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On the gap between restricted isometry properties
and sparse recovery conditions

Sjoerd Dirksen, Guillaume Lecué, and Holger Rauhut

Abstract—We consider the problem of recovering sparse
vectors from underdetermined linear measurements via `p-
constrained basis pursuit. Previous analyses of this problem based
on generalized restricted isometry properties have suggested
that two phenomena occur if p 6= 2. First, one may need
substantially more than s log(en/s) measurements (optimal for
p = 2) for uniform recovery of all s-sparse vectors. Second,
the matrix that achieves recovery with the optimal number
of measurements may not be Gaussian (as for p = 2). We
present a new, direct analysis which shows that in fact neither of
these phenomena occur. Via a suitable version of the null space
property we show that a standard Gaussian matrix provides
`q/`1-recovery guarantees for `p-constrained basis pursuit in
the optimal measurement regime. Our result extends to several
heavier-tailed measurement matrices. As an application, we show
that one can obtain a consistent reconstruction from uniform
scalar quantized measurements in the optimal measurement
regime.

Index Terms—Restricted isometry property, compressive sens-
ing, `p-constrained basis pursuit, Gaussian random matrix,
quantized compressive sensing.

I. INTRODUCTION

COMPRESSIVE sensing [1], [2], [3] has established it-
self in the recent years as a rapidly growing research

area with various promising signal and image processing
applications, and which has triggered many developments on
the theoretical side. The theory predicts that (approximately)
sparse signals can be accurately recovered from incomplete
and perturbed linear measurements. The measurement process
is described by a measurement matrix A ∈ Cm×n with m < n.
While the naı̈ve reconstruction approach via `0-minimization
is NP-hard [4], several tractable recovery methods have been
proposed including basis pursuit (`1-minimization), iterative
hard thresholding and greedy methods. For all these methods
rigorous recovery guarantees have been shown, see [3] for
details and further references.

The restricted isometry property (RIP) is a well-established
tool to analyze the performance of sparse recovery methods.
The standard version defines the restricted isometry constant
of order s of A ∈ Cm×n as the smallest number δs such that

(1− δs)‖x‖22 ≤ ‖Ax‖22 ≤ (1 + δs)‖x‖22 for all x ∈ Σs, (1)

where Σs is the set of all s-sparse vectors in Cn and ‖ · ‖2
denotes the usual `2-norm. If δs is sufficiently small we say
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that A satisfies the RIP. If δs < δ∗ for some suitably small
δ∗, then given measurements y = Ax̂+ e with ‖e‖2 ≤ ε, the
`2-constrained `1-minimization program (also known as basis
pursuit denoising)

min
z∈Cn

‖z‖1 subject to ‖Az − y‖2 ≤ ε

recovers a vector x] which satisfies

‖x̂− x]‖2 . s−1/2σs(x̂)1 + ε, (2)

where σs(x̂)1 = inf‖z‖0≤s ‖x̂−z‖1 is the error of best s-term
approximation to x̂ in `1. An (appropriately scaled) Gaussian
random matrix satisfies the RIP with high probability provided
that

m ≥ Cs log(en/s), (3)

where C > 0 is an absolute constant. This bound is optimal,
see also below.

In certain cases it is of interest to measure the level of noise
in `p-norms with 1 ≤ p ≤ ∞ different from 2 and to study the
corresponding `p-constrained basis pursuit denoising program

min
z∈Cn

‖z‖1 subject to ‖y −Az‖p ≤ ε. (BPDNp)

The case p = ∞ appears, for instance, in quantized com-
pressed sensing [5], where `∞-constrained basis pursuit can
ensure consistent reconstruction, see also Section IV below.
The program for p = 1 is more robust to outliers than standard
basis pursuit denoising, since the `1-norm gives less weight to
large residuals than the `2-norm (see also the discussion in [6,
Section 6.1.2]). Also, when considering random measurement
noise, different values of p are appropriate depending on the
distribution of the noise (see e.g. [5],[7]). For example, p = 1
is well-suited for double-exponential noise, whereas p = 2 is
appropriate for Gaussian noise.

Previous attempts in analyzing (BPDNp) have used re-
stricted isometry properties of the form

c‖x‖q ≤ ‖Ax‖p ≤ C‖x‖q, for all x ∈ Σs. (RIPp,q)

It is part of the folklore in compressive sensing that (RIPp,q)
implies stable and robust recovery via (BPDNp), with an `q-
bound on the reconstruction error (see e.g. [5], [8] for special
cases). Unfortunately, all available results on the number of
required measurements for Gaussian and other random matri-
ces ensuring (RIPp,q) scale significantly worse than (3) when
p 6= 1, 2. For certain values of p and q, there are even negative
results available which state that no matrix whatsoever can
satisfy (RIPp,q) in the optimal parameter regime (3). A more
detailed overview is given below.
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The purpose of this short note is to illuminate the discrep-
ancy between on the one hand, the requirements needed for
a matrix to satisfy a restricted isometry property of the form
(RIPp,q) and on the other hand, the conditions under which one
can stably and robustly recover any s-sparse (or approximately
s-sparse) vector x̂ ∈ Cn from noisy linear measurements
y = Ax̂+e via the generalized basis pursuit denoising program
(BPDNp). Our results show that a study of the statistical
properties of (BPDNp) via the `q-robust null space property
yields better results than via (RIPp,q), both in terms of the
required number of measurements as well as the allowed
distribution of the random measurements. In particular, one
can achieve stable and robust reconstruction with Gaussian
random matrices in the optimal parameter regime (3) for any
1 ≤ p ≤ ∞. This result extends to various random matrices
with heavier-tailed entries such as exponential matrices, see
Section V for more information. Our proof relies on the small
ball method developed in [9], [10], [11], [12]. In the last
section we illustrate our results with numerical simulations.

Notation. The usual `p-norm on Cn is denoted by
‖x‖p = (

∑n
j=1 |xj |p)1/p for 1 ≤ p < ∞ and ‖x‖∞ =

maxj=1,...,n |xj |. We let B`np and S`np denote the associated
unit ball and unit sphere, respectively. The expression ‖x‖0 :=
#{j : xj 6= 0} counts the number of nonzero coefficients of
x ∈ Cn. We use x∗ to denote the nonincreasing rearrangement
of x. The expectation of a random variable Z is written EZ
and the probability of an event E is denoted by P(E). The
Lp-norm of a measurable function f with respect to a measure
µ is denoted by ‖f‖Lp(µ). A Rademacher random variable ε
satisfies P(ε = 1) = P(ε = −1) = 1/2 and a Rademacher
sequence is a sequence of independent Rademacher random
variables. For t ∈ R, btc is the largest integer smaller than t
and dte is the smallest integer larger than t. Finally, we write
A . B if A ≤ cB for a universal constant c > 0.

