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Preface

Most the results contained in this note have been presented at the SMF meeting, which took place in May
2011; the rest have been obtained shortly after the time of the meeting.

The question we study has to do with the optimality of Empirical Risk Minimization as a learning
procedure in a convex class – when the problem is subgaussian. Subgaussian learning problems are a
natural object because they are the simplest unbounded learning scenarios. However, an additional reason
for studying such problems was that at the time of the SMF meeting, the technical machinery required
for the analysis of more heavy-tailed problems was simply not known. Since 2011, significant progress has
been made in the understanding of learning problems in heavy-tailed situations [34, 31, 23, 27], though
this progress does not make the results presented here obsolete. We show that ERM performed in a convex
class is an optimal learning procedure (in a sense that will be clarified) when the learning problem is
subgaussian. This happens to be a rather special feature of subgaussian learning problems, and under
weaker tail assumptions ERM fails to deliver the optimal accuracy/confidence trade-off at the high level
of accuracy we are interested in here.

The results presented here are complemented in [29], which also focuses on subgaussian learning prob-
lems and addresses some of the cases that have not been resolved in this note.

1 Introduction and main results

Let D := {(Xi, Yi) : i = 1, · · · , N} be a set of N i.i.d random variables with values in X × R. From a
statistical standpoint, each Xi can be viewed as an input associated with a real-valued output Yi. Given a
new input X, one would like to guess its associated output Y , assuming that (X,Y ) is distributed according
to the same probability distribution that generates the data (Xi, Yi)’s in D. To that end, one may use D
to construct a function f̂N (D, ·) = f̂N (·), and the hope is that f̂N (X) is close to Y in some sense.

Here, we will consider the squared loss function as a way of measuring the pointwise error between f(X)
and Y ; the resulting risk is known as the squared risk defined for every measurable function f : X → R
and every learning procedures f̂N by

R(f) = E
(
f(X)− Y

)2
and R(f̂N ) = E

((
f̂N (X)− Y

)2|D).
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In the classical statistics setup, one usually assumes that the regression function of Y given X belongs
to some particular function space (called a statistical model) such as Sobolev classes and the goal is to
estimate the regression function of Y given X under this assumption, see for instance [43]. In contrast, in
the learning setup on which we focus here, one is given a function class F (sometimes, called a model as
well), and the goal is to construct a procedure f̂N that satisfies a sharp or exact oracle inequality (following
[42]). An exact oracle inequality ensures that with high probability,

R(f̂N ) ≤ inf
f∈F

R(f) + residue, (1.1)

and one would like to make the residue in (1.1) as small as possible.
For the sake of simplicity, we assume that there is some f∗ ∈ F minimizing the risk in F (though the

claims presented here remain true even without that assumption), and we set

f∗ ∈ argmin
f∈F

R(f).

Note that in (1.1) the performance of the procedure f̂N is compared to the best performance possible in
F , i.e., to the risk of the best element f∗ ∈ F . This exhibits the point of view of Learning Theory, where
one wishes to identify a function that is almost as good as the best possible in F , regardless of whether
the best function in F has a small risk. It is different from typical questions in classical Statistics, where
a statistical model is given and the risk of an estimator is compared to the one of the regression function
(or Bayes rule). The latter are usually called excess risk bounds (cf. [28]) and are actually very different
from exact oracle inequalities like (1.1) (see, for example, [22] or Chapter 1.3 in [21] for more details on
those differences).

The performance of a procedure is measured relative to a set of admissible couple input/target (X,Y )
in some class of random variables T . Naturally, one would like to make T as large as possible, for example,
all random variables (X,Y ) such as |Y |, |f(X)| ≤ 1 for all f ∈ F a.s. or all the random variables (X,Y )
such as ‖Y ‖Lp , ‖f(X)‖Lp ≤ 1 for all f ∈ F for some p ≥ 2, or a similar weak condition of that flavor.

Definition 1.1 Let f̂N be a learning procedure, that is, a map from the set (Ω×R)N into the set of functions
from X to R. Let 0 < δN < 1 and ζN > 0. We say that f̂N performs with accuracy ζN and confidence
1 − δN relative to the set of admissible couples T if for any (X,Y ) ∈ T , R(f̂N ) ≤ inff∈F R(f) + ζN with
probability larger than 1− δN , and the probability is measured with respect to the product measure endowed
by the joint distribution of (X,Y ) on (Ω× R)N .

Clearly, while the true risk of f is not known, simply because X and Y are not known, one still has
access to its empirical counterpart:

RN (f) =
1

N

N∑
i=1

(
f(Xi)− Yi

)2
.

Thus, a natural procedure that comes to mind is finding a function in F that best fits the data: a minimizer
of the empirical risk in F . This procedure is called empirical risk minimization (ERM ) and is defined by

f̂ ∈ argmin
f∈F

RN (f).

ERM has been studied extensively over the last 40 years (see, e.g. [47], [28], [20] and references therein),
and the main goal has always been to identify connections between the structure of F and the accuracy and
confidence that ERM yields, while trying to minimize the restrictions on Y. Among the natural questions
regarding the performance of ERM are:
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1. Given any confidence parameter 0 < δN < 1/2, what is the error rate ζN that one may obtain using
ERM, and what features of F govern that rate?

2. Given any 0 < δN < 1/2, is ERM an optimal procedure for the confidence level δN? In other words,
is there a procedure that can perform with a better accuracy than ERM, given the same confidence
level?

The majority of results on the performance of ERM have been obtained in the bounded case: when
supf∈F |`(Y, f(X))| ≤ b almost surely (where ` : R2 → R is some loss function such as the square loss
function `(u, v) = (u − v)2 or the 0 − 1 loss function `(u, v) = I(u 6= v)), or, alternatively, when the
envelope function supf∈F |`(Y, f(X))| is well behaved in some weaker sense (e.g., has a sub-exponential
tail). A result in this direction is from [2] (see Corollary 5.3 there) which we formulate using the notation
of Theorem 5.1 in [20].

Let ε1, . . . , εN be N i.i.d. Rademacher variables independent of X1, . . . , XN . For any γ > 0, let

kN (r) = E sup
(∣∣∣ 1√

N

N∑
i=1

εi(f − f∗)(Xi)
∣∣∣ : f ∈ F , ‖f − f∗‖L2(µ) ≤ 2r

)
, (1.2)

and set k∗N (γ) = inf
{
r > 0 : 8kN (r) ≤ γr2

√
N
}

.

Theorem 1.2 There exist absolute constants c0, c1 and q > 2 for which the following holds. If F is a
convex class of functions and T consists of all random variables (X,Y ) such as |Y |, |f(X)| ≤ 1 for all
f ∈ F a.s. then for any (X,Y ) ∈ T and every t > 0, with probability at least 1− c0 exp(−t),

R(f̂) ≤ inf
f∈F

R(f) + c1 max
{(
k∗N (1/q)

)2
,
t

N

}
. (1.3)

A result of a similar flavor was obtained in [6] but with a different way of measuring the complexity of
the class F than in (1.2): let N(A,B) be the number of translates of B needed to cover A. Set D to be
the unit ball in L2(µ) and let

σ∗ = inf

{
r > 0 :

∫ c1r

c0r2
log1/2N

(
F ∩ (2rD), εD

)
dε ≤ c2r

2
√
N

}
, (1.4)

for absolute constants c0, c1, c2.
The result in [6] is that under various assumptions on the class F (assumptions that allow one to upper

bound the function kN (r) using the entropy integral in (1.4)), (σ∗)2 may serve as a residual term.
These two facts rely heavily on the assumption that Y and f(X) for f ∈ F are uniformly bounded in

L∞ and their proofs do not extend beyond the bounded case.
Our aim here is to study unbounded problems and without any assumption on the envelope of {`(f(X), Y ) :

f ∈ F} so that classical problems involving, for instance, Gaussian noise can be covered. A possible natural
step is the subgaussian framework, as it captures many typical applications in which the functions involved
are unbounded: for example, regression with a gaussian noise; compressed sensing; matrix completion;
phase recovery, etc. (see [7, 10, 9, 8, 18, 19]), all of which have been studied in the subgaussian framework.
Let us now precise what is called the subgaussian framework.

Definition 1.3 A real-valued random variable Y is subgaussian when ‖Y ‖ψ2
<∞ where

‖Y ‖ψ2
= inf

{
c > 0 : E exp(Y 2/c2) ≤ 2

}
.

Let µ be a probability measure and let X be distributed according to µ. The ψ2(µ)-norm of a function
f is

‖f‖ψ2(µ) = inf
{
c > 0 : E exp(f2(X)/c2) ≤ 2

}
.
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The space of functions with a finite ψ2-norm is denoted by Lψ2 = Lψ2(µ).
A function class F ⊂ L2(µ) is L-subgaussian with respect to the probability measure µ if for every

f, h ∈ F ∪ {0}, ‖f − h‖ψ2(µ) ≤ L ‖f − h‖L2(µ).
The subgaussian framework is the set T of all couples (X,Y ) of random variables such that Y is

a subgaussian variable and F is a L-subgaussian class of functions with respect to the marginal probability
distribution of X for some L > 0.

Notable is that for any f ∈ Lψ2 , ‖f‖L2(µ) ≤ ‖f‖ψ2(µ). Hence, a functions class F is a subgaussian class
when the reverse inequality holds, and in particular when the ψ2 and L2 norms are equivalent on F . It
is very different in nature to a boundedness assumption such as assuming F to be uniformly bounded in
L∞ or any Lp for some p ≥ 2. In particular, a L-subgaussian class does not implies that F is uniformly
bounded in Lψ2 but it is a class onto which a non-trivial norm equivalence assumption holds between Lψ2

and L2.
Note that norm equivalence is very different from being bounded in L∞. Having such a norm equivalence

implies that |f | ∼ ‖f‖L2(µ) on a relatively large event. In contrast, even though a bounded function has a
finite ψ2 norm (by selecting c ∼ ‖f‖L∞ in the definition of the ψ2 norm), the fact that f is bounded does
not mean that ‖f‖ψ2 is equivalent to ‖f‖L2 , nor that |f | ∼ ‖f‖L2(µ) on a relatively large event. Because of
the substantial difference between the two notions, one should not expect that learning procedures exhibit
the same performance when one assumes that F is bounded in L∞ or when the ψ2(µ) and L2(µ) norms
are equivalent on F .

Let us turn to some examples of subgaussian classes of functions. Probably the most interesting
collection of examples that belong to the subgaussian framework is classes of linear functionals on Rd.

Definition 1.4 A probability measure µ on Rd is L-subgaussian, if for every t ∈ Rd,
∥∥〈t, ·〉∥∥

ψ2(µ)
≤

L
∥∥〈t, ·〉∥∥

L2(µ)
. The measure µ is isotropic if

∥∥〈t, ·〉∥∥
L2(µ)

= ‖t‖2`d2 for every t ∈ Rd, where ‖·‖`d2 denotes

the Euclidean norm in Rd.

There are many natural examples of subgaussian measures on Rd:

• Let Z be a real-valued random variable that has mean-zero and variance 1. If ‖Z‖ψ2(µ) ≤ L‖Z‖L2(µ) and

Z1, . . . , Zd are independent copies of Z, then it is straightforward to verify that for every a ∈ Rd,

∥∥∥ d∑
j=1

ajZj

∥∥∥
ψ2(µ)

. L
∥∥∥ d∑
j=1

ajZj

∥∥∥
L2(µ)

,

where here, and throughout this note we write u . v if u ≤ c0v for an absolute constant c0. Thus, the
measure associated with the random vector X = (Z1, ..., Zd) is cL-subgaussian. Also, the measure is clearly
isotropic.

Natural examples of such product measures are the uniform measure on the combinatorial cube
{−1, 1}d, the uniform measure on the cube [−1, 1]d or the canonical gaussian measure in Rd. For the
same reason, if Z is a mean-zero, variance one, L-subgaussian random variable, and X = (Zi,j) is a matrix
whose coordinates are independent copies of Z, then X defines a cL subgaussian, isotropic measure on the
space of matrices of the right dimensions, relative to the natural trace inner product. The same holds if
X has independent rows, distributed according to an isotropic, L-subgaussian random vector. The proof
of both facts is straightforward and are omitted.

