradient descent
algorithms such as the one introduced in [10, 15, 39] with some extra normalization step required by the MAD
denominator. We expect this algorithm to be more efficient than the classical weighted SDE because we expect to do
only log d iterations to achieve a subgaussian estimator using a robust gradient descent algorithm whereas the SDE
would require to approximate the K depths SDOK(X̄k), k ∈ [K] and should therefore require more computational
time (note that, in practice the SDE has been reported to be more efficient than the deepest data that is the data
X̄k with the smallest SDOK(X̄k) but the SDE was not compared with an approximate solution of µ̂SDOMOM,K).

7 Proofs

In this section, we provide some proofs of all the results from the preceding sections. The only complexity measure
we are using in this work is the Vapnik and Chervonenkis (VC) dimension [69, 70] of a class F of Boolean functions,
i.e. of functions from Rd to {0, 1} in our case. We recall that V C(F) is the maximal integer n such that there
exists x1, . . . , xn ∈ Rd for which the set {(f(x1), · · · , f(xn)) : f ∈ F)} is of maximal cardinality that is 2n. The only
VC-dimension we will use is the one of the set of all indicators of half affine spaces in Rd: V C({x ∈ Rd → I(

〈
·, v
〉
≥

r) : v ∈ Rd, r ∈ R}) = d + 1 (see Example 2.6.1 in [68]). The main technical tool (see Chapter 3 in [36]) we will be
using is the following one: let Y1, . . . , Yn be independent random vectors in Rd, there exists an absolute constant C0

such that for all u > 0, with probability at least 1− exp(−u),

sup
f∈F

(
1

n

n∑
i=1

f(Yi)− Ef(Yi)

)
≤ C0

(√
V C(F)

n
+

√
u

n

)
. (28)

We recall that for all v ∈ Sd−1
2 , K ∈ [N ] and r > 0,

HN,K,v(r) = P

 1√
N/K

N/K∑
i=1

〈
Σ−1/2(X̃i − µ), v

〉
≥ r

 .
The rate of convergence we will obtained is any r∗ satisfying

C0

(√
d+ 1

K
+

√
u

K

)
+ sup
‖v‖2=1

HN,K,v(r
∗) +

|O|
K

<
1

2
(29)

where C0 is the constant from (28) and for some choice of K and u specified in each result depending on the set of
assumptions.

7.1 Proof of Proposition 2 and 1 (first part): isomorphic property of MOMAD

We first prove Proposition 2 – the proof of Proposition 1 is a straighforward application of Proposition 2.
Proof of Proposition 2. We first observe that by renormalization, it is enough to show that for all v ∈ Sd−1

2 ,

ϕl(ε) ≤ Med(|
〈
Σ−1/2(X̄k − µ), v

〉
−Med(

〈
Σ−1/2(X̄k − µ), v

〉
)|) ≤ ϕu(ε). (30)

Moreover, for all i ∈ [N ],Σ−1/2(X̃i − µ) has mean zero and covariance Id. Hence, without loss of generality we
assume that µ = 0 and Σ = Id.

The strategy we are using to prove (30) is the following one. Let K real numbers a1, . . . , aK be given and denote
by a(1) ≤ · · · ≤ a(K) the non-decreasing rearrangement of the (ak)k (this is the rearrangement of the ak’s and not
of their absolute values). To prove a result like ϕl(ε) ≤ Med(|ak −Med(ak)|) ≤ ϕu(ε), it is enough to show that
ϕl(ε) ≤ a(3(K+1)/4) − a((K+1)/2) ≤ ϕu(ε) and ϕl(ε) ≤ a((K+1)/2) − a((K+1)/4) ≤ ϕu(ε). As a consequence, to prove

a result like (30), we should study the rearrangement (the two quartiles and the median) of the
〈
X̄k, v

