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email: jules.depersin@ensae.fr, email: guillaume.lecue@ensae.fr
CREST, ENSAE, IPParis. 5, avenue Henry Le Chatelier, 91120 Palaiseau, France.

February 2, 2021

Abstract

We consider the problem of robust mean and location estimation w.r.t. any pseudo-norm of the
form x ∈ Rd → ‖x‖S = supv∈S

〈
v, x
〉

where S is any symmetric subset of Rd. We show that the
deviation-optimal minimax subgaussian rate for confidence 1− δ is

max

(
`∗(Σ1/2S)√

N
, sup
v∈S

∥∥∥Σ1/2v
∥∥∥
2

√
log(1/δ)

N

)

where `∗(Σ1/2S) is the Gaussian mean width of Σ1/2S and Σ the covariance of the data (in the bench-
mark i.i.d. Gaussian case). This improves the entropic minimax lower bound from [32] and closes the
gap characterized by Sudakov’s inequality between the entropy and the Gaussian mean width for this
problem. This shows that the right statistical complexity measure for the mean estimation problem
is the Gaussian mean width. We also show that this rate can be achieved by a solution to a convex
optimization problem in the adversarial and L2 heavy-tailed setup by considering minimum of some
Fenchel-Legendre transforms constructed using the Median-of-means principle. We finally show that
this rate may also be achieved in situations where there is not even a first moment but a location
parameter exists.

AMS subject classification: 62F35
Keywords: Robustness, entropy, Gaussian mean widths, heavy-tailde data, location parameter.

1 Introduction

We consider the problem of robust (to adversarial corruption and heavy-tailed data) multivariate mean
and location estimation with respect to any pseudo-norm ν ∈ Rd → ‖ν‖S = supµ∈S

〈
µ, ν

〉
where S is any

symmetric subset of Rd (i.e. if x ∈ S then −x ∈ S). This problem has been extensively studied during the
last decade for S = Bd

2 the unit euclidean ball [36, 8, 17, 7, 13, 33, 6, 15, 30, 16, 9, 10, 12, 28, 11]. Only
little is known for general symmetric sets S and we will mainly refer to [32] where this problem has been
handled for S which is the unit dual ball B◦ of a norm ‖·‖ (so that ‖·‖S = ‖·‖).

In [32], the authors introduced the problem of robust to heavy-tailed data estimation of a mean vector
w.r.t. any norm. The problem can be stated as follow: given N i.i.d. random vectors X1, . . . , XN in Rd with
mean µ∗ and covariance matrix Σ, a norm ‖·‖ on Rd and a confidence parameter δ ∈ (0, 1) find an estimator
µ̃N (δ) and the best possible accuracy r∗(N, δ) such that with probability at least 1 − δ, ‖µ̃N (δ)− µ∗‖ ≤
r∗(N, δ). In [32], the authors use the median-of-means principle [37, 19, 1] to construct an estimator
satisfying the following result.

1

mailto:jules.depersin@ensae.fr
mailto:lecueguillaume@gmail.com


Theorem 1. [Theorem 2 in [32]] There exist an absolute constant c such that the following holds. Given
a norm ‖·‖ on Rd and a confidence δ ∈ (0, 1), one can construct µ̃N (δ) such that with probability at least
1− δ

‖µ̃N (δ)− µ∗‖ ≤ c√
N

(
E

∥∥∥∥∥ 1√
N

N∑
i=1

εi(Xi − µ∗)

∥∥∥∥∥+ E
∥∥∥Σ1/2G

∥∥∥+ sup
v∈B◦

∥∥∥Σ1/2v
∥∥∥
2

√
log(1/δ)

)

where B◦ is the unit dual ball associated with ‖·‖, (εi) are i.i.d. Rademacher variables independent of the
Xi’s and G ∼ N (0, Id).

The construction of µ̃N (δ) is pretty involved and it seems hard to design an algorithm out of this
procedure. In particular, µ̃N (δ) has not been proved to be solution to a convex optimization problem.
Theorem 1’s main interest is thus from a theoretical point of view, while robust multivariate mean estima-
tion can also be interesting from a practical point of view [14].

The rate obtained in Theorem 1 can be decomposed into two terms: a deviation term

sup
v∈B◦

∥∥∥Σ1/2v
∥∥∥
2

√
log(1/δ)

where supv∈B◦
∥∥Σ1/2v

∥∥
2

is a weak variance term and a complexity term which is the sum of a Rademacher

complexity E
∥∥∥N−1/2∑N

i=1 εi(Xi − µ∗)
∥∥∥ and a Gaussian mean width E

∥∥Σ1/2G
∥∥. The intuition behind this

rate is explained in [32], in particular, in Question 1. We will however show that this rate is not the right
one and that the Gaussian mean width term is actually not necessary. Moreover, we will show that the
improved rate can be achieved by an estimator solution to a convex optimization problem in Section 3 and
that this holds even in the adversarial corruption model (see Assumption 1 in Section 3 below for a formal
definition) and even in some situations where there is not even a first moment; in that case, µ∗ is a location
parameter and Σ a scatter parameter.

The optimality of the rate in Theorem 1 has been raised in [32]. The classical approach to answer this
type of question is to consider the Gaussian case that is when the data Xi, i ∈ [N ] are i.i.d. N (µ∗,Σ).
This is also the strategy used in [32] to obtain the following deviation-minimax lower bound result1.

Theorem 2. [Theorem 3 and first paragraph in p.962 in [32]] There exists an absolute constant c > 0 such
that the following holds. If µ̂ : RNd → Rd is an estimator such that for all µ∗ ∈ Rd and all δ ∈ (0, 1/4),

PNµ∗ [‖µ̂− µ∗‖ ≤ r∗] ≥ 1− δ

where PNµ∗ is the probability distribution of (Xi)i∈[N ] when the Xi are i.i.d. N (µ∗,Σ) then

r∗ ≥ c√
N

(
sup
η>0

η
√

logN(Σ1/2B◦, ηBd
2) + sup

v∈B◦

∥∥∥Σ1/2v
∥∥∥
2

√
log(1/δ)

)
where N(Σ1/2B◦, ηBd

2) is the minimal number of translated of ηBd
2 needed to cover Σ1/2B◦.

The term supv∈S
∥∥Σ1/2v

∥∥
2

√
log(1/δ) in the lower bound from Theorem 2 is obtained in [32] from

Proposition 6.1 in [6] which is a deviation-minimax lower bound result holding in the one dimensional case
which relies on the fact that the empirical mean is a sufficient statistics in the Gaussian shift theorem2.

1the result from [32] is proved for Σ = Id, it is however straightforward to extend it to the general case.
2The argument used in [32] goes from the one dimensional case studied in [6] to the d-dimensional case. It is given in a

none formal way and may require some extra argument to hold. Indeed the estimator x∗(Ψ̂N ) in [32] is constructed using the
d-dimensional data X1, . . . , XN and not one-dimensional data such as x∗(X1), . . . , x∗(XN ). However, the result from [6] holds
for estimators of a one dimensional mean using one-dimensional data and not d-dimensional ones. Nevertheless, Olivier Catoni
showed us how to adapt the proof of Proposition 6.1 in [6] by using the sufficiency of the empirical mean in the Gaussian shift
model in Rd to get this deviation dependent lower bound term.
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The complexity term supη>0 η
√

logN(Σ1/2B◦, ηBd
2) obtained in Theorem 2 follows from the duality

theorem of metric entropy from [2] and a volumetric argument in the Gauss space similar to the one used
to prove dual Sudakov’s inequality in p.82-83 in [27] which has also been used to obtain minimax lower
bounds based on the entropy in [24] and [34].

In general, there is a gap between the upper bound from Theorem 1 and the lower bound from Theorem 2
even in the Gaussian case. This gap is characterized by Sudakov’s inequality (see Theorem 3.18 in [27] or
Theorem 5.6 in [38]):

sup
η>0

η
√

logN(Σ1/2B◦, ηBd
2) ≤ cE

∥∥∥Σ1/2G
∥∥∥ (1)

where G ∼ N (0, Id). Indeed, in the Gaussian case the complexity term of the rate obtained in Theorem 1
is the Gaussian mean width, that is the right-hand term from (1) whereas the complexity term from
Theorem 2 is the entropy, that is the left-hand term in (1).