• Let 2 ≤ p < ∞ and denote by Bd
p the unit ball of (Rd, ‖ ‖`p). The uniform probability measure on

d1/pBd
p is L-subgaussian for an absolute constant L (see [1]), despite the fact that its coordinates are not

independent.
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• Let X = (Zj)
d
j=1 be an unconditional random vector (that is, (ηjZj)

d
j=1 has the same distribution as X

for every choice of signs (ηj)
d
j=1 ∈ {−1, 1}d). If EZ2

j ≥ c2 for every 1 ≤ j ≤ d and X is supported in RBd
∞,

then it is L-subgaussian for L . R/c. Indeed, one may show that for every f ∈ Lψ2(µ),

c1‖f‖ψ2(µ) ≤ sup
p≥2

‖f‖Lp(µ)√
p

≤ c2‖f‖ψ2(µ)

for suitable absolute constants c1 and c2 (see, for instance, Corollary 1.1.6 in [11]). Thus, it suffices to
verify that for every t ∈ Rd and every p ≥ 2,

‖
〈
t, ·
〉
‖Lp(µ) ≤ L

√
p‖
〈
t, ·
〉
‖L2(µ).

Let ε1, . . . , εd be d Rademacher variables independent of X. By Khintchine’s inequality (see, for example,
[25]),

‖
〈
X, t

〉
‖pLp = E

∣∣∣ d∑
j=1

Zjtj

∣∣∣p = EEε
∣∣∣ d∑
j=1

εjZjtj

∣∣∣p . pp/2E
( d∑
j=1

Z2
j t

2
j

)p/2
. pp/2Rp‖t‖p

`d2
.

Also,

‖
〈
X, t

〉
‖2L2

= EEε
( d∑
j=1

εjZjtj

)2
= E

d∑
j=1

Z2
j t

2
j ≥ c2‖t‖2

`d2
,

proving the claim.

These examples show that even the seemingly restricted setup of classes of linear functionals on Rd
endowed with an L-subgaussian measure is encountered in many natural (and well studied) examples.

The strategy we use here for the study of ERM is the isomorphic method, introduced in [3] and analyzed
there in the bounded setup. Before presenting it, recall that the excess loss of f is

Lf (x, y) = `(f(x), y)− `(f∗(x), y) = (f(x)− y)2 − (f∗(x)− y)2 (1.5)

and set

PLf = ELf (X,Y ) and PNLf =
1

N

N∑
i=1

Lf (Xi, Yi).

A rather obvious but very useful observation is that for every f ∈ F , PLf ≥ 0, while the empirical

minimizer f̂ satisfies that PNLf̂ ≤ 0.

The isomorphic method is based on the following idea. Consider an event Ω0, on which for every
function f in the set {f ∈ F : PLf ≥ λN},

1

2
PLf ≤ PNLf ≤

3

2
PLf . (1.6)

It follows that on Ω0, ERM produces f̂ that satisfies

R(f̂) ≤ inf
f∈F

R(f) + λN ,

because PNLf̂ ≤ 0; therefore, f̂ 6∈ {f ∈ F : PLf ≥ λN}.
Consequently, an exact oracle inequality with a confidence parameter δN may be derived by identifying

λN for which Ω0 has probability at least 1− δN ; that is, the level λN for which

sup
{f∈F :PLf≥λN}

∣∣∣ 1

N

N∑
i=1

Lf (Xi, Yi)

PLf
− 1
∣∣∣ ≤ 1

2

with probability at least 1− δN (see Theorem 4.4 in [20] for results of a similar flavor).

5



Remark 1.5 Note that only the lower estimate in (1.6) is needed for the argument outlined above to work.
This observation is the key in the application of the recent works on the small-ball method in learning theory
(cf. [34]), which allows one to deal with heavy-tailed scenarios that are far more general than subgaussian
problems.

Just like k∗N in (1.3) and σ∗ in (1.4) – and many other well known estimates on the performance of
ERM (e.g. [46, 20, 28]) – the residual term we use is defined in terms of fixed points. Unlike k∗N and σ∗,
the geometric complexity measure we use here is based on gaussian averages associated with localizations
of the class. We refer the reader to Chapter 12 in [15] for more details on gaussian processes (in particular
to Theorem 12.1.3 for the existence of such a process and to Theorem 12.1.4 for its linearity).

Denote by {Gf : f ∈ F} the canonical gaussian process indexed by F , that is EGf = 0 and the
covariance is given by the inner product in L2(µ): EGfGh =

〈
f, h
〉
L2(µ)

= Ef(X)h(X). Given a set

F ′ ⊂ F we put

E‖G‖F ′ = sup
{
E sup
h∈H

Gh : H ⊂ F ′ is finite
}
.

This supremum is called the lattice supremum (see Chapter 2.2 in [25] for more details).
As an example, if F ′ = {

〈
·, t
〉

: t ∈ T} is a set of linear functionals indexed by T ⊂ Rd and X is a
random vector in Rd with covariance matrix Σ then for G ∼ N (0,Σ), we simply have

E‖G‖F ′ = E sup
t∈T

〈
G, t

〉
.

A second example is given by F = {ft = I[0,t] : t ∈ [0, 1]} where I[0,t] is the indicator function of the
segment [0, t] for all t ∈ [0, 1]. In that case, {Gf : f ∈ F} is the Brownian motion {Gt : t ∈ [0, 1]} on [0, 1]
if we set for all t ∈ [0, 1], Gft = Gt (see page 79 in [28]) and for F ′ = {ft = I[0,t] : t ∈ [0, r]} ⊂ F for some

0 < r ≤ 1, one can use the reflection principle to get that E‖G‖F ′ = E|Gfr | =
√

2r/π.
We are now in a position to introduce the two complexity parameters that will serve as residual terms

in the exact oracle inequalities satisfied by ERM.

Definition 1.6 For any s ≥ 0, set sD = {f ∈ L2(µ) : ‖f‖L2(µ) ≤ s} and F −F = {f − h : f, h ∈ F}. For
every η > 0, let

s∗N (η) = inf
{
s > 0 : E‖G‖sD∩(F−F) ≤ ηs2

√
N
}
, (1.7)

and for every Q > 0, set

r∗N (Q) = inf
{
r > 0 : E‖G‖rD∩(F−F) ≤ Qr

√
N
}
. (1.8)

In what follows we will always assume without mentioning it explicitly that the sets in (1.7) and (1.8) are
nonempty (for example, this forces that Q ≥ c/

√
N).

There are many situations in which sharp estimates on E‖G‖rD∩(F−F) are known and one can identify
the fixed points s∗N (η) and r∗N (Q). We will present several examples of that kind in Section 4.

When considering the parameters s∗N (η) and r∗N (Q), what may seem odd at first glance is the different
normalization in their definition – the first condition is quadratic, while the second is linear. The two
originate from the need to compare the way in which two processes, the quadratic component and the
multiplier component of the excess loss functional scale with ‖f − f∗‖L2(µ). Indeed, note that the excess
loss functions of any f ∈ F can be decomposed as

Lf (X,Y ) = (f(X)− Y )2 − (f∗(X)− Y )2 = (f(X)− f∗(X))2 + 2(f(X)− f∗(X))(f∗(X)− Y ).

The quadratic term (i.e. (f(X)− f∗(X))2) is noise-free, and as will be explained below, r∗N measures the

lowest level r at which if ‖f − f∗‖L2(µ) ≥ r, then E(f − f∗)2 ∼ N−1
∑N

i=1(f − f∗)2(Xi) – meaning that

there is an isometry over (F−f∗)\(f∗+rBL2) between the empirical LN2 -norm and the actual L2(µ)-norm.
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In contrast, s∗N is designed for dealing with the multiplier process, originating from the term (f∗(X)−
Y ) · (f − f∗)(X). To compare the resulting multiplier component with E(f − f∗)2 (which is the order of
magnitude of N−1

∑N
i=1(f − f∗)2(Xi) when ‖f − f∗‖L2(µ) ≥ r∗N ), one has to study

f → 1

N

N∑
i=1

(f∗(Xi)− Yi) ·
(f − f∗)(Xi)

E(f − f∗)2
,

and that is the source of the seemingly less-natural normalization in the definition of s∗N (η).

With these definitions in place, one may formulate a restricted version of the upper bound on the
performance of ERM – for a convex class of functions – in the subgaussian framework.

Theorem A. For every L ≥ 1 there exist constants c1, c2, c3 and c4 that depend only on L for which the
following holds. Let µ be the marginal distribution of X and let F ⊂ L2(µ) be a convex, L-subgaussian
class of functions. Assume that ‖Y − f∗(X)‖ψ2 ≤ σ and set η = c1/(Lσ) and Q = c2/L

2.

1. If σ ≥ c3r
∗
N (Q) then with probability at least 1− 6 exp(−c4Nη

2(s∗N (η))2),

R(f̂) ≤ inf
f∈F

R(f) + (s∗N (η))2.

2. If σ ≤ c3r
∗
N (Q) then with probability at least 1− 6 exp(−c4NQ

2),

R(f̂) ≤ inf
f∈F

R(f) + (r∗N (Q))2.

Hence, with probability at least 1− 6 exp
(
−c4N min{η2(s∗N (η))2, Q2}

)
,

R(f̂) ≤ inf
f∈F

R(f) + max
{

(s∗N (η))2, (r∗N (Q))2
}
.

We will show in what follows that the parameters involved in the upper bound have very clear roles.
r∗N is an upper estimate on the error rate one could have if the problem were noise-free – that is, if σ = 0.
This intrinsic error occurs because it is impossible to distinguish between f1, f2 ∈ F using the sample
X = (Xi)

N
i=1 when (f1(Xi))

N
i=1 = (f2(Xi))

N
i=1.

Once noise is introduced to the problem and passes a certain threshold, it is no longer realistic to expect
that an intrinsic parameter, which does not depend on the noise level, can serve as an upper bound. And,
indeed, s∗N (η) measures the interaction between the ‘noise’1 f∗(X)−Y and the class through the choice of
η ∼ 1/σ. Thus, beyond a certain noise-level σ, which depends on the ‘complexity’ of the class F , s∗N (c/σ)
becomes the dominant term in the upper bound.

Note that in the free-noise case, σ = 0, one has s∗N (c/σ) = 0. Therefore, the error rate of ERM depends
only on r∗N (Q). Also, when the number of observations N is large enough, there are situations where
one also has r∗N (Q) = 0, leading to exact reconstruction (this is the case in compressed sensing where
r∗N (Q) = 0 when N & s log(ed/s) where s is the sparsity parameter and d is the dimension of the vectors
to be reconstructed).

Of course, Theorem A would be better justified if one could obtain matching lower bounds, showing
that ERM is an optimal procedure for subgaussian problems. To that end, it seems natural to employ
minimax theory (see, e.g., [43, 49, 50, 6, 5] for more details on minimax bounds).

1We keep the terminology from Statistics: the difference between the output variable Y and the target function f∗(X) is
called the noise. This coincides with the classical definition of noise in Statistics when f∗ is the regression function.
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A reasonable way of identifying a lower bound on the performance of a learning procedure is to see
what accuracy and confidence it can guarantee for a minimal set T of admissible couples of input/output
random variables (X,Y ). To that end, given a functions class F , a natural choice of a minimal set of
couples is

T = {(X,Y f ) : Y f = f(X) +W, f ∈ F ,F ⊂ L2(µ)} (1.9)

where W is a centered gaussian random variable that has variance σ2 and is independent of X and µ
is the probability distribution of X. Thus, this set T consists of ‘independent perturbations’ of learning
problems indexed by F with a Gaussian noise, and thus is arguably the smallest set of couples (X,Y ) in the
subgaussian framework for the given class F . The minimax rate is (at least) the best accuracy/confidence
trade-off that a learning procedure may attain in F for the set (1.9). Our main focus will be on the
accuracy/confidence tradeoff for the accuracy level described in Theorem A.