II. THE RELATION BETWEEN (RIPp,q ) AND (BPDNp)
In this section we summarize the known results on (RIPp,q)

for p, q ≥ 1 related to sparse recovery via (BPDNp). Let us
mention that outside of this setting, there is work available
on (RIPp,2) for p < 1, which is motivated by the analysis of
exact sparse recovery via (non-convex) `p-minimization (see
e.g. [13], [14]). Also, as part of a construction of an isomorphic
embedding of `nq into `m+n

p , the authors of [15] construct a
random matrix satisfying (RIPp,q) for 0 < p < q < 2, p ≤ 1
(see [15, Corollary 12]).

As is well known and already described above, the property
(RIP2,2) was introduced in compressed sensing by Candès and
Tao in [16], [17]. They showed that if A is an m×n standard
Gaussian matrix, i.e., it has i.i.d. standard Gaussian entries,
then m−1/2A has restricted isometry constant δs smaller than
δ∗ with probability 1−η if m & δ−2

∗ (s log(en/s)+log(η−1)).
As a consequence, if δ∗ is smaller than a certain fixed threshold
and ‖y − Ax̂‖2 ≤ ε, then any minimizer x# for (BPDN2)
satisfies an `q/`1-guarantee of the form

‖x̂− x#‖q . s1/q−1σs(x̂)1 + s1/q−1/2m−1/2ε

for any 1 ≤ q ≤ 2 (see also [3, Theorem 9.13] for more
details). In particular, if x̂ is exactly s-sparse (so σs(x̂)1 = 0)

and ε = 0, then x̂ can be reconstructed exactly. Conversely,
it is known that m & s log(n/s) measurements are also
necessary for exact reconstruction of all s-sparse vectors (see
e.g. [3, Theorem 10.11]).

A very similar connection exists between (RIP1,1) and
(BPDN1) [8]. Indeed, consider the adjacency matrix of a
random left d-regular bipartite graph with n left vertices and
m right vertices. This m×n matrix can be constructed by, for
each column independently, assigning the value 1 to d entries
selected uniformly at random without replacement and setting
the remaining entries to 0. The resulting matrix A satisfies
with probability 1− η an (RIP1,1) condition of the form

(1− δ)1/2‖x‖1 ≤ d−1‖Ax‖1 ≤ ‖x‖1 for all x ∈ Σs,

provided that d = dδ−1 log(en/(sη))e and m ≥
cδs log(en/(sη)). As a consequence [8, Theorem 12], if
‖y − Ax̂‖1 ≤ ε then any minimizer x# of (BPDN1) satisfies
the `1/`1 guarantee

‖x̂− x#‖1 ≤ C(δ)
(
σs(x̂)1 +

ε

d

)
,

where C(δ) = O((1− 2δ)−1) for δ ↑ 1/2.
Interestingly, the rescaled adjacency matrix d−1A does

not satisfy (RIP2,2). In fact, any (RIP2,2)-matrix with binary
entries must satisfy m ≥ s2 log(en/s) [18, Theorem 4.6.1].
Conversely, if A is standard Gaussian, then m−1/2A cannot
satisfy (RIP1,1) for m ∼ s log(en/s) [8]. To see this, one
can consider x = e1, x̃ = s−1

∑s
i=1 ei, where the ei denote

the standard basis vectors. Then ‖x‖1 = ‖x̃‖1 = 1, but
‖Ax‖1 ∼

√
s‖Ax̃‖1.

The two positive results for p = q = 2 and p = q = 1 have
triggered further research on (BPDNp) via restricted isometry
properties. In [5] it was shown that a standard m×n Gaussian
matrix with

m &
(
δ−2s log(en/(sδ)) + δ−2 log(η−1)

)p/2
+ (p− 1)2p−1

(4)
satisfies an (RIPp,2) property for 2 ≤ p <∞ of the form

(1−δ)1/2‖x‖2 ≤ µ−1
p ‖Ax‖p ≤ (1+δ)1/2‖x‖2 for all x ∈ Σs,

where µp = E‖G‖p and G is a standard m-dimensional
Gaussian random vector. If A satisfies the latter property
for sparsity levels s, 2s, 3s with constants δs, δ2s, δ3s small
enough (see [19, Theorem 1] for a precise statement), then
for all x̂ ∈ Cn with ‖y − Ax̂‖p ≤ ε, any minimizer x] of
(BPDNp) satisfies an `2/`1-guarantee

‖x̂− x]‖2 . s−1/2σs(x̂)1 +
ε

µp
.

In [20] it is shown that the m × n adjacency matrix A of a
random left d-regular bipartite graph with n left vertices and
m right vertices with high probability satisfies an (RIPp,p)
condition in the form

(1− δ)‖x‖pp ≤ d−1‖Ax‖pp ≤ (1+ δ)‖x‖pp for all x ∈ Σs,

provided that, in the case 1 < p < 2,

m ≥ Cp(spδ−2 + s4−2/p−pδ−2/(p−1)) log n,

d ≥ C̃p(δ−1sp−1 + s(p−1)/pδ−1/(p−1)) log n,
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where Cp, C̃p are singular for p ↓ 1 and p ↑ 2, or in the case
2 < p <∞,

m ≥ pCpδ−2sp logp−1(n),

d ≥ pCpδ−1sp−1 logp−1(n).

If A satisfies an (RIPp,p)-property for p > 1, then one can
recover all x̂ ∈ Cn with ‖y−Ax̂‖p ≤ ε via (BPDNp) with an
`p/`1-guarantee of the form

‖x̂− x]‖p . s1/p−1σs(x̂)1 + ε,

see [20, Theorem A.6] for a more precise statement. Interest-
ingly, [20] also proved a lower bound on m assuming that the
m×n matrix satisfies (RIPp,p). Their result [20, Theorem 4.1]
essentially shows that one needs at least m & sp measurements
for p 6= 2, so that the case p = 2 should be considered a
singularity. A straightforward modification of their argument
shows that to satisfy (RIPp,2) one needs at least m & sp/2,
so that also the result in [5] (cf. (4)) cannot be improved
significantly. We leave the verification of this implication to
the interested reader.

