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Abstract

We prove that iid random vectors that satisfy a rather weak mo-
ment assumption can be used as measurement vectors in Compressed
Sensing, and the number of measurements required for exact recon-
struction is the same as the best possible estimate – exhibited by a
random gaussian matrix. We also prove that this moment condition
is necessary, up to a log log factor. Applications to the Compatibility
Condition and the Restricted Eigenvalue Condition in the noisy setup
and to properties of neighbourly random polytopes are also discussed.

1 Introduction and main results

In Compressed Sensing (see, e.g., [8] and [13]), one observes linear measure-
ments yi =

〈

Xi, x0
〉

, i = 1, ..., N of an unknown vector x0 ∈ R
n, and the

goal is to identify x0 using those measurements.
Let (e1, . . . , eN ) be the canonical basis of RN . Given the measurements

matrix Γ = N−1/2
∑N

i=1

〈

Xi, ·
〉

ei, a possible recovery procedure is the basis
pursuit algorithm, defined by

x̂ ∈ argmin
(

‖t‖1 : Γt = Γx0
)

.

A well known question is to identify conditions on the vectors X1, ....,XN

that ensure that if x0 is s-sparse, that is, if it is supported on at most s
coordinates, the unique minimizer of the basis pursuit algorithm is x0 itself.
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Definition 1.1 A matrix Γ ∈ R
N×n satisfies the exact reconstruction

property of order s if for every x0 ∈ Σs, the set of all s−sparse vectors
in R

n,
argmin

(

‖t‖1 : Γt = Γx0
)

= {x0}. (ER(s))

It follows from Proposition 2.2.18 in [11] that if Γ satisfies ER(s) then
N & s log

(

en/s
)

. And, there are constructions of random matrices that
satisfy ER(s) with high probability and with the optimal number of mea-
surements (rows) N ∼ s log

(

en/s
)

.
A typical example of such a matrix is the gaussian matrix, that has

independent standard normal random variables as entries. Other examples
are measurements matrices Γ when X1, ...,XN are independent, isotropic
and L-subgaussian random vectors.

Definition 1.2 A random vector X in R
n is isotropic if for every t ∈ R

n,
E
〈

X, t
〉2

= ‖t‖22, and it is L-subgaussian if for every t ∈ R
n and every p ≥ 2,

‖
〈

X, t
〉

‖Lp ≤ L
√
p‖

〈

X, t
〉

‖L2
.

The reason behind this result, and many others like it, is that isotropic
subgaussian matrices act on Σs in an isomorphic way with high probability,
when N & s log(en/s). In Compressed Sensing literature this isomorphic
behaviour is called the Restricted isometry property (RIP) (see, for example
[7, 9, 25]). A matrix Γ satisfies the RIP in Σs if for every t ∈ Σs,

(1 − δ)‖t‖2 ≤ ‖Γt‖2 ≤ (1 + δ)‖t‖2, (1.1)

for some fixed 0 < δ < 1. It is straightforward to show that if RIP holds in
Σs then ER(c0s) is satisfied where c0 is an absolute constant (cf. [8, 9, 6]).

Proving the RIP for subgaussian matrices uses the fact that tails of linear
functionals

〈

X, t
〉

decay faster than the corresponding gaussian variable.
Thus, it seemed natural to ask whether the same type of estimates hold in
cases in which linear functionals exhibit a slower decay – for example, when
X is sub-exponential, and the linear functionals satisfy that ‖

〈

X, t
〉

‖Lp ≤
Lp‖

〈

X, t
〉

‖L2
for every t ∈ R

n and every p ≥ 2.
Proving the RIP for a sub-exponential random ensemble is a much harder

task than for subgaussian ensembles (see, e.g. [1]). Moreover, the RIP does
not exhibit the same behaviour as in the gaussian case. Indeed, one may
show that for sub-exponential ensembles, the RIP holds with high proba-
bility only when N & s log2(en/s), and this estimate is optimal as can be
seen when X has independent, symmetric exponential random variables as
coordinates [1].
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On the other hand, the result in [18] (see Chapter 7 there) shows that
exact reconstruction can still be achieved by isotropic sub-exponential mea-
surement vectors when N & s log(en/s) – the same number of measurements
needed for the gaussian ensemble.

Clearly, this estimate cannot be based on the RIP, and one may ask
whether weaker assumptions on the measurement vectors may still lead to
exact recovery with the optimal number of measurements. The main result
presented here is in this direction. It uses the following condition that was
recently used in [23] and [24].

Definition 1.3 A random vector X in R
n satisfies the small ball property

in the set Σs if there exist u, β > 0 for which, for any s-sparse vector
t ∈ R

n, P
(

|
〈

X, t
〉

| > u ‖t‖2
)

≥ β.

The small ball property is a rather minimal assumption on the measure-
ment vector and is satisfied in fairly general situations. For example, if one
of the following conditions holds then X satisfies the small ball property
with constants that depend only on κ0 (and on ε for the first condition) (see
[23]):

1. X is isotropic and for every t ∈ Σs,
∥

∥

〈

X, t
〉∥

∥

L2+ε
≤ κ0

∥

∥

〈

X, t
〉∥

∥

L2
, for

some ε > 0;

2. X is isotropic and for every t ∈ Σs,
∥

∥

〈

X, t
〉∥

∥

L2
≤ κ0

∥

∥

〈

X, t
〉∥

∥

L1
;

3. x1, . . . , xn are n independent, real valued random variables that are
absolutely continuous with respect to the Lebesgue measure and with
almost surely bounded densities by κ0 and X = (x1, . . . , xn).

Our first result shows that the small ball condition of Definition 1.3
and a weak moment assumption suffices to ensure the exact reconstruction
property with the optimal number of measurements.

Theorem A. There exist absolute constants c0, c1 and c2 and for every
α ≥ 1/2 there exists a constant c3(α) that depends only on α for which the
following holds. Let X = (xi)

n
i=1 be a random vector on R

n such that

1. There are κ1, κ2, w > 1 that satisfy that for every 1 ≤ j ≤ n, ‖xj‖L2
=

1 and, for p = κ2 log(wn), ‖xj‖Lp ≤ κ1p
α.

2. The small ball property in Σs is satisfied by X.
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If s1 = c2u
2βs,

N ≥ c0 max
{

s log
(en

s

)

, (c3(α)κ1)2(κ2 log(wn))max{2α−1,1}
}

and X1, ...,XN are independent copies of X, then, with probability at least
1−2 exp(−c1β

2N)−1/wκ2nκ2−1, Γ = N−1/2
∑N

i=1

〈

Xi, ·
〉

ei satisfies the exact
reconstruction property in Σs1.

For example, it follows from Theorem A that a random matrix with iid
centered entries that have variance 1 and an Lp moment bounded by p for
p = 2 log n can be used as a measurement matrix, and just as in the gaussian
case, requires only N & s log(en/s) measurements.

Another straightforward application of Theorem A is for measurement
vectors that are absolutely continuous with respect to the Lebesgue mea-
sure on R

n with a bounded density and that have almost surely bounded
coordinates. The first condition implies the small ball assumption while the
second implies the moment condition. And, it is relatively simple to derive
many other results of a similar flavour of random ensembles that allow exact
reconstruction with the optimal number of measurements.

