Mathematical introduction to Compressed Sensing Lesson 1 : measurements and sparsity

Guillaume Lecué

ENSAE

★ ∃ > < ∃ >

Organization of the course

Every Tuesday (2/02 - 9/02 - 23/02 - 30/02 - 2/03 - 9/03 - 16/03 - 23/03)

3 hours course (15:15 to 18:30) 15 minutes break.

No lesson (16/02)

Simulations using python + notebook + cvxopt + cvxpy (to **install before**)

All the course material (python and course notebooks) are available on my webpage

Evaluation:

- Python notebook or pdf report (see the details on my webpage)
- register by group of two students before 22/02 on my webpage in the comments section of my webpage
- Project defense between 29/03 and 2/04.

Aim of the course: analyze high-dimensional data

- **1** Understand low-dimensional structures in high-dimensional spaces
- I reveal this structure via appropriate measurements
- Source construct efficient algorithms to learn this structure

Tools:

- approximation theory
- probability theory
- Source optimization algorithms

First lesson is about:

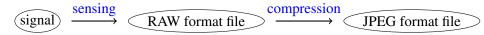
Two central ideas:

- Sparsity
- 2 measurements
- through three examples:
 - Single pixel camera
 - If a face recognition
 - Financial data

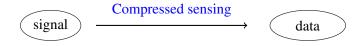
∃→ < ∃→

What is Compressed Sensing?

Classical data acquisition system in two steps:



Compressed sensing makes it in one step:



In french: Compressed Sensing = "acquisition comprimée"

Q: How is it possible? A: Construct clever measurements!

x: a signal (finite dimensional vector, say $x \in \mathbb{R}^N$)

Take *m* linear measurements of signal *x*:

$$y_i = \langle x, \mathbf{X}_i \rangle, \quad i = 1, \dots, m$$

where:

- X_i : i-th measurement vector (in \mathbb{R}^N),
- 2 y_i : i-th measurement (= data = observation).

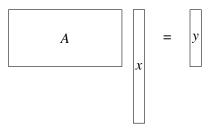
<u>Problem</u>: reconstruct *x* from the measurements $(y_i)_{i=1}^m$ and the measurement vectors $(X_i)_{i=1}^m$ with *m* as small as possible.

Matrix version of Compressed Sensing

We denote

$$y = \begin{pmatrix} y_1 \\ \vdots \\ y_m \end{pmatrix} \in \mathbb{R}^m \quad \text{and} \quad A = \begin{pmatrix} X_1^\top \\ \vdots \\ X_m^\top \end{pmatrix} \in \mathbb{R}^{m \times N}$$

y: measurements vector and *A*: measurements matrix Problem: find *x* such that y = Ax when $m \ll N$



CS = solve a highly undetermined linear system

Guillaume Lecué (ENSAE)

• • = • • = •

< □ > < 凸 →

Sparsity = low-dimensional structure

Since m < N there is no unique solution to the problem $y = Ax \Rightarrow$ no hope to reconstruct *x* from the *m* measurements $y_i = \langle x, X_i \rangle$.

<u>Idea:</u> Signals to recover have some <u>low-dimensional structure</u>. We assume that x is sparse.

Definition

Support of
$$x = (x_1, \ldots, x_N)^\top \in \mathbb{R}^N$$
:

$$\operatorname{supp}(x) = \left\{ j \in \{1, \dots, N\} : x_j \neq 0 \right\}$$

Size of the support of *x*:

$$\|x\|_0 = |\operatorname{supp}(x)|$$

x is *s*-sparse when $||x||_0 \le s$ and $\Sigma_s = \{x \in \mathbb{R}^N : ||x||_0 \le s\}$.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Sparsity and the undetermined system y = Ax

<u>Idea:</u> Maybe the kernel of *A* is in such a position that the sparsest solution to y = Ax is *x* itself?