To summarize, two important phenomena occur when mov-
ing away from the familiar (RIP2,2). First, one may need
to consider different random matrix constructions to satisfy
(RIPp,q) with the optimal number of measurements. Second,
the optimal scaling of the number of measurements in terms
of the signal sparsity may dramatically worsen, especially for
p > 2.

III. SPARSE RECOVERY VIA (BPDNp): IMPROVED
RESULTS

One might think that the two phenomena concerning the
properties (RIPp,q) for p 6= 2 mentioned above, may carry
over to recovery results via (BPDNp) (see e.g. [20], [5]), in
particular, that the minimal required number of measurements
depends significantly worse than linear on the sparsity. We
will now show that rather the contrary is true: the scaling
in terms of the sparsity generally does not worsen if p 6= 2
and, moreover, the optimal recovery results are realized by a
standard Gaussian matrix.

Let us note that earlier work already identified a looseness
in the relation between the classical (RIP2,2) and (BPDN2).
For example, if A has independent, isotropic, log-concave
rows, then (1) is satisfied with high probability if m ≥
c(δ)s log2(en/s) [21], and the square in the log-factor cannot
be removed [22, Proposition 5.5]. On the other hand, this
matrix still satisfies, with high probability, the exact recon-
struction property for s-sparse vectors via `1-minimization
in the optimal measurement regime m ' s log(en/s) ([23,
Theorem 7.3] – see also [24] for the special case of mea-
surement matrices with i.i.d. Weibull entries). More recently,
near-matching necessary and sufficient conditions on the mo-
ments of the i.i.d. entries of a matrix to satisfy the exact
reconstruction property (and more generally, stable and robust
recovery via (BPDN2)) in this regime were recently derived
by the second-named author and Mendelson [25]. We recover
as a special case a variation of this (sufficient) result, see

Corollary V.3 below. Such a result cannot be proved via an
RIP-based analysis since the right-hand side of (RIP2,2), i.e.,

‖Ax‖2 ≤ C‖x‖2 for all x ∈ Σs

requires either strong concentration properties or a larger num-
ber of measurements m than the optimal number s log(en/s)
(see the discussion in [25] and Section VI for more details).

For our analysis we let X1, . . . , Xm be i.i.d. copies of a
random vector X in Cn, which is defined on a probability
space (Ω,A,P). Let Pm be the associated empirical measure

Pm =
1

m

m∑
i=1

δXi .

The following observation follows immediately from the proof
of Theorem 2.1 in [9], by replacing the “Chebyshev” bound

‖f‖2L2(Pm) ≥ u
2Pm(|f | ≥ u)

by
‖f‖pLp(Pm) ≥ u

pPm(|f | ≥ u).

Lemma III.1. Fix 1 ≤ p <∞. Let F be a class of functions
from Cn into C. Consider

QF (u) = inf
f∈F

P(|f(X)| ≥ u)

and

Rm(F) = E sup
f∈F

∣∣∣ 1

m

m∑
i=1

εif(Xi)
∣∣∣,

where (εi)i≥1 is a Rademacher sequence. Let u > 0 and t > 0,
then, with probability at least 1− 2e−2t2 ,

inf
f∈F

1

m

m∑
i=1

|f(Xi)|p ≥ up
(
QF (2u)− 4

u
Rm(F)− t√

m

)
.

Consider the following sparse recovery problem: we take
m noisy linear measurements of an (approximately) s-sparse
signal x̂, i.e., we observe y = Ax̂+e where A ∈ Cm×n and we
suppose that the noise satisfies ‖e‖p ≤ ε. We aim to recover x̂
from y via (BPDNp). For the analysis we recall the following
standard notion (see for instance [3, Definition 4.21]). Given
q ≥ 1, we say that A satisfies the `q-robust null space property
of order s with constants 0 < ρ < 1 and τ > 0 with respect
to a norm ‖ · ‖ if for any set S ⊂ [n] with |S| ≤ s and any
x ∈ Cn,

‖xS‖q ≤
ρ

s1−1/q
‖xSc‖1 + τ‖Ax‖.

If A has this property, then any solution x# to

min
z∈Cn

‖z‖1 subject to ‖y −Az‖ ≤ ε

satisfies, for any 1 ≤ r ≤ q, the reconstruction error bound

‖x̂− x#‖r ≤ Cρs1/r−1σs(x̂)1 + τDρs
1/r−1/qε,

with Cρ = (1 + ρ)2/(1− ρ) and Dρ = (3 + ρ)/(1− ρ) when
‖e‖ ≤ ε [3, Theorem 4.25].

To analyze `q-robust null space properties, we introduce the
cone

T qρ,s ={
x ∈ Cn : ∃S ⊂ [n], |S| = s : ‖xS‖q ≥

ρ

s1−1/q
‖xSc‖1

}
.
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Note that T qρ,s contains Σs. We use the following observation.

Lemma III.2. Fix 1 ≤ q <∞. Set

Σqs := {x ∈ Cn : ‖x‖0 ≤ s, ‖x‖q = 1}

and let Dq
s be its convex hull. Then Dq

s is the unit ball with
respect to the norm

‖x‖Dqs :=

dn/se∑
`=1

(∑
i∈I`

x∗qi

)1/q

,

where I1, . . . , Idn/se form a uniform partition of [n], i.e.,

I` =

{
{s(`− 1) + 1, . . . , s`}, ` = 1, . . . , dn/se − 1,
{s(dn/se − 1) + 1, . . . , n}, ` = dn/se,

and x∗ is the nonincreasing rearrangement of x. As a conse-
quence,

T qρ,s ∩B`nq ⊂ (2 + ρ−1)Dq
s .

Proof. We proceed by making straightforward modifications
to the proof of [26, Lemma 3] (see also [27, Lemma 4.5] or
[28]), which corresponds to the case q = 2.

A vector x ∈ Dq
s can be represented as x =

∑
i αixi with

αi ≥ 0,
∑
i αi = 1 and xi ∈ S`nq , ‖xi‖0 ≤ s. In particular,

‖xi‖Dqs = ‖xi‖q = 1. By the triangle inequality

‖x‖Dqs ≤
∑
i

αi‖xi‖Dqs =
∑
i

αi = 1,

so Dq
s is contained in the ‖·‖Dqs -unit ball. To prove the reverse

inclusion, suppose that ‖x‖Dqs ≤ 1. We partition the index set
[n] into subsets S1, S2, . . . of size s, such that S1 corresponds
to the indices of the s largest entries of x, S2 to the next s
ones, etc. Set αi = ‖xSi‖q . Then x can be written as

x =
∑
i:αi 6=0

αi(α
−1
i xSi),

where ∑
i:αi 6=0

αi =
∑
i

‖xSi‖q = ‖x‖Dqs ≤ 1.