Standard minimax bounds are based on information-theoretical results such as Fano’s Lemma, As-
souad’s Lemma or Pinsker’s inequalities. Unfortunately, these results do not yield lower bounds in the
high probability realm of Theorem A; rather, these results are restricted to constant confidence or hold in
expectation. To treat the high probability regime, we present a new minimax bound that is based on the
gaussian shift theorem (and therefore on the gaussian isoperimetric inequality, see [26]).

Theorem A′. There exists an absolute constant c5 for which the following holds. Let X be a random
variable taking its values in X and distributed according to some probability measure µ. Let F ⊂ L2(µ) be
a class that is star-shaped around one of its points (i.e., for some f0 ∈ F and every f ∈ F , [f0, f ] ⊂ F),
and let T be the set from (1.9). If f̃N attains an accuracy ζN with the confidence level δN for any target
Y such that (X,Y ) ∈ T , then

ζN ≥ min

{
c5σ

2 log(1/δN )

N
,
1

4
diam2(F , L2(µ))

}
.

Note that no assumption on the underlying measure µ is required in Theorem A′ except that F is in
L2(µ). It therefore covers a pretty large range of distribution for the design random variable X. Moreover,
Theorem A′ makes a natural connection between accuracy and confidence: the higher the confidence 1−δN
the larger ζN must be.

An important outcome of Theorem A and Theorem A′ is that for a given X and F ⊂ L2(µ) (where
X ∼ µ) and for the set of admissible targets Y such that (X,Y ) ∈ T as in (1.9) – and as long as the class
F is convex and L-subgaussian – ERM is optimal in the following sense:

Theorem A′′. There exist absolute constants c1, ..., c4 for which the following holds. Let X be a random
variable onto X and F ⊂ L2(µ) (where X ∼ µ) be a convex, L-subgaussian class of functions with respect to
µ and consider the set of admissible targets T as in (1.9). Set η = c1/(Lσ) and Q = c2/L

2. If σ ≥ c3r
∗
N (Q)

then for any target Y f such that (X,Y f ) ∈ T , the ERM f̂ satisfies

R(f̂) ≤ inf
f∈F

R(f) + (s∗N (η))2 with probability 1− 6 exp
(
− c4Nη

2(s∗N (η))2
)
.

Also, for any learning procedure f̃ there is some f ∈ F for which, if given N i.i.d. data distributed according
to (X,Y f ) and R(f̃) ≤ inff∈F R(f) + (s∗N (η))2 with probability at least 1− δ, then necessarily

δ ≥ exp
(
− c5Nη

2(s∗N (η))2
)
.

Thus, up to the constant in the exponent, the upper bound and the lower bound match and the ERM
achieves this bound. Thus no procedure can learn at the accuracy (s∗N (η))2 uniformly over F in the
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subgaussian setup at a confidence better than 1− exp
(
− cNη2(s∗N (η))2

)
for some absolute constant c and

the ERM is an example of learning procedure satisfying this optimality result.

The second question we wish to address is what happens when the desired confidence is an absolute
constant – for example, when 1 − δN is, say, 1/2, but the noise level is nontrivial in the sense that s∗N
dominates r∗N . We will show that in such a situation, Theorem A is optimal in a minimax sense under
some regularity assumptions on F . This complements Theorem A′′ which proves the optimality of ERM
(under no extra structural assumption) in the high probability case – when δN ∼ exp(−cη2(s∗N (η))2N).

To explore the constant confidence regime, let us consider the ‘Sudakov analog’ of the gaussian-based
parameter s∗N (η): recall that by Sudakov’s inequality (see, for example, [25]), for any r > 0,

sup
ε>0

ε log1/2N((F − F) ∩ rD, εD) . E‖G‖rD∩(F−F). (1.10)

Put C(r) = supf∈F r log1/2N((F − f) ∩ 2rD, rD) and set

q∗N (η) = inf{s > 0 : C(s) ≤ ηs2
√
N}.

Theorem B. There exists an absolute constant c1 for which the following holds. Let X be a random
variable onto X and let F ⊂ L2(µ) (where X ∼ µ) be a class of functions. Set W ∼ N (0, σ2) be
independent of X and for every f ∈ F , put Y f = f(X) +W . If f̃N performs with a confidence parameter
δN < 1/4 for every couples in {(X,Y f ) : f ∈ F}, then its accuracy cannot be better than c1(q∗N (c1/σ))2.

Theorem B is known, and may be derived from Theorem 2.5 in [43] or from [49] at least when the design
vector is a Gaussian vector (we provide a proof of this fact when X = Rd, X is standard Gaussian vector
in Rd and F is a class of linear functional indexed by a subset of Rd after the proof of Theorem B). The
proof presented here is new, and follows the same path as the proof of Theorem A′; it also does not require
any extra assumption on the design of X except that F ⊂ L2(µ) and therefore covers several examples of
distribution for the input variable X.

With Theorem A in mind, Theorem B implies that if the learning problem is subgaussian and if s∗N (η)
and q∗N (η′) are equivalent for η, η′ ∼ 1/σ and σ & r∗N , then the minimax rate in the constant probability
regime is attained by ERM.

Finally, let us consider the low-noise case, in which σ . r∗N . Although it is not clear if r∗N is an optimal
bound in that range (except when σ ∼ r∗N ), it turns out that it is not far from optimal at least in the fixed
design setup.

Unlike the previous results from Theorem A, A′, A′′ and B which have been derived in the setup where
the input variables X1, . . . , XN are i.i.d. distributed according to X, for the study of a minimax lower
bound in the low-noise case we place ourselves in the fixed design setup and leave the problem open for the
random design setup. We therefore consider a dataset {(Xi, Yi) : i = 1, . . . , N} where X1, . . . , XN are fixed
elements in X and Y1, . . . , YN are random real-valued outputs. For instance, given a class F and f∗ ∈ F ,
we observe

Yi = f∗(Xi) + Vi, i = 1, . . . , N (1.11)

where V1, . . . , VN are N i.i.d. centered real-valued random variables with variance σ2. The aim in the latter
example is to estimate f∗ given the dataset {(Xi, Yi) : i = 1, . . . , N} with respect to some metric D(·, ·)
over L2(µN ) where µN is the probability measure (1/N)

∑N
i=1 δXi and δXi is the dirac measure in Xi for

all i = 1, . . . , N . For instance, one may think of D(g, h) =
(∑N

i=1(g(Xi)−h(Xi))
2
)1/2

, ∀f, g ∈ L2(µN ), the
natural metric of L2(µN ).

A key observation in order to prove a lower bound result is that two functions f and h such that
(f(Xi))

N
i=1 = (h(Xi))

N
i=1 cannot be distinguished using the dataset {(Xi, Yi) : i = 1, . . . , N} and therefore
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half the diameter of F with respect to D should be a natural minimax lower bound. The aim of this last
part of the section is to prove this result in the fixed design setup.

Definition 1.7 Let F be a class of functions. For every sample X = (X1, ..., XN ) and f ∈ F , set

K(f,X) = {h ∈ F : (f(Xi))
N
i=1 = (h(Xi))

N
i=1},

which is the “level set” in F given by the values of f on the sample. Given a metric D(·, ·) over L2(µN ),
let diam(K(f,X), D) denote the diameter of K(f,X) with respect to D.

Clearly, if (1.11) holds and σ = 0 then for all i = 1, . . . , N, Yi = f∗(Xi) (where f∗ ∈ F) and the
ERM selects f̂ ∈ K(f∗,X) and so D(f̂ , f∗) ≤ diam(K(f∗,X), D). It is natural to ask whether the reverse
inequality is true. The following result shows that the largest typical value of f ∈ F → diam(K(f,X), D)
is a constant-probability minimax bound in the fixed design setup.

Theorem C. Let X1, . . . , XN be N deterministic points in X . Let F ⊂ L2(µN ) where µN is the empirical
measure over {X1, . . . , XN}. Let V1, . . . , VN be N i.i.d. random variables. Then, for any procedure f̃N ,

sup
f∗∈F

PrV1,...,VN

(
D(f̃N ((Xi, f

∗(Xi) + Vi)
N
i=1), f∗) ≥ 1

4
sup
f0∈F

diam(K(f0,X), D)

)
≥ 1/2,

with the probability taken with respect to the product measure PrV1,...,VN of (Vi)
N
i=1.

One natural example in which Theorem C may be used is when T is a convex, centrally-symmetric
subset of Rd (i.e., if t ∈ T then −t ∈ T ), and F is the class of linear functionals indexed by T , i.e.,
F = {

〈
t, ·
〉

: t ∈ T}. Let X1, ..., XN be N deterministic points in Rd and let D(·, ·) be the `d2 metric defined
such that D(

〈
·, u
〉
,
〈
·, v
〉
) = ‖u− v‖2 for all u, v ∈ T . If {e1, . . . , eN} is the canonical basis of RN and

Γ =
∑N

i=1

〈
Xi, ·

〉
ei is the N × d matrix whose rows are (Xi)

N
i=1, then diam(K(0,X), D) is the `d2-diameter

of the intersection of the kernel of Γ and T : diam(K(0,X), D) = diam
(
ker(Γ) ∩ T, `d2

)
. As a result, for

f0 =
〈
t0, ·
〉

for t0 = 0, one can lower bound diam(K(f0,X), D) by the Gelfand N -width of T (see, e.g., [39]
and [38] for more details).

Definition 1.8 Let T be a convex, centrally-symmetric subset of Rd. The Gelfand N-width of T is the
smallest `d2-diameter of an N -codimensional section of T . In particular,

cN (T ) = inf
{

diam(ker(Γ) ∩ T, `d2) : Γ ∈ L(Rd,RN )
}
,

where L(Rd,RN ) is the set of all linear operators from Rd to RN and diam(V, `d2) = supu,v∈V ‖u− v‖2.

For every f∗(·) =
〈
t∗, ·
〉
∈ F for some t∗ ∈ T , we have K(f∗,X) = {

〈
t, ·
〉

: t ∈
(
ker(Γ) + t∗

)
∩T} and so

cN (T ) ≤ diam
(

ker(Γ) ∩ T, `d2
)

= diam
(
K(f0,X), D

)
,

for f0 =
〈
t0, ·
〉

for t0 = 0 ∈ T . It follows from Theorem C, that cN (T )/8 is a lower bound on the minimax
rate in the constant confidence regime. Therefore, when r∗N ∼ cN (T ) (we provide some examples where
this equivalence holds in Section 4), it follows that for every 0 ≤ σ . r∗N , r∗N is the constant-probability
minimax rate, and that rate is achieved by ERM.
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Finally, let us now discuss about an equivalent result to Theorem C in the random design setup. We
first rephrase the result from Theorem C for a L2(µ) metric D for some probability measure µ:

inf
X

inf
f̃N

sup
f∗

PrV1,...,VN

(∥∥∥f̃N ((Xi, f
∗(Xi) + Vi)

N
i=1)− f∗

∥∥∥
L2(µ)

≥ 1

4
sup
f0∈F

diam(K(f∗,X), L2(µ))

)
≥ 1/2.

(1.12)
An equivalent result in the random design setup (such as the one in Theorem A′ and Theorem B) would
be

inf
f̃N

sup
f∗

Pr(X1,V1),...,(XN ,VN )

(∥∥∥f̃N ((Xi, f
∗(Xi) + Vi)

N
i=1)− f∗

∥∥∥
L2(µ)

≥ 1

4
sup
f0∈F

diam(K(f∗,X), L2(µ))

)
≥ 1/2.

