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Abstract. We prove that iid random vectors that satisfy a rather weak moment assumption can be
used as measurement vectors in Compressed Sensing, and the number of measurements required
for exact reconstruction is the same as the best possible estimate – exhibited by a random Gaussian
matrix. We then show that this moment condition is necessary, up to a log log factor. In addition, we
explore the Compatibility Condition and the Restricted Eigenvalue Condition in the noisy setup, as
well as properties of neighbourly random polytopes.
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1. Introduction and main results

Data acquisition is an important task in diverse fields such as mobile communications,
medical imaging, radar detection and others, making the design of efficient data acquisi-
tion processes a problem of obvious significance.

The core issue in data acquisition is retaining all the valuable information at one’s
disposal, while keeping the ‘acquisition cost’ as low as possible. And while there are
several ways of defining that cost, depending on the problem (storage, time, financial
cost, etc.), the common denominator of being ‘cost effective’ is ensuring the quality of
the data while keeping the number of measurements as small as possible.

The rapidly growing area of Compressed Sensing studies ‘economical’ data acquisi-
tion processes. We refer the reader to [9, 17] and to the book [23] for more information
on the origins of Compressed Sensing and a survey of the progress that has been made in
the area in recent years.

At the heart of Compressed Sensing is a simple idea that has been a recurring theme
in mathematics and statistics: while complex objects (in this case, data), live in high-
dimensional spaces, they can be described effectively using low-dimensional, approxi-
mating structures; moreover, randomness may be used to exhibit these low-dimensional
structures. Of course, unlike more theoretical applications of this idea, identifying the
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low-dimensional structures in the context of Compressed Sensing must be robust and
efficient—otherwise, such procedures will be of little practical use.

In the standard Compressed Sensing setup, one observes linear measurements yi =
〈Xi, x0〉, i = 1, . . . , N , of an unknown vector x0 ∈ Rn. To make the data acquisition
process ‘cost-effective’, the number N of measurements is assumed to be much smaller
than the dimension n, and the goal is to identify x0 using those measurements.

Because the resulting system of equations is underdetermined, there is no hope, in
general, of identifying x0. However, if x0 is believed to be well approximated by a low-
dimensional structure, for example, if x0 is supported on at most s coordinates for some
s ≤ N , the problem becomes more feasible.

Let (f1, . . . , fN ) be the canonical basis of RN (we will later use (e1, . . . , en) to denote
the canonical basis of Rn) and consider the matrix

0 =
1
√
N

N∑
i=1

〈Xi, ·〉fi,

called the measurement matrix. One possible recovery procedure is `0-minimization, in
which one selects a vector t ∈ Rn that has the shortest support among all vectors satis-
fying 0t = 0x0. Unfortunately, `0-minimization is known to be NP-hard in general (see
[33] or [23, Theorem 2.17]). Thus, even without analyzing if and when `0-minimization
actually recovers x0, it is obvious that a more computationally reasonable procedure has
to be found.

Fortunately, efficient procedures have been used since the seventies in geophysics (see
for instance [14], [42], [40], and Logan’s Ph.D. thesis [28]). Those procedures are based
on `1-minimization for which early theoretical works can be found in [20] and [13].

In particular, Basis Pursuit is a convex relaxation of `0-minimization, and since it can
be recast as a linear program (see e.g. [23, Chapter 15]), it is far more reasonable than
`0-minimization from the computational viewpoint.

Definition 1.1. Given the measurement matrix 0 and the measurements 0x0 =

(〈Xi, x0〉)
N
i=1, Basis Pursuit returns a vector x̂ that satisfies

x̂ ∈ argmin(‖t‖1 : 0t = 0x0). (1.1)

Since one may solve this minimization problem effectively, the focus may be shifted to
the quality of the solution: whether one can identify measurement vectors X1, . . . ., XN
for which (1.1) has a unique solution, which is x0 itself, for any x0 that is s-sparse (i.e.
supported on at most s coordinates).

Definition 1.2. Let 6s be the set of all s-sparse vectors in Rn. An N × n matrix 0 satis-
fies the exact reconstruction property of order s if

argmin(‖t‖1 : 0t = 0x0) = {x0} for every x0 ∈ 6s . (ER(s))

It follows from [12, Proposition 2.2.18] that if 0 satisfies ER(s) then necessarily the
number of measurements (rows) is at least N ≥ c0s log(en/s), where c0 is a suitable
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absolute constant. On the other hand, there are constructions of (random) matrices 0 that
satisfy ER(s) withN proportional to s log(en/s). From here on and with a minor abuse of
notation, we will refer to s log(en/s) as the optimal number of measurements and ignore
the exact dependence on the constant c0.

Unfortunately, the only matrices that are known to satisfy the reconstruction prop-
erty with an optimal number of measurements are random—which is not surprising, as
randomness is one of the most effective tools in exhibiting low-dimensional, approximat-
ing structures. A typical example of an ‘optimal matrix’ is the Gaussian matrix, which
has independent standard normal random variables as entries. Other examples of optimal
measurement matrices are 0 = N−1/2∑N

i=1〈Xi, ·〉fi where X1, . . . , XN are indepen-
dent, isotropic and L-subgaussian random vectors:

Definition 1.3. A symmetric random vector X ∈ Rn is isotropic if E〈X, t〉2 = ‖t‖22 for
every t ∈ Rn; it is L-subgaussian if ‖〈X, t〉‖Lp ≤ L

√
p‖〈X, t〉‖L2 for every t ∈ Rn and

every p ≥ 2.

The optimal behaviour of isotropic, L-subgaussian matrix ensembles, and other simi-
lar ensembles, occurs because a typical matrix acts on 6s in an isomorphic way when
N ≥ c1s log(en/s), and in the L-subgaussian case, c1 is a constant that depends only
on L. In Compressed Sensing literature, this isomorphic behaviour is called the Restricted
Isometry Property (RIP) (see for example [8, 10, 32]): A matrix 0 satisfies the RIP in 6s
with constant 0 < δ < 1 if for every t ∈ 6s ,

(1− δ)‖t‖2 ≤ ‖0t‖2 ≤ (1+ δ)‖t‖2. (1.2)

It is straightforward to show that if 0 satisfies the RIP in 62s for a sufficiently small
constant δ, then it has the exact reconstruction property of order s (see e.g. [9, 10, 7]).