Clearly, for any αi 6= 0, ‖α−1
i xSi‖q = 1 and ‖α−1

i xSi‖0 ≤ s,
so x ∈ Dq

s .
To prove the second statement, fix x ∈ T qρ,s∩B`nq and write

‖x‖Dqs =
(∑
i∈I1

x∗qi

)1/q

+
(∑
i∈I2

x∗qi

)1/q

+
∑
`≥3

(∑
i∈I`

x∗qi

)1/q

.

(5)
To bound the last term, note that for each i ∈ I`, ` ≥ 3,

x∗i ≤
1

s

∑
j∈I`−1

x∗j and
(∑
i∈I`

x∗qi

)1/q

≤ 1

s1−1/q

∑
j∈I`−1

x∗j .

Summing up over ` ≥ 3 yields∑
`≥3

(∑
i∈I`

x∗qi

)1/q

≤ 1

s1−1/q

∑
`≥2

∑
j∈I`

x∗j .

Since x ∈ T qρ,s ∩B`nq , there is an S ⊂ [n] with |S| = s, such
that ‖xS‖q ≥ ρ

s1−1/q ‖xSc‖1. Therefore,∑
`≥2

∑
i∈I`

x∗i ≤ ‖xSc‖1 ≤
s1−1/q

ρ
‖xS‖q

≤ s1−1/q

ρ

(∑
i∈I1

x∗qi

)1/q

,

where we used that in the worst case S consists of indices
corresponding to s largest absolute coefficients of x. It follows
that ∑

`≥3

(∑
i∈I`

x∗qi

)1/q

≤ 1

ρ

(∑
i∈I1

x∗qi

)1/q

.

Since ‖x‖q ≤ 1, (5) implies that ‖x‖Dqs ≤ 2 + ρ−1.

We are now prepared to prove the main result of this article.
To keep our exposition accessible, we first consider the special
case of a standard Gaussian random matrix, i.e., a matrix with
independent normally distributed entries with mean zero and
variance one. In Section V we generalize our result to a wider
class of random matrices.

Theorem III.3. Let A be an m×n standard Gaussian matrix.
Fix 1 ≤ p ≤ ∞, q ≥ 2 and 0 < η < 1. Suppose that

m & s2−2/q log(en/s) + log(η−1). (6)

Then, with probability exceeding 1−η the following holds: for
any x̂ ∈ Cn and y = Ax̂ + e, where ‖e‖p ≤ ε, any solution
x# to (BPDNp) satisfies

‖x̂− x#‖r . s1/r−1σs(x̂)1 + s1/r−1/q ε

m1/p
,

for any 1 ≤ r ≤ q.

Remark III.4. The most interesting case in the above theorem
is q = 2. Then the optimal scaling m ≥ Cs log(en/s) implies
that with high probability we obtain the error bound

‖x̂− x#‖2 . s−1/2σs(x̂)1 +m−1/pε

for reconstruction via `p-constrained basis pursuit.
For q > 2 the scaling (6) of m in terms of the sparsity is

near-optimal. Indeed, it is known [29, p. 213] that for q > 2
and m ≤ n− 1, the Gelfand width of B`n1 in `nq satisfies

dm(B`n1 , `
n
q ) ≥ dm(B`n1 , `

n
∞) ≥ cm−1/2.

Thus, if we want to satisfy ‖x̂ − x#‖q . s1/q−1σs(x̂)1 for
all x̂ ∈ Cn, then it is necessary (cf. [3, Theorem 10.4]) that
m−1/2 . s1/q−1 or m & s2−2/q . Thus, up to possibly a
logarithmic factor we cannot improve the scaling of m in terms
of the sparsity in Theorem III.3.

Proof of Theorem III.3. Suppose first that p < ∞. As was
noted before, it suffices to show that with probability at least
1− η the `q-robust null space property of order s holds with
respect to `np -norm, with parameters ρ and τ/m1/p for some
0 < ρ < 1 and τ > 0. Let us first observe that it suffices to
show that

P
(

inf
x∈T qρ,s∩S`nq

‖Ax‖p ≥
m1/p

τ

)
≥ 1− η. (7)
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Indeed, if this is true, then with probability at least 1− η the
following holds: if x ∈ Cn satisfies ‖Ax‖p < (m1/p/τ)‖x‖q
then x/‖x‖q is not in T qρ,s. Therefore, for any S ⊂ [n] with
|S| ≤ s,

‖xS‖q ≤
ρ

s1−1/q
‖xSc‖1 ≤

ρ

s1−1/q
‖xSc‖1 +

τ

m1/p
‖Ax‖p.

On the other hand, if x ∈ Cn satisfies ‖Ax‖p ≥
(m1/p/τ)‖x‖q , then trivially

‖xS‖q ≤ ‖x‖q ≤
ρ

s1−1/q
‖xSc‖1 +

τ

m1/p
‖Ax‖p.

To prove (7), we write

inf
x∈T qρ,s∩S`nq

‖Ax‖p
m1/p

= inf
x∈T qρ,s∩Sn−1

q

( 1

m

m∑
i=1

|〈Xi, x〉|p
)1/p

,

where Xi denotes the i-th row of A. To apply Lemma III.1,
we estimate the small ball probability QF and the expected
Rademacher supremum Rm(F) for the set of linear functions

F = {〈·, x〉 : x ∈ T qρ,s ∩ S`nq }.

Let V = m−1/2
∑m
i=1 εiXi, then by Lemma III.2,

Rm(F) = m−1/2E sup
x∈T qρ,s∩S`nq

〈V, x〉

≤ (2 + ρ−1)m−1/2E sup
x∈Dqs

〈V, x〉

= (2 + ρ−1)m−1/2E sup
x∈Σqs

〈V, x〉,

as Dq
s is the convex hull of Σqs. Since any x ∈ Σqs satisfies

‖x‖2 ≤ s1/2−1/q‖x‖q = s1/2−1/q ,

Rm(F) ≤ s1/2−1/q(2 + ρ−1)m−1/2E sup
x∈Σ2

s

〈V, x〉.

