Comment to “Generic chaining and the ℓ_1-penalty” by Sara van de Geer

Guillaume Lecuè

I would like to congratulate the author for the interesting ideas and intuition that are put forward in this contribution. I will focus my comment on the role of the generic chaining and on the geometry of ℓ_1-balls.

In [9], the oracle inequalities provide both a prediction result (a bound on the excess risk $\mathcal{E}(\hat{\theta}, \theta^0)$) and a coefficient estimation result (a bound on $\|\hat{\theta} - \theta^0\|_1$ when $\theta^0 \in \Theta$). There are two main steps in the author’s proof. The first one follows from some tricky algebraic arguments and leads to Equation (3) of Theorem 2.1 (Equation (4) in Theorem 2.1 and Theorem 2.2 are similar in nature). Along the lines of this step, the role of the Margin assumption (Condition 2.1 in [9]): for all $\theta \in \Theta$,

$$\mathcal{E}(\theta; \theta^0) := P(\rho_\theta - \rho_{\theta^0}) \geq G(\tau(\theta - \theta^0)),$$

and the effective sparsity parameter for $S_0 = \{ j : \theta^0_j \neq 0 \}$,

$$\Gamma^2(L, S_0) = \max \left(\frac{\|\theta_{S_0}\|_1^2}{\tau(\theta)^2} : \|\theta_{S_0}\|_1 \leq L \|\theta_{S_0}\|_1 \right)$$

are highlighted. In particular, the norm τ characterizing the “local behavior” of the excess risk $\theta \mapsto \mathcal{E}(\theta, \theta^0)$ around $\theta^0 \in \Theta$ in (1) appears to be the correct norm with respect to which the distortion with respect to the ℓ_1-norm has to be measured over the cone $\{ \theta \in \mathbb{R}^p : \|\theta_{S_0}\|_1 \leq L \|\theta_{S_0}\|_1 \}$ intersected with Θ (note that, in this cone, $\|\theta_{S_0}\|_1 \leq \|\theta\|_1 \leq (1 + L) \|\theta_{S_0}\|_1$). This first step does not require any probabilistic

\(^1\text{CNRS, LAMA, Université Paris-Ést Marne-la-vallée, 77454 France. Supported by French Agence Nationale de la Recherche ANR Grant “PROGNOSTIC” ANR-09-JCJC-0101-01. Email: guillaume.lecue@univ-mlv.fr}\)
The second step in the author’s argument is to show that the event $T(\theta^0)$ holds with high probability when λ_0 is of the order of $\sqrt{\log p/n}$. This is the step where empirical processes theory - and in particular, the tools developed in [8] - may be particularly useful. This is the place where Fernique-Slepian theorem can be used as a simple alternative to the generic chaining based argument in [9].

1 An alternative to the generic chaining argument in [9]

In [9], the first step to prove that the event $T(\theta^0)$ holds with high probability is to use the peeling device. The second step is to study the empirical process $\theta \mapsto (P - P_n)(\rho_\theta - \rho_{\hat{\theta}})$ indexed by $\Theta_M(\theta^0) = \{ \theta \in \Theta : \|\theta - \theta^0\|_1 \leq M \}$ by means of symmetrization and concentration of suprema of Rademacher processes. At that point of the argument, everything boils down to upper bound the expectation (conditionally to $X = (X_1, \ldots, X_n)$)

$$E \sup_{\theta \in \Theta_M(\theta^0)} |Y^\varepsilon(\theta, \theta^0)| \text{ where } Y^\varepsilon(\theta, \theta^0) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \varepsilon_i(\rho_\theta - \rho_{\hat{\theta}})(X_i).$$

For this issue, we suggest an alternative proof to the generic chaining based argument in [9] (involving Talagrand majorizing measure theorem [6]).

This alternative proof is based upon two ingredients: a comparison theorem (cf. Lemma 4.5 in [2]),

$$E \sup_{\theta \in \Theta} \left| \sum_{i=1}^{n} \varepsilon_i a_i(\theta) \right| \lesssim E \sup_{\theta \in \Theta} \left| \sum_{i=1}^{n} g_i a_i(\theta) \right|, \quad (4)$$

where the ε_i’s are iid Rademacher and the g_i’s are iid Gaussian (and the a_i’s are any real-valued functions); and Fernique-Slepian theorem (cf. Theorem 3.15 in [2]): if $(Z(\theta))_{\theta \in \Theta}$ and $(X(\theta))_{\theta \in \Theta}$ are two Gaussian processes such that for all $\theta, \tilde{\theta} \in \Theta$

$$E(Z(\theta) - Z(\tilde{\theta}))^2 \leq E(X(\theta) - X(\tilde{\theta}))^2, \quad (5)$$
then

\[\mathbb{E} \sup_{\theta, \tilde{\theta} \in \Theta} |Z(\theta) - Z(\tilde{\theta})| \leq \mathbb{E} \sup_{\theta, \tilde{\theta} \in \Theta} |X(\theta) - X(\tilde{\theta})|. \]