The standard proof of the RIP for subgaussian ensembles is based on the rapid tail
decay of linear functionals 〈X, t〉. Thus, it seemed natural to ask whether the RIP holds
even when linear functionals exhibit a slower decay—for example, when X is L-subex-
ponential, that is, ‖〈X, t〉‖Lp ≤ Lp‖〈X, t〉‖L2 for all t ∈ Rn and p ≥ 2.

Proving the RIP for subexponential ensembles is much harder than for subgaussian
ensembles (see e.g. [1]). Moreover, the RIP does not exhibit the same optimal quan-
titative behaviour as in the Gaussian case: it holds with high probability only when
N ≥ c2(L)s log2(en/s), and this estimate cannot be improved, as can be seen when
X has independent, symmetric exponential random variables as coordinates [1].

Although the RIP need not be true for an isotropic L-subexponential ensemble using
the optimal number of measurements, results in [24] (see Theorem 7.3 there) and in [22]
show that exact reconstruction can still be achieved by such an ensemble and with the
optimal number of measurements. This opens the door to an intriguing question: whether
considerably weaker assumptions on the measurement vector may still lead to exact re-
construction even when the RIP fails.

The main result presented here does just that, using the small-ball method introduced
in [30, 31].
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Definition 1.4. A random vector X satisfies the small-ball condition in the set 6s with
constants u, β > 0 if

P(|〈X, t〉| > u‖t‖2) ≥ β for every t ∈ 6s .

The small-ball condition is a rather minimal assumption on the measurement vector and
is satisfied in fairly general situations for values of u and β that are suitable constants,
independent of the dimension n.

Under some normalization (like isotropicity), a small-ball condition is an immediate
outcome of the Paley–Zygmund inequality (see e.g. [15]) and moment equivalence. For
example, in the following cases the small-ball condition holds with constants that depend
only on κ0 (and on ε for the first case); the straightforward proof may be found in [30].

• X is isotropic and for every t ∈ 6s , ‖〈X, t〉‖L2+ε ≤ κ0‖〈X, t〉‖L2 for some ε > 0;
• X is isotropic and for every t ∈ 6s , ‖〈X, t〉‖L2 ≤ κ0‖〈X, t〉‖L1 .

Because the small-ball condition means that the marginals of X do not assign too much
weight close to 0, it may hold even without integrability (and in particular, X need not
have a covariance matrix). One such example is a random vector whose coordinates are
independent random variables that are absolutely continuous with respect to the Lebesgue
measure and with density almost surely bounded by κ0. Indeed, as noted in [38, The-
orem 1.2], for every t ∈ Rn, 〈X, t/‖t‖2〉 has a density that is almost surely bounded
by
√

2 κ0. In particular, P(|〈X, t〉| ≥ (4
√

2 κ0)
−1
‖t‖2) ≥ 1/2 and X satisfies the small-

ball condition with u = (4
√

2 κ0)
−1 and β = 1/2. The estimate on the density of

〈X, t/‖t‖2〉 follows by combining a result due to B. Rogozin [36] on the maximal value of
a convolution product of densities, and a result due to K. Ball [2] on the maximal volume
of a section of the cube [−1/2, 1/2]n.

Our first result shows that a combination of the small-ball condition and a weak mo-
ment assumption suffices to ensure the exact reconstruction property with the optimal
number of measurements.

Theorem A. There exist absolute constants c0, c1 and c2 and for every α ≥ 1/2 there
exists a constant c3(α) that depends only on α for which the following holds. Let X =
(xi)

n
i=1 be a random vector on Rn (with potentially dependent coordinates). Assume that

(1) there are κ1, κ2, w > 1 such that ‖xj‖L2 = 1 for every 1 ≤ j ≤ n, and ‖xj‖Lp
≤ κ1p

α for every 4 ≤ p ≤ 2κ2 log(wn).
(2) X satisfies the small-ball condition in 6s with constants u and β.

If
N ≥ c0 max{s log(en/s), (c3(α)κ

2
1 )

2(κ2 log(wn))max{4α−1,1}
},

and X1, . . . , XN are independent copies of X, then, with probability at least

1− 2 exp(−c1β
2N)− 1/(wκ2nκ2−1),

0 = N−1/2∑N
i=1〈Xi, ·〉fi satisfies the exact reconstruction property in 6s1 for s1 =

c2u
2βs.

An immediate outcome of Theorem A is the following:
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• Let x be a centred random variable with variance 1 and ‖x‖Lp ≤ c
√
p for 1 ≤ p ≤

2 log n. If X has independent coordinates distributed as x, then the corresponding ma-
trix 0 with N ≥ c1s log(en/s) rows can be used as a measurement matrix and recover
any s-sparse vector with large probability.

It is relatively straightforward to derive many other results of a similar flavour, leading to
random ensembles that satisfy the exact reconstruction property with the optimal number
of measurements.

Remark 1.5. Our focus is on measurement matrices that satisfy conditions of a stochas-
tic nature—they have i.i.d. rows. Other types of measurement matrices that have some
structure have also been used in Compressed Sensing. One notable example is a ran-
dom Fourier measurement matrix, obtained by randomly selecting rows from the discrete
Fourier matrix (see e.g. [10], [37] or [23, Chapter 12]).

One may wonder if the small-ball condition is satisfied for more structured matrices,
as the argument we use here does not extend immediately to such cases. And, indeed, for
structured ensembles one may encounter a different situation: a small-ball condition that
is not uniform, in the sense that the constants u and β from Definition 1.4 are direction-
dependent. Moreover, in some cases, the known estimates on these constants are far from
what is expected.