Since X1, . . . , Xm are independent standard Gaussian vectors,
so is V . Thus,

E sup
x∈Σ2

s

〈V, x〉 = w(Σ2
s),

the Gaussian width of Σ2
s. It is known that

w(Σ2
s) ≤

√
2s log(en/s) +

√
s,

see e.g. [26, Lemma 4], and we can conclude that

Rm(F) ≤ cs1−1/q(2 + ρ−1)m−1/2
√

log(en/s).

To estimate the small ball probability, note that, since
‖x‖q ≤ ‖x‖2, for any x ∈ S`nq ,

P(|〈Xi, x〉| ≥ u) = P
(∣∣∣〈Xi,

x

‖x‖2

〉∣∣∣ ≥ u

‖x‖2

)
≥ P

(∣∣∣〈Xi,
x

‖x‖2

〉∣∣∣ ≥ u) = P(|g| ≥ u),

where g is a standard Gaussian real-valued random variable.
Therefore,

QF (2u) ≥ P(|g| ≥ 2u).

Now pick u∗ small enough so that the right hand side is bigger
than 1/2, say. Pick m large enough so that

max
{4c(2 + ρ−1)s1−1/q

√
log(en/s)

u∗
√
m

,

√
log(2/η)√

2m

}
≤ 1/8.

By Lemma III.1 we can now conclude that (7) holds with
τ = 41/p/u∗.

Finally, let p =∞. Since ‖Ax‖logm ≤ e‖Ax‖∞,

P
(

inf
x∈T qρ,s∩S`nq

‖Ax‖∞ ≥
1

τ

)
≥ P

(
inf

x∈T qρ,s∩S`nq
‖Ax‖logm ≥

e

τ

)
.

Thus, in this case the result follows from our proof for p =
logm.

IV. APPLICATION TO QUANTIZED COMPRESSED SENSING

Consider the situation where we quantize noiseless com-
pressed sensing measurements using a uniform scalar quan-
tization scheme. That is, we observe y = Qθ(Ax̂), where
Qθ : Rm → (θZ + θ/2)m is the uniform quantizer with bin
width θ defined by Qθ(z) =

(
θbzi/θc+θ/2

)m
i=1

. Graphically,
we divide Rm into hypercubes (or ‘bins’) with side length
θ and map Ax̂ to the center of the hypercube in which it
resides. We view the quantized measurements as noisy linear
measurements y = Ax̂ + e, by setting e = Qθ(Ax̂) − Ax̂.
Since the bin width of the quantization is θ, we clearly have
‖e‖∞ ≤ θ/2.

To obtain a satisfactory reconstruction x# of the signal, we
would like to ensure that it is quantization consistent. This
means that we require that y = Qθ(Ax

#). If we define

Bθ = {z ∈ Rm : −θ/2 ≤ zi < θ/2, i = 1, . . . ,m},

then x# is quantization consistent if and only if Ax#−y ∈ Bθ.
Thus, we should solve the following quantization consistent
basis pursuit program

min
z∈Rn

‖z‖1 subject to Az − y ∈ Bθ. (QCBP)

This program is strongly related to (BPDN∞) with ε = θ/2
(which correspond to taking the closure Bθ instead of Bθ in
(QCBP)). In fact, either 1) a minimizer for (QCBP) exists,
this is then also a minimizer for (BPDN∞), or 2) no mini-
mizer exists, in which case every minimizer of (BPDN∞) is
quantization inconsistent. In particular, Theorem III.3 implies
the following statement.

Corollary IV.1. Let A be an m×n standard Gaussian matrix
and 0 < η < 1. Suppose that

m & s log(en/s) + log(η−1).

Then, with probability exceeding 1 − η the following holds:
for any x̂ ∈ Rn and quantized measurements y = Qθ(Ax̂),
any solution x# to (QCBP) is a quantization consistent
reconstruction of x̂ and satisfies the error bound

‖x̂− x#‖2 . s−1/2σs(x̂)1 + θ.

Comparing Corollary IV.1 to the performance of the usual
basis pursuit denoising, (BPDN2), we can still reconstruct with
the optimal number of measurements, but the reconstruction
error does not decay beyond (a constant multiple of) the
quantization precision θ.
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Let us compare to the work in [5], where the authors
introduced and analyzed (BPDNp) with 2 ≤ p < ∞ for the
purpose of recovering a signal from quantized measurements
(as described above). They did not obtain a result for p =∞,
but the idea is that the reconstruction becomes more consistent
as p → ∞. A main result in [5] shows the following, via
an (RIPp,2)-based analysis. Assume that the error vector e
consists of i.i.d. U([−θ/2, θ/2]) random variables, that is, we
assume that the quantization error is uniformly distributed in
each bin (this is called the high resolution assumption). With
probability at least 1− e−2t2 ,

‖e‖p ≤ εp :=
θ

2(p+ 1)1/p
(m+ t(p+ 1)

√
m)1/p.

This suggests to try to recover x̂ via (BPDNp) with ε = εp.
Let A be an m× n standard Gaussian matrix with

m & (ps log(en
√
p/s) + p log(η−1))p/2, (8)

then with probability at least 1 − η, for any x̂ ∈ Rn the
reconstruction x# via (BPDNp) with y = Qθ(Ax̂) and ε = εp
satisfies

‖x̂− x]‖2 . s−1/2σs(x̂)1 +
θ√
p+ 1

.

Compared to Corollary IV.1, the reconstruction error due to
quantization error shows decay with p. Note, however, that
the value we can take for p is implicitly limited by (8), and in
particular we cannot set p =∞ so that x] is not guaranteed to
be quantization consistent. Moreover, when p > 2, the number
of required measurements grows faster than linear in the
sparsity. In fact, it grows exponentially in p, as opposed to the
minimal number of measurements needed in Corollary IV.1.

V. GENERALIZATION TO DIFFERENT DISTRIBUTIONS

From the proof of Theorem III.3 we extract the following
statement, which allows us to generalize our recovery result
(as well as Corollary IV.1) to a variety of random matrices
beyond the Gaussian case, while retaining the same (optimal)
recovery guarantees as for a standard Gaussian matrix.