As mentioned in Remark 3 from [32], when Sudakov’s inequality (1) is sharp then upper and lower
bounds from Theorem 1 and 2 match in the Gaussian case (in that case the Rademacher complexity is
equal to the Gaussian mean width in Theorem 1). Sharpness in Sudakov’s inequality is however not a
typical situation. In particular, for ellipsoids, Sudakov’s bound (1) is not sharp in general and therefore
the lower bound from Theorem 2 fails to recover the classical subgaussian rate for the standard Euclidean
norm case (that is for S = Bd

2) which is given in [33] by√
Tr (Σ)

N
+

√
‖Σ‖op log(1/δ)

N
. (2)

Indeed, when ‖·‖ is the `d2 Euclidean norm then E
∥∥Σ1/2G

∥∥ = E
∥∥Σ1/2G

∥∥
2
∼
√

Tr(Σ) (see, for instance,

Proposition 2.5.1 in [39]). Whereas, for the entropy of Σ1/2B◦ = Σ1/2Bd
2 w.r.t. ηBd

2 , it follows from
equation (5.45) in [38] that

sup
η>0

η
√

log2N(Σ1/2Bd
2 , ηB

d
2) = sup

n≥1
en+1(Σ

1/2)
√
n+ 1 ∼ sup

n≥1,k∈[d]

√
n

2n/k

∣∣∣∣∣∣
k∏
j=1

√
λj

∣∣∣∣∣∣
1/k

∼

√√√√√ sup
k∈[d]

k

∣∣∣∣∣∣
k∏
j=1

λj

∣∣∣∣∣∣
1/k

(3)
where (en+1(Σ

1/2))n are the entropy numbers of Σ1/2 : `d2 → `d2 (see page 62 in [38] for a definition) and
λ1 ≥ . . . ≥ λd are the singular values of Σ. In particular, when λj = 1/j, the entropy bound (3) is of the
order of a constant whereas the Gaussian mean width is of the order of

√
log d. We will fill this gap in

Section 2 by showing a lower bound where the entropy is replaced by the (larger) Gaussian mean width.
We will therefore obtain matching upper and lower bounds revealing that Gaussian mean width is the right
way to measure the statistical complexity for the mean estimation problem w.r.t. any ‖·‖S .

The paper is organized as follows. In the next section, we obtain the deviation-minimax optimal rate
in the i.i.d. Gaussian case. In Section 3 we show that the rate from Theorem 1 can be improved and that
it can be achieved by a solution to a convex program in the adversarial contamination model and in under
weak or no moment assumptions. All the proofs have been gathered in Section 4.

2 Deviation minimax rates in the Gaussian case: benchmark subgaus-
sian rates for the mean estimation w.r.t. ‖·‖S

In this section, we obtain the optimal deviation-minimax rates of estimation of a mean vector µ∗ when we
are given N i.i.d. X1, . . . , XN distributed like N (µ∗,Σ) when Σ � 0 is some unknown covariance matrix.
In the following, PNµ∗ denotes the probability distribution of (X1, . . . , XN ); it is a Gaussian measure on

RNd with mean ((µ∗)>, . . . , (µ∗)>) and a block (Nd)× (Nd) covariance matrix with d× d diagonal blocks
given by Σ repeated N times and 0 outside of these blocks.
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Unlike classical minimax results holding in expectation or with constant probability (see Chapter 2 in
[40]) we want, in this section, the deviation parameter δ to appear explicitly in the minimax lower bound.
Moreover, this dependency of the convergence rate with respect to δ should be of the right order given by
the subgaussian

√
log(1/δ) rate and not other polynomial dependency such as

√
1/δ as one gets for the

empirical mean for L2 variables (see Proposition 6.2 in [6]). This subtle behavior of the rate in terms of
δ cannot be seen in expectation or constant deviation minimax lower bounds. In particular, this makes
such results (like Theorem 3 or 4 below) unachievable via classical information theoretic arguments as in
Chapter 2 in [40].

Fortunately, in [24], a minimax lower bound has been proved thanks to the Gaussian shift theorem
which makes the deviation parameter δ appearing explicitly in the minimax lower bound. We use the
same strategy here to prove our main result Theorem 3 below and its corollary Theorem 4 in the classical
Euclidean S = Bd

2 case.
We consider the general problem of estimating µ∗ w.r.t. ‖·‖S . Let S ⊂ Rd be a symmetric set. We first

obtain an upper bound result revealing the subgaussian rate. We use the empirical mean X̄N = N−1
∑

iXi

as an estimator of µ∗. Using Borell TIS’s inequality (Theorem 7.1 in [26] or pages 56-57 in [39]) we get:
for all 0 < δ < 1, with probability at least 1− δ,∥∥X̄N − µ

∥∥
S

= sup
v∈S

〈
v, X̄N − µ

〉
≤ E sup

v∈S

〈
v, X̄N − µ

〉
+ σS

√
2 log(1/δ)

where σS = supv∈S

√
E
〈
v, X̄N − µ

〉2
is called the weak variance. It follows that with probability at least

1− δ, ∥∥X̄N − µ
∥∥
S
≤ `∗(Σ1/2S)√

N
+

supv∈S
∥∥Σ1/2v

∥∥
2

√
log(1/δ)

√
N

(4)

where `∗(Σ1/2S) = sup
(〈
G, x

〉
: x ∈ Σ1/2S

)
= E

∥∥Σ1/2G
∥∥
S

, for G ∼ N (0, Id), is the Gaussian mean width

of the set Σ1/2S. In particular, in the case where S = Bd
2 , we recover the subgaussian rate (2) in (4). Our

aim is now to show that the rate in (4) is deviation-minimax optimal. This is what is obtained in the next
result.

Theorem 3. Let S be a symmetric subset of Rd such that span(S) = Rd. If µ̂ : RNd → Rd is an estimator
such that for all µ∗ ∈ Rd and all δ ∈ (0, 1/4],

PNµ∗ [‖µ̂− µ∗‖S ≤ r
∗] ≥ 1− δ

then

r∗ ≥ max

(
1

24

√
log 2

log(5/4)

`∗(Σ1/2S)√
N

,
supv∈S

∥∥Σ1/2v
∥∥
2

12

√
log(1/δ)√

N

)
.

It follows from the upper bound (4) and the deviation-minimax lower bound from Theorem 3 that it
is now possible to know exactly (up to absolute constants) the subgaussian rate for the problem of mean
estimation in Rd w.r.t. ‖·‖S , it is given by

max

(
`∗(Σ1/2S)√

N
,
supv∈S

∥∥Σ1/2v
∥∥
2

√
log(1/δ)

√
N

)
. (5)

We may identify the two complexity and deviation terms in this rate. In particular, the complexity term
is measured here via the Gaussian mean width of the set Σ1/2S and not its entropy as it was previously
known following Theorem 2. Theorem 3 together with (4) show that the right way to measure the statistical
complexity in the problem of mean estimation in Rd w.r.t. to any ‖·‖S is via the Gaussian mean width.
This differs from other statistical problems such as the regression model with random design where the
entropy has been proved to be the right statistical complexity in several examples [34, 24]. Following the
later results in the regression model, Theorem 3 is a bit unexpected because one may though that by
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taking an ERM over an epsilon net of Rd for the right choice of ε one could obtain a better rate than
the one driven by the Gaussian mean width in (5); indeed, for this type of procedure, one may expect a
rate depending on the (smaller) entropy instead of the (larger) Gaussian mean width. Theorem 3 shows
that this is not the case: even discretized ERM cannot achieve a better rate than the one driven by the
Gaussian mean width in the mean estimation problem.

An important consequence of Theorem 3 is obtained when S = Bd
2 that is for the problem of multivariate

mean estimation w.r.t. the `d2-norm which is the problem that has been extensively considered during the
last decade. In the following result, we recover the well-known subgaussian rate (2) showing that all the
upper bound results where this rate has been proved to be achieved are actually deviation-minimax optimal
and therefore could not have been improved uniformly over all µ∗ ∈ Rd.