Results of the same flavour of Theorem A may follow from a ‘good enough’ small-
ball condition, even if it is not uniform, by slightly modifying the argument we use here.
However, obtaining a satisfactory ‘non-uniform’ small-ball condition is a different story.
For example, in the Fourier case, such an estimate is likely to require quantitative exten-
sions of the Littlewood–Paley theory—a worthy challenge in its own right, and one which
goes far beyond the goals of this article.

Just as noted for subexponential ensembles, Theorem A cannot be proved using an RIP-
based argument. A key ingredient in the proof is the following observation:

Theorem B. Let 0 : Rn → RN and denote by (e1, . . . , en) the canonical basis of Rn.
Assume that:

(a) ‖0x‖2 ≥ c0‖x‖2 for every x ∈ 6s ,
(b) ‖0ej‖2 ≤ c1 for every j ∈ {1, . . . , n}.

Set s1 = bc2
0(s−1)/(4c2

1)c−1. Then 0 satisfies the exact reconstruction property in6s1 .

Compared with the RIP, conditions (a) and (b) in Theorem B are weaker, as it suffices to
verify the right-hand side of (1.2) for 1-sparse vectors rather than for every s-sparse vec-
tor. This happens to be a substantial difference: the assumption that ‖0t‖2 ≤ (1+ δ)‖t‖2
for every t ∈ 6s is a costly one, and happens to be the reason for the gap between the RIP
and the exact reconstruction property. Indeed, while the lower bound in the RIP holds for
rather general ensembles (see [30] and the next section for more details), and is guaran-
teed solely by the small-ball condition, the upper bound is almost equivalent to having the
coordinates of X exhibit a subgaussian behaviour of moments, at least up to some level.
Even the fact that one has to verify the upper bound for 1-sparse vectors comes at a cost,
namely, the moment assumption (1) in Theorem A.
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The second goal of this note is to illustrate that while exact reconstruction is ‘cheaper’
than the RIP, it still comes at a cost—namely, that the moment condition (1) in Theorem A
is truly needed.

Definition 1.6. A random matrix 0 is generated by the random variable x if we have
0 = N−1/2∑N

i=1〈Xi, ·〉fi and X1, . . . , XN are independent copies of the random vector
X = (x1, . . . , xn)

> whose coordinates are independent copies of x.

Theorem C. There exist absolute constants c0, c1, c2 and c3 for which the following
holds. Given n ≥ c0 and N logN ≤ c1n, there exists a mean-zero, variance-one random
variable x with the following properties:
• ‖x‖Lp ≤ c2

√
p for 2 < p ≤ c3(log n)/logN .

• If (xj )nj=1 are independent copies of x then X = (x1, . . . , xn)
> satisfies the small-ball

condition with constants u and β that depend only on c2.
• Denote by 0 theN×nmatrix generated by x. For every k ∈ {1, . . . , n}, with probability

larger than 1/2, argmin(‖t‖1 : 0t = 0ek) 6= {ek}; therefore, ek is not exactly recon-
structed by Basis Pursuit, and so 0 does not satisfy the exact reconstruction property
of order 1.

To put Theorem C in perspective, note that if 0 is generated by x for which ‖x‖L2 = 1 and
‖x‖Lp ≤ c4

√
p for 2 < p ≤ c5 log n, then X = (xi)ni=1 satisfies the small-ball condition

with constants that depend only on c4, and by Theorem A, ifN ≥ c6 log n, then 0 satisfies
ER(1) with high probability. On the other hand, the random ensemble from Theorem C is
generated by x that has almost identical properties—with one exception: its Lp norm is
well behaved only for p ≤ c7(log n)/log log n. This small gap in the number of moments
has a significant impact: with probability at least 1/2, 0 does not satisfy ER(1) when N
is of the order of log n.

Therefore, the moment condition in Theorem A is indeed required (up to a log log n
factor).

The idea behind the proof of Theorem C is to construct a random matrix 0 for which,
given any basis vector ek , with probability at least 1/2, ‖0ek‖2 ≤ 1, while the set {0ej :
j 6= k} has many ‘very spiky’ vectors: the convex hull conv(±0ej : j 6= k) contains a
perturbation of 2

√
N BN1 , i.e., a large multiple of the unit ball in `N1 . Since such a set must

contain the Euclidean unit ball, and in particular 0ek as well, it follows that ek cannot be
the unique solution of the `1-minimization problem min(‖t‖1 : 0t = 0ek).

The fact that the coordinates of X do not have enough well behaved moments is the
key feature that allows one to generate many ‘spiky’ columns in a typical 0.

An alternative formulation of Theorem C is the following:

Theorem C′. There are absolute constants c0, c1, c2 and κ for which the following holds.
If n ≥ c0 and 2 < p < c1 log n, then there exists a mean-zero, variance-one random
variable x for which ‖x‖Lq ≤ κ

√
q for 2 < q ≤ p, and if N ≤ c2

√
p(n/log n)1/p and 0

is the N × n matrix generated by x, then with probability at least 1/2, 0 does not satisfy
the exact reconstruction property of order 1.

Theorems C and C′ imply that Basis Pursuit may perform poorly when the coordinates
of X do not have enough moments, and requires a polynomial number of measurements
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in n to ensure exact reconstruction. This happens to be the price of convex relaxation:
a rather striking observation is that `0-minimization achieves recovery with the optimal
number of measurements under an even weaker small-ball condition than in Theorem A,
and without any additional moment assumptions.

Recall that `0-minimization is defined by x̂ = argmin(‖t‖0 : 0t = 0x0), where ‖t‖0
is the cardinality of the support of t .

Definition 1.7. X satisfies the weak small-ball condition in 6s with constant β if

P(|〈X, t〉| > 0) ≥ β for every t ∈ 6s . (1.3)

Theorem D. For every 0 < β < 1 there exist constants c0 and c1 that depend only on β
and for which the following holds. LetX be a random vector that satisfies the weak small-
ball condition in 6s with a constant β. Let X1, . . . , XN be N independent copies of X
and set 0 = N−1/2∑N

i=1〈Xi, ·〉fi . If N ≥ c0s log(en/s) then with probability at least
1 − 2 exp(−c1N), for every x0 ∈ 6bs/2c, `0-minimization has a unique solution, which
is x0 itself.