Theorem V.1. Let A be an m× n random matrix with i.i.d.
rows X1, . . . , Xm which are distributed as X . Suppose that
for some u∗ > 0 and β > 0,

P
[
|〈X,x〉| ≥ u∗

]
≥ β for all x ∈ S`n2 , (9)

and, if V = m−1/2
∑m
i=1 εiXi then for some κ > 0,

E sup
x∈Σ2

s

〈V, x〉 = E
( s∑
i=1

(V ∗i )2
)1/2

≤ κ
√
s log(en/s),

where V ∗ is the nonincreasing rearrangement of V . Fix 1 ≤
p ≤ ∞ and q ≥ 2. If

m & max
{ κ2

u2
∗β

2
s2−2/q log(en/s),

log(η−1)

β2

}
,

then with probability at least 1 − η the following holds: for
any x̂ ∈ Cn and y = Ax̂ + e, where ‖e‖p ≤ ε, any solution
x# to (BPDNp) satisfies

‖x̂− x#‖r . s1/r−1σs(x̂)1 + s1/r−1/q ε

β1/pu∗m1/p
,

for any 1 ≤ r ≤ q.

To verify the small ball condition (9), it is often useful to
apply the Paley-Zygmund inequality

P(ζ > t) ≥ (Eζ − t)2

Eζ2
, 0 ≤ t ≤ Eζ, (10)

which holds for any nonnegative random variable ζ. In par-
ticular, if X is a random vector with independent, mean-zero
entries ξ1, . . . , ξn which have variance at least σ2 and fourth
moment bounded from above by µ4, then

P(|〈X,x〉| > t) ≥ (σ2 − t2)2

µ4
, 0 ≤ t ≤ σ, (11)

whenever ‖x‖2 = 1. We refer to [3, Lemmas 7.16 and 7.17]
for details.

Let us now verify the conditions of Theorem V.1 for some
concrete classes of matrices.

Corollary V.2. Suppose that the rows of A are i.i.d. copies of
X , where X is
• sub-isotropic, i.e., E〈X,x〉2 ≥ ‖x‖22 for all x ∈ Cn;
• 1-subgaussian, i.e., E exp(t〈X,x〉) ≤ exp(t2) for all x ∈
Cn with ‖x‖2 ≤ 1 and t ∈ R.

If m & s2−2/q log(en/s) + log(η−1) then the conclusion of
Theorem III.3 holds.

Proof. We verify the two conditions of Theorem V.1. To verify
(9), we use (10) for |〈X,x〉|2 to get

P(|〈X,x〉| > u) ≥ (E|〈X,x〉|2 − u2)2

E|〈X,x〉|4
& (1− u2)2,

whenever 0 ≤ u ≤ 1 and ‖x‖2 = 1. In the last inequality, we
used that X is sub-isotropic and subgaussian.

To verify the second condition, note that by assumption, the
random variable 〈Xi, x − y〉 is 2-subgaussian for any x, y ∈
Σ2
s. Therefore V = m−1/2

∑
i εiXi is a 4-subgaussian random

vector (see e.g. [3, Theorem 7.27]). By Dudley’s inequality
(see e.g. [3, Theorem 8.23]),

E sup
x∈Σ2

s

〈V, x〉 .
∫ 1

0

[log(N (Σ2
s, ‖ · ‖2, u)]1/2 du.

Since for any u > 0

N (Σ2
s, ‖ · ‖2, u) ≤

(
n

s

)
max

S⊂[n]: |S|≤s
N (BS , ‖ · ‖2, u)

≤ (en/s)s(1 + (2/u))s,

we conclude that

E sup
x∈Σ2

s

〈V, x〉

.
√
s log(en/s) +

√
s

∫ 1

0

[log(1 + (2/u))]1/2 du

.
√
s log(en/s).

The following result concerns matrices with i.i.d. entries.
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Corollary V.3. Suppose that X = (ξ1, . . . , ξn), with the
ξi independent, mean-zero and identically distributed as ξ.
Suppose that for some λ > 0 and α ≥ 1/2,

(E|ξ|r)1/r ≤ λrα, for all 2 ≤ r ≤ log n. (12)

and that (9) holds. If

m & max
{λ2e4α−2

u2
∗β

2
s2−2/q log(en/s),

log(η−1)

β2
, (log(n))2α−1

}
,

then the conclusion of Theorem V.1 holds.

Specializing Corollary V.3 to p = q = 2, we obtain a result
similar to [25, Theorem A]. Let us compare the two results.
On the one hand, our result gives a better power in the log(n)
factor (2α−1 versus 4α−1) and improved (actually optimal)
dependence on the failure probability η. On the other hand,
[25, Theorem A] does not require independence of the ξi and
needs only a small ball assumption on the set of sparse vectors
Σs (rather than one on the larger set T 2

ρ,s ∩ S`n2 used here).

Proof. We fix the randomness in the Rademacher sequence
(εi). The random variables Vj = m−1/2

∑m
i=1 εiXij are then

independent and mean-zero. Since Xij satisfies (12), [25,
Lemma 2.8] shows that if m ≥ (log(n))max{2α−1,1}, then
for any 2 ≤ p ≤ log(n)

(E|Vj |p)1/p . e2α−1λ
√
p,

i.e., the first log(n) moments show subgaussian behaviour.
Therefore, (the proof of) [10, Lemma 6.5] shows that

E
( s∑
i=1

(V ∗i )2
)1/2

. e2α−1λ
√
s log(en/s).

The result is now immediate from Theorem V.1.

Example V.4. Let A be a random matrix with i.i.d. entries
Aij . Below we list some instances of Corollary V.3. Note that
if we measure the reconstruction error in `2 (i.e., q = 2), then
the stated lower bounds in (i), (ii), (iv), and (v) coincide with
the optimal number of measurements.

(i) If the Aij are random signs (i.e. Rademachers), then
m & s2−2/q log(en/s) + log(η−1) is sufficient for the
recovery guarantee in Theorem III.3. This follows from
Corollary V.3 with λ = 1, α = 1/2 and β, u∗ universal
constants.

(ii) If the Aij are standard symmetric exponential random
variables, then m & s2−2/q log(en/s)+log(η−1) suffices
for the recovery guarantee in Theorem III.3. Indeed, in
this case one can apply Corollary V.3 with λ = α = 1
and take for β, u∗ universal constants.