Theorem 4. If µ̂ : RNd → Rd is an estimator such that PNµ∗ [‖µ̂− µ∗‖2 ≤ r∗] ≥ 1− δ for all µ∗ ∈ Rd and
all δ ∈ (0, 1/4], then

r∗ ≥ max

 1

24

√
log 2

2 log(5/4)

√
Tr(Σ)

N
,

1

12

√
‖Σ‖op log(1/δ)

N

 .

Given that the empirical mean X̄N is such that for all µ ∈ Rd with PNµ -probability at least 1− δ,

∥∥X̄N − µ
∥∥
2
≤
√

Tr (Σ)

N
+

√
2 ‖Σ‖op log(1/δ)

N

we conclude from Theorem 4 that the sub-gaussian rate (2) is the deviation-minimax rate of convergence
for the multivariate mean estimation problem w.r.t. `d2 and that it is achieved by the empirical mean. In
particular, there are no statistical procedure that can do better than the empirical mean uniformly over
all mean vectors µ∗ ∈ Rd up to constant, this includes in particular all discretized versions of X̄N .

3 Convex programs

In this section, we introduce statistical procedures which are solutions to convex programs and which can
achieve the rate from Theorem 1 without the unnecessary Gaussian mean width term E

∥∥Σ1/2G
∥∥. We

also show that these procedures handle adversarial corruption and may still perform optimally in some
situations where there is not even a first moment.

3.1 Construction of the Fenchel-Legendre minimum estimators.

Definition 1. Let S be a subset of Rd and f : Rd → R. The Fenchel-Legendre transform of f on S is the
function f∗S defined for all µ ∈ Rd by f∗S(µ) = supv∈S

(〈
µ, v
〉
− f(v)

)
.

For our purpose, the main property of a Fenchel-Legendre transform we will use is that it is a convex
function as it is the maximal function of the family (µ ∈ Rd →

〈
µ, v
〉
− f(v) : v ∈ S) of linear functions.

We are now defining two examples of functions such that by taking the minimum of their Fenchel-
Legendre transform over S will lead to optimal estimators of µ∗ w.r.t. ‖·‖S . The construction of these
two functions are based on the median-of-means principle: the dataset {X1, . . . , XN} is split into K equal
size blocks of data indexed by (Bk)k forming an equipartition of [N ]. On each block, an empirical mean is
constructed X̄k = |Bk|−1

∑
i∈Bk

Xi. The two functions we are considering are using the K bucketed means

(X̄k)k and are defined, for all v ∈ Rd, by

f(v) =
1

|IK |
∑
k∈IK

〈
X̄k, v

〉∗
(k)

and g(v) = Med(
〈
X̄k, v

〉
) =

〈
X̄k, v

〉∗
(K+1

2 ) (6)
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where if ak =
〈
X̄k, v

〉
, k ∈ [K] then

〈
X̄k, v

〉∗
(k)
, k ∈ [K] are the rearrangement of (ak)k such that a∗(1) ≤

. . . ≤ a∗(K) (this is the rearrangement of the values ak’s themselves and not of their absolute values) and

IK =

[
K + 1

4
,
3(K + 1)

4

]
=

{
K + 1

2
± k : k = 0, 1, · · · , K + 1

4

}
is the inter-quartiles interval – w.l.o.g. we assume that K + 1 can be divided by 4. In other words, f(v)
is the average sum over all inter-quartile values of the vector (

〈
X̄k, v

〉
)k∈[K] and g(v) is the median of this

vector. Note that both functions f and g are homogeneous i.e. f(θv) = θf(v) and g(θv) = θg(v) for every
v ∈ Rd and θ ∈ R and in particular they are odd functions; two facts we will use later.

We are now considering the Fenchel-Legendre transform of the functions f and g over a symmetric set
S:

f∗S : µ ∈ Rd → sup
v∈S

(〈
µ, v
〉
− f(v)

)
and g∗S : µ ∈ Rd → sup

v∈S

(〈
µ, v
〉
− g(v)

)
. (7)

As mentioned previously the two functions f∗S and g∗S are convex functions. We are now using them to
define convex programs whose solutions will be proved to be robust and subgaussian estimators of the
mean / location vector µ∗ w.r.t. ‖·‖S :

µ̂fS ∈ argmin
µ∈Rd

f∗S(µ) and µ̂gS ∈ argmin
µ∈Rd

g∗S(µ). (8)

For some special choices of S, the Fenchel-Legendre minimization estimator µ̂gS coincides with some
classical procedures. This is for instance the case when S = Bd

1 (the unit ball of the `d1-norm) or S = Bd
2 .

Indeed, when S = Bd
1 , µ̂gS is the coordinate-wise Median of Means:

µ̂gS = argmin
µ=(µj)∈Rd

max
j∈[d]

∣∣µj −Med
(〈
X̄k, ej

〉)∣∣ =
(
Med

(〈
X̄k, ej

〉)
: j ∈ [d]

)
(9)

where (ej)
d
j=1 is the canonical basis of Rd, because ‖·‖S = ‖·‖conv(S) where conv(S) is the convex hull of S

and so one may just take S = {±ej : j ∈ [d]}. It is therefore possible to derive deviation-minimax optimal
bounds for the coordinate-wise Median of Means w.r.t. the `d∞-norm from general upper bounds on µ̂gS
since in that case ‖·‖S = ‖·‖∞.

In the case S = Bd
2 (that is for the mean/location estimation problem w.r.t. `d2), the Fenchel-Legendre

minimum estimator µ̂gS is a minmax MOM estimator [25]. This connection allows to write µ̂gS (as well as

µ̂fS) as a non-constraint estimator, it also shows that this minmax MOM estimator is actually solution to
a convex optimization problem and how minmax MOM estimator can be generalized to other estimation
risks.

Minmax MOM estimators have been introduced as a systematic way to construct robust and subgaus-
sian estimators in [25]. They have been proved to be deviation-minimax optimal for the mean estimation
problem in [30] w.r.t. ‖·‖2. Their definition only requires to consider a loss function; here we take for all
µ ∈ Rd, `µ : x ∈ Rd → ‖x− µ‖22 and the minmax MOM estimator is then defined as

µ̃ ∈ argmin
µ∈Rd

sup
ν∈Rd

Med (PBk
(`µ − `ν) : k ∈ [K]) (10)

where PBk
is the empirical measure on the data in block Bk. The minmax MOM estimator µ̃ was proved

to achieve the subgaussian rate in (2) with confidence 1 − δ when the number of blocks is K ∼ log(1/δ)
and K & |O| in [30].

Even though the minmax formulation of µ̃ suggests a robust version of a descent/ascent gradient method
over the median block (see [25, 30] for more details), no proof of convergence of this algorithm is known
so far. Moreover, the main drawback of the minmax MOM estimator seems to be that it is solution of a
non-convex optimization problem and may therefore be likely to be rather difficult to compute in practice.
In the next result, we show that this is not the case since the minmax MOM estimator (10) is in fact equal
to µ̂gS for S = Bd

2 and it is therefore solution to a convex optimization problem.
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Proposition 1. The minmax MOM estimator µ̃ defined in (10) satisfies µ̃ ∈ argminµ∈Rd g∗
Bd

2
(µ). The

minmax MOM estimator is therefore solution to a convex optimization problem.

Proof. We show that µ̃ ∈ argminµ∈Rd sup‖v‖2=1 Med(
〈
X̄k−µ, v

〉
). We consider the quadratic/multiplier

decomposition of the difference of loss functions: for all µ, ν ∈ Rd and x ∈ Rd, we have (`µ − `ν)(x) =
‖x− µ‖22 − ‖x− ν‖

2
2 = −2

〈
x− µ, µ− ν

〉
− ‖µ− ν‖22. Hence, for all µ ∈ Rd, we have

sup
ν∈Rd

Med (PBk
(`µ − `ν)) = sup

ν∈Rd

(
−2 Med(

〈
X̄k − µ, µ− ν

〉
)− ‖µ− ν‖22

)
= sup
‖v‖2=1

sup
θ≥0

(
2θMed(

〈
X̄k − µ, v

〉
)− θ2

)
= sup
‖v‖2=1

(
Med(

〈
X̄k − µ, v

〉
)
)2

=

(
sup
‖v‖2=1

Med(
〈
X̄k − µ, v

〉
)

)2

.