The price of convex relaxation can now be clearly seen through the number of measure-
ments needed for exact reconstruction: Consider the random vectorX constructed in The-
orem C′ for, say, p = 4. Since X satisfies the conditions of Theorem D, `0-minimization
may be used to recover any s-sparse vector with only N = cs log(en/s) random mea-
surements. In contrast, Basis Pursuit requires at least ∼(n/log n)1/4 measurements to
reconstruct 1-sparse vectors.

It should be noted that under much stronger assumptions on X, the exact recovery of
s-sparse vectors using `0-minimization may occur when N is as small as 2s. Indeed, it
suffices to ensure that all the N × 2s submatrices of 0 are non-singular, and this is the
case whenN = 2s if the entries of 0 are independent random variables that are absolutely
continuous (see [23, Chapter 2] for more details).

We end this introduction with a word about notation and the organization of the article.
The proofs of Theorems A, B and D are presented in the next section, while the proofs
of Theorems C and C′ may be found in Section 3. The final section is devoted to results
in a natural ‘noisy’ extension of Compressed Sensing. In particular, we prove that both
the Compatibility Condition and the Restricted Eigenvalue Condition hold under weak
moment assumptions; we also study related properties of random polytopes.

As for notation, throughout, absolute constants or constants that depend on other pa-
rameters are denoted by c, C, c1, c2, etc. (and, of course, we will specify when a constant
is absolute and when it depends on other parameters). The values of these constants may
change from line to line. The notation x ∼ y (resp. x . y) means that there exist absolute
constants 0 < c < C for which cy ≤ x ≤ Cy (resp. x ≤ Cy). If b > 0 is a parameter
then x .b y means that x ≤ C(b)y for some constant C(b) that depends only on b.

Let `mp be Rm endowed with the norm ‖x‖p = (
∑
j |xj |

p)1/p; the corresponding unit
ball is denoted by Bmp and the unit Euclidean sphere in Rm is Sm−1. If A ⊂ Rn then 1A
denotes the indicator function of A. Finally, we will assume that (X , µ) is a probability
space, and that X is distributed according to µ.
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2. Proofs of Theorems A, B and D

The proof of Theorem A has several components, and although the first is rather standard,
we present it for the sake of completeness.

Lemma 2.1. Let 0 : Rn→ RN be a matrix and let ker(0) be its kernel. If 0 < r < 1 and
Bn1 ∩ rS

n−1 does not intersect ker(0), then 0 satisfies the exact reconstruction property
in 6b(2r)−2c.

Proof. Observe that if x ∈ Bn1 and ‖x‖2 ≥ r then y = rx/‖x‖2 ∈ Bn1 ∩rS
n−1. Therefore,

if y 6∈ ker(0), the same holds for x; thus

sup
x∈Bn1∩ker(0)

‖x‖2 < r.

Let s = b(2r)−2
c, fix x0 ∈ 6s and let I to be the set of indices of coordinates on which x0

is supported. Given a non-zero h ∈ ker(0), let h = hI+hI c be the decomposition of h into
coordinates in I and in I c. Since h/‖h‖1 ∈ Bn1 ∩ ker(0), it follows that ‖h‖2 < r‖h‖1,
and by the choice of s, 2

√
s‖h‖2 < ‖h‖1. Therefore,

‖x0 + h‖1 = ‖x0 + hI‖1 + ‖hI c‖1 ≥ ‖x0‖1 − ‖hI‖1 + ‖hI c‖1

= ‖x0‖1 − 2‖hI‖1 + ‖h‖1 ≥ ‖x0‖1 − 2
√
|I | ‖hI‖2 + ‖h‖1 > ‖x0‖1.

Hence, x0 is the unique minimizer of the Basis Pursuit algorithm. ut

The main ingredient in the proof of Theorem A is Lemma 2.3 below, which is based on
the small-ball method introduced in [30, 31]. To formulate the lemma, one requires the
notion of a VC-class of sets.

Definition 2.2. Let G be a class of {0, 1}-valued functions defined on a set X . The set G
is a VC-class if there exists an integer V for which, given any x1, . . . , xV+1 ∈ X ,

|{(g(x1), . . . , g(xV+1)) : g ∈ G}| < 2V+1. (2.1)

The VC-dimension of G, denoted by VC(G), is the smallest integer V for which (2.1)
holds.

The VC-dimension is a combinatorial complexity measure that may be used to control the
L2(µ)-covering numbers of the class; indeed, let N(G, ε, L2(µ)) be the smallest number
of open balls of radius ε relative to the L2(µ) norm that are needed to cover G. A well
known result due to Dudley [21] is that if VC(G) = V and µ is a probability measure on
X then for every 0 < ε < 1,

N(G, ε, L2(µ)) ≤ (c1/ε)
c2V , (2.2)

where c1 and c2 are absolute constants.
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Lemma 2.3. There exist absolute constants c1 and c2 for which the following holds. Let
F be a class of functions and assume that there are β > 0 and u ≥ 0 for which

inf
f∈F

P(|f (X)| > u) ≥ β.

Let Gu = {1{|f |>u} : f ∈ F}. If VC(Gu) ≤ d and N ≥ c1d/β
2 then with probability at

least 1− exp(−c2β
2N),

inf
f∈F

∣∣{i ∈ {1, . . . , N} : |f (Xi)| > u
}∣∣ ≥ βN/2.

Remark 2.4. Note that u = 0 is a ‘legal choice’ in Lemma 2.3, a fact that will be used
in the proof of Theorem D.