(6)

In order to use the comparison theorem (4), we introduce the following Gaussian process: for any \(\theta \in \Theta_M(\theta^0) \),

\[Z^g(\theta, \theta^0) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} g_i (\rho_{\theta}^{c} - \rho_{\theta^0}^{c}) (X_i). \]

It follows from the comparison principle in (4) that (conditionally on \(X \)),

\[\mathbb{E}_g \sup_{\theta, \tilde{\theta} \in \Theta_M(\theta^0)} |Y^g(\theta, \theta^0)| \lesssim \mathbb{E}_g \sup_{\theta, \tilde{\theta} \in \Theta_M(\theta^0)} |Z^g(\theta, \theta^0)|. \]

(7)

Assume that the pseudo-metric associated to the Gaussian process \((Z^g(\theta, \theta^0))_{\theta \in \Theta_M(\theta^0)} \) is such that for any \(\theta, \tilde{\theta} \in \Theta_M(\theta^0) \)

\[\mathbb{E}_g (Z^g(\theta, \theta^0) - (Z^g(\tilde{\theta}, \theta^0))^2 \lesssim d(\theta, \tilde{\theta})^2 \]

(8)

where \(d \) is the natural pseudo-metric associated to some other Gaussian process \((X(\theta, \theta^0))_{\theta \in \Theta_M(\theta^0)} \). Then by Fernique-Slepian theorem, we have

\[\mathbb{E}_g \sup_{\theta, \tilde{\theta} \in \Theta_M(\theta^0)} |Z^g(\theta, \theta^0) - Z^g(\tilde{\theta}, \theta^0)| \lesssim \mathbb{E}_g \sup_{\theta, \tilde{\theta} \in \Theta_M(\theta^0)} |X(\theta, \theta^0) - X(\tilde{\theta}, \theta^0)|. \]

(9)

For instance, if we assume that (8) holds for the pseudo-metric (we use the notation of [9])

\[(\theta, \tilde{\theta}) \mapsto d(\theta, \tilde{\theta})^2 = \sum_{k=1}^{r} \left\| \sum_{j=1}^{p_k} (\theta_{j,k} - \tilde{\theta}_{j,k}) \psi_{j,k} \right\|_n^2, \]

(10)

then (9) holds for the following Gaussian process introduced in [9],

\[X(\theta, \theta^0) = \frac{1}{\sqrt{n}} \sum_{i=1}^{n} \sum_{j=1}^{r} \sum_{k=1}^{p_k} (\theta_{j,k} - \theta_{j,k}^0) \psi_{j,k}(X_i, i) g_{i,k} \]

where the \(g_{i,k} \)'s are iid standard Gaussian variables. Condition (8) for the pseudo-metric (10) is equivalent to Condition 4.1 in [9]. In particular, Condition 4.1 in [9] can be seen as a comparison assumption between the canonical pseudo-metrics associated to two Gaussian processes (the process \(Z^g \) coming naturally from the
study and the process X for which the supremum is easier to handle thanks to some linearity properties).

Therefore, under Condition 4.1, one has (conditionally on X),

$$
\mathbb{E}_g \sup_{\theta, \hat{\theta} \in \Theta_M(\theta^0)} |Y^\varepsilon(\theta, \theta^0)| \lesssim \mathbb{E}_g \sup_{\theta, \hat{\theta} \in \Theta_M(\theta^0)} |X(\theta, \theta^0) - X(\hat{\theta}, \theta^0)|.
$$

Then, we recover Theorem 4.2 in [9] thanks to a duality argument and a Gaussian maximal inequality:

$$
\mathbb{E}_g \sup_{\theta, \hat{\theta} \in \Theta_M(\theta^0)} |X(\theta, \theta^0) - X(\hat{\theta}, \theta^0)| \lesssim \sqrt{\log p} \max_{j,k} \|\psi_{j,k}\|_n.
$$

2 Some comments on the geometry of ℓ_1-balls

It follows from the analysis of [9] that the regularization parameter λ is of the order of $\sqrt{(\log p)/n}$. The complexity term $\sqrt{\log p}$ comes from the Gaussian mean width $\ell^*(B^p_1) \sim \sqrt{\log p}$ where for any set $T \subset \mathbb{R}^p$ and for iid Standard Gaussian variables g_1, \ldots, g_p,

$$
\ell^*(T) = \mathbb{E} \sup_{t \in T} \sum_{j=1}^p g_j t_j.
$$

This improves upon the result of [5], where the regularization parameter is taken of the order of $\sqrt{(\log n)^3(\log(p \vee n))/n}$. This last result follows from some entropy bound (cf. proof of Lemma 2 in [5]) and somehow the regularization parameter cannot be taken smaller than $Dudley(B^p_1, \ell^p_2)$, the Dudley entropy integral of B^p_1 with respect to the ℓ^p_2-metric defined for any set $T \subset \mathbb{R}^p$ by

$$
Dudley(T, \ell^p_2) = \int_0^\infty \sqrt{\log N(T, \varepsilon B^p_2)} d\varepsilon.
$$