〉
, k ∈ [K]

uniformly over all v ∈ Sd−1
2 . But, |O| elements among the Xi’s come from the adversary and we do not have any

control on their behavior. We therefore have to consider the worst possible case which is when |O| bucketed means
X̄k are corrupted by one outliers from {Xi : i ∈ O}. However, one may check that if we change |O| points in a set
{ak : k ∈ [K]} to get a new set {Ak : k ∈ [K]} then ϕl(ε) ≤ a(3(K+1)/4) − a((K+1)/2) ≤ ϕu(ε) will be true if we
show that ϕl(ε) ≤ A(3(K+1)/4−|O|) − A((K+1)/2+|O|) and A(3(K+1)/4+|O|) − A((K+1)/2−|O|) ≤ ϕu(ε) – and a similar
observation holds for the other (1/4)-quartile. We will therefore first study the rearrangement of the original (i.e.
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non corrupted) bucketed means (later denoted by X̃k, k ∈ [K]) projected on all one dimensional directions uniformly
over these directions to deduce the result from (30) on the corrupted bucketed means X̄k.

We denote by X̃k, k ∈ [K] the bucketed means of the original (non corrupted) dataset, i.e. X̃k = (1/|Bk|)
∑
i∈Bk

X̃i

for k ∈ [K]. To prove (30) we first study the rearrangements of vectors (
〈
X̃k, v

〉
)k∈[K] uniformly over all v ∈ Sd−1

2 .
We will then deal with the adversarial corruption to get (30).

We introduce the following supremum of empirical process:

Z = sup
`∈[K−1]

sup
‖v‖2=1

∣∣∣∣∣ 1

K

K∑
k=1

I

(〈
X̃k, v

〉
≥ Wv(`/K)√

N/K

)
− P

[〈
X̃k, v

〉
≥ Wv(`/K)√

N/K

]∣∣∣∣∣
where Wv has been defined in Definition 1. It follows from (28) that for all u > 0, with probability at least

1 − exp(−u), Z ≤ C0

(√
(d+ 1)/K +

√
u/K

)
(note that even though the function Wv depends on v, the boolean

function x→ I(
〈
x, v
〉
≥Wv(`/N)) is still the indicator of a affine half-space of Rd for all v ∈ Rd and all ` ∈ [K − 1]

and thus the VC dimension of the set of Boolean functions {x → I(
〈
x, v
〉
≥ Wv(`/K)) : v ∈ Rd, ` ∈ [K − 1]}

is less or equal to d + 1). As a consequence, for some choice of 0 < ε < 1/8 such that Assumption 3 holds, if
K ≥ (2C0)(d + 1)ε−2 then with probability at least 1 − exp(−ε2K/(2C0)2), Z ≤ ε. Let us denote by Ωε the event
onto which Z ≤ ε; we proved that P[Ωε] ≥ 1− exp(−ε2K/(2C0)2).

Let us place ourselves on the event Ωε up to the end of the proof. Since for all v ∈ Sd−1
2 ,

P

[〈
X̃k, v

〉
≥ Wv(`/K)√

N/K

]
= Hv(Wv(`/K)) = `/K,

(by left continuity of Hv we have Hv(Wv(p)) = p for all p ∈ (0, 1)), we have for all ` ∈ [K] and v ∈ Sd−1
2 , that∣∣∣∣∣

{
k ∈ [K] :

〈
X̃k, v

〉
≥ Wv(`/K)√

N/K

}∣∣∣∣∣ ∈ [`− εK, `+ εK] . (31)

This last result on the uniform in v ∈ Sd−1
2 rearrangement of (

〈
X̃k, v

〉
)k will be used to get the desire result on

the rearrangement for (
〈
Xk, v

〉
)k (uniformly in v). To go from the X̃k’s to the Xk’s we now have to deal with the

adversarial corruption.
Since, there are |O| original data that may have been modified by the adversary, in the worse case |O| bucketed

means X̃k may be considered as corrupted and so, from the above cardinality estimation result (31), we may only
certify (on Ωε) that∣∣∣∣∣

{
k ∈ [K] :