(1.13)
where Pr(X1,V1),...,(XN ,VN ) is the product measure (µ⊗PrV )⊗N of ((Xi, Vi))

N
i=1 (where µ is the probability

distribution of X and PrV is the one of V which is independent of X). At the time, we are writing this
paper, it is not clear if a result like (1.13) is true or not. The main difficulty between the almost trivial
result from (1.12) and the one from (1.13) is that the choice of f∗ ∈ F in (1.12) may (and actually do)
depend on the (fixed) design X = (X1, . . . , XN ) whereas in (1.13), the choice of f∗ cannot depend on
X since we are integrating over ((Xi, Vi))

N
i=1 after taking the infimum over f∗ ∈ F . Note that replacing

supf0∈F diam(K(f0,X), L2(µ)) in (1.13) by a uniform in X lower bound such as the Gelfand N width would
also be an interesting minimax lower bound result in the random design setup. We leave the problem of
finding a minimax lower bound in the low-noise regime in the random design setup for future researches.

We end this introduction with a word about notation. Throughout, absolute constants or constants
that depend on other parameters are denoted by c, C, c1, c2, etc., (and, of course, we will specify when
a constant is absolute and when it depends on other parameters); their values may change from line to
line. The notation x ∼ y (resp. x . y) means that there exist absolute constants 0 < c < C for which
cy ≤ x ≤ Cy (resp. x ≤ Cy). If b > 0 is a parameter then x .b y means that x ≤ C(b)y for some constant
C(b) that depends only on b.

Let `dp be Rd endowed with the norm ‖x‖`dp =
(∑d

j=1 |xj |p
)1/p

. The unit ball in `dp is denoted by Bd
p ,

and the unit Euclidean sphere in Rd is Sd−1. We also denote by dL2(F ′) the diameter of F ′ in L2(µ).
The proofs of our main results are presented in the next two sections. We then present several examples

of applications of those results, in which the rates established in Theorem A are shown to be sharp in both
the high and constant confidence regimes. The final section contains some concluding remarks.

2 Proof of Theorem A

The proof of Theorem A shows that it is more general than stated. Rather than convexity, the two
properties that are actually needed are the following:

Definition 2.1 A class H is star-shaped around h0 ∈ H if for every h ∈ H, the interval [h, h0] is contained
in H.

We will assume that F −F = {f − h : f, h ∈ F} is star-shaped around 0, otherwise, one may consider the
star-shaped hull of F − F with 0, that is, the set

{λ(f − h) : 0 ≤ λ ≤ 1, f, h ∈ F}

which is not much larger than F − F .

The second property required is a variant of the Bernstein condition (cf. [3]).
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Definition 2.2 A class F is B-Bernstein relative to the target Y , if for every f ∈ F ,

E
(
f(X)− f∗(X)

)2 ≤ BPLf = BE
(
(Y − f(X))2 − (Y − f∗(X))2

)
. (2.1)

Definition 2.2 is far less restrictive than it appears at first glance. Indeed, by the 2-convexity of the L2

norm, if F is convex then for any target Y ∈ L2, F is 1-Bernstein relative to Y . Moreover, the results from
[33] show that for every class F and every target Y , the Bernstein constant depends only on the distance
between Y and the set of targets Z for which the functional f → E(f −Z)2 has multiple minimizers in F .
Finally, note that if one wishes F to satisfy a Bernstein condition relative to every target Y , it forces F to
be convex in the locally-compact case (see Section 5 for more details).

In what follows, we shall assume that F −F is star-shaped around 0 and that F satisfies the Bernstein
condition (2.1).

The next lemma (which will be proved in the Appendix) shows that the assumption that F − F is
star-shaped around 0 adds some regularity to the gaussian process {Gf : f ∈ F − F}.

Lemma 2.3 Assume that F − F is star-shaped around 0 and let ψ : s ≥ 0 → E ‖G‖sD∩(F−F). Then the
following holds:

1. φ : s→ ψ(s)/s is non-increasing.

2. For η > 0 and any s ≥ s∗N (η), ψ(s) ≤ ηs2
√
N , and for any 0 < s < s∗N (η), ψ(s) ≥ ηs2

√
N .

3. Let Q >
√
π/2N . For any r ≥ r∗N (Q), ψ(r) ≤ Qr

√
N and for any 0 < r < r∗N (Q), ψ(r) > Qr

√
N .

A straightforward outcome of Lemma 2.3 which will be used later is as follows:

Lemma 2.4 Assume that F −F is star-shaped around 0. Let c, σ,Q > 0, set η = c/σ and consider s∗N (η)
and r∗N (Q) as introduced in Definition 1.6.

1. If σ ≥ (c/Q)r∗N (Q) then s∗N (η) ≥ r∗N (Q), and if σ ≤ (c/Q)r∗N (Q) then s∗N (η) ≤ r∗N (Q).

2. If s∗N (η) ≥ r∗N (Q) then ηs∗N (η) ≤ 4Q.

The proof of Lemma 2.4 will also be presented in the Appendix.

Let us begin with an estimate on the quadratic component, which is based on a functional Bernstein
type inequality (see [14, 4, 30]).

Theorem 2.5 There exist absolute constants c1 and c2 for which the following holds. Let H be an L-
subgaussian class. For every u > 0, with probability at least 1− 2 exp(−c1 min(u2, u

√
N)),

sup
h∈H

∣∣∣∣∣ 1

N

N∑
i=1

h2(Xi)− Eh2

∣∣∣∣∣ ≤ c2L
2

(
dγ√
N

+
γ2

N
+
ud2

√
N

)
(2.2)

where d = dL2(H) is the diameter in L2(µ) of H and γ = E ‖G‖H.

The following result is a straightforward application of Theorem 2.5 and illustrates the role of r∗N (Q).

Lemma 2.6 There exist absolute constants c1 and c2 for which the following holds. Let F be an L-
subgaussian class, assume that F − F is star-shaped around 0 and let f∗ ∈ F . If 0 < Q ≤ 1 and
r ≥ r∗N (Q), then with probability at least 1− 2 exp

(
− c1Q

2N
)
,

sup
h∈rD∩(F−f∗)

∣∣∣∣∣ 1

N

N∑
i=1

h2(Xi)− Eh2

∣∣∣∣∣ ≤ c2QL
2r2.
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Proof. The claim is an immediate corollary of Theorem 2.5. Indeed, one simply has to apply Theorem 2.5
to the set H = rD∩ (F −F) and to recall that by Lemma 2.3, if r ≥ r∗N (Q) then E‖G‖rD∩(F−F) ≤ Qr

√
N .

Therefore, for any u > 0, with probability at least 1− 2 exp(−c1 min(u2, u
√
N)),

sup
f,h∈F :‖f−h‖L2(µ)

≤r

∣∣∣∣∣ 1

N

N∑
i=1

(f − h)2(Xi)− E(f − h)2

∣∣∣∣∣ ≤ c2L
2

(
dγ√
N

+
γ2

N
+
ud2

√
N

)
where d = diam(rD ∩ (F − F), L2) ≤ r and γ = E‖G‖rD∩(F−F) ≤ Qr

√
N . Hence, for u = c2Q

√
N , with

probability larger than 1− 2 exp(−c3Q
2N),

sup
f,h∈F :‖f−h‖L2(µ)

≤r

∣∣∣∣∣ 1

N

N∑
i=1

(f − h)2(Xi)− E(f − h)2

∣∣∣∣∣ ≤ c4QL
2r2. (2.3)

Remark. Using the notation of Lemma 2.6, consider Q ≤ min{1/(2c4L
2), 1} where c4 is the absolute

constant from (2.3). If (2.3) holds then for every f ∈ F that satisfies ‖f − f∗‖L2(µ) ≥ r∗N (Q), one has

1

2
E(f − f∗)2 ≤ 1

N

N∑
i=1

(f − f∗)2(Xi) ≤
3

2
E(f − f∗)2;

this is evident because for h = f − f∗, one has ‖h‖L2(µ) ≥ r∗N (Q) and∣∣∣∣∣ 1

N

N∑
i=1

h2(Xi)− Eh2

∣∣∣∣∣ ≤ (r∗N (Q))2

2
≤ Eh2

2
.

The second ingredient required for the proof of Theorem A is a bound on multiplier processes.

Theorem 2.7 [Theorem 4.4 in [30]] There exist absolute constants c1 and c2 for which the following holds.
Let (Xi, Yi)

N
i=1 be N i.i.d. random variables distributed like (X,Y ). If H is an L-subgaussian class and

ξ ∈ Lψ2, then for every u,w ≥ 8, and every integer s0 ≥ 1, with probability at least

1− 2 exp
(
− c1u

22s0)− 2 exp
(
− c1Nw

2
)
,

sup
h∈H

∣∣∣∣∣ 1

N

N∑
i=1

ξih(Xi)− Eξh(X)

∣∣∣∣∣ ≤ c2Luw
‖ξ‖Lψ2√

N

(
E ‖G‖H + 2s0/2dL2(H)

)
.

Note that in Theorem 2.7 one does not assume that ξ and X are independent, a fact that will be
significant in what follows. Indeed, we will apply Theorem 2.7 to ξ = Y − f∗(X) and the class H =
rD ∩ (F − F) for r ≥ s∗N (η). In that case, dL2(H) ≤ r and E ‖G‖H ≤ ηr2

√
N , and for 2s0/2 ∼ ηr

√
N , we

obtain that with probability larger than 1− 4 exp
(
−c1N min{η2r2, 1}

)
,

sup
f,h∈F :‖f−h‖L2(µ)

≤r

∣∣∣∣∣ 1

N

N∑
i=1

ξi(f − h)(Xi)− Eξ(f − h)(X)

∣∣∣∣∣ ≤ c2Lη‖ξ‖Lψ2 r
2. (2.4)

Combining the estimates on the quadratic and multiplier process leads to the following ratio estimate:

Theorem 2.8 For every L ≥ 1 and B ≥ 1 there exist constants c0, c1, c2 and c3 that depend only on B
and L for which the following holds. Let F be an L-subgaussian class that is B-Bernstein relative to the
target Y . Assume that F − F is star-shaped around 0 and that ‖Y − f∗(X)‖ψ2 ≤ σ. Set η = c0/(LBσ)
and Q = c1/(L

2B).
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1. If σ ≥ c2r
∗
N (Q), then with probability at least 1− 6 exp

(
−c3N · η2(s∗N (η))2

)
,

sup
{f∈F :PLf≥(s∗N (η))2/B}

∣∣∣∣∣ 1

N

N∑
i=1

Lf (Xi, Yi)

PLf
− 1

∣∣∣∣∣ ≤ 1

2
.

2. If σ ≤ c2r
∗
N (Q), then with probability at least 1− 6 exp

(
−c3Q

2N/B
)
,

sup
{f∈F :PLf≥(r∗N (Q))2/B}

∣∣∣∣∣ 1

N

N∑
i=1

Lf (Xi, Yi)

PLf
− 1

∣∣∣∣∣ ≤ 1

2
.

Proof. Set ξ = (f∗(X)− Y ) and thus

Lf (X,Y ) = (f − f∗)2(X) + 2ξ(f − f∗)(X).

Fix λ > 0 and let Fλ = {f ∈ F : PLf ≥ λ}. Since F satisfies the B-Bernstein condition relative to Y , it
follows that for every f ∈ F , ‖f − f∗‖2L2(µ) ≤ BPLf . Moreover, if f ∈ Fλ then∥∥∥∥ f − f∗

(PLf )1/2

∥∥∥∥2

L2(µ)

≤ B and

∥∥∥∥f − f∗PLf

∥∥∥∥2

L2(µ)

≤ B

PLf
≤ B

λ
. (2.5)

Therefore,

sup
f∈Fλ

∣∣∣∣∣ 1

N

N∑
i=1

Lf (Xi, Yi)

PLf
− 1

∣∣∣∣∣ = sup
f∈Fλ

∣∣∣∣∣ 1

N

N∑
i=1

Lf (Xi, Yi)− PLf
PLf

∣∣∣∣∣
≤ sup
f∈Fλ

∣∣∣∣∣∣ 1

N

N∑
i=1

(
f − f∗(
PLf

)1/2
)2

(Xi)− E
(

f − f∗

(PLf )1/2

)2
∣∣∣∣∣∣+ 2 sup

f∈Fλ

∣∣∣∣∣ 1

N

N∑
i=1

ξi

(
f − f∗

PLf

)
(Xi)−

Eξ(f − f∗)
PLf

∣∣∣∣∣ .
Set

Wλ =

{
f − f∗

(PLf )1/2
: f ∈ Fλ

}
, Vλ =

{
f − f∗

PLf
: f ∈ Fλ

}
,

and H = (F − F) ∩
√
λBD. Recall that F − F is star-shaped around 0, and by (2.5) one has that

Wλ ⊂
1√
λ

(F − F) ∩
√
BD ⊂ 1√

λ

(
(F − F) ∩

√
λBD

)
=
H√
λ
,

and

Vλ ⊂
1

λ
(F − F) ∩

(√
B

λ

)
D ⊂ 1

λ

(
(F − F) ∩

√
λBD

)
=
H
λ
.