Proof of Lemma 2.3. Let G(X1, . . . , XN ) = supg∈Gu |N
−1∑N

i=1 g(Xi) − Eg(X)|. By
the bounded differences inequality (see, for example, [5, Theorem 6.2]), with probability
at least 1− exp(−t),

G(X1, . . . , XN ) ≤ EG(X1, . . . , XN )+ c1
√
t/N.

Standard empirical processes arguments (symmetrization, the fact that Bernoulli pro-
cesses are subgaussian and the entropy estimate (2.2)—see, for example, [47, Chap-
ters 2.2, 2.3 and 2.6]) show that since VC(G) ≤ d,

EG(X1, . . . , XN ) ≤ c2
√
d/N ≤ β/4 (2.3)

provided that N & d/β2. Therefore, taking t = Nβ2/(16c2
1), it follows that with proba-

bility at least 1− exp(−c3β
2N), for every f ∈ F ,

1
N

N∑
i=1

1{|f |>u}(Xi) ≥ P(|f (X)| > u)− β/2 ≥ β/2.

Therefore, on that event, |{i : |f (Xi)| > u}| ≥ βN/2 for every f ∈ F . ut

Corollary 2.5. There exist absolute constants c1 and c2 for which the following holds.
Let X ∈ Rn be a random vector.

(1) If there are 0 < β ≤ 1 and u ≥ 0 for which P(|〈t, X〉| > u) ≥ β for every t ∈ Sn−1

and if N ≥ c1n/β
2, then with probability at least 1− exp(−c2Nβ

2),

inf
t∈Sn−1

1
N

N∑
i=1

〈Xi, t〉
2 > u2β/2.

(2) If there are 0 < β ≤ 1 and u ≥ 0 with P(|〈t, X〉| > u) ≥ β for every t ∈ 6s ∩ Sn−1

and if N ≥ c1s log(en/s)/β2, then with probability at least 1− exp(−c2Nβ
2),

inf
t∈6s∩Sn−1

1
N

N∑
i=1

〈Xi, t〉
2 > u2β/2.
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Remark 2.6. Note that the first part of Corollary 2.5 gives an estimate on the smallest
singular value of the random matrix 0 = N−1/2∑N

i=1〈Xi, ·〉fi . The proof follows the
same path as in [25], but unlike the latter, no assumption on the covariance structure ofX,
featuring both in [25] and in [41], is required. In fact, Corollary 2.5 may be applied even
if the covariance matrix does not exist. Thus, under a small-ball condition, the smallest
singular value of 0 is larger than c(β, u) with high (exponential) probability.

Proof of Corollary 2.5. To prove the first claim, let F = {〈t, ·〉 : t ∈ Sn−1
}. Recall that

the VC-dimension of a class of half-spaces in Rn is at most n, and thus one can verify
that for every u ≥ 0, the VC-dimension of

Gu = {1{|f |>u} : f ∈ F}

is at most c1n for a suitable absolute constant c1 (see e.g. [47, Chapter 2.6]). The claim
now follows immediately from Lemma 2.3 because

1
N

N∑
i=1

〈t, Xi〉
2 >

u2

N
|{i : |〈Xi, t〉| > u}|

for every t ∈ Sn−1.
Turning to the second part, note that 6s ∩ Sn−1 is a union of

(
n
s

)
spheres of dimen-

sion s. Applying the first part to each of those spheres, combined with the union bound,
we find that for N ≥ c2β

−2s log(en/s), with probability at least 1− exp(−c3Nβ
2),

inf
t∈6s∩Sn−1

1
N

N∑
i=1

〈Xi, t〉
2 > u2β/2. ut

Corollary 2.5 shows that the small-ball condition for linear functionals implies that 0 ‘acts
well’ on s-sparse vectors. However, according to Lemma 2.1, exact recovery is possible
if 0 is well behaved on the set

√
κ0s B

n
1 ∩ S

n−1
= {x ∈ Rn : ‖x‖1 ≤

√
κ0s, ‖x‖2 = 1}

for a well chosen constant κ0. In the standard (RIP-based) argument, one proves exact
reconstruction by first showing that the RIP holds in6s , and then the fact that each vector
in
√
κ0s B

n
1 ∩S

n−1 is well approximated by vectors from6s (see for instance [12]) allows
one to extend the RIP from 6s to

√
κ0s B

n
1 ∩ S

n−1. Unfortunately, this extension requires
both upper and lower estimates in the RIP.

Since the upper part of the RIP in 6s forces severe restrictions on the random vec-
tor X, one has to resort to a totally different argument if one wishes to extend the lower
bound from 6s (which only requires the small-ball condition) to

√
κ0sB

n
1 ∩ S

n−1.
The method presented below is based on Maurey’s empirical method and has been

recently used in [34].
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Lemma 2.7. Let 0 : Rn → RN , 1 < s ≤ n and assume that ‖0x‖2 ≥ λ‖x‖2 for every
x ∈ 6s . If y ∈ Rn is a non-zero vector and µj = |yj |/‖y‖1, then

‖0y‖22 ≥ λ
2
‖y‖22 −

‖y‖21
s − 1

( n∑
j=1

‖0ej‖
2
2µj − λ

2
)
.

Proof. Fix y ∈ Rn, let Y be a random vector in Rn defined by

P
(
Y = ‖y‖1 sgn(yj )ej

)
= |yj |/‖y‖1

for every j = 1, . . . , n, and observe that EY = y.
Let Y1, . . . , Ys be independent copies of Y and set Z = s−1∑s

k=1 Yk . Note that
Z ∈ 6s for every realization of Y1, . . . , Ys ; thus ‖0Z‖22 ≥ λ

2
‖Z‖22 and

E‖0Z‖22 ≥ λ
2E‖Z‖22. (2.4)

It is straightforward to verify that E〈Y, Y 〉 = ‖y‖21; that if i 6= j then E〈0Yi, 0Yj 〉 =
〈0y, 0y〉; and that for every 1 ≤ k ≤ s,

E〈0Yk, 0Yk〉 = ‖y‖1
n∑
j=1

|yj | ‖0ej‖
2
2.