Just as noted for sub-exponential ensembles, Theorem A cannot be
proved using the RIP, and its proof must take a different path. A key
ingredient in the proof is the following observation:

Theorem B. Let Γ : R
n 7→ R

N and denote by (e1, . . . , en) the canonical
basis of Rn. Assume that

a) for every s-sparse vector x, ‖Γx‖2 ≥ c0 ‖x‖2, and

b) for every i ∈ {1, . . . , n}, ‖Γei‖2 ≤ c1.

Then, for s1 =
⌊

(c20(s− 1))/(4c21)
⌋

− 1, Γ satisfies the Exact Reconstruction
property in Σs1.

Compared with the RIP, conditions in Theorem B are weaker, as it
suffices to verify the right-hand side of the RIP in (1.1) just for 1-sparse
vectors and not for all s-sparse vectors. This is a substantial difference, as
the fact that for every t ∈ Σs, ‖Γt‖2 ≤ (1 + δ) ‖t‖2 is a costly one, and is
the reason for the gap between RIP and the Exact Reconstruction property.
While the lower bound holds almost for free (see [23], [24] and the next
section) and requires the small-ball assumption, the upper bound is almost
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equivalent to having a subgaussian behaviour of moments, at least up to
some level. Even the fact that one has to verify the upper bound only for
1-sparse vectors comes at a cost, and as will be explained later, is the reason
for a price to pay for convex relaxation.

To illustrate this fact, the next question we would like to address is
whether the moment condition in Theorem A, that the coordinates of X
should have log(n) moments, is really needed for the ER property. Our
second result shows that this condition is almost necessary.

We say that a random matrix Γ is generated by the random variable x
if Γ = N−1/2

∑N
i=1

〈

Xi, ·
〉

ei, where X1, ...,XN are independent copies of the
random vector X = (x1, ..., xn)⊤ whose coordinates are independent copies
of x.

Theorem C. There exist absolute constants c0, c1, c2 and c3 for which the
following holds. Given n ≥ c0 and N logN ≤ c1n, there exists a mean-zero,
variance one random variable x that satisfies ‖x‖L4

≤ c2, ‖x‖Lp
≤ c2

√
p

for p = c3(log n)/(logN), and if Γ is the N × n matrix generated by x then
with probability larger than 1/2, Γ does not satisfy the exact reconstruction
property of order 1.

Note that if Γ is generated by x that satisfies ‖x‖L2
= 1, ‖x‖L4

≤ c2
and ‖x‖Lp

≤ c2
√
p for p ∼ log n, then, it follows from Theorem A that for

N ∼ log n, Γ satisfies ER(1) with high probability. On the other hand, the
random ensemble from Theorem C is generated by x for which ‖x‖L2

= 1,
‖x‖L4

≤ c2 and ‖x‖Lp
≤ c2

√
p for p ∼ (log n)/ log log n, but still does not

satisfy ER(1) with probability at least 1/2 when N ∼ log n. Therefore, in
the case s = 1, a subgaussian moment assumption for p ∼ log n is a sharp
condition for exact recovery by the basis pursuit algorithm with an optimal
number of measurements (up to a log log n factor).

An alternative formulation of Theorem C is the following:

Theorem C′. If n ≥ c0 and p > 2, there exists a mean-zero and variance 1
random variable x, for which ‖x‖L4

≤ κ and ‖x‖Lp ≤ κ
√
p, and with proba-

bility at least 1/2, if N .
√
pn1/p, Γ does not satisfy the exact reconstruction

property of order 1.

Theorem C implies that Basis Pursuit may perform badly when the
coordinates of X do not have enough moments. This is not the case for
the ℓ0-minimization procedure. Recall that ℓ0-minimization is defined by
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min
(

‖t‖0 : Γt = Γx0
)

, where ‖t‖0 is the cardinality of the support of t.
In the following result, we show that ℓ0-minimization can reconstruct any
s-sparse vector from only N ∼ s log(en/s) measurements solely under the
small-ball assumption.

Theorem D. There exists absolute constants c0, c1 and c2 for which the
following holds. Let X be a random vector in R

n that satisfies the small
ball property in Σs as in Definition 1.3. Let X1, . . . ,XN be N independent
copies of X and set Γ = N−1/2

∑N
i=1

〈

Xi, ·
〉

ei. If N ≥ c0s log(en/s) then
with probability larger than 1− c1 exp(−c2N), given any ⌊s/2⌋-sparse vector
x0, the only t ∈ Σ⌊s/2⌋ for which Γt = Γx0 is x0 itself.

Theorem C together with Theorem D exhibit that a price has to be paid
for convex relaxation (basis pursuit being the convex relaxation of the ℓ0-
minimization procedure). Indeed, no moment assumption is needed for exact
reconstruction via ℓ0-minimization (this follows from Theorem D) whereas
at least (log n)/(logN) moments are required to get the same property for
Basis Pursuit (as indicated in Theorem C).

The price of convex relation can also be seen through the number of mea-
surements needed for exact reconstruction for the matrix Γ constructed in
Theorem C. Indeed, under the assumptions of Theorem C′ for, say p =
4, the random vector X = (x1, ..., xn)⊤ satisfies the conditions of The-
orem D. Therefore, one requires only N ∼ s log(en/s) random measure-
ments using independent copies of X to identify any s-sparse vector using
ℓ0-minimization. In contrast, Basis Pursuit requires at least ∼ n1/4 mea-
surements to reconstruct 1-sparse vectors.

We end this introduction with a word about notation and organization
of the article. In the next section, we prove Theorem A, B and D and in
Section 3 we prove Theorem C and C′. The final section is devoted to results
in a noisy setup that is the natural extension of Compressed Sensing. In
particular, we prove the so-called Compatibility Condition and Restricted
Eigenvalue Condition for the measurement matrix under weak moment as-
sumptions and study random neighbourly polytopes.

Throughout, absolute constants or constants that depend on other pa-
rameters are denoted by c, C, c1, c2, etc., (and, of course, we will specify
when a constant is absolute and when it depends on other parameters). The
values of these constants may change from line to line. The notation x ∼ y
(resp. x . y) means that there exist absolute constants 0 < c < C for which
cy ≤ x ≤ Cy (resp. x ≤ Cy). If b > 0 is a parameter then x .b y means
that x ≤ C(b)y for some constant C(b) that depends only on b.
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Let ℓnp be R
n endowed with the norm ‖x‖ℓnp =

(
∑

j |xj |p
)1/p

. The unit

ball there is denoted by Bn
p and the unit Euclidean sphere in R

n is Sn−1. If
A ⊂ R

n then 1A denotes the indicator function of A.

2 Proof of Theorem A, B and D

The proof of Theorem A has several components, and although the first of
them is rather standard, we present it for the sake of completeness.

Lemma 2.1 Let Γ : R
n → R

N be a given matrix and fix 0 < r < 1. If
Bn

1 ∩ rSn−1 does not intersect the kernel ker(Γ), then Γ satisfies the exact
reconstruction property in Σ⌊(2r)−2⌋.