Fix η = c0/(LBσ) and Q = c1/(L
2B) for suitable absolute constants c0 and c1. Note that by Lemma

2.6, if σ ≥ c2r
∗
N (Q) then r∗N (Q) ≤ s∗N (η) and ηs∗N (η) ≥ 4Q, and if σ ≤ c2r

∗
N (Q) then r∗N (Q) ≥ s∗N (η); also

c2 = c0/LBQ = c0L/c1.
First, consider the case σ ≥ c2r

∗
N (Q). Applying Lemma 2.6 for λ = (s∗N (η))2/B, it follows that with

probability at least 1− 2 exp(−c3Q
2N)

sup
w∈Wλ

∣∣∣∣∣ 1

N

N∑
i=1

w2(Xi)− Ew2

∣∣∣∣∣ ≤ c4QL
2B ≤ 1

4
,
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provided that Q ≤ 1/(4c4L
2B). Moreover, by (2.4), and because ηs∗N (η) ≥ 4Q, one has that with proba-

bility at least
1− 4 exp(−c5Nη

2(s∗N (η))2),

sup
v∈Vλ

∣∣∣∣∣ 1

N

N∑
i=1

ξiv(Xi)− Eξv

∣∣∣∣∣ ≤ c6LBση ≤
1

8

as long as η ≤ 1/(c7LBσ).
Thus, for η = c0/(LBσ) and Q = c1/(L

2B) for suitable constants c0 and c1, if σ ≥ c2Lr
∗
N (Q) then with

probability at least 1 − 6 exp(−c8N · η2(s∗N (η))2), the following holds: for every f ∈ F that satisfies that
PLf ≥ λ,

1

2
PLf ≤ PNLf ≤

3

2
PLf .

Next, let us consider that case σ ≤ c2r
∗
N (Q) which follows a very similar path to the first case. Recall

that r∗N (Q) ≥ s∗N (η). Setting λ = (r∗N (Q))2/B, it follows from Lemma 2.6 (for r = r∗N (Q)) and (2.4) that
with probability at least

1− 2 exp(−cQ2N)− 4 exp

(
−cN min

{(r∗N (Q))2

σ2B
, 1
})

, (2.6)

sup
w∈Wλ

∣∣∣∣∣ 1

N

N∑
i=1

w2(Xi)− Ew2

∣∣∣∣∣ ≤ 1

4
and sup

v∈Vλ

∣∣∣∣∣ 1

N

N∑
i=1

ξiv(Xi)− Eξv

∣∣∣∣∣ ≤ 1

8

as long as Q . 1/(L2B) and η . 1/(σLB). The claim now follows because η ∼ 1/σ and by the choice of
σ, namely, that r∗N (Q)/σ ≥ c2.

Theorem A is an immediate outcome of Theorem 2.8 for B = 1 and the isomorphic method described
in the introduction.

3 Minimax lower bounds (proofs of Theorem A′, B and C)

Let F be a class of functions on a probability space (Ω, µ), fix f ∈ F , let W be a centred gaussian
random variable that is independent of X and consider the target function Y f = f(X) + W . For any

X = (x1, . . . , xN ) ∈ ΩN , let νf,X be the conditional probability measure of (Y f
i |Xi = xi)

N
i=1, which is given

by

dνf,X(y) = exp

(
−
‖y − (f(xi))

N
i=1‖2`N2

2σ2

)
· dy

(
√

2πσ)N
,

and set νf,X ⊗ µN to be the probability measure on (R× Ω)N that generates the sample (Y f
i , Xi)

N
i=1.

Let
B(f, r) = {h ∈ F : ELh ≤ r} = {h ∈ F : E(f − h)2 ≤ r},

where Lh(X,Y f ) = (Y f − h(X))2 − (Y f − f(X))2.
If a procedure f̃N performs with accuracy ζN and has a confidence parameter δN , then for every f ∈ F ,

(νf,X ⊗ µN )
(
f̃−1
N (B(f, ζN ))

)
≥ 1− δN .

In other words, for every f ∈ F , the set of data points (yi, xi)
N
i=1 that are mapped by the procedure f̃N

into the set {h ∈ F : ELh ≤ ζN} is of νf,X ⊗ µN measure at least 1− δN .

The first estimate presented here is the high probability lower bound, formulated in Theorem A′.
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Theorem 3.1 There exists an absolute constant c1 for which the following holds. If F is star-shaped
around one of its points and f̃N is a procedure that performs with accuracy ζN for any target of the form
Y f with a confidence parameter δN < 1/4, then

ζN ≥ min

{
c1σ

2 log(1/δN )

N
,
1

4
(dF (L2))2

}
.

Theorem 3.1 leads to the lower estimate in Theorem A′′. Indeed, if a procedure performs with confidence
δN = exp(−c0γN) for some γ, then ζN ≥ c2σ

2γ. Setting γ = c3η
2(s∗N (η))2 for η ∼ σ−1 leads to the desired

outcome. Thus, combined with Theorem A, ERM achieves the minimax rate (s∗N (η))2 for the confidence
established in Theorem A (up to the constants in the exponent).

The proof of Theorem 3.1 requires several preliminary steps.

Let X = (xi)
N
i=1 ∈ ΩN and consider the conditional probability measure νf,X defined above. Put

Af = f̃−1
N (B(f, ζN )) and let Af |X = {y ∈ RN : (y,X) ∈ Af} denote the corresponding fiber of Af (see

Figure 1).

XN

RN

F

D = (xi, yi)
N
i=1

f̃N (D, ·) f∗1

B(f∗1 , ζN )
Af∗1

(f̃N )−1

X = (xi)
N
i=1

Af∗1 |X

f∗1

f∗2

Af∗2

Af∗2 |X

Figure 1: Proof of the minimax lower bounds via the gaussian shift theorem in RN

Lemma 3.2 For every f ∈ F ,

Pr
({

X = (xi)
N
i=1 : νf,X(Af |X) ≥ 1−

√
δN
})
≥ 1−

√
δN .

Proof. Fix f ∈ F and let ρ(X) = νf,X(Af |X). Then,

1− δN ≤ νf,X ⊗ µN (Af ) = Eρ(X1, ..., XN ).

Since ‖ρ‖L∞ ≤ 1 and Eρ(X) ≥ 1−δN , by the Paley-Zygmund Theorem (see Chapter 3.3 in [12]2, Pr(ρ(X) ≥
x) ≥ (Eρ(X)−x)/(1−x) ≥ 1−δN/(1−x) for every 0 < x < 1. The claim follows by selecting x = 1−

√
δN .

2Eρ(X) = E
{
ρ(X)(I(ρ(X) ≤ x) + I(ρ(X) > x))

}
≤ x(1− Pr[ρ(X) > x]) + Pr[ρ(X) > x])
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Observe that for every f ∈ F and X = (x1, ..., xN ), νf,X is a gaussian measure on RN with mean
PXf = (f(xi))

N
i=1 and covariance matrix σ2IN .

Lemma 3.3 Let t 7→ Φ(t) = P(g ≤ t) be the cumulative distribution function of a standard gaussian
random variable on R. Let u, v ∈ RN and consider the two gaussian measures νu ∼ N (u, σ2IN ) and
νv ∼ N (v, σ2IN ). If A ⊂ RN is measurable, then

νv(A) ≥ 1− Φ
(
Φ−1(1− νu(A)) + ‖u− v‖`N2 /σ

)
.

The main component in the proof of Lemma 3.3 is a version of the gaussian shift theorem.

Theorem 3.4 [26] Let ν be the standard gaussian measure on RN and consider B ⊂ RN and w ∈ RN . If
H+ = {x ∈ RN :

〈
x,w

〉
≥ b} is a halfspace satisfying that ν(H+) = ν(B), then ν(w +B) ≥ ν(w +H+).

Proof of Lemma 3.3. Let ν be the standard gaussian measure on RN . A straightforward change of
variables shows that

νu(A) = ν
(
(A− u)/σ

)
and νv(A) = ν

(
(A− v)/σ

)
.

Let B = (A−u)/σ, w = (u−v)/σ and set ν(B) = α. Using the notation of Theorem 3.4, the corresponding
halfspace is

H+ = {x :
〈
x,w/‖w‖`N2

〉
≥ Φ−1(1− α)},

and therefore, if w⊥ ⊂ RN is the subspace orthogonal to w,

w +H+ = {(λ+ 1)w + w⊥ : λ ≥ Φ−1(1− α)/‖w‖`N2 }.

Clearly,
ν(w +H+) = Pr

(
g ≥ Φ−1(1− α) + ‖w‖`N2

)
,

and the claim follows from Theorem 3.4 and the definition of w.

Proof of Theorem 3.1. Let f̃N be a procedure that performs with accuracy ζN ≤ d2
F (L2)/4 and a

confidence parameter δN . Shifting F if needed, and since F is star-shaped around one of its points, one
may assume that u = 0 ∈ F and consider v ∈ F for which 4ζN ≤ ‖v‖2L2(µ) ≤ 8ζN . By Chebyshev’s

inequality, Pr
(
‖PXv‖2`N2 ≥ 4N‖v‖2L2(µ)

)
≤ 1/4, and thus, for X = (Xi)

N
i=1 in a set of µN -probability at

least 3/4, ‖PXv‖`N2 ≤ c1

√
N‖v‖L2(µ).

Let
A0 = f̃−1

N (B(0, ζN )) and Av = f̃−1
N (B(v, ζN )),

which, by the choice of v, are disjoint. Since f̃N performs with accuracy ζN and has a confidence parameter
δN , ν0,X ⊗ µN (A0) ≥ 1 − δN and νv,X ⊗ µN (Av) ≥ 1 − δN . Applying Lemma 3.2, with µN -probability at
least 1− 2

√
δN ,

ν0,X(A0|X) ≥ 1−
√
δN , and νv,X(Av|X) ≥ 1−

√
δN . (3.1)

Let Ω0 be the set of samples X = (Xi)
N
i=1 ⊂ ΩN for which ‖PXv‖`N2 ≤ c1

√
N‖v‖L2(µ) and (3.1) holds.

Hence, Pr(Ω0) ≥ 3/4− 2
√
δN , and by Lemma 3.3 applied to the set A0|X,

νv,X(A0|X) ≥ 1− Φ
(

Φ−1(
√
δN ) + ‖PXv‖`N2 /σ

)
= (∗).

Observe that if δN < 1/8 then Φ−1(
√
δN ) < 0 and |Φ−1(

√
δN )| ∼

√
log(1/δN ). Moreover, if ‖PXv‖`N2 ≤

σ|Φ−1(
√
δN )| then (∗) > 1/2.

Since X ∈ Ω0, ‖PXv‖`N2 ≤ c1

√
N‖v‖L2(µ); therefore, if

‖v‖L2(µ) . σ

√
log(1/δN )

N
,
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it follows that νv,X(A0|X) > 1/2. On the other hand, A0|X andAv|X are disjoint and νv,X(Av|X) ≥ 1−
√
δN ,

which is impossible if δN < 1/4.
Thus,

‖v‖L2(µ) & σ

√
log(1/δN )

N
,

and by the choice of v,

8ζN ≥ ‖v‖2L2(µ) & σ2 log(1/δN )

N
,

as claimed.