Therefore, setting µj = |yj |/‖y‖1 and W =
∑n
j=1 ‖0ej‖

2
2µj , we get

E‖0Z‖22 =
1
s2

s∑
i,j=1

E〈0Yi, 0Yj 〉 = (1− 1/s)‖0y‖22 +
‖y‖1

s

n∑
j=1

|yj | ‖0ej‖
2
2

= (1− 1/s)‖0y‖22 +W‖y‖
2
1/s,

and using the same argument one can show that

E‖Z‖22 = (1− 1/s)‖y‖22 + ‖y‖
2
1/s.

Combining these two estimates with (2.4) yields

(1− 1/s)‖0y‖22 ≥ λ
2((1− 1/s)‖y‖22 + ‖y‖

2
1/s)−W‖y‖

2
1/s,

proving the claim. ut

Proof of Theorem B. Assume that ‖0x‖2 ≥ c0‖x‖2 for every x ∈ 6s , and ‖0ei‖2 ≤ c1
for every 1 ≤ i ≤ n. It follows from Lemma 2.7 that if s − 1 > c2

1/(c
2
0r

2), then for every
y ∈ Bn1 ∩ rS

n−1,

‖0y‖22 ≥ c
2
0‖y‖

2
2 −
‖y‖1

s − 1

n∑
i=1

‖0ei‖
2
2|yi | ≥ c

2
0r

2
−

c2
1

s − 1
> 0.

The claim now follows from Lemma 2.1. ut
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Consider the matrix 0=N−1/2∑N
i=1〈Xi, ·〉fi . Observe that ‖0t‖22=N

−1∑N
i=1〈Xi, t〉

2

for every t ∈ Rn, and if Xj = (xi,j )ni=1 then

‖0ej‖
2
2 =

1
N

N∑
i=1

x2
i,j ,

which is an average of N iid random variables (though ‖0e1‖2, . . . , ‖0en‖2 need not be
independent).

Thanks to Theorem B and Corollary 2.5, the final component needed for the proof
of Theorem A is information on the sum of iid random variables, which will be used to
bound max1≤j≤n ‖0ej‖

2
2 from above.

Lemma 2.8. There exists an absolute constant c0 for which the following holds. Let z
be a mean-zero random variable, and let z1, . . . , zN be N independent copies of z. Let
p0 ≥ 2 and assume that there exist κ1 > 0 and α ≥ 1/2 for which ‖z‖Lp ≤ κ1p

α for

every 2 ≤ p ≤ p0. If N ≥ pmax{2α−1,1}
0 then for every 2 ≤ p ≤ p0,∥∥∥∥ 1

√
N

N∑
i=1

zi

∥∥∥∥
Lp

≤ c1(α)κ1
√
p, where c1(α) = c0 exp(2α − 1).

Lemma 2.8 shows that even under a weak moment assumption, namely that ‖z‖Lp . pα

for p ≤ p0 and α ≥ 1/2 that can be large, a normalized sum ofN independent copies of z
exhibits a ‘subgaussian’ moment growth up to the same p0, as long as N is sufficiently
large.

The proof of Lemma 2.8 is based on the following fact due to Latała.

Theorem 2.9 ([26, Theorem 2 and Remark 2]). If z is a mean-zero random variable and
z1, . . . , zN are independent copies of z, then for any p ≥ 2,∥∥∥ N∑

i=1

zi

∥∥∥
Lp
∼ sup

{
p

s

(
N

p

)1/s

‖z‖Ls : max{2, p/N} ≤ s ≤ p
}
.

Proof of Lemma 2.8. Let 2 ≤ p ≤ p0 and N ≥ p. Since ‖z‖Ls ≤ κ1s
α for any 2 ≤

s ≤ p, it follows from Theorem 2.9 that∥∥∥ N∑
i=1

zi

∥∥∥
Lp
≤ c0κ1 sup

{
p(N/p)1/ss−1+α

: max{2, p/N} ≤ s ≤ p
}
.

It is straightforward to verify that the function h(s) = (N/p)1/ss−1+α is non-increasing
when α ≤ 1 and attains its maximum at s = max{2, p/N} = 2 or at s = p when α > 1.
Therefore, when N ≥ p,∥∥∥ N∑

i=1

zi

∥∥∥
Lp
≤ c1κ1 max{

√
Np,N1/ppα}.

Finally, if N ≥ p2α−1 then e2α−1√Np ≥ N1/ppα , which completes the proof. ut
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Proof of Theorem A. Let N ≥ c1s log(en/s)/β2. By Corollary 2.5, with probability at
least 1− exp(−c2Nβ

2),

inf
t∈6s∩Sn−1

1
N

N∑
i=1

〈Xi, t〉
2 > u2β/2. (2.5)

Pick (Xi)Ni=1 for which (2.5) holds and let 0 = N−1/2∑N
i=1〈Xi, ·〉fi . By Lemma 2.7 for

λ2
= u2β/2, it follows that when r ≥ 1,

inf
t∈
√
r Bn1∩S

n−1
‖0t‖22 ≥ λ

2
−

2r
s

max
1≤j≤n

‖0ej‖
2
2. (2.6)

Next, one has to obtain a high probability upper estimate on max1≤j≤n ‖0ej‖
2
2. To that

end, fix w ≥ 1 and consider z = x2
j − 1, where xj is the j -th coordinate of X. Observe

that z is a centred random variable and ‖z‖Lq . 4ακ2
1q

2α for every 1 ≤ q ≤ κ2 log(wn).
Thus, by Lemma 2.8 for p = κ2 log(wn) and c3(α) ∼ 4α exp(4α − 1),∥∥∥∥ 1

N

N∑
i=1

zi

∥∥∥∥
Lp

≤ c3(α)κ
2
1

√
p/N,

provided that N ≥ pmax{4α−1,1}
= (κ2 log(wn))max{4α−1,1}. Hence, if we assume that

N ≥ (c3(α)κ
2
1 )

2(κ2 log(wn))max{4α−1,1}, and set Vj = ‖0ej‖22, then

‖Vj‖Lp =

∥∥∥∥ 1
N

N∑
i=1

x2
i,j

∥∥∥∥
Lp

≤ 1+ c3(α)κ
2
1

√
κ2 log(wn)

N
≤ 2;

thus,

P
(

max
1≤j≤n

Vj ≥ 2e
)
≤

n∑
j=1

P(Vj ≥ 2e) ≤
n∑
j=1

(
‖Vj‖Lp

2e

)p
≤ n

(
1
e

)p
=

1
wκ2nκ2−1 .