(iii) Let 0 < γ ≤ 2. Suppose that the Aij are distributed as
ξγ , where ξγ is a ψγ-random variable which has the same
distribution as sign(g)|g|2/γ , with g standard Gaussian.
Since (E|g|2r/γ)1/r ' (2r/γ)1/γ for any r ≥ 1, we can
take α = 1/γ and λ ' (2/γ)1/γ . Moreover, applying
(11) with σ2 ' (4/γ)2/γ , µ4 ' (8/γ)4/γ and t = σ2/2,
we find that (9) holds with u∗ ' (4/γ)2/γ/2 and β '

2−4/γ/4. Using Corollary V.3 we can therefore conclude
that

m & max
{

(e
√

8)4/γs2−2/q log(en/s),

28/γ log(η−1), (log(n))(2/γ)−1
}
, (13)

measurements are sufficient for the reconstruction error
bound

‖x̂− x#‖r . s1/r−1σs(x̂)1 + s1/r−1/q 24/(pγ)ε

(4/γ)2/γm1/p
,

for any 1 ≤ r ≤ q.
(iv) Suppose that the Aij are distributed as a Student-t vari-

able ξd of degree d. The random variable ξd does not
have finite r-th moments for r ≥ d. For r < d we
have (E|ξd|r)1/r '

√
dr/(d − r) [30]. In particular,

if r < d/2 then ξd has a subgaussian r-th moment.
Moreover, (9) holds with constants β, u∗ which do not
depend on the degree d. Therefore, if d ≥ 2 log n,
then m & s2−2/q log(en/s) + log(η−1) suffices for the
recovery guarantee in Theorem III.3.

(v) Suppose that the Aij are distributed as a random variable
ξ, which has probability density function

p(x) =
γ − 1

2γ
min{1, |x|−γ}, x ∈ R,

for some γ > 1. One readily calculates that

E|ξ|p =
γ − 1

γ

( 1

γ − p− 1
+

1

p+ 1

)
for p < γ−1 and E|ξ|p =∞ for p ≥ γ−1. If we assume
γ ≥ log(n) + 2, say, then ξ trivially satisfies the moment
bound in Corollary V.3 with α = 1/2. Moreover, if γ > 5
then Eξ2 = (γ − 1)/(3γ − 9) and Eξ4 = (γ − 1)/(5γ −
25) so the Paley-Zygmund inequality (11) implies that
(9) holds for universal constants u∗, β if γ ≥ 6, say. In
conclusion, if we assume

γ ≥ max{log(n) + 2, 6},

then m & s2−2/q log(en/s) + log(η−1) is sufficient for
the recovery guarantee in Theorem III.3.

The last two examples illustrate that only the behaviour of
the first log n moments of the entries of A is important for our
sparse recovery result, the higher moments need not even exist.
In fact, if the degree d or the parameter γ, respectively, is large
enough, then we can stably and robustly recover with the same
number of measurements as in the Gaussian case. In contrast,
even though the ψγ-random variables in (iii) of Example V.4
have moments of all orders, their first log n moments grow at
an increasing rate α = 1/γ as γ ↓ 0. As a consequence,
the required number of measurements in (13) increases as
γ decreases. Let us emphasize that (13) is only a sufficient
condition for recovery. However, a numerical simulation in
Section VII will show that the growth of m in terms of 1/γ
is not an artefact of our proof: the experimentally observed
reconstruction performance deteriorates as γ ↓ 0.

To conclude this section, we extend the example of a stan-
dard symmetric exponential matrix (part (ii) of Example V.4)
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to matrices with i.i.d. isotropic, unconditional, log-concave
rows. In particular, we do not assume that the entries within a
row are independent. Recall that a probability measure µ on
Rn is called log-concave if for any (Borel) sets A,B ⊂ Rn
and 0 ≤ θ ≤ 1,

µ(θA+ (1− θ)B) ≥ µ(A)θµ(B)1−θ.

A random vector Y is called log-concave if its probability
distribution is log-concave. We call Y isotropic if it is mean-
zero and E〈Y, x〉2 = ‖x‖22 for all x ∈ Rn. We say that Y
is unconditional if, for any ε1, . . . , εn ∈ {−1, 1}, the vector
(ε1Y1, . . . , εnYn) has the same distribution as Y . A typical
example of an isotropic, unconditional log-concave vector Y
is a random variable uniformly distributed over the unit ball
of an unconditional norm in the isotropic position.

We will use the following comparison theorem from [31]
(see also Theorem 2.5 in [32]), which is based on earlier work
in [33]. It will allow us to reduce the general case of matrices
with i.i.d. isotropic, unconditional, log-concave rows to the
special case of a standard symmetric exponential matrix.

Theorem V.5. Let Y be an isotropic, unconditional, log-
concave vector in Rd and E be a standard d-dimensional
symmetric exponential vector, i.e., its entries are i.i.d. standard
symmetric exponential variables. Let ‖·‖ be any semi-norm on
Rd. Then for any t > 0,

P
[
‖Y ‖ ≥ Ct

]
≤ CP

[
‖E‖ ≥ t

]
,

where C is a universal constant.

Corollary V.6. Let A be an m × n matrix with i.i.d. rows
Xi distributed as X , where X is an isotropic, unconditional
log-concave vector. If m & s2−2/q log(en/s)+log(η−1), then
the conclusion of Theorem III.3 holds.

Proof. We verify the conditions of Theorem V.1. By a result of
Borell (see e.g. [34, Proposition 2.14]), X is a sub-exponential
vector. In fact, for any p ≥ 1,

(E|〈X,x〉|p)1/p . pE|〈X,x〉| for all x ∈ Rn.

Since X is isotropic, we can apply (10) for |〈X,x〉|2 to get

P(|〈X,x〉| > u) ≥ (E|〈X,x〉|2 − u2)2

E|〈X,x〉|4
& (1− u2)2,

whenever 0 ≤ u ≤ 1 and ‖x‖2 = 1. This shows that (9) holds
with absolute constants u∗, β > 0.

To prove the second condition, we define a semi-norm on
Rm×n by

‖B‖s = sup
x∈Σ2

s

〈 m∑
i=1

Bi, x
〉

where the Bi are the m row vectors of B ∈ Rm×n. Since the
Xi are unconditional,

E sup
x∈Σ2

s

〈V, x〉 =
1√
m
E ‖A‖s .

Considered as a vector in Rmn, A is isotropic, unconditional
and log-concave. Theorem V.5 therefore implies that,

P
[
‖A‖s ≥ Ct

]
≤ CP

[
‖E‖s ≥ t

]
,

where E is an m× n standard symmetric exponential matrix.
As a consequence, we have

E ‖A‖s =

∫ ∞
0

P
[
‖A‖s ≥ t

]
dt

≤ C2

∫ ∞
0

P
[
‖E‖s ≥ t

]
dt . E ‖E‖s .