Next, let us turn to the proof of Theorem B, which is a straightforward application of the next obser-
vation:

Theorem 3.5 There exists an absolute constant c0 for which the following holds. Let F and Y f be as
above, and assume that f̃N is a procedure that performs with accuracy ζN = a2

N and has a confidence
parameter δN ≤ 1/4. For any θ ≥ 4 and f ∈ F , if Λ is a 2aN -separated subset of F ∩ (f + θaND) then

log |Λ| ≤ c0N

(
θaN
σ

)2

.

Proof. Observe that if aN ≥ (1/2)dF (L2) then |Λ| = 1 and Theorem 3.5 is trivially true. Hence, one may
assume that aN < (1/2)dF (L2).

Let a = aN , set D(f, r) = {h ∈ F : ‖f − h‖L2(µ) ≤ r} and put Λ to be a 2a-separated subset of
F ∩ (f + θaD) with respect to the L2(µ) norm. Thus, {D(f, a) : f ∈ Λ} is a family of disjoint subsets of
F ∩ (f + θaD).

Recall that for any X = (x1, . . . , xN ) ∈ ΩN , Af |X is the fiber of Af = f̃−1
N (D(f, a)). Since f̃N performs

with accuracy a2 and has a confidence parameter δN = 1− α, it follows that for any f ∈ Λ,

EXνf,X(Af |X) = νf,X ⊗ µN (Af ) ≥ α.

Let u, v ∈ Λ be such that u 6= v in Λ and A ⊂ RN then by Lemma 3.3,

νu,X(A) ≥ 1− Φ
(
Φ−1(1− νv,X(A)) + ‖PXv − PXu‖`N2 /σ

)
.

Fix v0 ∈ Λ. Since {Av|X, v ∈ Λ} is a family of disjoint sets,

1 ≥
∑
v∈Λ

νv0,X(Av|X) ≥
∑
v∈Λ

(
1− Φ

(
Φ−1(1− νv,X(Av|X)) + ‖PXv0 − PXv‖`N2 /σ

))
=
∑
v∈Λ

∫ ∞
zX(v)

ϕ(x)dx,

where ϕ is the density function of a the standard gaussian N (0, 1) and

zX(v) = Φ−1(1− νv,X(Av|X)) + ‖PXv0 − PXv‖`N2 /σ.

Taking the expectation with respect to X,

1 ≥
∑
v∈Λ

EX

∫ ∞
zX(v)

ϕ(x)dx, (3.2)

and it remains to lower bound each expectation.
Recall that

EXνv,X
(
(Av|X)c

)
≤ 1− α ≤ 1/4,
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and by Markov’s inequality, Pr
(
νv,X(Av|X) ≥ 3/4

)
≤ 1/3. Therefore, with µN -probability at least 2/3,

Φ−1
(
1− νv,X(Av|X)

)
= Φ−1

(
νv,X

(
(Av|X)c

))
≤ Φ−1(3/4) := β.

Another application of Markov’s inequality shows that with µN -probability at least 2/3,

‖PXv0 − PXv‖`N2 ≤ (3/2)
√
N‖v0 − v‖L2(µ) ≤ (3/2)θa

√
N,

because v ∈ D(v0, θa). Therefore, with µN -probability at least 1/3,

zX(v) ≤ β + (3/2)
√
Nθa/σ

and since β + (3/2)
√
Nθa/σ > 0,

EX

∫ ∞
zX(v)

ϕ(x)dx ≥ 1

3

∫ ∞
β+(3/2)

√
Nθa/σ

ϕ(x)dx & exp
(
− c2Nθ

2a2

σ2

)
.

Thus, by (3.2), 1 & |Λ| exp
(
− c3Nθ

2a2/σ2
)
, as claimed.

Proof of Theorem B via Theorem 2.5 in [43]. In this paragraph, we prove Theorem B when the
design X is a standard Gaussian vector in Rd and F is a class of linear functionals indexed by a subset T
of Rd: F = {

〈
·, t
〉

: t ∈ T}.
For all t ∈ T , we denote by Pt the probability distribution of the Rd+1-valued random couple (Y t, X)

where Y t =
〈
X, t

〉
+ W and W ∼ N (0, σ2) is independent of X; in particular, P⊗Nt is the probability

distribution of the data ((Yi, Xi))
N
i=1 when (Y1, X1), . . . , (YN , XN ) are i.i.d. distributed according to (Y t, X)

and Pt is a normal distribution over Rd+1 with mean 0 and covariance matrix

Σt =

[
‖t‖22 + σ2 t>

t Id

]
∈ R(d+1)×(d+1).

Given that X is an isotropic vector, we have for all t∗ ∈ T and all estimator f̂ =
〈
·, t̂
〉

that

R(f̂)− inf
f∈F

R(f) =
∥∥t̂− t∗∥∥2

2

where R(f) = E(Y t∗−f(X)) = ‖t− t∗‖22 when f(·) =
〈
·, t
〉

for some t ∈ T . Hence, proving an exact oracle

inequality for f̂ is equivalent to estimate t∗ in `d2. For such estimation problem, one can derive minimax
lower bounds using Theorem 2.5 from [43]: assume that M ≥ 2, aN > 0 and suppose that there exists
Λ ⊂ T containing elements v0, v1, · · · , vM such that:

i) ‖vj − vk‖2 ≥ 2aN for all 0 ≤ j < k ≤M ;

ii) if KL(·, ·) denotes the Kullback-Leibler divergence (see, Definition 2.5 in [43]) then

1

M

M∑
j=1

KL
(
P⊗Nvj ,P⊗Nv0

)
≤ logM

16
.

Then, for any estimator t̂,

sup
t∗∈T

P⊗Nt∗
[∥∥t̂− t∗∥∥

2
≥ aN

]
≥ 1

4
.
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It follows from [43], p.85 and [37], p.33 and p.47 that for all j = 1, · · · ,M ,

KL
(
P⊗Nvj ,P⊗Nv0

)
=
N

2
Tr
(
Σ−1
v0 Σv1 − Id+1

)
=
N ‖vj − v0‖22

σ2
.

As a consequence, for any θ ≥ 4 and v0 ∈ T , if Λ is a 2aN -separated subset of T ∩ (v0 + θaNB
d
2) such that

its cardinality satisfies 16N(θaN/σ)2 ≤ log |Λ| then there is no estimator that can perform with accuracy
better than aN with confidence at least 1/4 relative to the set of admissible couple {(Y t∗ , X) : t∗ ∈ T}
where Y t∗ =

〈
X, t∗

〉
+W and W ∼ N (0, σ2) is independent of X ∼ N (0, Id).

Proof of Theorem C. We end this section with the proof of Theorem C, unlike all the previous results
this theorem deals with the deterministic design setup. The idea of the proof is that if X = (X1, ..., XN )
and PXf1 = PXf2 (where PXf = (f(Xi))

N
i=1), the two functions f1 and f2 are indistinguishable on a sample

(Xi, Yi)
N
i=1 of Y f1 = f1(X) + V . Therefore, no procedure can perform with a better accuracy than the

largest typical diameter w.r.t. the metric D of the sets K(f,X) = {h ∈ F : PXh = PXf}.
Fix f ∈ F and let D(f,X) be the D-diameter of K(f,X). Define an F-valued random variable hf as

follows. Let hf1,X and hf2,X be almost L2(µ)-diametric points in K(f,X), set δ to be a {0, 1}-valued random
variable with mean 1/2, which is independent of V , and put

hf = (1− δ)hf1,X + δhf2,X. (3.3)

Note that for every realization of δ, hf ∈ K(f,X) and D(hf ,X) = D(f,X). Denote by PrV (resp. EV )
the probability distribution of (resp. expectation w.r.t.) (Vi)

N
i=1. Let I(A) be the indicator of the set A

and observe that for every realization of the random variable δ,

sup
f∈F

PrV

(
D
(
f̃N
(
(Xi, f(Xi) + Vi)

N
i=1

)
, f) ≥ D(f,X)/4

)
≥ sup
f∈F

PrV

(
D
(
f̃N

(
(Xi, h

f (Xi) + Vi)
N
i=1

)
, hf ) ≥ D(hf ,X)/4

)
= sup
f∈F

PrV

(
D(f̃N

(
(Xi, h

f (Xi) + Vi)
N
i=1

)
, hf ) ≥ D(f,X)/4

)
= (∗)

because hf ∈ F and D(f,X) = D(hf ,X).
For every f ∈ F put

Af1 =
{
D
(
f̃N

(
(Xi, h

f
1,X(Xi) + Vi)

N
i=1

)
, hf1,X

)
≥ D(f,X)/4

}
,

and
Af2 =

{
D
(
f̃N

(
(Xi, h

f
2,X(Xi) + Vi)

N
i=1

)
, h2,X

)
≥ D(f,X)/4

}
.

Taking the expectation in (∗) with respect to δ,

Eδ(∗) ≥ sup
f∈F

EV EδI
(
D
(
f̃N

(
(Xi, h

f (Xi) + Vi)
N
i=1

)
, hf ) ≥ D(f,X)/4

)
= sup

f∈F
EV

1

2
(I(Af1) + I(Af2)).

Note that for any sample X, hf1,X(Xi) + Vi = hf2,X(Xi) + Vi; therefore,

f̃N

(
(Xi, h

f
1,X(Xi) + Vi)

N
i=1

)
= f̃N

(
(Xi, h

f
2,X(Xi) + Vi)

N
i=1

)
≡ f0.

Since hf1,X and hf2,X are almost diametric in K(f,X), either D(hf1,X, f0) ≥ D(f,X)/4 or D(hf2,X, f0) ≥
D(f,X)/4. Thus, I(Af1) + I(Af2) ≥ 1 almost surely, and

sup
f∈F

PrV

(
D
(
f̃N
(
(Xi, f(Xi) + Vi, )

N
i=1

)
, f
)
≥ D(f,X)/4

)
≥ 1/2.
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Remark. It is straightforward to verify that if σ = 0, then ERM satisfies f̂ ∈ K(f∗,X) for every sample
X. Therefore, a typical value of D(f∗,X) is a lower bound on the minimax rate when considering only
noise-free targets.

4 Examples

In this section, we present two examples in which our results lead to sharp upper and lower minimax
bounds, thus showing the optimality (in some minimax sense) of ERM.

4.1 Learning in ρBd
1

Let F be the class of linear functionals
〈
·, t
〉
, indexed by T = ρBd

1 , the unit ball in `d1 of radius ρ. Assume
that µ is an isotropic, L-subgaussian measure on Rd, that Y ∈ Lψ2 and that ‖Y − f∗(X)‖ψ2 ≤ σ.

Since ρBd
1 is centrally symmetric, so is F , and F − F = 2F . Thus, the estimates in Theorem A are

based only on the behavior of the function s→ E‖G‖2F∩sD. And, because the measure µ is isotropic, the
canonical gaussian process is given by t → Gt =

∑d
i=1 giti, where g1, . . . , gd are d independent, standard

gaussian variables. Moreover, for every s > 0, the indexing set 2F ∩ sD corresponds to 2ρBd
1 ∩ sBd

2 . One
may show (see, for example, [17]) that for every 2ρ/

√
d ≤ s,

E ‖G‖2ρBd1∩sBd2 = E sup
t∈2ρBd1∩sBd2

∣∣∣ d∑
i=1

giti

∣∣∣ ∼ ρ√log(edmin{s2/ρ2, 1}),

and if s ≤ 2ρ/
√
d then 2ρBd

1 ∩ sBd
2 = sBd

2 and

E ‖G‖2ρBd1∩sBd2 = E sup
t∈2ρBd1∩sBd2

∣∣∣ d∑
i=1

giti

∣∣∣ ∼ s√d.
Setting η = c0/(Lσ) and Q = c1/L

2, it is straightforward to verify that

(s∗N (η))2 ∼L


ρσ
√

log d
N if ρ2N ≤ σ2 log d, (c)

ρσ

√
1
N log

(
ed2σ2

ρ2N

)
if σ2 log d ≤ ρ2N ≤ σ2d2,

σ2d
N if ρ2N ≥ σ2d2.