Combining the two estimates, we find that if

N & max{s log(en/s), (c3(α)κ
2
1 )

2(κ2 log(wn))max{4α−1,1}
}

and r ≤ sλ2/8e = su2β/(16e), then with probability at least 1 − exp(−c2Nβ
2) −

1/(wκ2nκ2−1),
inf

t∈
√
r Bn1∩S

n−1
‖0t‖22 ≥ λ

2
− 4er/s ≥ λ2/2. (2.7)

Therefore, by Lemma 2.1, 0 satisfies the exact reconstruction property for vectors that
are c4u

2βs-sparse, as claimed. ut

Proof of Theorem D. Since the argument is almost identical to the one used in the proof
of the second part of Corollary 2.5, we will only sketch the details. Observe that if 0 =
N−1/2∑N

i=1〈Xi, ·〉fi and ker(0) ∩ 6s = {0}, then for any x0 ∈ 6bs/2c, the only t ∈ Rn
for which 0t = 0x0 and ‖t‖0 ≤ ‖x0‖0 is x0 itself. Thus, it suffices to show that for every
x ∈ 6s ∩ S

n−1, we have |〈Xi, x〉| > 0 for some 1 ≤ i ≤ n. Since 6s ∩ Sn−1 is a union
of
(
n
s

)
spheres, the claim follows from Lemma 2.3 applied to each of those spheres and

u = 0, combined with a union bound argument. ut
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3. Proofs of Theorems C and C′

Consider an N ×nmatrix 0 and J ⊂ {1, . . . , n}. Let 0J be the (N ×|J |) restriction of 0
to span{ej : j ∈ J }. Recall that Bn1 is the unit ball in `n1 = (R

n, ‖ · ‖1), and write BJ
c

1 for
the set of vectors in Bn1 that are supported in J c, the complement of J in {1, . . . , n}.

Lemma 3.1. Fix integers s, N ≤ n and J ⊂ {1, . . . , n} of cardinality at most s. If v ∈ Rn
is supported in J , ‖v‖1 = 1 and 0v ∈ 0BJ

c

1 , then 0 does not have the exact reconstruc-
tion property of order s.

Proof. Let w ∈ BJ
c

1 for which 0v = 0w and observe that v 6= w (otherwise, v ∈
BJ1 ∩ B

J c

1 , implying that v = 0, which is impossible because ‖v‖1 = 1).
Since ‖w‖1 ≤ 1 = ‖v‖1,w is at least as good a candidate as v for the `1-minimization

problem min(‖t‖1 : 0t = 0v); hence, v is not the unique solution of that problem. ut

Let x·1, . . . , x·n be the columns of 0. It follows immediately from Lemma 3.1 that if one
wishes to prove that 0 does not satisfy ER(1), it suffices to show that for instance the first
basis vector e1 cannot be exactly reconstructed. This follows from

0e1 = x·1 ∈ absconv({x·k : k 6= 1}) = absconv({0ek : k 6= 1}) = 0(B{1}
c

1 ),

where absconv(S) is the convex hull of S ∪ −S. Therefore, if

‖x·1‖2 ≤ c0 and c0B
N
2 ⊂ absconv({x·k : k 6= 1}) (3.1)

for some absolute constant c0, then 0 does not satisfy ER(1).
Theorems C and C′ follow by constructing a random matrix ensemble for which (3.1)

holds with probability larger than 1/2. We now turn to such a construction.
Let η be a selector (a {0, 1}-valued random variable) with mean δ to be specified later,

and let ε be a symmetric {−1, 1}-valued random variable independent of η. Fix R > 0
and set

z = ε(1+ Rη).

Observe that if p ≥ 2 and R ≥ 1 then

‖z‖Lp

‖z‖L2

=

(
1+ ((1+ R)p − 1)δ

)1/p(
1+ ((1+ R)2 − 1)δ

)1/2 ∼ (1+ Rpδ)1/p

(1+ R2δ)1/2
∼ Rδ1/p,

and the last equivalence holds when R2δ . 1 and Rpδ & 1. Fix 2 < p ≤ 2 log(1/δ) to be
specified later and set R =

√
p(1/δ)1/p. Since the function q 7→

√
q/δ1/q is decreasing

for 2 ≤ q ≤ 2 log(1/δ), it follows that for 2 ≤ q ≤ p and for δ small enough,

‖z‖Lq ≤ c0
√
q ‖z‖L2 .

Note that x = z/‖z‖L2 is a mean-zero, variance-one random variable that exhibits
a ‘subgaussian’ moment behaviour only up to p. Indeed, if 2 ≤ q ≤ p, then ‖z‖Lq .
√
q ‖z‖L2 , and if q > p, then ‖z‖Lq ∼

√
p δ1/q−1/p

‖z‖L2 , which may be far larger than
√
q ‖z‖L2 if δ is sufficiently small.

LetX = (x1, . . . , xn) be a vector whose coordinates are independent, distributed as x,
and let 0 be the measurement matrix generated by x. Note that up to the normalization
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factor of ‖z‖L2 , which is of the order of a constant when R2δ . 1,
√
N 0 is a perturbation

of a Rademacher matrix by a sparse matrix with few random spikes that are either R
or −R.