〈
X̄k, v

〉
≥ Wv(`/K)√

N/K

}∣∣∣∣∣ ∈ [`− εK − |O|, `+ εK + |O|] ⊂ [`− 2εK, `+ 2εK]

on the K bucketed means X̄k constructed from the adversarialy corrupted dataset {Xi : i ∈ [N ]}. We used here

the assumption that |O| ≤ εK. If follows from the later result that if we denote by q
1/4
K,v the 1/4 quartile of vector

(
〈
X̄k, v

〉
: k ∈ [K]), by q

1/2
K,v its median and by q

3/4
K,v its 3/4 quartile then,√

K

N
Wv

(
3

4
+ 2ε

)
≤ q1/4

K,v ≤
√
K

N
Wv

(
3

4
− 2ε

)
;

√
K

N
Wv

(
1

2
+ 2ε

)
≤ q1/2

K,v ≤
√
K

N
Wv

(
1

2
− 2ε

)
and √

K

N
Wv

(
1

4
+ 2ε

)
≤ q3/4

K,v ≤
√
K

N
Wv

(
1

4
− 2ε

)
.

It follows from these inequalities that on the event Ωε, we have for all v ∈ Sd12 ,

Med(|
〈
X̄k, v

〉
−Med(

〈
X̄k, v

〉
)|) ≤

√
K

N
max

(
Wv

(
1

4
− 2ε

)
−Wv

(
1

2
+ 2ε

)
,Wv

(
1

2
− 2ε

)
−Wv

(
3

4
+ 2ε

))
and

Med(|
〈
X̄k, v

〉
−Med(

〈
X̄k, v

〉
)|) ≥

√
K

N
min

(
Wv

(
1

4
+ 2ε

)
−Wv

(
1

2
− 2ε

)
,Wv

(
1

2
+ 2ε

)
−Wv

(
3

4
− 2ε

))
.

The result follows from the definition of ϕl(ε) and ϕu(ε) in Assumption 3.
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7.2 Proof of Proposition 3 and 1 (second part): isomorphic property of SDOK.

The proof of Proposition 3 and 1 (second part) relies on the next result.

Proposition 6. We assume that the adversarial contamination with L2 inliers model from Assumption 1 holds with
a number of adversarial outliers denoted by |O|. Let K ∈ [N ], u > 0 and r∗ be such that (29) holds. Then, with
probability at least 1− exp(−u),

sup
v∈Sd−1

2

|Med(
〈
Σ−1/2(X̄k − µ), v)

〉
)| ≤

√
K

N
r∗.

Proof of Proposition 6. Denote by K = {k : Bk ∩ O = ∅} the set of indices of non-corrupted blocks of data.
It follows from (28) and the definition of r∗ that with probability at least 1− exp(−u), for all v ∈ Sd−1

2 ,

1

K

K∑
k=1

I

(〈
Σ−1/2(X̄k − µ), v)

〉
≥ r∗√

N/K

)

=
1

K

∑
k∈K

I

(〈
Σ−1/2(X̃k − µ), v)

〉
≥ r∗√

N/K

)
+

1

K

∑
k∈Kc

I

(〈
Σ−1/2(X̄k − µ), v)

〉
≥ r∗√

N/K

)

≤ 1

K

K∑
k=1

I

(〈
Σ−1/2(X̃k − µ), v)

〉
≥ r∗√

N/K

)
+
|O|
K

≤ sup
‖v‖2=1

(
1

K

K∑
k=1

I

(〈
Σ−1/2(X̃k − µ), v)

〉
≥ r∗√

N/K

)
− P

(〈
Σ−1/2(X̃k − µ), v)

〉
≥ r∗√

N/K

))

+ P

(〈
Σ−1/2(X̃1 − µ), v)

〉
≥ r∗√

N/K

)
+
|O|
K

≤ C0

(√
d+ 1

K
+

√
u

K

)
+HN,K,v(r

∗) +
|O|
K

<
1

2
.