Proof. Observe that if x ∈ Bn
1 and ‖x‖2 ≥ r then y = rx/‖x‖2 ∈ Bn

1 ∩
rSn−1. Thus, Γy 6= 0 implies that Γx 6= 0 – and therefore,

sup
x∈Bn

1
∩ker(Γ)

‖x‖2 < r.

Let s = ⌊(2r)−2⌋, fix x0 ∈ Σs and put I to be the set of coordinates on
which x0 is supported. Given a nonzero h ∈ ker(Γ), let h = hI + hIc - the
decomposition of h to coordinates in I and in Ic. Since h/‖h‖1 ∈ Bn

1 ∩ker(Γ)
then ‖h‖2 ≤ r‖h‖1, and by the choice of s, 2

√
s‖h‖2 ≤ ‖h‖1. Therefore,

‖x0 + h‖1 = ‖x0 + hI‖1 + ‖hIc‖1 ≥ ‖x0‖1 − ‖hI‖1 + ‖hIc‖1
=‖x0‖1 − 2‖hI‖1 + ‖h‖1 ≥ ‖x0‖1 − 2

√

|I|‖hI‖2 + ‖h‖1 > ‖x0‖1.

Hence, ‖x0+h‖1 > ‖x0‖1 and x0 is the unique minimizer of the basis pursuit
algorithm, proving exact reconstruction.

The main component in the proof of Theorem A is a uniform empirical
small-ball estimate, following the same lines as the results in [24] and [23].

Definition 2.2 Let G be a class of {0, 1}-valued functions defined on a space
X . The set G is a VC-class if there exists an integer V for which, given any
points x1, ..., xV +1 ∈ X ,

|{(g(x1), ..., g(xV +1)) : g ∈ G}| < 2V+1. (2.1)

The VC-dimension of G, denoted by V C(G), is the smallest integer V for
which (2.1) holds.
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Lemma 2.3 There exists absolute constants c1 and c2 for which the follow-
ing holds. Let F be a class of functions and assume that there is β and u
for which

inf
f∈F

P
(

|f | > u
)

≥ β.

Let Gu =
{

1{|f |>u} : f ∈ F
}

. If V C(Gu) ≤ d and N ≥ c1d/β
2 then with

probability at least 1 − exp(−c2β
2N),

inf
f∈F

∣

∣

{

i ∈ {1, . . . , N} : |f(Xi)| > u
}∣

∣ ≥ βN

2
.

Proof. Let H(X1, ...,XN ) = supg∈Gu
|N−1

∑N
i=1 g(Xi) − Eg(X)|. By the

bounded differences inequality (see, for example, Theorem 6.2 in [4]), with
probability at least 1 − exp(−t),

H(X1, ...,XN ) ≤ EH(X1, ...,XN ) + c1

√

t

N
.

Since V C(Gu) ≤ d, then by standard empirical processes arguments (sym-
metrization, the fact that Bernoulli processes are subgaussian and entropy
estimates - see, for example [33]),

EH(X1, ...,XN ) ≤ c2

√

d

N
≤ β/4, (2.2)

provided that N & d/β2. Therefore, taking t = Nβ2/16c21, then with prob-
ability at least 1 − exp(−c3β

2N), for every f ∈ F ,

1

N

N
∑

i=1

1{|f |>u}(Xi) ≥ P
(

|f | > u
)

− β

2
≥ β

2
,

and on that event, |{i : |f(Xi)| > u}| ≥ βN/2 for every f ∈ F .

Corollary 2.4 There exist absolute constants c1 and c2 for which the fol-
lowing holds. Let X be a random vector on R

n.

1. If there are β, u > 0 such that P
(

|
〈

t,X
〉

| > u
)

≥ β for any t ∈ Sn−1

and if N ≥ c1n/β
2, then with probability at least 1 − exp(−c2Nβ2),

inf
t∈Sn−1

1

N

N
∑

i=1

〈

Xi, t
〉2 ≥ u2β

2
.
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2. If there are β, u > 0 such that P
(

|
〈

t,X
〉

| > u
)

≥ β for any t ∈
Σs ∩ Sn−1 and if N ≥ c1s log(en/s)/β2, then with probability at least
1 − exp(−c2Nβ2),

inf
t∈Σs∩Sn−1

1

N

N
∑

i=1

〈

Xi, t
〉2 ≥ u2β

2
.

Remark 2.5 Note that the first part of Corollary 2.4 gives an estimate on
the smallest singular value of the random matrix Γ = N−1/2

∑N
i=1

〈

Xi, ·
〉

ei
along the lines of the estimate from [24], but without any assumption on
the covariance structure of X, which is used in [24] or [29]. Note that the
covariance matrix does not even have to exist to apply Corollary 2.4. It
appears that the only small ball assumption over Sn−1 is enough to prove
that with large probability the smallest singular value of a random matrix is
larger than a constant.

Proof of Corollary 2.4. To prove the first part of the claim, let F =
{
〈

t, ·
〉

: t ∈ Sn−1}. Recall that the VC dimension of a class of half-spaces in
R
n is at most n, and thus, one may verify that for every u, the VC dimension

of
Gu = {1{|f |>u} : f ∈ F}

is at most c1n for a suitable absolute constant c1 (see, e.g., Chapter 2.6 in
[33]). The claim now follows immediately from Lemma 2.3; indeed, for every
t ∈ Sn−1,

1

N

N
∑

i=1

〈

t,Xi

〉2 ≥ u2

N
|{i : |

〈

Xi, t
〉

| > u}|.

Turning to the second part, note that Σs∩Sn−1 is a union of
(n
s

)

spheres
of dimension s. Applying the first part to each one of the spheres, combined
with the union bound, it follows that if N ≥ c2β

−2s log(en/s), then with
probability at least 1 − exp(−c3Nβ2),

inf
t∈Σs∩Sn−1

1

N

N
∑

i=1

〈

Xi, t
〉2 ≥ u2β

2
.

Corollary 2.4 shows that the weak small-ball assumption for linear func-
tionals implies that Γ ‘acts well’ on s-sparse vectors. However, according
to Lemma 2.1, exact recovery follows if one can show that it also acts well
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on the larger set
√
rBn

1 ∩ Sn−1 for a well chosen r that is proportional to
s. Therefore, one has to use information on the way a matrix acts on Σs to
study the way it acts on the set

√
κ0sB

n
1 ∩ Sn−1 = {x ∈ R

n : ‖x‖1 ≤ √
κ0s, ‖x‖2 = 1}.

In the standard (RIP-based) argument, one proves exact reconstruction by
showing that the RIP holds on Σs. The fact that each vector in

√
κ0sB

n
1 ∩

Sn−1 is well approximated by vectors from Σs (see, for instance, [11]) allows
one to extend the RIP from Σs to

√
κ0sB

n
1 ∩ Sn−1. However, extending the

RIP requires both upper and lower estimates, and obtaining the upper part
of the RIP on Σs forces severe restrictions on the random vector X that
do not hold under only moment assumptions. Thus, passing from Σs to√
κ0sB

n
1 ∩Sn−1, with only a lower bound on inft∈Σs ‖Γt‖2 at one’s disposal,

requires a totally different argument.
The method we present below is based on Maurey’s empirical method

and has been recently used in [26] where it is called the ’transfer principle’.