We conclude since

argmin
µ∈Rd

(
sup
‖v‖2=1

Med(
〈
X̄k − µ, v

〉
)

)2

= argmin
µ∈Rd

sup
‖v‖2=1

Med
(〈
X̄k − µ, v

〉)
.

It follows from Proposition 1 that the minmax MOM estimator µ̃ is solution to a convex optimization
problem. This fact is far from being obvious given the definition of µ̃ in (10).

Proposition 1 suggests a new formulation for µ̂gS and µ̂fS . It is indeed possible to write these estimators
as regularized estimators instead of their original constraint formulation (note that the Fenchel-Legendre
transforms in (7) are suprema over S and are therefore constraint optimization problems). We now show
that we may write them as suprema over all Rd if we add an ad hoc regularization function.

Let us introduce the two following functions which may be seen as regularized versions of the two f
and g functions from (6): for all ν ∈ Rd,

FS(ν) = f(ν) +
‖ν‖2S

4
and GS(v) = g(ν) +

‖ν‖2S
4

. (11)

We also consider their Fenchel-Legendre transforms over the entire set Rd: for all µ ∈ Rd,

F ∗S(µ) = sup
ν∈Rd

(〈
µ, ν

〉
− FS(ν)

)
and G∗S(µ) = sup

ν∈Rd

(〈
µ, ν

〉
−GS(ν)

)
.

The next result shows that the later two Fenchel-Legendre transforms can be used to define the two
estimators µ̂fS and µ̂gS . The proof of Proposition 2 is similar to the one of Proposition 1 where the `2-norm
is replaced by ‖·‖S and is therefore omitted.

Proposition 2. Let S be a symmetric subset of Rd such that span(S) = Rd. We have µ̂fS ∈ argminµ∈Rd F ∗S(µ)
and µ̂gS ∈ argminµ∈Rd G∗S(µ).

As a consequence of Proposition 2, one can write the two estimators µ̂fS and µ̂gS as solutions to un-
constrained minmax optimization problems like the minmax MOM estimator (10) and in particular, one
may design an alternating ascent/descent sub-gradient algorithm similar to the one from [25] – we expect

the one associated with µ̂fS which uses half of the dataset at each iteration to be more efficient than the
one associated with µ̂gS which uses only the N/K data in the median block at each iteration. That is the
reason why we provide in Figure 1 this algorithm only for

µ̂fS ∈ argmin
µ∈Rd

sup
ν∈Rd

〈µ, ν〉− 1

|IK |
∑
k∈IK

〈
X̄k, v

〉∗
(k)
−
‖ν‖2S

4

 .
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We also recall that by the Danskin-Bertekas theorem the subgradient of ‖·‖S at ν ∈ Rd when S is a compact
and non empty set is given by the convex hull of all x ∈ S such that ‖ν‖S =

〈
x, ν
〉
.

input : the data X1, . . . , XN , a number K of blocks, two decreasing steps size sequences
(ηt)t, (θt)t ⊂ R∗+ and ε > 0 a stopping parameter

output: A robust estimator of the mean µ
1 Construct an equipartition B1 t · · · tBK = {1, · · · , N} at random
2 Construct the K empirical means X̄k = (N/K)

∑
i∈Bk

Xi, k ∈ [K]

3 Compute µ̃(0) the coordinate-wise median-of-means and put µ(0) = µ̃(0) and ν(0) = µ̃(0)

4 while
∥∥µ(t) − µ(t+1)

∥∥
S
≥ ε do

5 Construct an equipartition B1 t · · · tBK = {1, · · · , N} at random
6 Construct the K empirical means X̄k = (N/K)

∑
i∈Bk

Xi, k ∈ [K]

7 Find the inter-quartile block numbers k1, . . . , k(K+1)/2 ∈ [K] such that

f(ν(t)) =
1

|IK |

(K+1)/2∑
j=1

〈
X̄kj , ν

(t)
〉
.

Construct g(t) a subgradient of ‖·‖S at ν(t) and the ascent direction

∇(t+1)
ν = µ(t) − 1

|IK |

(K+1)/2∑
j=1

X̄kj −
∥∥ν(t)∥∥

S
g(t)

2
.

Update ν(t+1) ← ν(t) + ηt∇(t+1)
ν .

8 Make one descent step: µ(t+1) ← µ(t) − θtν(t+1).

9 end

10 Return µ(t+1)

Algorithm 1: An alternating ascent/descent algorithm for the robust mean estimation problem
w.r.t. ‖·‖S with randomly chosen blocks of data at each step.

3.2 The adversarial corruption model and two models for inlier.

In this section, we introduce the assumptions under which we will obtain some statistical upper bounds for
the Fenchel-Legendre minimum estimators introduced above. We are considering two types of assumptions:
one for the outliers which will be the adversarial corruption model and one for the inlier which will be
either the existence of a second moment or a regularity assumption on a family of cdf around 0. We start
with the adversarial corruption model.

Assumption 1. There exists N independent random vectors (X̃i)
N
i=1 in Rd. The N random vectors (X̃i)

N
i=1

are first given to an ”adversary” who is allowed to modify up to |O| of these vectors. This modification does
not have to follow any rule. Then, the ”adversary” gives the modified dataset (Xi)

N
i=1 to the statistician.

Hence, the statistician receives an ”adversarially” contaminated dataset of N vectors in Rd which can be
partitioned into two groups: the modified data (Xi)i∈O, which can be seen as outliers and the ”good data”
or inlier (Xi)i∈I such that ∀i ∈ I, Xi = X̃i. Of course, the statistician does not know which data has been
modified or not so that the partition O ∪ I = {1, . . . , N} is unknown to the statistician.

In the adversarial contamination model from Assumption 1, the set O ⊂ [N ] can depend arbitrarily
on the initial data (X̃i)

N
i=1; the corrupted data (Xi)i∈O can have any arbitrary dependence structure; and
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the informative data (Xi)i∈I may also be correlated (for instance, it is, in general, the case when the |O|
data X̃i with largest `d2-norm are modified by the adversary). The adversarial corruption model covers the
Huber ε-contamination model [18] and also the O ∪ I framework from [23, 25, 29].

Assumption 1 does not grant any property of the inlier data (X̃i)i∈[N ] except that they are independent.
We will obtain a general result under only Assumption 1 in Section 4. However, to recover convergence
rates similar to the one in Theorem 1 or the subgaussian rate in (5), we will grant some assumptions on
the inlier as well. We are now considering two assumptions on the inlier which are of different nature.

The two assumptions on the inlier we are now considering are related to a subtle property of the Median-
of-Means (MOM) principle which somehow benefits from its two components: the empirical median and
the empirical mean. Indeed, MOM is en empirical median of empirical means and so if we refer to
the classical asymptotic normality (a.n.) results of the empirical mean and the empirical median, the
first one holds under the existence of a second moment and the second one holds under the assumption
that the cdf is differentiable at the median with positive derivative at the median (see Corollary 21.5
in [41]). We therefore recover these two types of assumptions when we work with estimators using the
MOM principle. A nice feature of MOM based estimators is that their estimation results hold under
either one of the two conditions and do not require the two assumptions to hold simultaneously. We
can therefore consider the two assumptions independently and get two estimation results for the Fenchel-
Legendre minimum estimators introduced above (which are based on the MOM principle). We start with
the moment assumption.

Assumption 2. The N independent random vectors (X̃i)
N
i=1 have mean µ∗ and there exists a SDP matrix

Σ ∈ Rd×d such that E(X̃i − µ∗)(X̃i − µ∗)> � Σ.

Most of the statistical bounds obtained on MOM based estimators have focused on the heavy-tailed
setup and have therefore consider Assumption 2 as their main assumption. This is the ’empirical mean
component’ of the MOM principle which has been the most exploited so far. It is however also possible to
use the ’empirical median component’ of the MOM principle to get statistical bounds even in cases where
a first moment does not even exist. In that case, µ∗ is called a location parameter and Σ a scale parameter.
Also, a natural assumption is similar to the one used to get the a.n. of the empirical median, that is an
assumption on the cdf at the median adapted to the multidimensional and non-asymptotic setup. We are
now introducing such an assumption.