As a consequence, with probability at least 1− exp(−u), for all v ∈ Sd−1
2 ,

K∑
k=1

I

(〈
Σ−1/2(X̄k − µ), v)

〉
≥ r∗√

N/K

)
<
K

2

and so

sup
v∈Sd−1

2

|Med(
〈
Σ−1/2(X̄k − µ), v)

〉
)| ≤

√
K

N
r∗. (32)

Remark 1. It is also possible to consider a ”directional version” of Proposition 6 if one defines a ”directional
version” of r∗, that is for all directions v ∈ Sd−1

2 , define r∗v > 0 satisfying

C0

(√
d+ 1

K
+

√
u

K

)
+HN,K,v(r

∗
v) +

|O|
K

<
1

2
.

Then, under the same conditions as in Proposition 6, we have with probability at least 1− exp(−u),

sup
v∈Sd−1

2

|Med(
〈
Σ−1/2(X̄k − µ), v)

〉
)|

r∗v
≤
√
K

N
.

Hence, Proposition 6 holds as well for r∗ = sup‖v‖2=1 r
∗
v. Note that for most of the v ∈ Sd−1

2 the values of r∗v
is expected to be much smaller than r∗. For instance, for vectors v well-spread, we expect them to have a strong
”mixing” power (see for instance ”super-Gaussian directions” in [35] or [33, 34]).
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Proof of Proposition 3 and 1. It follows from Proposition 6 and Proposition 2 that, with probability at least
1− exp(−u)− exp(−c1ε2K), for all v ∈ Sd−1

2 ,

|Med(
〈
Σ−1/2(X̄k − µ), v)

〉
)| ≤

√
K

N
r∗

and

ϕl(ε)

√
K

N

∥∥∥Σ1/2v
∥∥∥

2
≤MOMADK(v) ≤ ϕu(ε)

√
K

N

∥∥∥Σ1/2v
∥∥∥

2
.

We denote by Ω0 the event onto which the last two properties hold. On the even Ω0, for all ν ∈ Rd, we have

SDOK(ν) = sup
v∈Rd

|Med(
〈
X̄k − ν, v)

〉
)|

MOMADK(v)
≤ sup
v∈Rd

|Med(
〈
X̄k − ν, v)

〉
)|

ϕl(ε)
√
K/N

∥∥Σ1/2v
∥∥

2

= sup
v∈Sd−1

2

|Med(
〈
Σ−1/2(X̄k − ν), v)

〉
)|

ϕl(ε)
√
K/N

≤ sup
v∈Rd

|Med(
〈
Σ−1/2(X̄k − µ), v

〉
)|+ |

〈
Σ−1/2(ν − µ), v

〉
|

ϕl(ε)
√
K/N

≤ sup
v∈Rd

√
K/Nr∗ + |

〈
Σ−1/2(ν − µ), v

〉
|

ϕl(ε)
√
K/N

≤


3‖Σ−1/2(ν−µ)‖

2

2ϕl(ε)
√
K/N

if
∥∥Σ−1/2(ν − µ)

∥∥
2
≥ 2
√
K/Nr∗

3r∗/ϕl(ε) otherwise

and when
∥∥Σ−1/2(ν − µ)

∥∥
2
≥ 2
√
K/Nr∗, we have

SDOK(ν) ≥ sup
v∈Sd−1

2

|
〈
Σ−1/2(ν − µ), v

〉
| − |Med(

〈
Σ−1/2(X̄k − µ), v

〉
)|

ϕu(ε)
√
K/N

≥
∥∥Σ−1/2(ν − µ)

∥∥
2

2ϕu(ε)
√
K/N

.

7.3 Proof of the statistical bounds

Proof of Proposition 1. Proposition 1 is a corollary of Proposition 2 for K = N . For this choice of K, there
are N blocks, each containing only one data and so MOMADN (v) = MAD(v) for all v ∈ Rd. The only thing that
remains to be checked is the validity of Assumption 3 in the Gaussian case and the dependency of the ϕl(ε) and
ϕu(ε) in terms of ε.