Lemma 2.6 Let Γ : Rn → R
N be a matrix and put 1 < s ≤ n. Denote

by (e1, . . . , en) the canonical basis of Rn. Assume that for every x ∈ Σs,
‖Γx‖2 ≥ λ‖x‖2. Let y ∈ R

n be nonzero, set µj = |yj|/‖y‖1, then,

‖Γy‖22 ≥ λ2‖y‖22 −
‖y‖21
s− 1





n
∑

j=1

‖Γej‖22 µj − λ2



 .

Proof. Fix y ∈ R
n, let Y be a random vector in R

n defined by

P (Y = ‖y‖1sgn(yj)ej) = |yj |/‖y‖1,

for all j = 1, . . . , n and observe that EY = y.
Let Y1, ..., Ys be independent copies of Y and set Z = s−1

∑s
k=1 Yk;

therefore, Z ∈ Σs for every realization of Y1, ..., Ys.
By the assumption, ‖ΓZ‖22 ≥ λ2‖Z‖22, and thus,

E‖ΓZ‖22 ≥ λ2
E‖Z‖22. (2.3)

It is straightforward to verify that E
〈

Y, Y
〉

= ‖y‖21, that if i 6= j then
E
〈

ΓYi,ΓYj

〉

=
〈

Γy,Γy
〉

and that for every 1 ≤ k ≤ s,

E
〈

ΓYk,ΓYk

〉

= ‖y‖1
n
∑

j=1

|yj | ‖Γej‖22 .
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Therefore, setting µj = |yj|/‖y‖1, and W =
∑n

j=1 ‖Γej‖22 µj,

E‖ΓZ‖22 =
1

s2

s
∑

i,j=1

E
〈

ΓYi,ΓYj

〉

=

(

1 − 1

s

)

‖Γy‖22 +
‖y‖1
s

n
∑

j=1

|yj| ‖Γej‖22

=

(

1 − 1

s

)

‖Γy‖22 + W
‖y‖21
s

.

Using the same argument one can show that

E‖Z‖22 =

(

1 − 1

s

)

‖y‖22 +
‖y‖21
s

.

Combining these two estimates with (2.3),
(

1 − 1

s

)

‖Γy‖22 ≥ λ2

((

1 − 1

s

)

‖y‖22 +
‖y‖21
s

)

−W
‖y‖21
s

,

proving the claim.

Proof of Theorem B: Let Γ satisfying the two conditions of Theo-
rem B. It follows from Lemma 2.6 that for every y ∈ Bn

1 ∩ rSn−1, one has

‖Γy‖22 ≥ c20 ‖y‖22 −
‖y‖1
s− 1

n
∑

i=1

‖Γei‖22 |yi| ≥ c20r
2 − c21

s− 1
> 0

when s− 1 > c21/(c20r
2). Then the result follows from Lemma 2.1.

The matrix Γ in question will be N−1/2
∑N

i=1

〈

Xi, ·
〉

ei. Thus, for ev-

ery t ∈ R
n, ‖Γt‖22 = N−1

∑N
i=1

〈

Xi, t
〉2

, and if Xj = (xi,j)
n
i=1 then ‖Γej‖22 =

N−1
∑N

i=1 x
2
i,j, which is an average of N iid random variables (though ‖Γe1‖2 ,

. . . , ‖Γen‖2 need not be independent).
The next and final component needed for the proof of Theorem A is

information on the sum of iid random variables, which will be used to upper
bound max1≤j≤n ‖Γej‖22.
Lemma 2.7 There exists an absolute constant c0 for which the following
holds. Let z be a mean-zero random variable and put z1, . . . , zN to be N
independent copies of z. Let p0 ≥ 2 and assume that there exists κ > 0
and α ≥ 1/2 that satisfy that ‖z‖Lp ≤ κ1p

α for every 2 ≤ p ≤ p0. If

N ≥ p
max{2α−1,1}
0 then for every p ≤ p0,

‖
N
∑

i=1

zi‖Lp ≤ c1(α)κ1
√

Np

where c1(α) = c0 exp((2α − 1)).

11



Lemma 2.7 shows that even under a weak moment assumption, ‖z‖Lp .

pα for p ≤ p0 and α ≥ 1/2 that can be large, a normalized sum of N
independent copies of z exhibits a ‘subgaussian’ moment growth up to the
same p0, provided that N is sufficiently large.

The proof of Proposition 2.7 is based on the following result due to Lata la
[20].

Theorem 2.8 If z is a mean-zero random variable and z1, ..., zN are inde-
pendent copies of z, then for any p ≥ 2,

‖
N
∑

i=1

zi‖Lp ∼ sup

{

p

s

(

N

p

)1/s

‖z‖Ls : max{2, p/N} ≤ s ≤ p

}

.

Proof of Proposition 2.7. Since ‖z‖Lp ≤ κ1p
α, it follows from Theorem

2.8 that

‖
N
∑

i=1

zi‖Lp ≤ cκ1 sup
s

p(N/p)1/ss−1+α,

where the supremum is for max{2, p/N} ≤ s ≤ p. It is straightforward to
verify that the function h(s) = (N/p)1/ss−1+α is decreasing when α ≤ 1 and
attains its maximum in s = max{2, p/N} or in s = p when α > 1.

Therefore, if N ≥ p and α ≤ 1, then

‖
N
∑

i=1

zi‖Lp ≤ c1κ1
√

Np,

and if α > 1,

‖
N
∑

i=1

zi‖Lp ≤ c1κ1 max
{

√

Np,N1/ppα
}

.

Finally, if N ≥ p2α−1 then e2α−1
√
Np ≥ N1/ppα, which completes the proof.

Proof of Theorem A. By Corollary 2.4, if N ≥ c1s log(en/s)/β2, then
with probability at least 1 − exp(−c2Nβ2),

inf
t∈Σs∩Sn−1

1

N

N
∑

i=1

〈

Xi, t
〉2 ≥ u2β

2
.

12



Moreover, by Lemma 2.6 used for the measurements matrix Γ and λ2 =
u2β/2, it follows that for r ≥ 1 and on the same event as above,

inf
t∈√rBn

1
∩Sn−1

‖Γt‖22 ≥ λ2 − 2r

s
max
1≤j≤n

‖Γej‖22 . (2.4)

Finally, fix w ≥ 1 and consider z = x2j − 1 - where xj is the j-th coordinate
of X. Since z is a centred random variable, then by Lemma 2.7 for p =
κ2 log(wn), and setting c3(α) ∼ exp((2α − 1)),

‖ 1

N

N
∑

i=1

zi‖Lp ≤ c3(α)κ1

√

p

N
,

provided that N ≥ pmax{2α−1,1} = (κ2 log(wn))max{2α−1,1}. Therefore, if
N ≥ (c3(α)κ1)2(κ2 log(wn))max{2α−1,1}, then, for Vj = ‖Γej‖22,

‖Vj‖Lp = ‖ 1

N

N
∑

i=1

x2i,j‖Lp ≤ 1 + c3(α)κ1

√

κ2 log(wn)

N
≤ 2.