Assumption 3. The inlier data (X̃i)
N
i=1 are i.i.d.. There exists µ∗ ∈ Rd and two absolute constants c0 > 0

and c1 > 0 such that the following holds: for all v ∈ S and all 0 < r ≤ c0, HN,K,v(r) ≤ 1/2− c1r where

HN,K,v(r) = P

 1√
N/K

N/K∑
i=1

〈
X̃i − µ∗, v

〉
> r

 . (12)

A typical example where Assumption 3 holds is when S = Sd−12 (that is for the location estimation
problem w.r.t. the Euclidean `d2 norm) and the X̃i’s are rotational invariant that is when for all v ∈ Sd−12 ,〈
X̃1 − µ∗, v

〉
has the same distribution as

〈
X̃1 − µ∗, e1

〉
where e1 = (1, 0, . . . , 0) ∈ Rd. In that case, X̃1

has the same distribution as µ∗ + RU where R is a real-valued random variable on R+ independent of U
a random vector uniformly distributed over Sd−12 . In that case and for K = N , for all v ∈ Sd−12 and all
r ∈ R,

HN,K=N,v(r) = H(r) := P[R
〈
U, e1

〉
≥ r] =

∫ +∞

r
f(x)dx where f : x ∈ R→ Cd

∫ +∞

|x|

(
1− x2

u2

) d−3
2

dPR(u),

PR is the probability distribution of R and Cd is a normalization constant which can be proved to satisfy√
d ≤ Cd ≤ 6

√
d (see for instance, Chapter 4 in [5]). In particular, it follows from the mean value theorem
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that for all r ≥ 0, H(r) ≤ H(0) −min0≤x≤r f(x)r = 1/2 − f(r)r. Therefore, Assumption 3 holds in that
case when there exists constants c0, c1 > 0 such that f(c0) ≥ c1. Furthermore, we have

f(c0) ≥ Cd
∫ +∞

c0
√
d

(
1− c20

u2

) d−3
2

dPR(u) ≥
√
d

2
P[R ≥ c0

√
d]

because Cd ≥
√
d and for all u ≥ c0

√
d, (1 − (c0/u)2)(d−3)/2 ≥ 1/2. As a consequence, Assumption 3

holds if there are some constants c0 > 0 and c2 > 0 such that P[R ≥ c0
√
d] ≥ c2/

√
d. This is for

instance the case, when R is distributed like ‖G‖2 for G ∼ N (0, Id) (in that case X̃1 ∼ N (µ∗, Id)) because
P[‖G‖2 ≥ E ‖G‖2 /2] ≥ 1/2 and E ‖G‖2 ≥

√
d/2 by Borell-TIS inequality but as well when R is the positive

part of a Cauchy variable because
∫ +∞√

d
(1/(1 + x2))dx ≥ 1/(2

√
d). As a consequence, Assumption 3 has

nothing to do with the existence of any moment and it may hold even when there is not a first moment
and even for K = N .

Another example where Assumption 3 holds, that we will use in the following to obtain statistical
bounds for the coordinate-wise median of means for the location problem is when S = {±ej : j ∈ [d]} and
X̃1 = µ∗ + Z where Z = (zj)

d
j=1 is random vector in Rd with coordinates z1, . . . , zd having a symmetric

around 0 Cauchy distribution. In that case, X̃1 does not have a first moment and µ∗ is a location parameter
as the center of symmetry of the distribution of X̃1. We have for all j ∈ [d],

HN,K=N,±ej (r) = P
[〈
X̃1 − µ∗,±ej

〉
≥ r
]

= P[zj ≥ r] =

∫ +∞

r

dx

π(1 + x2)
≤ 1

2
− r

π(1 + r2)
≤ 1

2
− r

2π

for all 0 < r ≤ 1. Therefore, Assumption 3 holds in that case as well.

3.3 Statistical bounds for µ̂fS and µ̂gS

In this section, we obtain estimation bounds w.r.t. ‖·‖S for µ̂fS and µ̂gS in the adversarial contamination
model with either the L2 moment Assumption 1 or the regularity at 0 Assumption 3.

Estimation properties of µ̂fS and µ̂gS under Assumption 1. In this section, we obtain high prob-

ability estimation upper bounds satisfied by µ̂fS and µ̂gS w.r.t. ‖·‖S in the adversarial contamination and
heavy-tailed inlier model. The rate of convergence is given by the quantity

r∗S = max

 64√
N

E

∥∥∥∥∥∥ 1√
N

∑
i∈[N ]

εi(X̃i − µ∗)

∥∥∥∥∥∥
S

, sup
v∈S

∥∥∥Σ1/2v
∥∥∥
2

√
64K

N

 . (13)

The key metric property satisfied by the two Fenchel-Legendre transforms f∗S and g∗S in the adversarial
contamination and heavy-tailed inlier model is the following isomorphic result.

Lemma 1. Grant Assumption 1 and Assumption 2. Let S be a symmetric subset of Rd. Assume that
|O| < K/16. With probability at least 1−exp(−K/512), for all µ ∈ Rd, |g∗S(µ)− ‖µ− µ∗‖S | ≤ g∗S(µ∗) ≤ r∗S
and |f∗S(µ)− ‖µ− µ∗‖S | ≤ f∗S(µ) ≤ r∗S.

Lemma 1 shows that if ‖µ− µ∗‖S ≥ 2r∗S then ‖µ− µ∗‖S ≤ g∗S(µ) ≤ 2 ‖µ− µ∗‖S and the same holds
for f∗S . It means that both g∗S and f∗S are two convex functions equivalent (up to absolute constants) to
µ → ‖µ− µ∗‖S on Rd\(2r∗S)BS , where BS is the unit ball associated with ‖·‖S and, on (2r∗S)BS , they
are both smaller than 2r∗S . Hence, both g∗S(· − µ∗) and f∗S(· − µ∗) provide a good approximation of the
metric space (Rd, ‖·‖S). In particular, any minimum of g∗S and f∗S will be close (up to r∗S) to a minimum

of µ→ ‖µ− µ∗‖S which is µ∗. This explains the statistical properties of µ̂fS and µ̂gS : from Lemma 1,∥∥∥µ̂fS − µ∗∥∥∥
S
≤ f∗S(µ̂fS) + f∗S(µ∗) ≤ 2f∗S(µ∗) ≤ 2r∗S

and the same holds for µ̂gS . This leads to the following result.
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Theorem 5. Grant Assumption 1 and Assumption 2. Let S be a symmetric subset of Rd and r∗S be defined
in (13). For all K > 16|O|, with probability at least 1− exp(−K/512),∥∥∥µ̂fS − µ∗∥∥∥

S
≤ 2r∗S and

∥∥µ̂gS − µ∗∥∥S ≤ 2r∗S .

The rate r∗S obtained in Theorem 5 can be split into two terms: the complexity term given by the
Rademacher complexity and a deviation term exhibiting the weak variance term as in the Gaussian case.
Compare with Theorem 1 from [32], this result shows that the Gaussian mean width term appearing in
Theorem 1 is actually not necessary, it also shows that this improved rate can be obtained by a procedure
solution to a convex program and that it can also handle adversarial corruption. When S = Bd

2 , we recover
the classical subgaussian rate because in that case the Rademacher complexity term in r∗S is less or equal
to
√

Tr(Σ) [21]. In particular, since µ̂gS is the minmax MOM estimator in that case, we recover the main
result from [30].

Estimation properties of µ̂gS under Assumption 3. In this section, we consider some cases where a
first moment may not exist; in that case, µ∗ is a location parameter so that Assumption 3 holds. The rate
of convergence we obtain in that case is given by

r� =
C0

c1

(√
d+ 1

N
+

√
u

N

)
+

|O|
c1
√
KN

(14)

where c1 is the absolute constant from Assumption 3, C0 the absolute constant from (28) and u > 0 a
confidence parameter.