Also,

(r∗N (Q))2


∼L ρ2

N log
(
ed
N

)
if N ≤ c1d,

.L
ρ2

d if c1d ≤ N ≤ c2d

= 0 if N > c2d,

where c1 and c2 are constants that depend only on L.
When N ∼ d, (r∗N (Q))2 decays rapidly from (ρ2/N) log(ed/N) to 0. Thus, when c1d ≤ N ≤ c2d

one only has an upper estimate on (r∗N (Q))2, and we will therefore only consider the cases N ≤ c1d and
N ≥ c2d.

Let us present the exact oracle inequalities satisfied by the ERM in ρBd
1 that follow from Theorem A.

First, assume that N ≤ c1d. If σ & r∗N (Q) then σ2d2 & Nρ2, and

(s∗N (η))2 ∼L


ρσ
√

log d
N if ρ2N ≤ σ2 log d,

ρσ

√
1
N log

(
ed2σ2

ρ2N

)
if σ2 log d ≤ ρ2N.
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Setting

δN =


6 exp

(
− c4ρ

σ

√
N log d

)
if ρ2N ≤ σ2 log d,

6 exp

(
− c4ρ

σ

√
N log

(
ed2σ2

ρ2N

))
if σ2 log d ≤ ρ2N,

(4.1)

and applying Theorem A, it follows that if σ ≥ c3ρ
√

log(ed/N)/N , then with probability at least 1− δN ,

R(f̂) ≤ inf
f∈F

R(f) +
c5ρσ√
N


√

log d if ρ2N ≤ σ2 log d,√
log
(
ed2σ2

ρ2N

)
if σ2 log d ≤ ρ2N,

and if σ ≤ c3ρ
√

log(ed/N)/N , then with probability at least 1− 6 exp(−c4N),

R(f̂) ≤ inf
f∈F

R(f) +
c5ρ

2

N
log

(
ed

N

)
,

for constants c3, c4, c5 that depend on L.
In a similar fashion, if N ≥ c2d then r∗N = 0, and thus, if σ 6= 0, σ ≥ r∗N . Therefore, the error rate

of ERM is given by s∗N . When σ = 0 (the noise-free case) then s∗N (η) = r∗N (Q) = 0 and with probability

larger than 1− 6 exp(−c4N), f̂ = f∗, implying exact reconstruction.

Turning to the lower estimate, assume that the set of admissible targets contains every Y t =
〈
t, x
〉

+W ,
for t ∈ ρBd

1 and W that is a centered gaussian random variable with variance σ2 that is independent of
X. It follows from Theorem A′′ that if σ & r∗N (Q), ERM is an optimal procedure in the following sense: it
achieves the accuracy

(s∗N (c/σ))2 ∼ ρσ
√

(1/N) log(ed2σ2/(ρ2N))

if ρ2N ≥ σ2 log d, and the accuracy

(s∗N (c/σ))2 ∼ ρσ
√

(1/N) log d

if (σ2/ log d) . ρ2N ≤ σ2 log d (note that when (σ2/ log d) & ρ2N then δN in (4.1) is larger than 1 and the
probability estimate 1− δN is negative).

For a minimax lower bound that holds with constant probability we shall apply Theorem B. To that
end, let us bound the covering numbers logN(ρBd

1 ∩ 2rBd
2 , rB

d
2) from below. First note that

N(ρBd
1 ∩ 2rBd

2 , rB
d
2) = N(Bd

1 ∩ (2r/ρ)Bd
2 , (r/ρ)Bd

2)

and it suffices to study the covering numbers N(Bd
1 ∩ 2rBd

2 , rB
d
2) for various choices of r.

Fix 1/
√
d ≤ 2r < 1, and without loss of generality assume that k = 1/(2r)2 is an integer. For

I ⊂ {1, ..., d}, let SI be the Euclidean sphere supported on the coordinates I, and note that⋃
|I|=k

2rSI ⊂ Bd
1 ∩ 2rBd

2 .

It is a well known fact (see, e.g., [32]) that there is a collection of subsets of {1, ..., d} of cardinality k, which
will be denoted by B, that is k/8 separated in the Hamming distance and for which log |B| ≥ c1k log(ed/k).
Thus, the set Λ = {(2r)2

∑
i∈I ei : I ∈ B} is an r-separated subset of Bd

1 ∩ 2rBd
2 with respect to the `d2

norm, and for any 1/
√
d ≤ 2r ≤ 1,

logN(Bd
1 ∩ 2rBd

2 , rB
d
2) ≥ c4

log(edr2)

r2
.
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Moreover, one can prove (via Maurey’s empirical method) that this estimate is sharp (see, e.g., [40]). Thus
it follows that for any ρ/

√
d ≤ 2r ≤ ρ,

logN(ρBd
1 ∩ 2rBd

2 , rB
d
2) ∼ ρ2

r2
log
(edr2

ρ2

)
.

If 2r ≤ ρ/
√
d then ρBd

1 ∩ 2rBd
2 = 2rBd

2 and by a volumetric estimate, logN(ρBd
1 ∩ 2rBd

2 , rB
d
2) ∼ d. If, on

the other hand, 2ρ > 2r ≥ ρ then ρBd
1 ∩ 2rBd

2 = ρBd
1 and since logN(ρBd

1 , rB
d
2) ∼ log(edr2/ρ2) ∼ log d

(which is evident from the argument used above), then logN(ρBd
1 ∩ 2rBd

2 , rB
d
2) ∼ log d. Finally, when

2r ≥ 2ρ, logN(ρBd
1 ∩ 2rBd

2 , rB
d
2) = 0.

Therefore,

(q∗N (c0/σ))2 ∼L


ρ2 if ρ2N ≤ σ2 log d, (c′)

ρσ

√
1
N log

(
ed2σ2

ρ2N

)
if σ2 log d ≤ ρ2N ≤ σ2d2,

σ2d
N if ρ2N ≥ σ2d2.

We conclude that when σ & r∗N (Q) (and in particular, when σ2d2 & Nρ2), and if ρ2N ≥ σ2 log d, then
q∗N (c0/σ) ∼ s∗N (η). This estimate also exhibits that Sudakov’s inequality for the set ρBd

1 ∩ 2rBd
2 is sharp

at the scale ε = r in the following sense: for every 0 < r < ρ,

r
√

logN(ρBd
1 ∩ 2rBd

2 , rB
d
2) ∼ E ‖G‖2ρBd1∩rBd2 .

Therefore, by Theorem B, one has that if σ & r∗N (Q) and if the set of admissible targets contains every
Y t =

〈
X, t

〉
+W as above, then the minimax rate in the constant confidence regime is (s∗N (η))2 and that

ERM is optimal procedure when ρ2N ≥ σ2 log d.
Note that when ρ2N ≤ σ2 log d the estimates on (q∗N (c0/σ))2 and on (s∗N (η))2 do not coincide. And, it

turns out that if one extends the set of admissible targets, ERM cannot perform with a better accuracy
than ∼ (s∗N (η))2 in this range. Indeed, consider the one dimensional case d = 1 and a target Y defined as
follows: the marginal law of Y given X is

Y =

{
σX with probability 1/2 + δ
−σX with probability 1/2− δ (4.2)

for δ that will be specified later, and X that is distributed uniformly in {−1, 1}. The corresponding class
of one-dimensional linear functionals is F = {ft = tx : −ρ ≤ t ≤ ρ}.

It is straightforward to verify that for every t ∈ [−ρ, ρ],

R(t) := R(ft) = (σ2 + t2)− 4tδσ,

and if 2σδ ≥ ρ then the minimizer of R(t) in [−ρ, ρ] is t = ρ.
Next, let us identify the minimizer of the empirical risk RN (t) = N−1

∑N
i=1(Yi − tXi)

2. Given the
sample (Xi, Yi)

N
i=1, let J = {i : Yi = σXi}. Observe that for every t ∈ [−ρ, ρ],

N∑
i=1

(Yi − tXi)
2 =

∑
i∈J

(σ − t)2X2
i +

∑
i∈Jc

(−σ − t)2X2
i = (σ − t)2|J |+ (σ + t)2|Jc|.

Hence, if |Jc| ≥ |J | then the empirical minimizer satisfies t̂ ≤ 0. By the choice of Y , the random variable
Z = 1{Y=−σX}|X has mean 1/2− δ and variance τ2 = 1/4− δ2. Given X1, ..., XN , let Zi = 1{Yi=−σXi}|Xi

and note that |Jc| =
∑N

i=1 Zi. It follows from the Berry-Esseen Theorem that if δ
√
N/τ ≤ c1 then with
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probability at least 1/4, |Jc| ≥ N/2. And to ensure that δ
√
N/τ ≤ c1 it suffices to select δ = c2/

√
N . All

that remains is to estimate the excess risk of t̂, which clearly satisfies

R(t̂)−R(t∗) ≥ c3σρδ =
c4ρσ√
N
. (4.3)

Thus, when σδ ≥ ρ (i.e., when ρ2N . σ2), the best accuracy that ERM can achieve with constant
probability is ∼ (s∗N (η))2.

Finally, turning to the low noise regime (σ . r∗N (Q)), one can show that the rate (r∗N (Q))2 from
Theorem A coincide with the lower bound from Theorem C. Note however that the two theorems have
been proved in different setups (random design setup for Theorem A and deterministic design setup for
Theorem C), hence the optimality of (r∗N (Q))2 cannot be deduced from this comparison. Nevertheless, one
can still record that the two upper and lower complexity paramters appearing in the two theorems coincide.
Recall that by Theorem C it suffices to show that the Gelfand N -width of ρBd

1 satisfies cN (ρBd
1) ∼ r∗N . By

a result due to Garanaev and Gluskin [16], when d ≥ N one has

cN (ρBd
1) ∼ ρmin

{
1,

√
log(ed/N)

N

}
,

and cN (ρBd
1) = 0 when d < N . Therefore, cN (ρBd

1) ∼ r∗N (Q) when either N ≤ c1d or N > c2d. In
particular, when 0 ≤ σ . r∗N (Q), the minimax rate obtained in Theorem C (in the deterministic design
setup) is of the same order as the rate (r∗N (Q))2 achieved by the ERM in Theorem A (in the random design
setup).

4.2 Low-rank matrix inference via the max-norm

In this section, the goal is to estimate the real-valued output Y by a linear function of a low-rank (or
approximately low rank) matrix. Since the rank is not a convex constraint, one may consider “a convex
relaxation” given by the factorization-based norm

‖A‖max = min
A=UV >

‖U‖2→∞ ‖V ‖2→∞ .

Let Bmax be the unit ball relative to that norm and set F = {fA =
〈
·, A
〉

: A ∈ Bmax}. Thus,

ÂN ∈ argmin
‖A‖max≤1

1

N

N∑
i=1

(
Yi −

〈
Xi, A

〉)2
.

A similar estimator has been studied in [41] for Y =
〈
A∗, X

〉
+ W , a random vector X that is selected

uniformly from the canonical basis of Rp×q, a noise vector W that is either gaussian or sub-exponential
with independent coordinates, and matrices in Bmax with uniformly bounded entries.

Assume that X is isotropic and L-subgaussian relative to the normalized Frobenius norm, and in
particular, ∥∥〈X,A〉∥∥

L2
= (pq)−1/2 ‖A‖F ,

∥∥〈X,A〉∥∥
ψ2
≤ L(pq)−1/2 ‖A‖F .

Let A∗ ∈ argminA∈Bmax E(Y −
〈
A,X

〉
)2 be a minimizer of the risk in Bmax and set σ =

∥∥Y − 〈X,A∗〉∥∥
ψ2

.
Since F is convex, the minimizer is unique and the conditions of Theorem A are satisfied.

