Mathematical introduction to Compressed Sensing

Lesson 1 : measurements and sparsity
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Organization of the course

Every Tuesday (2/02 — 9/02 — 23/02 — 30/02 — 2/03 — 9/03 — 16/03 — 23/03)

3 hours course (15:15 to 18:30) 15 minutes break.
No lesson (16/02)

Simulations using python + notebook + cvxopt + cvxpy (to install before)

All the course material (python and course notebooks) are available on my
webpage
Evaluation:

e Python notebook or pdf report (see the details on my webpage)

@ register by group of two students before 22/02 on my webpage in the
comments section of my webpage

@ Project defense between 29/03 and 2/04.
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https://lecueguillaume.github.io/2015/10/08/compressed_sensing_course/
https://lecueguillaume.github.io/2015/10/08/compressed_sensing_course/
https://lecueguillaume.github.io/2021/01/28/organisation-soutenance-cours-cs/

Aim of the course: analyze high-dimensional data

@ Understand low-dimensional structures in high-dimensional spaces
© reveal this structure via appropriate measurements

© construct efficient algorithms to learn this structure

Tools:

@ approximation theory
© probability theory

© convex optimization algorithms
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First lesson is about:

Two central ideas:
@ Sparsity
© measurements
through three examples:
@ Single pixel camera
© face recognition

@ Financial data

Guillaume Lecué (ENSAE) Compressed Sensing

4/29



What is Compressed Sensing?

Classical data acquisition system in two steps:
sensing compression
—— _RAW format file > ——— _JPEG format file

Compressed sensing makes it in one step:

Compressed sensing

In french: Compressed Sensing = "acquisition comprimée"
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Q: How is it possible? A: Construct clever measurements!

x: a signal (finite dimensional vector, say x € RV)

Take m linear measurements of signal x:

yi:<x,X,->, izl,...,m

where:
Q X; : i-th measurement vector (in RV),

© y; : i-th measurement (= data = observation).

Problem: reconstruct x from the measurements (y;)”" , and the measurement
vectors (X;)!, with m as small as possible.
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Matrix version of Compressed Sensing

We denote
Vi el
y= : eR" and A= :
Y X,

y: measurements vector and A: measurements matrix
Problem: find x such that y = Ax when m << N

A =

c RmXN

CS = solve a highly undetermined linear system
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Sparsity = low-dimensional structure
Since m < N there is no unique solution to the problem y = Ax = no hope to

reconstruct x from the m measurements y; = <x, X,->.

Idea: Signals to recover have some low-dimensional structure. We assume
that x is sparse.

Definition

Support of x = (x1,...,xy) " € RV:

supp(x) = {j € {1,...,N} : x; # 0}

Size of the support of x:
[Ixllg = [supp(x)]

x is s-sparse when ||x|, < sand &, = {x € RY : ||x]|, < s}.
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Sparsity and the undetermined system y = Ax

Idea: Maybe the kernel of A is in such a position that the sparsest solution to
y = Ax is x itself?
Procedure: Look for the sparsest solution of the system y = Ax:

Xo € argmin [|7]|, ey
At=y

which looks for vector(s) ¢ with the shortest support in the affine set of
solutions

{t e RN : Ar = y} = x + ker(A).
Idea: Denote X5 = {r € RV : ||#]|, < s}. If 23N (x + ker(A)) = {x} for
s = ||x||, then the sparsest element in x + ker(A) is x and so ko = x

Definition
Xo is called the /p-minimization procedure J

(cf. Second lesson)
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Compressed sensing: problems statement

Problem 1: Construct a minimal number of measurement vectors
Xi,...,Xm such that one can reconstruct any s-sparse signal x from

the m measurements ((x, X;))™ ;.

Problem 2: Construct efficient algorithms that can reconstruct exactly
any sparse signal x from the measurements (<x, X,->);": I
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Is signal x really sparse?

Sparsity of signal x is the main assumption in Compressed Sensing (and more
generally in high-dimensional statistics).

Q.: Is it true that "real signals" are sparse?

Three examples:
@ images
© face recognition
© financial data
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Compressed Sensing in images
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Sparse representation of images
i

An image is a:

Q vector f € R"™*"
@ functionf : {0,...,n—1}> = R

Images can be developed into basis: f = Z}i] <f , ¢j>¢j

Problem in approximation theory: Find basis (¢/;) such that ((f, wj>);'il is
(approximatively) a sparse vector for real life images f.

Solution: Wavelets basis (cf. Gabriel Peyré course)

notebook: wavelet decomposition
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http://localhost:8888/notebooks/wavelet_4_daubechies2d.ipynb

Sparse representation of images

log of wavelets coefficients in decaying order

o 10000 20000 30000 40000 50000 £0000

Graphics: Representation of (log |<f , ¢j> |)]ni1 in a decreasing order for
n = 256 (256% = 65.536 coefficients).

Conclusion: When developed in an appropriate basis, images have an almost
sparse representation.
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Sparse representation of images

Original image 65536 coefficients

Compressed image 4096 coefficients

(JPEG 2000).