<u>Procedure:</u> Look for the sparsest solution of the system y = Ax:

$$\hat{x}_0 \in \underset{At=y}{\operatorname{argmin}} \|t\|_0 \tag{1}$$

イロト 不得 とくほ とくほう

which looks for vector(s) t with the shortest support in the affine set of solutions

$$\{t \in \mathbb{R}^N : At = y\} = x + \ker(A).$$

<u>Idea</u>: Denote $\Sigma_s = \{t \in \mathbb{R}^N : ||t||_0 \le s\}$. If $\Sigma_s \cap (x + \ker(A)) = \{x\}$ for $s = ||x||_0$ then the sparsest element in $x + \ker(A)$ is x and so $\hat{x}_0 = x$

Definition

 \hat{x}_0 is called the ℓ_0 -minimization procedure

(cf. Second lesson)

Compressed sensing: problems statement

<u>Problem 1</u>: Construct a minimal number of measurement vectors X_1, \ldots, X_m such that one can reconstruct any s-sparse signal x from the m measurements $(\langle x, X_i \rangle)_{i=1}^m$.

<u>Problem 2:</u> Construct efficient algorithms that can reconstruct exactly any sparse signal x from the measurements $(\langle x, X_i \rangle)_{i=1}^m$.

Is signal *x* really sparse?

Sparsity of signal *x* is the main assumption in Compressed Sensing (and more generally in high-dimensional statistics).

Q.: Is it true that "real signals" are sparse?

Three examples:

- images
- face recognition
- financial data

伺 ト イヨ ト イヨ ト

Compressed Sensing in images

A (1) > A (1) > A (1) > A

Sparse representation of images

An image is a:

• vector $f \in \mathbb{R}^{n \times n}$ • function $f : \{0, \dots, n-1\}^2 \to \mathbb{R}$

イロト 不得 とくき とくき とうき

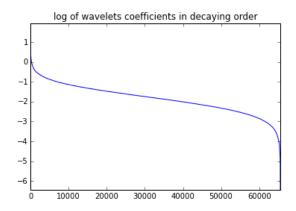
Images can be developed into basis: $f = \sum_{j=1}^{n^2} \langle f, \psi_j \rangle \psi_j$

Problem in approximation theory: Find basis (ψ_j) such that $(\langle f, \psi_j \rangle)_{j=1}^{n^2}$ is (approximatively) a sparse vector for real life images f.

Solution: Wavelets basis (cf. Gabriel Peyré course)

notebook: wavelet decomposition

Sparse representation of images



<u>Graphics</u>: Representation of $(\log |\langle f, \psi_j \rangle|)_{j=1}^{n^2}$ in a decreasing order for n = 256 ($256^2 = 65.536$ coefficients).

<u>Conclusion:</u> When developed in an appropriate basis, images have an *almost* sparse representation.

Guillaume Lecué (ENSAE)

Sparse representation of images

Idea: Compression of images by thresholding small wavelets coefficients (JPEG 2000).

<u>Remark:</u> these are the only three slides about approximation theory in this course!

- 4 同 2 4 三 2 4 三 2 4

Compressed sensing and images

Two differences with the CS framework introduced above:

- images are <u>almost</u> sparse
- images are (almost) sparse not in the canonical basis but in some <u>other</u> (wavelet) basis.

Two consequences:

- our procedures will be asked to "adapt" to this almost sparse situation: stability property
- we need to introduce a stuctured sparsity: being sparse in some general basis.

日本を通知る通知。

Structured sparsity

Definition

Let $\mathcal{F} = \{f_1, \dots, f_p\}$ be a dictionary in \mathbb{R}^N . A vector $x \in \mathbb{R}^N$ is said *s*-sparse in \mathcal{F} when there exists $J \subset \{1, \dots, p\}$ such that

$$|J| \leq s$$
 and $x = \sum_{j \in J} \theta_j f_j$.

In that case,

$$x = F\theta$$
 where $F = [f_1|\cdots, |f_p] \in \mathbb{R}^{N \times p}$

and $\theta \in \mathbb{R}^p$ is a *s*-sparse in the <u>canonical basis</u> of \mathbb{R}^p . For CS measurements, one has:

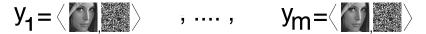
$$y = Ax = AF\theta$$

where $\theta \in \Sigma_s$ and so one just has to replace the measurement matrix *A* by *AF*. <u>Conclusion</u>: All the course deals only with vectors that are sparse in the canonical basis.