Observe that

P ( max
1≤j≤n

Vj ≥ 2e) ≤
n
∑

j=1

P (Vj ≥ 2e) ≤ n

n
∑

j=1

(‖Vj‖Lp

2e

)p

≤n

(

1

e

)p

=
1

wκ2nκ2−1
.

Thus, with probability at least 1 − exp(−c2Nβ2) − 1/(wκ2nκ2−1),

inf
t∈√rBn

1
∩Sn−1

‖Γt‖22 ≥ λ2 − 4er

s
≥ λ2/2 (2.5)

provided that r ≤ sλ2/8e = su2β/16e.
Combining (2.5) with Lemma 2.1 shows that if

N & max
{

s log(en/s), (c3(α)κ1)2(κ2 log(wn))max{2α−1,1}
}

,

then on the same event as above, Γ satisfies the exact reconstruction prop-
erty for vectors that are c4(u, β)s-sparse, as claimed.

Proof of Theorem D: It follows from point 2. in Corollary 2.4 that
Γ = N−1/2

∑N
i=1

〈

Xi,
〉

ei is invertible over Σs with probability at least 1 −
exp(−c2Nβ2) when N ≥ c1s log(en/s). Therefore, under the same condition
and with the same probability estimate, for any x0 ∈ Σ⌊s/2⌋, the only t ∈ R

n

such that Γt = Γx0 and ‖t‖0 ≤ ‖x0‖0 is x0 itself. That is the ℓ0-minimization
procedure can reconstruct all vectors in Σ⌊s/2⌋.
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3 Proof of Theorem C and C′

Let (e1, ..., en) be the standard basis in R
n. Given an N × n matrix Γ and

J ⊂ {1, . . . , n} set ΓJ to be the restriction of Γ to span{ej : j ∈ J}. Let Bn
1

be the unit ball in ℓn1 , and put BJc

1 to be the set of vectors in Bn
1 that are

supported in Jc – the complement of J in {1, ..., n}.

Lemma 3.1 Fix integers s,N ≤ n. Let v ∈ R
n be supported on J ⊂

{1, ..., n} of cardinality at most s, that satisfies ‖v‖1 = 1. If Γv ∈ ΓBJc

1 then
Γ does not satisfy the exact reconstruction property of order s.

Proof. By assumption, there is w ∈ BJc

1 for which Γv = Γw. Also, v 6= w,
otherwise, v ∈ BJ

1 ∩ BJc

1 implying that v = 0, which is impossible since
‖v‖1 = 1.

If one performs the basis pursuit algorithm trying to recover v from
Γv, w is at least as good ‘candidate’ as v (since ‖w‖1 ≤ 1 = ‖v‖1), and
therefore, v cannot be the unique solution to the ℓ1-minimization problem
min

(

‖t‖1 : Γt = Γv
)

.

It immediately follows from Lemma 3.1 that if one wants to prove that
the N × n matrix

Γ =
1√
N

(

xij
)

=
1√
N







x⊤1·
...

x⊤N ·






=

1√
N

[x·1, · · · , x·n]

does not satisfy ER(1), it suffices to find j ∈ {1, . . . , n} for which

Γej = x·j ∈ absconv
(

x·k : k 6= j
)

= absconv
(

Γek : k 6= j
)

.

To that end, if BN
2 denotes the Euclidean unit ball in R

N ,

‖x·j‖2 ≤
√
N and

√
NBN

2 ⊂ absconv
(

x·k : k 6= j
)

, (3.1)

then Γ does not satisfy ER(1).
The proof of Theorem C and of Theorem C′ thus follows from the con-

struction of a matrix for which (3.1) holds with probability larger than 1/2.
Let η be a selector (a {0, 1}-valued random variable) with mean δ to be

named later, and let ε be a symmetric {−1, 1}-valued random variable that
is independent of η. Fix R > 0 and set z = ε(1 + Rη).

Observe that if p ≥ 2 and R ≥ 1 then

‖z‖Lp

‖z‖L2

=

(

1 +
(

(1 + R)p − 1
)

δ
)1/p

(

1 +
(

(1 + R)2 − 1
)

δ
)1/2

∼ (1 + Rpδ)1/p

(1 + R2δ)1/2
∼ Rδ1/p,
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and the last equivalence holds when R2δ . 1 and Rpδ & 1. Set R =√
p(1/δ)1/p, and thus ‖z‖Lp

/ ‖z‖L2
∼ √

p (for the right choice of δ).

One can view x = z/ ‖z‖L2
as a mean-zero, variance one random variable

exhibiting ‘subgaussian’ moments only up to the level p. Indeed, note that
if q > p, ‖z‖Lq

/ ‖z‖L2
∼ √

pδ1/q−1/p; hence, it may be far larger than
√
q if

δ is sufficiently small, as will be the case.
Let X = (x1, . . . , xn) be a vector whose coordinates are independent,

distributed as x and let Γ be the measurements matrix generated by x.
Note that up to the normalization factor of ‖z‖L2

, which is of the order of

a constant when R2δ . 1,
√
NΓ is a perturbation of a Rademacher matrix

by a sparse matrix with few random spikes that are either R or −R.
Denote by Eη (resp. Eε) the expectation with respect to the η-variables

(resp. ε-variables). A straightforward application of Khintchine’s inequality
(see, e.g., p.91 in [21]) shows that for every vector t ∈ R

n,

E
〈

X, t
〉4

. EηEε

(

n
∑

j=1

εj(1 + Rηj)tj

)4
. Eη

(

n
∑

j=1

(1 + Rηj)
2t2j

)2

= Eη

∑

k,ℓ

(1 + Rηk)2t2k(1 + Rηℓ)
2t2ℓ . ‖t‖42 =

(

E
〈

X, t
〉2
)2

provided that R4δ . 1.
To show that the Basis Pursuit algorithm performs poorly using random

measurements generated by Γ, set (fi)
N
i=1 to be the canonical basis of RN .

Let η·j =
∑N

i=1 ηijfi and observe that conditioned on εij ’s, for every fixed
1 ≤ i ≤ N ,

Pη

(

there exists j ∈ {2, . . . , n} : z·j = ε·j + εijRfi

)

Pη

(

there exists j ∈ {2, . . . , n} : η·j = fi

)

= 1 − (1 − (1 − δ)N−1δ)n−1 ≥ 1 − 1

4N

provided that
logN

n
. δ .

log
(

en/N
)

N
.

Hence, by a Fubini argument, with probability at least 3/4 there are (ran-
dom) y1, ..., yN ∈ BN

∞ for which

absconv
(

Rfi + yi : 1 ≤ i ≤ N
)

⊂ absconv
(

z·k : k 6= 1
)

.
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Lemma 3.2 Using the notation above, if vi = Rfi + yi for 1 ≤ i ≤ N and
yi ∈ BN

∞, then
(

R/
√
N −

√
N
)

BN
2 ⊂ absconv(v1, ..., vN ) ≡ V

Proof. A straightforward separation argument may be used to show that if,
for every w ∈ SN−1, supv∈V |

〈

v,w
〉

| ≥ ρ, then ρBN
2 ⊂ V (indeed, otherwise

there would be some x ∈ ρBN
2 \V ; but it is impossible to separate x and the

convex and symmetric V using any norm one functional).
Now, to complete the proof, observe that for every w ∈ SN−1,

sup
v∈V

|
〈

v,w
〉

| = max
1≤i≤N

|
〈

Rfi + yi, w
〉

|

≥ max
1≤i≤N

|
〈

w,Rfi
〉

| − max
1≤i≤N

|
〈

yi, w
〉

| ≥ R/
√
N −

√
N.