Idea: Compression of images by thresholding small wavelets coefficients
course!

Remark: these are the only three slides about approximation theory in this
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Compressed sensing and images

Two differences with the CS framework introduced above:
@ images are almost sparse

@ images are (almost) sparse not in the canonical basis but in some other
(wavelet) basis.

Two consequences:
@ our procedures will be asked to "adapt" to this almost sparse situation:
stability property

© we need to introduce a stuctured sparsity: being sparse in some general
basis.
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Structured sparsity

Definition

Let F = {fi, - ,f,} be adictionary in RY. A vector x € RY is said s-sparse
in F when there exists J C {1, ..., p} such that

/] Ssandx:ZHjﬁ.

jel

In that case,
x=F0where F = [fi| -+, |f,] € RV

and 6 € R? is a s-sparse in the canonical basis of R”.
For CS measurements, one has:

y=Ax = AF0

where 6 € ¥ and so one just has to replace the measurement matrix A by AF.
Conclusion: All the course deals only with vectors that are sparse in the

canonical basis.
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What is a photos machine using CS?

It should take measurements like:

We take m measurements:

V=B

In particular, measurements y, . . ., y,, are real numbers. Each of them can be
stored using only one pixel in the camera.
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Single pixel camera from RICE University

single photon
detector

image
reconstruction
or
processing

random i <(
pattern on e = == L-
DMD array Rowr DsP

DMD: digital micromirror device — randomly orientated

Mirror ~10 deg

CMO:!
Spring Tip Substrate
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Single pixel camera from RICE University

target 4096 measurements 1300 measurements
65536 pixels (16%) (2%)

Example of reconstruction of an image using the single pixel camera.
Two problems:

@ How do we choose the measurement vectors: AR

@ Is there an efficient algorithm to reconstruct the signal from those few
measurements?
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CS in face Recognition
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face recognition and Compressed Sensing
Database: D := {(¢;,¢;) : 1 <j < N} where :

Q@ ¢, € R™ is a vector representation of the j-th image, (for instance,
concatenation of the images pixels value)

@ /€ {1,...,C} is alabel refering to a person

A same person may be represented in D several times from various angles,
luminosity, etc..

Problem: Given a new image y € R"”, we want to label it with an element
from the set {¢;,j =1,...,C}

""Classical'' solution: use multi-class classification algorithm.

Here: Face recognition as a CS problem.
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The sparsity assumption in face recognition

Empirical observation: If for all of the C individuals one has:
@ alarge enough number of images,

@ enough diversity in terms of angles and brightness

then for any new image y € R” of individual number i € {1,...,C}, one
expect that
y= Z gbjxj.
Jb=i

Consequence: We assume that a new image y € R” can be written as

y=®x+¢
where:

Q o= [(I)l‘q)z‘ ‘(I)d and ¢, = [¢] : Ej = l] foranyi S {1,...,C},

Q@ x=[0"0"|---|x[07|---|07]T where x; is the restriction of x to the
columns of ®; in ®

© ( € R™ error due to linear approximation of y by columns in ®.
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Face recognition as a noisy CS problem

Compare with the benchmark CS setup, one has three difference:
@ there is an additional noise term ¢
© the sparsity assumption on x is stronger here: x is block-sparse

© depending on the control one has on the database, we may or may not
have the ability to choose (in a restricted way) the measurement matrix.

Three consequences:
@ our procedures will be asked to deal with noisy data: robustness property

© we will design procedures taking advantages of more "advanced"
sparsity like the block-sparsity one

© when one is in a situation where there is no control on the choice of
measurement vectors then one can try several algorithms and see how
they behave.
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Construction of a measurement matrix in face recognition

Various angles:
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CS 1n Finance
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Finance and CS

Problem: We observe the performances of a portfolio every minute:
Y1y, Ym- We would like to know how it is structured (shares and quantity).
Data: In addition to yy, . .., y,;, we know the values of all shares at any time:
;.) Energy 2 ; Price’ Net C;’lg 2 %Chg
10) N 88.70 -0.58 -0.65%
111.19 -0.51 -0.46%

273.43 X -0.73%
306.70 -0. -0.26%

2) Metals

3) Agriculture
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Finance and CS
x;j: value of share j at time i. We have the following data:
t=1: y: portfolio value (x; J)jvzl : shares values

t=2: y,: portfolio value (x, J)]N:I : shares values

t=m: y,: portfolio value  (x J);.Vzl : shares values

Sparsity assumption: The portfolio contains only a limited number of shares
and its structure did not change during the observation time.
Problem formulation: find x € RY such that y = Ax where

y:(yi);":]andA:(xilegigm,lgjgN)

and x is supposed to be sparse.
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CS and high-dimensional statistics

Definition

We say that a statistical problem is a high-dimensional statistical problem

when one has to estimate a N-dimensional parameter / vector / object using m
observations and m < N.

@ CS is therefore a high-dimensional statistical problem.

© Noisy CS is exactly the linear regression statistical model when the noise
is assumed to be random.
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