What is a photos machine using CS?

It should take measurements like:

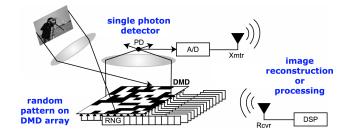
We take *m* measurements:



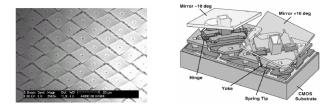
In particular, measurements y_1, \ldots, y_m are real numbers. Each of them can be stored using only one pixel in the camera.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Single pixel camera from RICE University

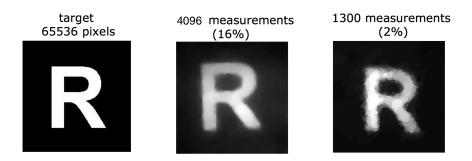


DMD: digital micromirror device - randomly orientated



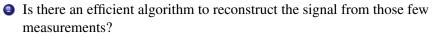
< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Single pixel camera from RICE University



Example of reconstruction of an image using the single pixel camera. **Two problems:**

• How do we choose the measurement vectors: \square, \dots, \square ?



< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

CS in face Recognition

イロト イポト イヨト イヨト

face recognition and Compressed Sensing

Database: $\mathcal{D} := \{(\phi_j, \ell_j) : 1 \le j \le N\}$ where :

- $\phi_j \in \mathbb{R}^m$ is a vector representation of the *j*-th image, (for instance, concatenation of the images pixels value)
- **2** $\ell_j \in \{1, \ldots, C\}$ is a label referring to a person

A same person may be represented in \mathcal{D} several times from various angles, luminosity, etc..

Problem: Given a new image $y \in \mathbb{R}^m$, we want to label it with an element from the set $\{\ell_j, j = 1, ..., C\}$

"Classical" solution: use multi-class classification algorithm.

Here: Face recognition as a CS problem.

The sparsity assumption in face recognition

Empirical observation: If for all of the *C* individuals one has:

- a large enough number of images,
- enough diversity in terms of angles and brightness

then for any new image $y \in \mathbb{R}^m$ of individual number $i \in \{1, ..., C\}$, one expect that

$$y \approx \sum_{j:\ell_j=i} \phi_j x_j.$$

Consequence: We assume that a new image $y \in \mathbb{R}^m$ can be written as

$$y = \Phi x + \zeta$$

where:

Φ = [Φ₁|Φ₂|···|Φ_C] and Φ_i = [φ_j : ℓ_j = i] for any i ∈ {1,...,C},
 x = [0^T|0^T|···|x_i^T|0^T|···|0^T]^T where x_i is the restriction of x to the columns of Φ_i in Φ

• $\zeta \in \mathbb{R}^m$ error due to linear approximation of y by columns in Φ .

Face recognition as a noisy CS problem

Compare with the benchmark CS setup, one has three difference:

- there is an additional noise term ζ
- Ithe sparsity assumption on x is stronger here: x is block-sparse
- depending on the control one has on the database, we may or may not have the ability to choose (in a restricted way) the measurement matrix.

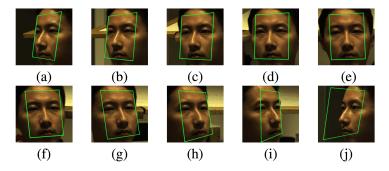
Three consequences:

- our procedures will be asked to deal with noisy data: robustness property
- we will design procedures taking advantages of more "advanced" sparsity like the block-sparsity one
- when one is in a situation where there is no control on the choice of measurement vectors then one can try several algorithms and see how they behave.