Applying Lemma 3.2, if R ≥ 2N then with probability at least 3/4,√
NBN

2 ⊂ absconv
(

z·k : k 6= 1
)

. On the other hand, if δ . 1/N then

P
[

‖z·1‖2 =
√
N
]

= (1 − δ)N ≥ 3/4.

Hence, combining the two observations, with probability at least 1/2,

‖z·1‖2 ≤
√
N and

√
NBN

2 ⊂ absconv
(

z·k : k 6= 1
)

,

and thus
x·1 ∈ absconv

(

x·k : k 6= 1). (3.2)

Of course, this assertion holds under several conditions on the parame-
ters involved: namely, that R =

√
p(1/δ)1/p ≥ 2N ; that (logN)/n . δ .

log
(

en/N
)

/N ; that R4δ . 1 and that δ . 1/N .
For instance, one may select δ ∼ (logN)/n and p ∼ (log n)/ logN , in

which case all the conditions above are met and with probability at least
1/2, Γ does not satisfy ER(1), proving Theorem C. A similar calculation
leads to the proof of Theorem C′.

4 Results in the noisy measurements setup

In previous sections, we considered the idealized scenario in which the data
was noiseless. In this section, we study properties of the measurement vec-
tors in the noisy setup.
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In the noisy framework, one observes N couples (zi,Xi)
N
i=1 where the

zi’s are noisy observations of the inner products
〈

Xi, x0
〉

, i = 1, . . . , N that
have been corrupted by some noise:

zi =
〈

Xi, x0
〉

+ gi, i = 1, . . . , N (4.1)

where (gi)
N
i=1 represents the ‘noise-vector’ and x0 ∈ R

n is an unknown vector.
For simplicity, we will assume that the gi’s are independent gaussian random
variables N (0, σ2) that are also independent of the Xi’s. The goal is to
obtain as much information as possible on the unknown vector x0 with only
the data (zi,Xi)

N
i=1 at one’s disposal.

Unlike the noiseless case, there is no hope to reconstruct x0 from the
N noisy observations z1, . . . , zN . Instead of exact reconstruction, there are
three natural questions that arise in the noisy setup. Firstly, the estima-
tion problem: given some norm ‖·‖ in R

n, one would like to construct a
procedure x̂ for which ‖x̂− x0‖ is as small as possible; secondly, the pre-
diction problem: given a new (random, independent) “input” X ∈ R

n, one
has to find a good guess

〈

X, x̂
〉

of the most likely associated output z,
knowing that (z,X) shares the same distribution with the other couples
(z1,X1), . . . , (zN ,XN ); and finally, the de-noising problem: given a norm
‖·‖ in R

N , one has to construct a procedure x̂ for which ‖Γx̂−Γx0‖ is small,
where Γ = N−1/2

∑N
i=1

〈

Xi, ·
〉

ei is the measurement matrix.
These three problems are central in modern statistics, and are featured in

numerous statistical monographs, particularly in the context of the gaussian
regression model (Equation (4.1)).

Recently, all three problems have been recast in the high-dimensional
setup: the number of observations N can be much smaller than the ambient
dimension n but the target vector x0 is usually believed to have a short
support: ‖x0‖0 := s, and s is assumed to be much smaller than n.

Although one may still consider classical procedures, like Ordinary Least
Square (OLS) estimators to deal with the problems in the ‘high-dimensional’
setup, it turns out that performance is poor, because n is much larger than
N . This phenomenon is usually referred to as the curse of dimensionality
and is a major theme in current-day problems.

What saves the day is the assumption that even though x0 lives in the
high dimensional space R

n and one has access to a small number of observa-
tions, x0 is believed to have some low-dimensional structure: it is s-sparse.
The aim is therefore to use this information to design procedures having the
ability to perform as if the true dimension were s rather than n.

The heart of this dimension reduction problem is the fact that one does
not know the support of x0, other than it is short, and to address it one may
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resort to penalization methods, and, in particular, the ℓ0 and ℓ1 penalization
methods.

Among the first dimension reduction schemes were ℓ0-minimization pro-
cedures, which were sometimes called Model Selection procedures. A de-
tailed analysis in the context of the model (4.1), as well as for other exam-
ples, may be found in Chapter 4 of [22] or in [3].

The obvious downside of ℓ0 minimization is that its practical implemen-
tation requires, in some situations, a combinatorial search among far too
many subspaces of the ambient space R

n. To overcome this barrier, convex
relaxations have been introduced, among which is ℓ1 minimization, and the
idea of a convex relaxation is why the ℓ1-norm plays such a central role in
the noisy setup.

In this context, a classical ℓ1-minimization procedure is the Lasso (cf.
[30]):

x̂λ ∈ argmin
x∈Rn

( 1

N

N
∑

i=1

(

zi −
〈

Xi, x
〉)2

+ λ ‖x‖1
)

, (4.2)

and λ > 0 is called the regularization parameter. Another ℓ1-based proce-
dure is the Dantzig selector (see [10]); estimation and de-noising properties
of both these estimators have been obtained under several conditions (cf.
[5, 2, 31] or Chapter 7 and 8 in [19]).

In this section, we shall focus on two conditions. The first, called the
Compatibility Condition, was introduced in [31] (see also Definition 2.1 in
[32]); the second, the Restricted Eigenvalue Condition, was introduced in
[2].

Definition 4.1 Let Γ be an N × n matrix. For L > 0 and a set S ⊂
{1, . . . , n}, put

δ(L,S) = min
(

‖ΓζS − ΓζSc‖2 : ‖ζS‖1 = 1, ‖ζSc‖1 ≤ L
)

(4.3)

where ζS (resp. ζSc) denotes a vector that is supported on S (resp. Sc).
The function φ(L,S) =

√

|S|δ(L,S) is called compatibility constant
associated with L and S.

Given an absolute constant c0 > 0, Γ satisfies the Compatibility Con-
dition for the set S0 if there exists L > 1 for which φ(L,S0) ≥ c0 and
we say that Γ satisfies the uniform Compatibility Condition (CC) of
order s if min|S|≤s φ(L,S) ≥ c0.

A typical result for the Lasso, in the Gaussian model (4.1) and when Γ
satisfies the Compatibility Condition is Theorem 6.1 in [5]: if S0 is the sup-
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port of x0 and λ ∼ σ
√

(log n)/N , then with high probability (with respect
to the noise),

‖Γx̂λ − Γx0‖22 . σ2 ‖x0‖0 log n

Nφ(3, S0)
and ‖x̂λ − x0‖1 .