When the original data X̃i, i ∈ [N ] are N i.i.d. Gaussian vectors G1, . . . , GN with mean µ and covariance matrix

Σ then for all K ∈ [N ], (1/
√
N/K)

∑N/K
i=1 Σ−1/2(X̃i − µ) is a standard Gaussian vector in Rd. Therefore the

H := HN,K,v function from Assumption 3 is equal to the function x ∈ R → 1 − Φ(x) where Φ : x ∈ R → P[g ≤ x]
is the cdf of a standard Gaussian variable g ∼ N (0, 1) in R. This holds for all N,K and v ∈ Sd−1

2 , that is HN,K,v

is independent of N,K and v ∈ Sd−1
2 . Since W := WN,K,v is the generalized inverse of H, in the Gaussian case, we

obtain that W (p) = Φ−1(1− p) for all p ∈ (0, 1). It follows from Lemma 5.2 in [61] that there exists some absolute
constant C1 > 0 such that

min

(
W

(
1

4
+ 2ε

)
−W

(
1

2
− 2ε

)
,W

(
1

2
+ 2ε

)
−W

(
3

4
− 2ε

))
≥ Φ−1(3/4)− C1ε := ϕl(ε)

and

max

(
W

(
1

4
− 2ε

)
−W

(
1

2
+ 2ε

)
,W

(
1

2
− 2ε

)
−W

(
3

4
+ 2ε

))
≤ Φ−1(1/4) ≤ Φ−1(3/4) + C1ε := ϕu(ε).

As a consequence, Assumption 3 holds in the Gaussian case for all 0 < ε < Φ−1(3/4)/C1 with ϕl(ε) = Φ−1(3/4)−C1ε
and ϕu(ε) = Φ−1(3/4) + C1ε.

Proofs of theorems 1, 2 and 4 Theorems 1, 2 and 4 are corollaries of a general result that we are stating now.

Theorem 5. There are absolute constants c0, c1 and c2 such that the following holds. We assume that Assump-
tion 3 holds for some 0 < ε < 1/4 and constants ϕl(ε) and ϕu(ε). We assume that the adversarial contamina-
tion with L2 inliers model from Assumption 1 holds with a number of adversarial outliers denoted by |O|. Let
K ≥ max(ε−1|O|, c0ε−2d), 0 < u < c0ε

2K and r∗ be such that (29) holds. Then, with probability at least 1−2 exp(−u),∥∥∥Σ−1/2(µ̂SDOMOM,K − µ)
∥∥∥

2
≤ 2ϕu(ε)

ϕl(ε)

√
K

N
r∗.
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Proof of Theorem 1. There exists an absolute constant c0 such that for all 0 ≤ r ≤ c0,P[g ≥ r] ≤ 1/2− 2r where
g ∼ N (0, 1). Moreover, for all K ∈ [N ], v ∈ Sd−1

2 and r > 0, we have HN,K,v(r) = P[g ≥ r]. As a consequence, one
can chose r∗, u and K such that

r∗ = C0

(√
d+ 1

K
+

√
u

K

)
+
|O|
K

as long as this later quantity is less or equal to c0. Finally, we apply Theorem 5 for K = N and the result follows
since µ̂SDOMOM,N = µ̂SDO.

Proof of Theorem 2. It follows from Markov’s inequality (14) that we can chose u, r∗ and K such that

C0

(√
d+ 1

K
+

√
u

K

)
+

1

1 + (r∗)2
+
|O|
K

<
1

2

for instance by taking r∗ = 2, K ≥ 4|O|, K > 16C2
0 (d + 1) and K > 16C0u. Note however, that because r∗ is

constant, the convergence rate is proportional to
√
K/N , in particular it does not depend on u. Hence there is no

interest to consider values of u smaller than K (up to constant). We therefore apply Theorem 5 for this choice of K,
u = c0ε

2K and r∗ = 2.