The following result is an isomorphic result satisfied by the Fenchel-Legendre transforms g∗S under
Assumption 3. It is similar to the one of Lemma 1 but with the rate r�.

Lemma 2. Let S be a symmetric subset of Rd. Grant Assumption 1 and Assumption 3 for some K ∈ [N ].

Let u > 0. Assume that C0

(√
(d+ 1)/K +

√
u/K

)
+ |O|/K ≤ c0c1. With probability at least 1−exp(−u),

for all µ ∈ Rd, |g∗S(µ)− ‖µ− µ∗‖S | ≤ r�.

As explained below Lemma 1, a result such as Lemma 2 may be used to upper bound the ‖·‖S distance
between µ̂gS , a minimum of g∗S , and µ∗, a minimum of µ→ ‖µ− µ∗‖S . This yields to the following result.

Theorem 6. Let S be a symmetric subset of Rd. Grant Assumption 1 and Assumption 3 for some

K ∈ [N ]. Let u > 0 and assume that C0

(√
(d+ 1)/K +

√
u/K

)
+ |O|/K ≤ c0c1. With probability at

least 1− exp(−u),
∥∥µ̂gS − µ∗∥∥S ≤ 2r� where r� is defined in (14).

Unlike Theorem 5, Theorem 6 may hold even when there is not a first moment. The result from
Theorem 6 hold for all 0 < u . K whereas Theorem 5 holds only for u = K (even though one may use a
Lepski’s adaptive scheme to chose adaptively K). The price for adversarial corruption in (14) is between
|O|/N (for K ∼ N) and

√
|O|/N (for K ∼ |O|). It therefore depends on the choice of K for which

Assumption 3 holds. As shown after Assumption 3 for spherically symmetric random variables one can
take K = N and so the best possible price |O|/N for adversarial corruption may be achieved even when a
first moment does not exist. If one needs some averaging effect so that Theorem 6 holds, then one should
take K as small as possible that is K ∼ |O| and then

√
|O|/N will be the price for adversarial corruption

as in the L2 case described in Theorem 6.

Subgaussian rates under weak or no moment assumption. It is possible to recover (up to absolute
constants) the subgaussian rate (5) in Theorem 5 for K ∼ log(1/δ) when the Rademacher complexity term
from (13) and the Gaussian mean width from (5) satisfy

E

∥∥∥∥∥∥ 1√
N

∑
i∈[N ]

εi(X̃i − µ∗)

∥∥∥∥∥∥
S

. `∗
(

Σ1/2S
)
. (15)
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Such a result (i.e. Rademacher complexity is smaller than the Gaussian mean width up to constant)
depends on the set S and the number of moments granted on the X̃i’s as well as the sample size. It
obviously holds when the X̃i’s are i.i.d. N (µ∗,Σ), so that we recover the deviation-minimax optimal
subgaussian rate (5) in that case. It is also true when the X̃i’s are subgaussian vectors. There are other
situations under weaker moment assumption where (15) holds.

For instance, when S = Bd
2 , (15) holds under only a L2-moment assumption (see [21]). It also holds for

S = Bd
1 when the X̃i’s are isotropic with coordinates having log d subgaussian moments (i.e.

∥∥∥〈X̃i, ej
〉∥∥∥

Lp

≤

L
√
p for all 1 ≤ p ≤ log d and coordinate j ∈ [d]) and N & log d. Together with (9) and Theorem 5, this

implies that the coordinate-wise MOM is a subgaussian estimator of the mean under a log d subgaussian
moment assumption. Upper bounds such as (15) have been extended in [35] to general unconditional
norms.

It is also possible to recover the subgaussian rate (5) in situations where there is not even a first moment
thanks to Theorem 6. Indeed, for the case S = Bd

1 and X̃1 = µ∗ + Z where Z = (zj)
d
j=1 has symmetric

around 0 Cauchy distributed coordinates, we showed that Assumption 3 holds for K = N and that µ̂gS
is the coordinate-wise median (here K = N) in (9). It follows from Theorem 6 that, when d . N and
|O| . N then for all d ≤ u . N , with probability at least 1− exp(−u),∥∥µ̂gS − µ∗∥∥∞ ≤ 2C0

(√
d+ 1

N
+

√
u

N

)
+

2π|O|
N

(16)

which is the deviation-minimiax optimal subgaussian rate (5) we would have gotten if the X̃i were i.i.d.
isotropic Gaussian vectors centered in µ∗ corrupted by |O| adversarial outliers (up to absolute constants).
But here, (16) is obtained without the existence of a first moment. Moreover, in (16), the number of
outliers is allowed to be proportional to N and the price for adversarial corruption is of the order of
|O|/N which is the same price we have to pay when inlier have a Gaussian distribution – this differs from
the

√
|O|/N information theoretical lower bound that has been obtained for some non-symmetric inlier.

Furthermore, the computational cost of the coordinate-wise MOM is O(Nd) since the cost for computing
the bucketed means is O(Nd), the one of finding the median of K numbers is O(K) [3], it is therefore the
same computational cost as the one of the empirical mean. It is therefore possible to achieve the same
computational and statistical properties as the empirical mean in a setup where a first moment does not
even exist.
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4 Proofs

Proof of Theorem 3. The minimax lower bound rate r∗ exhibits two quantities: one which is a complexity
term depending on the Gaussian mean width of Σ1/2S and a deviation term depending on δ. The two
terms come from two arguments. We start with the deviation term.

Let v1 ∈ Rd be such that ‖v1‖S = 1. We consider two Gaussian measures on RdN : P0 = N (0,Σ)⊗N

and P1 = N (3r∗v1,Σ)⊗N . They are the distributions of a sample of N i.i.d. Gaussian vectors in Rd with
the same covariance matrix Σ and the first one with mean 0 and the second one with mean 3r∗v1. We set
A0 = (µ̂)−1(BS(0, r∗)) = {(x1, . . . , xN ) ∈ RNd : ‖µ̂(x1, . . . , xN )‖S ≤ r∗} and A1 = (µ̂)−1(BS(3r∗v1, r

∗)). It
follows from the statistical properties of µ̂ that P0[A0] ≥ 1− δ and P1[A1] ≥ 1− δ.

The key ingredient for the deviation lower bound term is a slightly generalization of Lemma 3.3 in [24]
which is based on a version of the Gaussian shift Theorem from [31].
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Lemma 3. Let t 7→ Φ(t) = P(g ≤ t) be the cumulative distribution function of a standard gaussian random
variable on R. Let Σ0 � 0 be in R(Nd)×(Nd) and u, v ∈ RdN . Let two gaussian measures νu ∼ N (u,Σ0)
and νv ∼ N (v,Σ0) on RNd. If A ⊂ RdN is measurable, then

νv(A) ≥ 1− Φ
(
Φ−1(1− νu(A)) + ‖Σ−1/20 (u− v)‖2

)
(17)

where Σ
−1/2
0 is the square root of the pseudo-inverse of Σ0.

Proof of Lemma 3. When Σ0 = INd, Lemma 3 is exactly Lemma 3.3 in [24] for σ = 1. To prove

Lemma 3, we observe that νv(A) = P[G+ Σ
−1/2
0 v ∈ B] where B = Σ

−1/2
0 A and G is a standard Gaussian

variable in Im(Σ0). Hence, it follows from Lemma 3.3 in [24] that

P[G+ Σ
−1/2
0 v ∈ B] ≥ 1− Φ

(
Φ−1(1− P[G+ Σ

−1/2
0 u ∈ B]) + ‖Σ−1/20 (u− v)‖`N2

)
which is exactly (17).