σ ‖x0‖0
φ(3, S0)

√

log n

N
(4.4)

Note that, up to a logarithmic factor, the rates obtained in (4.4) are the
same as the Ordinary Least Square estimator would have given, had the
support of x0 been known. Thus, under the Compatibility Condition for
S0, the Lasso yields dimension reduction, and the extra log n factor seems a
rather small price to pay for not knowing the support of x0 in advance (see
Corollary 3 in [34] for the necessity of the log n factor). Moreover, compared
with ℓ0-minimization procedures, the Lasso can be efficiently implemented
using, for instance the LARS algorithm from [16, 17].

Naturally, although the Compatibility Condition in S0, the support of
x0, suffices to prove that the Lasso is an effective procedure, the fact that
S0 is unknown makes this condition hard to verify. Thus, showing that Γ
satisfies the uniform Compatibility Condition is a safer requirement – and
the one we shall explore below.

Another uniform condition of a similar flavour is the Restricted Eigen-
value Condition from [2]. To define it, let us introduce the following notation:
for x ∈ R

n and a set S0 ⊂ {1, . . . , n} of cardinality |S0| ≤ s, let S1 be the
subset of indexes of the m largest coordinates of (|xi|)ni=1 that are outside
S0. Let xS01

be the restriction of x to the set S01 = S0 ∪ S1.

Definition 4.2 Let Γ be an N × n matrix. For a constant c0 ≥ 1 and an
integer 1 ≤ s ≤ m ≤ n for which m + s ≤ n, let the restricted eigenvalue
constant be

κ(s,m, c0) = min
( ‖Γx‖2
‖xS01

‖2
: S0 ⊂ {1, . . . , n}, |S0| ≤ s,

∥

∥xSc
0

∥

∥

1
≤ c0 ‖xS0

‖1
)

.

The matrix Γ satisfies the Restricted Eigenvalue Condition (REC) of
order s with a constant c if κ(s, s, 3) ≥ c.

Estimation and de-noising results follow from Theorem 6.1 (for the Dantzig
selector) and Theorem 6.2 (for the Lasso) in [2] when the measurement ma-
trix Γ, normalized so that the diagonal elements of Γ⊤Γ equal 1, satisfies
the REC of the appropriate order and with a constant that is independent
of the dimension. We also refer to Lemma 6.10 in [5] for similar results that
do not require normalization.
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Observe that the REC of order s is a stronger condition than the uniform
CC of order s since κ(s,m, c0) ≤ min|S|≤s φ(c0, S) for every c0 > 0 and 1 ≤
s,m ≤ n. Having said that, it also yields more information [2], since under
the REC the Lasso has better estimation properties: for λ ∼ σ

√

(log n)/N
and with high probability (with respect to the noise), simultaneously for all
1 < p ≤ 2,

‖x̂λ − x0‖pp . ‖x0‖0
( σ

κ(s, s, 3)

√

log n

N

)p
. (4.5)

One question that comes to mind is whether there are matrices that
satisfy the uniform CC or the REC. Just as in Compressed Sensing, the
only matrices that are known to satisfy the Uniform Compatibility Con-
dition or the Restricted Eigenvalue Condition for the optimal number of
measurements (rows) are some random matrices.

For example, results in [27] show that ‘typical’ measurement matri-
ces Γ = N−1/2

∑N
i=1

〈

Xi, ·
〉

ei with independent gaussian random measure-
ment vectors X1, . . . ,XN , selected according to the centred gaussian mea-
sure with a covariance matrix Σ ∈ R

n×n, satisfy the REC of order s with
the optimal number of observations N & s log(en/s) when Σ satisfies the
REC of order s. This result was extended to general measurement ma-
trices with subgaussian rows in [28]. A recent result [26] shows that if
D̃ = Diag(‖Γe1‖2 , . . . , ‖Γen‖2) where (e1, . . . , en) is the canonical basis of
R
n, the normalized measurement matrices Γ̃ = ΓD̃−1 satisfy a non-uniform

REC (that is a REC that holds only one set S0) under a weak L4-moment
assumption:

∥

∥

〈

X, t
〉∥

∥

L4
≤ κ0

∥

∥

〈

X, t
〉∥

∥

L2
for all t ∈ ΣN .

Our aim in this final section is to extend the results presented in previous
sections to the noisy setup, by identifying almost necessary and sufficient
moment assumptions for the CC and REC. This turns out to be a straight-
forward: on one hand, the proof of Theorem A actually provides a stronger
quantitative version of the Exact Reconstruction property; on the other, the
uniform Compatibility Condition can be viewed as a quantitative version of a
condition on the polytope ΓBn

1 that characterizes the Exact Reconstruction
property of Γ. A similar observation is true for the Restricted Eigenvalue
Condition: it can be viewed as a quantitative version of the Null Space
Property (see [14, 15]) which is also equivalent to the Exact Reconstruction
property.

Let us recall the definitions of the two properties in question.

Definition 4.3 Let 1 ≤ s ≤ N . A centrally symmetric polytope P ⊂ R
N is

s-neighbourly if every set of s of its vertices, containing no antipodal pair,
is the set of all vertices of some face of P .
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A well known result in Compressed Sensing obtained in [12] shows that
Γ satisfies ER(s) (see Definition 1.1) if and only if ΓBn

1 has 2n vertices and
ΓBn

1 is a centrally symmetric s-neighbourly polytope. It turns out that this
property is characterized by the uniform CC.

Proposition A. Let Γ be an N × n matrix. The following are equivalent:

1. ΓBn
1 has 2n vertices and ΓBn

1 is s-neighborly,

2. min
(

φ(1, S) : S ⊂ {1, . . . , n}, |S| ≤ s
)

> 0.

In particular, min|S|≤s φ(L,S) for some L ≥ 1 is a quantitative measure
of the s-neighbourly property of ΓBn

1 . Indeed, if ΓBn
1 is s-neighbourly and

has 2n vertices then the two sets
{

ΓζS : ‖ζS‖1 = 1
}

and
{

ΓζSc : ‖ζSc‖1 ≤ 1
}

(4.6)

are disjoint for every |S| ≤ s. However, min|S|≤s φ(1, S) measures how far
the two sets are from one another, uniformly over all S or cardinality |S| ≤ s.
Proof. Let C1, . . . , Cn be the n columns of Γ. It follows from Proposi-
tion 2.2.13 and Proposition 2.2.16 in [11] that ΓBn

1 has 2n vertices and is
a centrally symmetric s-neighbourly polytope if and only if for every S ⊂
{1, . . . , n} of cardinality |S| ≤ s and every choice of signs (εi) ∈ {−1, 1}S ,

conv
({

εiCi : i ∈ S
})

∩ conv
({

θjCj : j /∈ S, θj = ±1
})

= ∅ (4.7)

It is straightforward to verify that
⋃

(εi)∈{±1}S
conv

({

εiCi : i ∈ S
})

=
{

ΓζS : ‖ζS‖1 = 1
}

and
conv

({

θiCi : i /∈ S, θi = ±1
})

=
{

ΓζSc : ‖ζSc‖1 ≤ 1
}

.

As a consequence, (4.7) holds for every S ⊂ {1, . . . , n} of cardinality at most
s if and only if min

(

φ(1, S) : S ⊂ {1, . . . , n}, |S| ≤ s
)

> 0.

An observation of a similar nature is true for the Restricted Eigenvalue
Condition, which can be viewed as a quantitative measure of the Null Space
Property.