Thanks to [4], we have $Dudley(B^p_1, \ell^p_2) \sim (\log p)^{3/2}$. Note that in [5], the authors were able to “replace” some $\log p$ factors in $Dudley(B^p_1, \ell^p_2)$ by some $\log n$ factors in λ because, in fact, this is the expected complexity of a random n-dimensional section of B^p_1 that measures the complexity of the problem.

The interesting point is that there is a gap between the two different complexity measures of the unit ℓ_1-ball B^p_1:

$$
\ell^*(B^p_1) \sim \sqrt{\log p} \quad \text{and} \quad Dudley(B^p_1, \ell^p_2) \sim (\log p)^{3/2}.
$$

(11)
In particular, as mentioned in [5], trying to obtain an optimal value for \(\lambda \) through a Dudley’s entropy integral will result inevitably in a logarithmic loss.

The gap between the Gaussian mean width and the Dudley entropy integral observed on the set \(B_{r_1}^p \) in (11) is somehow extremal in \(\mathbb{R}^p \) since for any set \(T \subset \mathbb{R}^p \),

\[
\ell^*(T) \lesssim \text{Dudley}(B_{r_1}^p, \ell_p^2) \lesssim (\log p) \ell^*(T).
\]

Indeed, the left-hand side is the classical chaining argument. For the right-hand side, if \(\varepsilon_0 := \max_{\varepsilon > 0} \left(N(T, \varepsilon B_{r_1}^p) \geq p \right) \), then by a volumetric argument (cf. Lemma 4.16 in [3]) and Sudakov inequality (cf. Theorem 3.18 in [2]),

\[
\int_0^{\varepsilon_0} \sqrt{\log N(T, \varepsilon B_{r_1}^p)}d\varepsilon \lesssim \int_0^{\varepsilon_0} \sqrt{\log N(T, \varepsilon_0 B_{r_2}^p) + \log N(\varepsilon_0 B_{r_2}^p, \varepsilon B_{r_2}^p)}d\varepsilon \\
\lesssim \varepsilon_0 \sqrt{\log N(T, \varepsilon_0 B_{r_2}^p)} + \int_0^{\varepsilon_0} \sqrt{p \log \left(5\varepsilon_0 / \varepsilon \right)}d\varepsilon \lesssim \varepsilon_0 \sqrt{\log N(T, \varepsilon_0 B_{r_2}^p)} \lesssim \ell^*(T).
\]

Then, if for any \(s \in \mathbb{N} \), \(T_s \) denotes a maximal \(\varepsilon_s \)-net of \(T \) with respect to \(\ell_2^p \) where \(\varepsilon_s := \inf_{\varepsilon > 0} \left(N(T, \varepsilon B_{r_2}^p) \leq 2^{2s} \right) \), it follows from Sudakov inequality that

\[
\int_0^{\infty} \sqrt{\log N(T, \varepsilon B_{r_2}^p)}d\varepsilon \lesssim \sum_{s=0}^{[\log p]} 2^{s/2} \sup_{t \in T} d_{\ell_2^p}(t, T_s) \\
\lesssim (\log p) \max_{\varepsilon > 0} \varepsilon \sqrt{\log N(T, \varepsilon B_{r_2}^p)} \lesssim (\log p) \ell^*(T).
\]

It is interesting to note that, in the case of ellipsoids in \(\mathbb{R}^p \), the gap between the Dudley entropy integral (w.r.t. \(\ell_2^p \)) and the Gaussian mean width is at most \(\sqrt{\log p} \) (cf. Chapter 2 in [7]). In the case of \(B_q^p \)-balls, it can be seen, thanks to the entropy estimates of [4], that there is no gap between the Dudley entropy integral and the Gaussian mean width: for any \(1 < q \leq 2 \),

\[
\text{Dudley}(B_q^p, \ell_2^p) \sim \ell^*(B_q^p) \sim p^{1-1/q}.
\]

Other examples of such sets having no gap between the Dudley entropy integral and the Gaussian mean width is the purpose of a result of Fernique that can be found, for instance, in Theorem 2.7.4 and Corollary 2.7.5 in [1].

As a conclusion, the study of the empirical processes naturally associated to the study of \(\ell_1 \)-based algorithms should avoid any “Dudley entropy integral based
approach” in order to avoid logarithmic losses. This is to me, one of the most important message behind [9].

Acknowledgement: I would like to thank Ramon van Handel and Shahar Mendelson for the different discussions we had on the generic chaining method which helped to improve this discussion paper.

References