Proof of Theorem 4. Thanks to Assumption 4, there exists absolute constants c0 > 0 and c1 > 0 such that for
all v ∈ Sd−1

2 and (2C0/c1)
√

(d+ 1)/K ≤ r ≤ c0, HN,K,v ≤ 1/2− c1r. As a consequence, one can chose r∗, u and K
such that

r∗ =
2

c1

(
C0

(√
d+ 1

K
+

√
u

K

)
+
|O|
K

)
as long as this later quantity is less or equal to c0. Finally, we apply Theorem 5 for this choice of K, u and r∗.

Proof of Theorem 5. We first note that a proof of Theorem 5 may follow from the isomorphic property of SDOK
from Proposition 3. However, it is possible to improve constants by using the following strategy.

Let us place ourselves on the intersection of the two events where the results of both Proposition 2 and Proposi-
tion 6 hold. We set f : v ∈ Rd → Med(

〈
X̄k, v

〉
). Since f is symmetric we have∥∥∥Σ−1/2(µ̂SDOMOM,K − µ)

∥∥∥
2

= sup
‖v‖2=1

〈
Σ−1/2(µ̂SDOMOM,K − µ), v

〉
= sup
v∈Rd

〈
µ̂SDOMOM,K − µ,

v∥∥Σ1/2v
∥∥

2

〉
= sup
v∈Rd

〈
µ̂SDOMOM,K , v

〉
− f(v) + f(v)−

〈
µ, v
〉

MOMADK(v)

MOMADK(v)∥∥Σ1/2v
∥∥

2

≤

(
sup
v∈Rd

〈
µ̂SDOMOM,K , v

〉
− f(v)

MOMADK(v)
+ sup
v∈Rd

f(v)−
〈
µ, v
〉

MOMADK(v)

)
sup
v∈Rd

MOMADK(v)∥∥Σ1/2v
∥∥

2

≤
(
SDOK(µ̂SDOMOM,K) + SDOK(µ)

)
sup
v∈Rd

MOMADK(v)∥∥Σ1/2v
∥∥

2

≤ 2SDOK(µ) sup
v∈Rd

MOMADK(v)∥∥Σ1/2v
∥∥

2

.

where we used that SDOK(µ̂SDOMOM,K) ≤ SDOK(µ) by definition of µ̂SDOMOM,K .

We know how to control supv∈Rd MOMADK(v)/
∥∥Σ1/2v

∥∥
2

by
√
K/Nϕu(ε) using Proposition 2. It remains to

control the term SDOK(µ). We have

SDOK(µ) = sup
v∈Rd

|
〈
µ, v
〉
−Med(

〈
X̄k, v

〉
)|

Med(|
〈
X̄k, v

〉
−Med(

〈
X̄k, v

〉
)|)

= sup
v∈Rd

|Med(
〈
µ− X̄k, v

〉
)|∥∥Σ1/2v

∥∥
2

∥∥Σ1/2v
∥∥

2

MOMADK(v)

≤ sup
‖v‖2=1

|Med(
〈
Σ−1/2(X̄k − µ), v)

〉
)| sup
v∈Rd

∥∥Σ1/2v
∥∥

2

MOMADK(v)
.

The term supv∈Rd

∥∥Σ1/2v
∥∥

2
/MOMADK(v) is smaller than

√
N/K/ϕl(ε) thanks to Proposition 2. Finally, to finish

the proof, we upper bound the term sup‖v‖2=1 |Med(
〈
Σ−1/2(X̄k − µ), v)

〉
)| by

√
K/Nr∗ thanks to Proposition 6.
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Proof of Theorem 3 For all k ∈ [N ], we set µ̂k = µ̂SDOMOM,k we denote by Ωk the event onto which∥∥∥Σ−1/2(µ̂k − µ)
∥∥∥

2
≤ 4ϕu(ε)

ϕl(ε)

√
k

N

and, for all ν ∈ Rd, if
∥∥Σ−1/2(ν − µ)

∥∥
2
≥ 6
√
k/N then∥∥Σ−1/2(ν − µ)
∥∥

2

2ϕu(ε)
√
k/N

≤ SDOk(ν) ≤
3
∥∥Σ−1/2(ν − µ)

∥∥
2

2ϕl(ε)
√
k/N

and if
∥∥Σ−1/2(ν − µ)

∥∥
2
≤ 6
√
k/N then

SDOk(ν) ≤ 9

ϕl(ε)
.