Definition 4.4 Let Γ be an N × n matrix. Γ satisfies the Null Space
property of order s if it is invertible in the cone

{

x ∈ R
n : there exists S ⊂ {1, . . . , n}, |S| ≤ s and ‖xSc‖1 ≤ ‖xS‖1

}

.
(4.8)
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In [14, 15], the authors prove that Γ satisfies ER(s) if and only if it has
the Null Space Property of order s.

A natural way to quantify the invertibility of Γ in the cone is to consider
its smallest singular value, restricted to this cone, which is simply κ(s, n −
s, 1). Unfortunately, statistical properties of the Lasso and the Dantzig
selector are not known under the assumption that κ(s, n − s, 1) is of the
order of an absolute constant. On the other hand, (optimal) statistical
properties for the Lasso from [2] were obtained under the assumption that
κ(s, s, 3) is of the order of a constant.

Since the definition of κ(s, s, 3) involves a larger cone and vectors of
a different support size than the one considered in (4.8), κ(s, s, 3) is not
directly comparable with κ(s, n − s, 1). Despite that, it may still serve as a
quantitative version of the Null Space property. In fact, all the parameters
κ(s,m, c) can be used to quantify the Null Space property, although only
k(s,m, c) ≥ c0 for m ≥ s and c ≥ 3 are known to be sufficient conditions
to guarantee (optimal) statistical properties for the LASSO (and for the
Dantzig selector).

The main result of this section identifies the measurement vectors for
which the associated measurement matrix satisfies the two uniform condi-
tions in question.

Theorem E. Let L > 0, 1 ≤ s ≤ n and c0 > 0. Under the same as-
sumptions as in Theorem A and with the same probability estimate, Γ =
N−1/2

∑N
i=1

〈

Xi, ·
〉

ei satisfies:

1. A uniform Compatibility Condition of order c1s, namely that

min
|S|≤c1s

φ(L,S) ≥ u2β/4

for c1 = u2β/(16e(1 + L)2).

2. A Restricted Eigenvalue Condition of order c2s, with

κ(c2s,m, c0) ≥ u2β/4

for any 1 ≤ m ≤ n, as long as (1 + c0)2c2 ≤ u2β/(16e).

On the other hand, if Γ is the matrix considered in Theorem C, then with
probability at least 1/2, φ(1, {e1}) = 0 and κ(1,m, 1) = 0 for any 1 ≤ m ≤ n.

Just like Theorem A and Theorem C, Theorem E shows that the require-
ment that the coordinates of the measurement vector have log n moments
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is almost a necessary and sufficient condition for the uniform Compatibility
Condition and the Restricted Eigenvalue Condition to hold. Moreover, it
shows that the role of the small ball property (Definition 1.3) of the mea-
surement vector plays a major role in the context of these two conditions in
the noisy setup.

It also follows from Theorem E and Proposition A (or from Theorem A
and the main result in [12]) that under the same conditions as in Theorem A,
ΓBn

1 has 2n vertices and is s-neighbourly with high probability for N ∼
s log(en/s). In particular, this improves Theorem 4.3 in [1] for matrices
generated by sub-exponential variables by a logarithmic factor.

Note that the counter-example constructed to prove Theorem C (or for
the second part of Theorem E) and for which Γ does not satisfy ER(1),
does not necessarily generate ΓBn

1 that is not s-neighbourly. Indeed, an
inspection of the construction shows that the reason ER(1) fails is that with
probability at least 1/2, ΓBn

1 has less than 2n − 2 vertices, rather than
that ΓBn

1 is not s-neighbourly. Thus, the question of whether a moment
condition is necessary for the random polytope ΓBn

1 to be s-neighbourly
with probability at least 1/2 is still unresolved.

Proof of Theorem E: Fix a constant c1 to be named later and let
S ⊂ {1, . . . , n} of cardinality |S| ≤ c1s. Let ζS ∈ R

n be a vector supported
on S with ‖ζS‖1 = 1 and let ζSc ∈ R

n be supported on Sc with ‖ζSc‖1 ≤
L. Consider γ = (ζS − ζSc)/ ‖ζS − ζSc‖2. Since ‖ζS − ζSc‖2 ≥ ‖ζS‖2 ≥
‖ζS‖1 /

√

|S| = 1/
√

|S|, it follows that γ ∈
(

(1 + L)
√

|S|
)

Bn
1 ∩ Sn−1.

Recall that by (2.5), if r = (1 + L)2c1s is smaller than su2β/(16e), then
‖Γγ‖2 ≥ (u2β)/4. Therefore,

‖ΓζS − ΓζSc‖2 ≥
u2β

4
‖ζS − ζSc‖2 ≥

u2β

4
‖ζS‖2 ≥

u2β ‖ζS‖1
4
√

|S|
=

u2β

4
√

|S|
,

and thus min|S|≤c1s φ(L,S) ≥ u2β/4 for c1 = u2β/
(

16e(1 + L)2
)

.
Turning to the REC, fix a constant c2 to be named later, let x ∈ R

n, put
S0 ⊂ {1, . . . , n} of cardinality |S0| ≤ c2s and for which

∥

∥xSc
0

∥

∥

1
≤ c0 ‖xS0

‖1.
Let S1 ⊂ {1, . . . , n} be the set of indexes of the m largest coordinates of
(|xi|)ni=1 outside S0 and put S01 = S0 ∪ S1.

Observe that ‖x‖1 ≤ (1+c0) ‖xS0
‖1 ≤ (1+c0)

√

|S0| ‖x‖2; hence x/ ‖x‖2 ∈
(

(1+c0)
√

|S0|
)

Bn
1 ∩Sn−1. Applying (2.5) again, if (1+c0)2c2s ≤ su2β/(16e),

then ‖Γx‖2 ≥
(

(u2β)/4
)

‖x‖2. Thus,

‖Γx‖2
‖xS01

‖2
≥ ‖Γx‖2

‖x‖2
≥ u2β

4
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and κ(c2s,m, c0) ≥ u2β/4 for any 1 ≤ m ≤ n, as long as (1 + c0)2c2 ≤
u2β/(16e).

The proof of the second part of Theorem E is an immediate corol-
lary of the construction used in Theorem C. According to (3.2), x·1 ∈
absconv(x·k : k 6= 1) with probability at least 1/2. Therefore, on that
event, ‖Γe1 − Γζ‖2 = 0 for ζ =

∑n
j=2 λjej for some well chosen weights

λ2, · · · , λn satisfying
∑n

i=2 |λi| ≤ 1. Hence φ(1, {e1}) = 0 and κ(1,m, 1) = 0
for any 1 ≤ m ≤ n, as claimed.

Remark 4.5 Results obtained in Theorem A and E are also valid under the
same assumptions and with the same probability estimate for the normalized
measurement matrix:

Γ̃ := ΓD̃−1 where D̃ = diag
(

‖Γe1‖2 , . . . , ‖Γen‖2
)

where (e1, . . . , en) is the canonical basis of Rn. This follows from the same
argument as for the matrix Γ even though Γ̃ does not have independent rows
vectors because of the normalization. We do not provide more details in this
case for the sake of shortness.
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