By the proof of Corollary V.3 (see also (ii) of Example V.4),
E ‖E‖s .

√
ms log(en/s), which proves the second condition

in Theorem V.1.

As was mentioned before, Koltchinskii showed that m &
s log(en/s) isotropic, log-concave measurements suffice with
high probability to recover every s-sparse vector exactly
via `1-minimization [23, Theorem 7.3]. Under the additional
assumption that the measurement vectors are unconditional,
Corollary V.6 makes this result stable with respect to approx-
imate sparsity and robust with respect to measurement noise,
while retaining the optimal number of measurements.

VI. RIP RIP?

The classical restricted isometry property, (RIP2,2), played a
major role in the theory of compressed sensing since [16], [17].
It has proved to be an optimal tool to analyze standard basis
pursuit denoising for subgaussian matrices. It has also been
used to show that various other random matrices, including
structured random matrices, allow for uniform sparse recovery
via (BPDN2) if one increases the number of measurements
with additional logarithmic factors. Nevertheless, it is known
that for certain ensembles (e.g. subexponential) this logarith-
mic increase can be avoided, establishing a gap between RIP
and sparse recovery conditions.

In this work we showed that this gap becomes much more
pronounced when considering (BPDNp) for p 6= 2. An analysis
of this program via an RIP condition erroneously suggests
that 1) the required optimal number of measurements for
uniform sparse recovery may be much larger than in the case
p = 2, especially if p > 2, and 2) that one may need to
consider random measurements different from Gaussian to
attain this optimal number. This begs the question: does this
mean that researchers interested in sparse recovery should stop
considering restricted isometry properties? In this paper we
showed that by proving a lower (RIPp,q)-type of bound on an
extension of the set of sparse vectors (cf. (7)), one can prove
an optimal recovery result for a large class of matrices, which
do not satisfy (RIPp,q) in the optimal measurement regime.
Thus, it seems the gap between restricted isometry properties
and sparse recovery conditions originates in the upper bound
of the RIP “for all x ∈ Σs, ‖Ax‖p ≤ C ‖x‖q” – at least when
considering convex optimization approaches for recovery.

To move towards a definitive answer of our question, it
would be interesting to determine whether similar gaps occur
between restricted isometry properties and sparse recovery
conditions for other numerical methods. For example, there
are several algorithms such as iterative hard thresholding and
CoSamp for which convergence results are currently only
known under the (classical) RIP.
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VII. SIMULATIONS

Our results show that for a broad class of measurement
matrices, one can stably and robustly recover sparse vectors
using (BPDNp) with the same number of measurements as in
the Gaussian case. In the case that the measurement matrix is
populated with i.i.d. copies of a mean-zero random variable,
we have seen two phenomena. First, only the behaviour of
the first log n moments is relevant for the reconstruction
guarantees. In fact, the moments beyond level log n need
not even exist. Second, the number of measurements that is
sufficient for stable and robust reconstruction increases as the
first log n moments grow faster (i.e., as the value of α in (12)
becomes larger).

In this section we illustrate these two phenomena using
numerical simulations. We consider two classes of random
measurement matrices: matrices filled with i.i.d. ψγ-variables
and matrices with i.i.d. Student-t entries (see (iii) and (iv),
respectively, in Example V.4). The random variables in the first
class have finite moments of every order, but these moments
grow at an increasing rate α = 1/γ as γ ↓ 0. A Student-t
variable of degree d, on the other hand, only has finite r-th
moment for r < d. However, the first few moments behave
much better than those of a ψγ random variable: they even
show subgaussian behaviour for r < d/2. We simulate phase
transition curves [35] in the noiseless setting for these classes
of random variables for various values of γ and d, respectively,
as follows. At every pixel point (m, s) ∈ {1, . . . , n}2 with
n = 100 of the phase transition matrix, we construct 15 s-
sparse vectors x̂ ∈ Rn by selecting a support set uniformly
at random and filling it with 1’s. For each of these vectors,
we check if Basis Pursuit (solved here using the Douglas-
Rachford algorithm) succeeds, meaning that the reconstruction
x] satisfies

∥∥x] − x̂∥∥
2
≤ 0.001. For each sparsity level s, we

mark the first time that the number of successes exceeds the
number of failures. This yields a phase transition curve: in the
area above the curve the number of successful reconstructions
exceeds the number of failures, below the curve the opposite
is true. We repeat this protocol 20 times and average the phase
transition curves. The result is shown in Figures 1 and 2.

Fig. 1. Phase transition curves of the Basis Pursuit
procedure for measurements matrices with i.i.d. ψγ entries for
γ = 2, 1.8, 1.5, 1.2, 1, 0.8, 0.5, 0.1, 0.05, 0.01. The curve obtained
for Gaussian measurements corresponds to γ = 2.

Except for the exponential power γ = 0.5, 0.1, 0.05, 0.01

Fig. 2. Phase transition curves of the Basis Pursuit procedure for mea-
surements matrices with i.i.d. Student t-distributed entries with degree d =
2, 3, 4, 5, 10, 20, 30. The curve obtained for Gaussian measurements is also
drawn for comparison.

and Student’s t-distribution of degree d = 2, the phase
transition curves are close to the one obtained for Gaus-
sian measurements. This agrees with the theoretical recovery
guarantees in Example V.4. Our results predict that in our
simulation only the first log n ∼ 4 moments determine
the reconstruction performance. In the simulation for ψγ-
variables, our sufficient condition (13) suggested that more
measurements are needed for stable and robust reconstruction
as γ decreases. Our simulation shows that the growth of m in
terms of 1/γ is not an artefact of our proof: the reconstruction
performance deteriorates as γ decreases. The simulation for
Student-t variables illustrates that if the degree d is large
enough, then the first few moments are finite and grow in
a subgaussian fashion and therefore the phase transition curve
is almost the same as for a Gaussian matrix. If the degree
becomes too small, not enough moments exist and as a
consequence, the reconstruction performance deteriorates.

Similar phase transition curves can be observed in simula-
tions for noisy measurements, as well as for the quantized
measurements studied in Section IV. We omit a detailed
description of these numerical simulations, but the interested
reader can produce his/her own simulations using our code
[36] for various measurements matrices, including the random
matrices with correlated rows considered in Corollaries V.2
and V.6.
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