It follows from Lemma 3 that

P1[A0] ≥ 1− Φ
[
Φ−1(1− P0[A0]) +

∥∥∥Σ
−1/2
0 (0− (3r∗v1, . . . , 3r

∗v1))
∥∥∥
2

]
. (18)

Moreover, we have Φ−1(1− P0[A0]) ≤ Φ−1(δ) (because 1− P0[A0] ≤ δ) and∥∥∥Σ
−1/2
0 (0− (3r∗v1, . . . , 3r

∗v1))
∥∥∥
2

= 3r∗
√
N
∥∥∥Σ−1/2v1

∥∥∥
2
. (19)

As a consequence, if 3r∗
√
N
∥∥Σ−1/2v1

∥∥
2
≤ −Φ−1(δ) then, in (18), we get P1[A0] ≥ 1 − Φ[0] ≥ 1/2 which

is not possible because P1[A1] ≥ 1 − δ > 3/4 and A1 ∩ A0 = ∅. As a consequence, we necessarily

have 3r∗
√
N ≥ (−Φ−1(δ))

∥∥Σ−1/2v1
∥∥−1
2

. The later holds for any v1 ∈ Rd such that ‖v1‖S = 1 hence

3r∗
√
N ≥ (−Φ−1(δ))[1/ inf‖v‖S=1

∥∥Σ−1/2v
∥∥
2
]. It also follows from the bound on the Mill’s ratio from [22]

(here we use that for all x ≥ 0, Φ(−x) ≥ 2ϕ(x)/
√

4 + x2 + x where ϕ is the standard Gaussian density
function) that for all 0 < δ < 1/4, −Φ−1(δ) ≥ 1/4

√
log(1/δ). This shows that

r∗ ≥ 1

12

√
log(1/δ)

N

1

inf‖v‖S=1

∥∥Σ−1/2v
∥∥
2

. (20)

To conclude on the deviation term, we use the following duality argument.

Lemma 4. Let A ∈ Rd×d be a symmetric and invertible matrix. Let ‖·‖ be a norm and its dual norm ‖·‖∗
on Rd. Let S be a symmetric subset of Rd such that span(S) = Rd. We have

1

inf‖v‖S=1 ‖A−1v‖
≥ sup

w∈S
‖Aw‖∗ .

Proof of Lemma 4. Let v be such that ‖v‖S = 1 and w ∈ S. We have |
〈
v, w

〉
| ≤ 1 and so

|
〈
A−1v/

∥∥A−1v∥∥ , Aw〉| ≤ 1/
∥∥A−1v∥∥. The later holds for all v such that ‖v‖S = 1 and {A−1v/

∥∥A−1v∥∥ :
‖v‖S = 1} is the unit sphere of ‖·‖. Hence, we conclude by taking the sup over v such that ‖v‖S = 1 and
w ∈ S.

It follows from (20) and Lemma 4 for ‖·‖ = ‖·‖2 and A = Σ1/2 that

r∗ ≥ 1

12

√
log(1/δ)

N
sup
w∈S

∥∥∥Σ1/2w
∥∥∥
2
. (21)
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Let us now turn to the second part of the lower bound; the one coming from the complexity of the
problem (here, it is the Gaussian mean width of Σ1/2S). We know that µ̂ is an estimator such that for all
µ ∈ Rd, PNµ [‖µ̂− µ‖S ≤ r∗] ≥ 1− δ which is equivalent to say that

δ ≥ sup
µ∈Rd

ENµ φ
(
‖µ̂− µ‖S

r∗

)
(22)

where we set φ : t ∈ R → I(t > 1) and ENµ is the expectation with respect to X1, . . . XN
i.i.d.∼ N (µ,Σ).

Next, we consider a Gaussian distribution γ over the set of parameters µ ∈ Rd: for s > 0, we assume that
µ ∼ N (0, sΣ). It follows from (22) that

δ ≥
∫
µ∈Rd

ENµ φ
(
‖µ̂− µ‖S

r∗

)
γ(µ)dµ = E

[
E
[
φ

(
‖µ̂(X1, . . . , XN )− µ‖S

r∗

)
|X1, . . . , XN

]]
. (23)

In other words, we lower bound the minmax risk by a Bayesian risk. We now use Anderson’s lemma to
lower bound the Bayesian risk appearing in (23). We first recall Anderson’s Lemma.

Theorem 7 (Anderson’s Lemma). Let Γ be a semi-definite d×d matrix and Z ∼ N (0,Γ). Let w : Rd → R
be such that all its level sets (i.e. {x ∈ Rd : w(x) ≤ c} for c ∈ R) are convex and symmetric around the
origin. Then for all x ∈ Rd, Ew(Z + x) ≥ Ew(Z).

We remark that µ− E[µ|X1, . . . , XN ] is distributed according to N (0, (s/(1 +Ns)Σ)) conditionally to
X1, . . . , XN . Therefore, applying Anderson’s Lemma conditionally to X1, . . . , XN , we obtain in (23) that

δ ≥ E
[
φ

(
‖E[µ|X1, . . . , XN ]− µ‖S

r∗

)]
= P

[∥∥∥Σ1/2G
∥∥∥
S
≥
√

1 +Ns

s
r∗

]
where G ∼ N (0, Id). This result is true for all s > 0 so taking s ↑ +∞, we obtain

δ ≥ P
[∥∥∥Σ1/2G

∥∥∥
S
≥
√
Nr∗

]
.

Using Borell-TIS’s inequality (Theorem 7.1 in [26] or pages 56-57 in [39]), we know that with probability
at least 4/5,

∥∥Σ1/2G
∥∥
S
≥ E

∥∥Σ1/2G
∥∥
S
− σS

√
2 log(5/4) where we set σS = sup‖v‖S=1

∥∥Σ1/2v
∥∥
2
. As a

consequence, for δ = 1/4, we necessarily have
√
Nr∗ ≥ E

∥∥Σ1/2G
∥∥
S
− σS

√
2 log(5/4) and so

√
Nr∗ ≥

(1/2)E
∥∥Σ1/2G

∥∥
S

when E
∥∥Σ1/2G

∥∥
S
≥ 2σS

√
2 log(5/4). Finally, when E

∥∥Σ1/2G
∥∥
S
< 2σS

√
2 log(5/4), we

know from (21) for δ = 1/4 that

r∗ ≥ 1

12

√
log 4

N
σS ≥

1

24

√
log 2

log(5/4)

E
∥∥Σ1/2G

∥∥
S√

N
.

Proof of Theorem 4. Theorem 4 follows from Theorem 3 and the following lower bound on E
∥∥Σ1/2G

∥∥
Bd

2
.

We have from Borell-TIS’s inequality that

E
∥∥∥Σ1/2G

∥∥∥2
2
−
(
E
∥∥∥Σ1/2G

∥∥∥
2

)2
= E

(∥∥∥Σ1/2G
∥∥∥
2
− E

∥∥∥Σ1/2G
∥∥∥
2

)2
=

∫ ∞
0

P
[∣∣∣∥∥∥Σ1/2G

∥∥∥
2
− E

∥∥∥Σ1/2G
∥∥∥
2

∣∣∣ ≥ √t] dt ≤ 2σ2
Bd

2

where σ2
Bd

2
= sup‖v‖2=1

∥∥Σ1/2v
∥∥2
2

= ‖Σ‖op. Since E
∥∥Σ1/2G

∥∥2
2

= Tr(Σ), we have
(
E
∥∥Σ1/2G

∥∥
2

)2 ≥ Tr(Σ)−
2 ‖Σ‖op. Therefore, E

∥∥Σ1/2G
∥∥
2
≥
√

Tr(Σ)/2 when Tr(Σ) ≥ 4 ‖Σ‖op and when Tr(Σ) < 4 ‖Σ‖op, we use the
lower bound from (21) and an argument similar to the one appearing in the end of the proof of Theorem 3
to get the result.
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Proof of Lemma 1. We first prove the result for the g∗S function. The one for the f∗S is similar up to
constants and will be sketched after. The proof of Lemma 1 for the g∗S function is a corollary of the general
fact which holds under only Assumption 1. Let u > 0 be a confidence parameter and define R∗S such that

4√
NR∗S

E

∥∥∥∥∥∥ 1√
N

∑
i∈[N ]

εi(X̃i − µ)

∥∥∥∥∥∥
S

+

√
2u

K
+ sup

v∈S
HN,K,v

(
R∗S
2

√
N

K

)
+
|O|
K

<
1

2
. (24)