It follows from Proposition 3 for r∗ = 3 and u = K/(16C2
0 ) and Theorem 2 that P[Ωk] ≥ 1 − 3 exp(−c1ε2k) when

k ≥ max(|O|/ε, c0d/ε2).
Let K ≥ max(|O|/ε, c0d/ε2). On the even ∩Nk=KΩk, we have for all K ≤ k ≤ N ,

SDOk(µ̂K − µ̂k) ≤ max

(
9

ϕl(ε)
,

3
∥∥Σ−1/2(µ̂K − µ̂k)

∥∥
2

2ϕl(ε)
√
k/N

)
≤ max

(
9

ϕl(ε)
,

6ϕu(ε)

ϕ2
l (ε)

(
1 +

√
K

k

))

and so, by definition of K̂, we have K̂ ≤ K. We also have by definition of K̂ and because K̂ ≤ K that

SDOK(µ̂K̂ − µ̂K) ≤ max

 9

ϕl(ε)
,

6ϕu(ε)

ϕ2
l (ε)

1 +

√
K̂

K

 ≤ 12ϕu(ε)

ϕ2
l (ε)

.

We conclude that either
∥∥Σ−1/2(µ̂K̂ − µ̂K)

∥∥
2
≤ 6
√
K/N and so∥∥∥Σ−1/2(µ̂K̂ − µ)

∥∥∥
2
≤
∥∥∥Σ−1/2(µ̂K̂ − µ̂K)

∥∥∥
2

+
∥∥∥Σ−1/2(µ− µ̂K)

∥∥∥
2
≤
(

6 +
4ϕu(ε)

ϕl(ε)

)√
K

N

or
∥∥Σ−1/2(µ̂K̂ − µ̂K)

∥∥
2
≥ 6
√
K/N and so∥∥∥Σ−1/2(µ̂K̂ − µ)
∥∥∥

2
≤
∥∥∥Σ−1/2(µ̂K̂ − µ̂K)

∥∥∥
2

+
∥∥∥Σ−1/2(µ̂K − µ)

∥∥∥
2

≤ SDOK(µ̂K̂ − µ̂K)2ϕu(ε)

√
K

N
+

4ϕu(ε)

ϕl(ε)

√
K

N
≤ 28ϕ2

u(ε)

ϕ2
l (ε)

√
K

N
.

Proof of Proposition 4. We have for all i, j ∈ [d],
∣∣∣φ2

0Σij − Σ̂ij

∣∣∣ ≤ c1ε(c1ε + φ0) (Σii + Σij) because, it follows

from (18) that for all v ∈ Rd,∣∣∣∣MOMAD2
K(v)− φ2

0

K

N

∥∥∥Σ1/2v
∥∥∥2

2

∣∣∣∣ =

∣∣∣∣∣MOMADK(v)− φ0

√
K

N

∥∥∥Σ1/2v
∥∥∥

2

∣∣∣∣∣
(
MOMADK(v) + φ0

√
K

N

∥∥∥Σ1/2v
∥∥∥

2

)

≤ c1ε
K

N

∥∥∥Σ1/2v
∥∥∥2

2
(c1ε+ φ0).

Next, we have for all u, v ∈ Rd such that ‖u‖1 = ‖v‖1 = 1

|
〈
u, (φ2

0Σ− Σ̂)v
〉
|

=
N

4K

∣∣∣∣∣∣
∑
i,j

uivj

(
φ2

0

K

N

∥∥∥Σ1/2(ei + ej)
∥∥∥2

2
−MOMAD2

K(ei + ej) + φ2
0

K

N
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[50] Gábor Lugosi and Shahar Mendelson. Near-optimal mean estimators with respect to general norms. Probab. Theory Related Fields,
175(3-4):957–973, 2019.
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