To apply Theorem A, one has to estimate the fixed points r∗N (Q) and s∗N (η) for Q that depends only
on L and η ∼L σ−1.

Let BF be the unit ball relative to the Frobenius norm. Since X is isotropic, the relative L2 unit ball
is

D = {fA : E
〈
X,A

〉2 ≤ 1} = {
〈
·, A
〉

: A ∈ √pqBF },
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and the corresponding gaussian process has a covariance structure given by

EGfAGfB = (pq)−1
〈
A,B

〉
= (pq)−1Tr(A>B).

A simple application of Grothendieck’s inequality (see, e.g., [35]) shows that

conv
(
X±
)
⊂ Bmax ⊂ KGconv

(
X±
)

where KG is the Grothendieck constant and X± = {uv> : u ∈ {±1}p, v ∈ {±1}q}; in particular,
diam(Bmax, L2) ∼ 1.

Let G = (gij)1≤i≤p:1≤j≤q be a matrix with independent, centered gaussian entries with variance (pq)−1.
Thus, for every s > 0,

E ‖G‖(F−F)∩sD = E sup
A∈2Bmax∩s

√
pqBF

|
〈
G, A

〉
| ≤ 2E sup

A∈Bmax
|
〈
G, A

〉
| ≤ 2KGE sup

A∈conv(X±)
|
〈
G, A

〉
|.

By standard properties of gaussian processes,

E sup
A∈conv(X±)

|
〈
G, A

〉
| . max

A∈X±

‖A‖F√
pq

√
log |X±| .

√
p+ q.

In the reverse direction, by Lemma 3.1 in [41], if

1

min(p, q)
. s2 . 1,

then
s log1/2N(Bmax ∩ s

√
pqBF , s

√
pq/2BF ) &

√
p+ q. (4.4)

Hence, it follows from Sudakov’s inequality that in that range of s,

E ‖G‖sD∩(F−F) ∼
√
p+ q,

and

(s∗N (η))2 ∼ σ
√
p+ q

N
, (r∗N (Q))2 ∼ p+ q

N
,

as long as both are smaller than 1 and larger than 1/min{p, q}; that is, when p+ q . N . pq, p+ q . σ2N
and σ2(p+ q) min(p, q)2 & N .

Applying Theorem A, if σ &Q,L

√
(p+ q)/N then with probability at least 1−2 exp(−c1

√
N(p+ q)/σ),

ERM satisfies that

E(Y −
〈
Â,X

〉
)2 ≤ inf

A∈Bmax
E(Y −

〈
A,X

〉
)2 + c2(Q,L)σ

√
p+ q

N
,

and if σ .Q,L

√
(p+ q)/N , then with probability at least 1− 2 exp(−c1N),

E(Y −
〈
Â,X

〉
)2 ≤ inf

A∈Bmax
E(Y −

〈
A,X

〉
)2 + c2(Q,L)

p+ q

N
.

To see that the estimate is sharp in the minimax sense when σ &
√

(p+ q)/N (and as long as s∗N , r
∗
N . 1,

i.e., σ .
√
N/(p+ q)), observe that Theorem A′′ implies that ERM achieves the minimax rate for the

confidence parameter δN = exp(−c1

√
N(p+ q)/σ). Moreover, by Theorem B and (4.4), any procedure

with confidence parameter δN ≤ 1/4 has accuracy ζN & σ
√

p+q
N , matching the upper bound.
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5 Concluding remarks

Subgaussian classes are the first family of unbounded classes one is likely to consider, and it turns out
that just like bounded classes, the study of subgaussian learning problems may be carried out using a
two-sided concentration argument. Unfortunately, this is as far as concentration goes: the substantial
technical machinery needed for the proof of Theorem A is not true beyond the subgaussian framework,
and the analysis of more ‘heavy-tailed’ problems requires a totally different machinery (see [34, 31, 23, 27]).
Moreover, in more heavy-tailed situations, ERM does not attain the optimal accuracy/confidence tradeoff
(see, Proposition 1.5 in [24]).

The results presented in this article are sharp in many cases but not in every case. First, in the ‘high
probability’ range, Theorem A′′ shows that when σ & r∗N the performance of ERM is optimal in the
minimax sense. However, if σ . r∗N , the estimate we present happens to be sharp only for σ = 0 (when
the error rate is a typical value of D2(f∗,X)), or for σ ∼ r∗N , when the error rate is ∼ (r∗N )2. This gap is
filled (almost completely) in [29].

In the constant probability regime the picture presented here is even less complete. For example, in
‘noisy situations’ – when σ & r∗N , the upper bound of (s∗N (c/σ))2 is sharp only if it happens to be equivalent
to q∗N (c/σ). Unfortunately, this is not even true even for F = {

〈
t, ·
〉

: t ∈ Bd
p}, when 1 + 1/ log d < p < 2.

Again, this gap was addressed in [29] – at least when considering a class of admissible targets of the form
Y f = f(X) +W .

The case of linear functional in Rd is a good indication to what our estimates give in general: if X is
L-subgaussian then when considering targets of the form Y t =

〈
X, t

〉
+W for a centered gaussian variable

W that is independent of X, and t ∈ T , ERM achieves the accuracy

max{(s∗N (c/σ))2, (r∗N (Q))2}

as long as T is convex and centrally-symmetric. No procedure can outperform this rate, say with confidence
at least 3/4 provided that:

1. q∗N log1/2N(T∩2q∗NB
d
2 , q
∗
NB

d
2) ∼ E ‖G‖2T∩q∗NBd2 – meaning that there is no gap in Sudakov’s inequality

at scale ε = q∗N .

2. cN (T ) ∼ r∗N (T ) – meaning that
√
NcN (T ∩ r∗NBd

2) ∼ E ‖G‖T∩r∗NBd2 , and there is no gap in the Pajor-

Tomczak-Jaegermann estimate on the Gelfand N -width of T (see [36]) and if the minimax lower
bound result from Theorem C is true for the random designed setup – which is still an open question
(see the comments after Theorem C).

Let us mention once again that a complete characterization of the minimax rate in this case was recently
established in [29], and the optimal procedure happens to be a minor modification of ERM: it is ERM
performed in an appropriate net in T .

The parameter s∗N may be compared with the fixed points used in [44, 6, 45, 46, 2]. In all those cases,
the fixed points are associated with Dudley’s entropy integral for the localized class, rather than with the
localized gaussian process; as such, the resulting bounds are always weaker than ours. For example, the
results in [6] which deal with the same situation as Theorem A′′ show that if the noise level is large enough
and there is no gap in both Sudakov’s AND Dudley’s inequalities at the correct level (given by the fixed
point), ERM is a minimax procedure in expectation. Theorem A′′ clearly improves that result.

Finally, let us say a final word about the convexity assumption of the class F which seems to be as
crucial as the subgaussian assumption for the ERM. Although the importance of convexity may have been
obscured by the Bernstein condition, we now prove that a uniform in Y Bernstein condition implies that
the class is convex, at least if a nontrivial error rate is to be expected.

26



Indeed, observe that if F ⊂ L2(µ) is closed but not locally compact in L2(µ) then the minimax rate
of Y f = f(X) +W does not tend to 0 as the sample size tends to infinity. This is an immediate outcome
of Theorem B and the fact that there is some r > 0 and f ∈ F for which f + rD contains an infinite set
that is r/4 separated in L2(µ). Thus, one may restrict oneself to classes that are locally compact, and, in
which case, one has the following:

Theorem 5.1 Let µ be a probability measure and let X be distributed according to µ. If F is a locally
compact subset of L2(µ), the following are equivalent:

i) for any real valued random variable Y ∈ L2, the minimum of the functional f → E(Y − f(X))2 in F
is attained. And, if f∗ is such a minimizer, then for every f ∈ F ,

E
(
f(X)− f∗(X)

)2 ≤ E
(
(Y − f(X))2 − (Y − f∗(X))2

)
. (5.1)

ii) F is nonempty and convex.

Proof. If F is a nonempty, closed and convex subset of a Hilbert space, the metric projection Y → f∗

exists and is unique. By its characterization,
〈
f(X)− f∗(X), Y − f∗(X)

〉
≤ 0 for every f ∈ F , and

E
(
(Y − f(X))2 − (Y − f∗(X))2

)
= ‖f(X)− f∗(X)‖2L2

+ 2
〈
f∗(X)− Y, f(X)− f∗(X)

〉
≥ ‖f(X)− f∗(X)‖2L2

.

In the reverse direction, if F is locally compact, the set-value metric projection onto F exists, and since
it is 1-Bernstein for any Y , the metric projection is unique. Indeed, if f∗1 , f

∗
2 ∈ F are minimizers then by

the Bernstein condition,

‖f∗1 (X)− f∗2 (X)‖2L2
≤ BE

(
(Y − f∗2 (X))2 − (Y − f∗1 (X))2

)
= 0.

Thus, any Y ∈ L2 has a unique best approximation in F , making F a locally compact Chebyshev set
in a Hilbert space. By a result due to Vlasov [48], (see also [13], Chapter 12), F is convex.

A Additional proofs

First note that the canonical gaussian process we are interested in is a restriction of the isonormal process
on L2(µ) to a subset (see Section 12 in [15]). In particular, it inherits the linearity of the isonormal process
– a fact we shall use below.
Proof of Lemma 2.3. Fix s1 > s2 > 0 and f, h ∈ F . Assume that s2 ≤ ‖f − h‖L2(µ) ≤ s1 and observe
that since F − F is star-shaped around 0 and 0 < s2/‖f − h‖L2(µ) < 1, it follows that

u = s2
f − h

‖f − h‖L2(µ)
∈ s2D ∩ (F − F).

Therefore,

Gf−h =
‖f − h‖L2(µ)

s2
Gu ≤ (s1/s2) sup

w∈s2D∩(F−F)
Gw. (A.1)

Since (A.1) clearly holds if ‖f − h‖L2(µ) ≤ s2, by taking the supremum over all possible choices of f − h ∈
s1D ∩ (F − F),

sup
w∈s1D∩(F−F)

Gw ≤ (s1/s2) sup
w∈s2D∩(F−F)

Gw,

which is equivalent to ψ(s1)/s1 ≤ ψ(s2)/s2; therefore, φ is non-increasing on (0,+∞).
The two other parts of the claim can be established using a similar argument and their proofs are

omitted.
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Proof of Lemma 2.4. First, assume that σ ≥ (c/Q)r∗N (Q). Let r < r∗N (Q) and note that by Lemma 2.3,

E‖G‖rD∩(F−F) ≥ Qr
√
N =

Qσ

rc
· c
σ
r2
√
N.

Hence, if (Qσ)/rc ≥ 1 then E‖G‖rD∩(F−F) ≥ c
σ r

2
√
N , implying that r ≤ s∗N (c/σ). But (Qσ)/rc ≥ 1 is

equivalent to σ ≥ (c/Q)r, which holds for any r < r∗N (Q).
For the reverse direction, let σ ≤ (c/Q)r∗N (Q) and set r > r∗N (Q). Thus, by Lemma 2.3,

E‖G‖rD∩(F−F) ≤ Qr
√
N =

Q

r
r2
√
N.

Hence, if Q/r ≤ c/σ then r ≥ s∗N (c/σ). But Q/r ≤ c/σ if σ ≤ (c/Q)r, which clearly holds.
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[1] Franck Barthe, Olivier Guédon, Shahar Mendelson, and Assaf Naor. A probabilistic approach to the geometry of the
lnp -ball. Ann. Probab., 33(2):480–513, 2005.

[2] Peter L. Bartlett, Olivier Bousquet, and Shahar Mendelson. Local Rademacher complexities. Ann. Statist., 33(4):1497–
1537, 2005.

[3] Peter L. Bartlett and Shahar Mendelson. Empirical minimization. Probab. Theory Related Fields, 135(3):311–334, 2006.

[4] Withold Bednorz. Concentration via chaining method and its applications. Technical report, University of Warsaw, 2013.
ArXiv:1405.0676.
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