Let us show that with large probability for all µ ∈ Rd, |g∗S(µ)− ‖µ− µ∗‖S | ≤ R∗S .
We have for all µ ∈ Rd,

|g∗S(µ)− ‖µ− µ∗‖S | =
∣∣∣∣sup
v∈S

(〈
µ, v
〉
− g(v)

)
− sup

v∈S

〈
v, µ− µ∗

〉∣∣∣∣ ≤ sup
v∈S

∣∣〈µ∗, v〉− g(v)
∣∣ = g∗S(µ∗) (25)

where we used that S is symmetric and g is odd. It only remains to show that g∗S(µ∗) ≤ R∗S with large
probability. To that end, it is enough to prove that, with large probability, for all v ∈ S,∑

k∈[K]

I(
〈
X̄k − µ∗, v

〉
> R∗S) <

K

2
. (26)

We use the notation introduced in Assumption 1 and we consider X̃k = |Bk|−1
∑

i∈Bk
X̃i for k ∈ [K]

which are the K bucketed means constructed on the N independent vectors X̃i, i ∈ [N ] before contamina-
tion (whereas X̄k are the ones constructed after contamination). We also set K = {k ∈ [K] : Bk ∩ O = ∅}
the indices of the non corrupted blocks. We have∑

k∈[K]

I(
〈
X̄k − µ∗, v

〉
> R∗S) =

∑
k∈K

I(
〈
X̄k − µ∗, v

〉
> R∗S) +

∑
k/∈K

I(
〈
X̄k − µ∗, v

〉
> R∗S)

≤
∑
k∈[K]

I(
〈
X̃k − µ∗, v

〉
> R∗S) + |O|. (27)

It only remains to show that with probability at least 1− exp(−u), for all v ∈ S,

∑
k∈[K]

I(
〈
X̃k − µ∗, v

〉
> R∗S) ≤ 4K√

NR∗S
E

∥∥∥∥∥∥ 1√
N

∑
i∈[N ]

εi(X̃i − µ∗)

∥∥∥∥∥∥
S

+
√

2uK +K sup
v∈S

HN,K,v

(
R∗S
2

√
N

K

)
.

We define φ(t) = 0 if t ≤ 1/2, φ(t) = 2(t − 1/2) if 1/2 ≤ t ≤ 1 and φ(t) = 1 if t ≥ 1. We have
I(t ≥ 1) ≤ φ(t) ≤ I(t ≥ 1/2) for all t ∈ R and so∑

k∈[K]

I(
〈
X̃k − µ∗, v

〉
> R∗S)

≤
∑
k∈[K]

I(
〈
X̃k − µ∗, v

〉
> R∗S)− P[

〈
X̃k − µ∗, v

〉
> R∗S/2] + P[

〈
X̃k − µ∗, v

〉
> R∗S/2]

≤
∑
k∈[K]

φ

(〈
X̃k − µ∗, v

〉
R∗S

)
− Eφ

(〈
X̃k − µ∗, v

〉
R∗S

)
+ P[

〈
X̃k − µ∗, v

〉
> R∗S/2]

≤ sup
v∈S

∑
k∈[K]

φ

(〈
X̃k − µ∗, v

〉
R∗S

)
− Eφ

(〈
X̃k − µ∗, v

〉
R∗S

)+K sup
v∈S

HN,K,v

(
R∗S
2

√
N

K

)
.

Next, we use several tools from empirical process theory and in particular, for a symmetrization argu-
ment, we consider a family of N independent Rademacher variables (εi)

N
i=1 independent of the (X̃i)

N
i=1. In
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(bdi) below, we use the bounded difference inequality (Theorem 6.2 in [4]). In (sa-cp), we use the sym-
metrization argument and the contraction principle (Chapter 4 in [27]) – we refer to the supplementary
material of [29] for more details. We have, with probability at least 1− exp(−u),

sup
v∈S

∑
k∈[K]

φ

(〈
X̃k − µ∗, v

〉
R∗S

)
− Eφ

(〈
X̃k − µ∗, v

〉
R∗S

)
(bdi)

≤ E sup
v∈S

∑
k∈[K]

φ

(〈
X̃k − µ∗, v

〉
R∗S

)
− Eφ

(〈
X̃k − µ∗, v

〉
R∗S

)+
√

2uK

(sa−cp)
≤ 4K

NR∗S
E sup
v∈S

〈
v,
∑
i∈[N ]

εi(X̃i − µ∗)
〉

+
√

2uK

=
4K√
NR∗S

E

∥∥∥∥∥∥ 1√
N

∑
i∈[N ]

εi(X̃i − µ∗)

∥∥∥∥∥∥
S

+
√

2uK.

We therefore showed that under Assumption 1, with probability at least 1 − exp(−u), for all µ ∈ Rd,
|g∗S(µ)− ‖µ− µ∗‖S | ≤ R∗S .

Now, if Assumption 2 holds then for all v ∈ S, we have from Markov’s inequality that

HN,K,v

(
R∗S
2

√
N

K

)
≤

E
〈
X̃k − µ, v

〉2
(r∗S/2)2

=
4Kv>Σv

N(r∗S)2
≤

4K supv∈S
∥∥Σ1/2v

∥∥2
2

N(r∗S)2
≤ 1

8

and therefore (24) holds for R∗S = r∗S when |O| < K/8 and u = K/128. This proves the result of Lemma 1
for g∗S under Assumption 2.

Finally, for the function f∗S one needs to control the average of the K/2 inter-quartiles. One way to
do it is to control the value of all elements

〈
X̄k − µ∗, v

〉
in the inter-quartiles interval. This can be done

by defining an R∗S similar to the one in (24) but where the right-hand side value 1/2 is replaced by 1/4 in
(24). This only modifies the absolute constants which are the one used in Lemma 1.

Proof of Lemma 2. Unlike in Lemma 1 where we used the Rademacher complexities as a complexity
measure, in this proof, the complexity measure we are using is the Vapnik and Chervonenkis (VC) dimension
[43, 44] of a class F of Boolean functions, i.e. of functions from Rd to {0, 1} in our case. We recall that
the Vapnik and Chervonenkis dimension of F , denoted by V C(F), is the maximal integer n such that
there exists x1, . . . , xn ∈ Rd for which the set {(f(x1), . . . , f(xn)) : f ∈ F)} is of maximal cardinality,
that is of size 2n. The VC dimension of the set of all indicators of half affine spaces in Rd is d + 1 (see
Example 2.6.1 in [42]). We also know (see, for instance, Chapter 3 in [20]) the following concentration
bound: let Y1, . . . , Yn be independent random vectors in Rd, there exists an absolute constant C0 such that
for all u > 0, with probability at least 1− exp(−u),

sup
f∈F

(
1

n

n∑
i=1

f(Yi)− Ef(Yi)

)
≤ C0

(√
V C(F)

n
+

√
u

n

)
. (28)

Lemma 2 is a corollary of a general result which holds under the only Assumption 1. This general result
says that for all u > 0, with probability at least 1 − exp(−u), for all µ ∈ Rd, |g∗S(µ)− ‖µ− µ∗‖S | ≤ R�

where R� is any point such that

C0

(√
d+ 1

K
+

√
u

K

)
+ sup
‖v‖2=1

HN,K,v

(
R�
√
N

K

)
+
|O|
K

<
1

2
(29)
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where C0 is the constant from (28). In particular, when Assumption 3 holds then one can check that (29)
holds for R� = r� when r� ≤ c0 proving the result of Lemma 2. It only remains to show the general result.
To that end we follow the same strategy as in the proof of Lemma 1 up to (27) (and with R∗S replaced by
R�). From that point, we use (28) and the VC dimension of the set of affine half spaces to get that with
probability at least 1− exp(−u), for all v ∈ S,

∑
k∈[K]

I(
〈
X̃k − µ∗, v

〉
> R�) ≤ HN,K,v

(
R�
√
N

K

)
+ C0

(√
d+ 1

N/K
+

√
u

N/K

)

and so by definition of R�, on the same event, for all v ∈ S,
∑

k∈[K] I(
〈
X̄k − µ∗, v

〉
> R�) < 1/2. This

concludes the proof.
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estimation by median-of-means. Technical report, CNRS, University of Paris 11, Ecole Polytechnique and CREST, 2017.
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