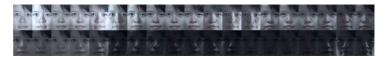
イロト イポト イヨト イヨト

Construction of a measurement matrix in face recognition

Various angles:



Various brightness:



< ロ > < 同 > < 回 > < 回 > < 回 >

CS in Finance

< ロ > < 同 > < 三 > < 三 > 、

Finance and CS

Problem: We observe the performances of a portfolio every minute:

 y_1, \ldots, y_m . We would like to know how it is structured (shares and quantity). **Data:** In addition to y_1, \ldots, y_m , we know the values of all shares at any time:

95) Save Defaults	90) News 🚽 97) Feedback			Global Commodity Prices				
🗖 Movers 🔽 Units 🔳 🤇	Chg NY 14:3	0 O C	al Spreads	Avgs	 Perfor 	mance	%YTD 🗾	JSD 👱
1) Energy	Units	2Day	Price	Net Chg	%Chg	Time	%YTD	%YTDCur
10) NYMEX WTI Crude	d \$/bbl	~~~	88.70	-0.58	-0.65%	9:03	-10.25%	-10.25%
11) ICE Brent Crude	d \$/bbl	~~~	111.19	-0.51	-0.46%	9:03	+3.55%	+3.55%
12) NYMEX Gasoline	d USd/gal	~~~~	273.43	-2.02	-0.73%	9:03	+1.79%	+1.79%
13) NYMEX Heat Oil	d USd/gal	1	306.70	-0.81	-0.26%	9:03	+4.50%	+4.50%
14) ICE Gasoil	d \$/mt	5	952.50				+2.90%	+2.90%
15) NYMEX Nat Gas	d \$/MMBtu	~ ~ ~	3.756	+0.037	+0.99%	9:03	+25.66%	+25.66%
2) Metals								
20) Spot Gold	\$/t oz	ور مر مر	1732.10	+0.38	+0.02%	9:13	+10.68%	+10.68%
21) Spot Silver	\$/t oz	سر مربر	33.12				+18.97%	+18.97%
22) Spot Platinum	\$/t oz	~^^	1575.63				+13.00%	+13.00%
23) Spot Palladium	\$/t oz	~ -	642.60	+0.90	+0.14%	9:10		
24) LME 3mth Aluminium	d \$/mt	\sim	1977.00 y	+26.00		11/19		
25) LME 3mth Copper	d \$/mt	~	7804.00 y	+199.00	+2.62%	11/19	+2.68%	+2.68%
Agriculture								
30) CBOT Corn	d USd/bsh	المسعه	742.00			9:03	+14.23%	+14.23%
31) CBOT Wheat	d USd/bsh	-may -	855.00			9:02	+28.61%	+28.61%
32) CBOT Soybeans	d USd/bsh	per 🖌	1391.25	-3.50	-0.25%	9:03	+16.08%	+16.08%
33) ICE Coffee	d USd/lb	~	156.45			9:03		
34) ICE Sugar	d USd/lb	- marine	19.81			9:03		
35) ICE Cotton	d USd/lb	~~ (_~ ~	72.00	-0.06		9:02		

Finance and CS

 $x_{i,j}$: value of share *j* at time *i*. We have the following data:

$$t = 1$$
: y_1 : portfolio value $(x_{1,j})_{j=1}^N$: shares values
 $t = 2$: y_2 : portfolio value $(x_{2,j})_{j=1}^N$: shares values
.....
 $t = m$: y_m : portfolio value $(x_{m,j})_{j=1}^N$: shares values

Sparsity assumption: The portfolio contains only a limited number of shares and its structure did not change during the observation time. **Problem formulation:** find $x \in \mathbb{R}^N$ such that y = Ax where

$$y = (y_i)_{i=1}^m$$
 and $A = (x_{i,j} : 1 \le i \le m, 1 \le j \le N)$

and x is supposed to be sparse.

イロト 不得 とくき とくき とうき

CS and high-dimensional statistics

Definition

We say that a statistical problem is a **high-dimensional statistical problem** when one has to estimate a *N*-dimensional parameter / vector / object using *m* observations and m < N.

- **O** CS is therefore a high-dimensional statistical problem.
- Noisy CS is exactly the linear regression statistical model when the noise is assumed to be random.