As noted earlier, if for every t ∈ Rn,

‖〈X, t〉‖L4 ≤ C‖〈X, t〉‖L2 , (3.2)

then the small-ball condition holds with constants that depend only on C. To show that
X satisfies (3.2), denote by Eη (resp. Eε) the expectation with respect to the η-variables
(resp. ε-variables), and observe that by a straightforward application of Khintchine’s in-
equality (see e.g. [27, p. 91]), for every t ∈ Rn,

E〈X, t〉4 . EηEε
( n∑
j=1

εj (1+ Rηj )tj
)4

. Eη
( n∑
j=1

(1+ Rηj )2t2j
)2

= Eη
∑
k,`

(1+ Rηk)2t2k (1+ Rη`)
2t2` . ‖t‖42 = (E〈X, t〉

2)2

provided that R4δ . 1.
Let (fi)Ni=1 be the canonical basis of RN and set 0̃ = (z`k) = ‖z‖L2

√
N 0, an N × n

matrix whose entries are independent copies of z. Let

vj = 0̃ej =

N∑
`=1

z j̀fj ,

and consider
V = absconv({vj : 2 ≤ j ≤ n}),

the convex hull of (±vj )nj=2.

We will show that with probability at least 1/2,
√
N BN2 ⊂ V and ‖v1‖2 ≤

√
N , in

three steps.

Lemma 3.2. With probability at least 3/4, for every 1 ≤ i ≤ N there is yi ∈ BN∞ for
which yi + Rfi ∈ V .

In other words, with non-trivial probability, V contains a perturbation of all the vec-
tors Rfi , i = 1, . . . , N , and thus V ‘almost’ contains RBN1 .
Proof. Fix a realization of the N × n Rademacher matrix (ε j̀ ) and note that for every
1 ≤ i ≤ N and every 2 ≤ j ≤ n,

vj =

N∑
`=1

ε j̀f` + εijRfi

if ηij = 1 and η j̀ = 0 for all ` 6= i. Moreover, if this happens, and since V is centrally
symmetric (that is, if v ∈ V then −v ∈ V ), we have

εij

( N∑
`=1

ε j̀f`

)
+ Rfi = yi + Rfi ∈ V,

and yi ∈ BN∞.
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Thus, it remains to estimate the probability that for every 1 ≤ i ≤ N there is some
2 ≤ j ≤ n for which ηij = 1 and η j̀ = 0 for all ` 6= i. Clearly, for every 1 ≤ i ≤ N ,

Pη(there exists j ∈ {2, . . . , n} such that ηij = 1 and η j̀ = 0 if ` 6= i)

= 1− (1− (1− δ)N−1δ)n−1
≥ 1−

1
4N

provided that
(logN)/n . δ . log(en/N)/N.

Hence, the claim follows by the union bound and integration with respect to the (εij ). ut

Next, it is straightforward to verify that when V contains such a perturbation of RBN1
(by vectors in BN∞), it must also contain a large Euclidean ball, assuming that R is large
enough.

Lemma 3.3. Let R > N , and for every 1 ≤ i ≤ N , pick yi ∈ BN∞ and set vi =
Rfi + yi . If V is a convex, centrally symmetric set and vi ∈ V for every 1 ≤ i ≤ N , then
(R/
√
N −
√
N)BN2 ⊂ V .

Proof. A separation argument shows that if supv∈V |〈v,w〉| ≥ ρ for every w ∈ SN−1,
then ρBN2 ⊂ V (indeed, otherwise there would be some x ∈ ρBN2 \V ; but it is impossible
to separate x and the convex and centrally symmetric V using any norm-one functional).

To complete the proof, observe that for every w ∈ SN−1,

sup
v∈V

|〈v,w〉| ≥ max
1≤i≤N

|〈Rfi + yi, w〉| ≥ max
1≤i≤N

|〈Rfi, w〉| − max
1≤i≤N

|〈yi, w〉|

≥ R/
√
N −
√
N. ut

From Lemma 3.3, it follows that if R ≥ 2N then
√
N BN2 ⊂ V with probability at

least 3/4. Finally, if δ . 1/N then

P
( N∑
`=1

z`1f` ∈
√
N BN2

)
≥ P

(∥∥∥ N∑
`=1

z`1f`

∥∥∥
2
=
√
N
)
= (1− δ)N ≥ 3/4.

Hence, with probability at least 1/2,

N∑
`=1

z`1f` = 0̃e1 ∈ V = absconv({0̃ej : 2 ≤ j ≤ n}),

and the same assertion holds for the normalized matrix 0, showing that it does not satisfy
ER(1).

Of course, this assertion holds under several conditions on the parameters involved,
namely: R =

√
p(1/δ)1/p ≥ 2N ; (logN)/n . δ . log(en/N)/N ; R4δ . 1; p ≤

2 log(1/δ); and δ . 1/N .
For instance, one may select δ ∼ (logN)/n and p ∼ (log n)/logN , in which case all

these conditions are met; hence, with probability at least 1/2, 0 does not satisfy ER(1),
proving Theorem C. A similar calculation leads to the proof of Theorem C′. ut
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Remark 3.4. Note that the construction leads to a stronger, non-uniform result: for every
basis vector ek , with probability at least 1/2, ek is not the unique solution of min(‖t‖1 :
0t = 0ek). In particular, uniformity over all supports of size 1 in the definition of ER(1)
is not the reason why the moment assumption in Theorem A is required.

4. Results in the noisy measurements setup

In previous sections, we considered the idealized scenario, in which the data was noise-
less. Here, we will study the noisy setup: one observes N couples (zi, Xi)Ni=1, and each
zi is a noisy observation of 〈Xi, x0〉:

zi = 〈Xi, x0〉 + gi, i = 1, . . . , N. (4.1)

The goal is to obtain as much information as possible on the unknown vector x0 with
only the data (zi, Xi)Ni=1 at one’s disposal; for the sake of simplicity, we will assume that
the gi’s are independent Gaussian random variables N (0, σ 2) that are also independent
of the Xi’s.

Unlike the noiseless case, there is no hope of reconstructing x0 from the given data,
and instead of exact reconstruction, there are three natural questions that one may con-
sider:

• The estimation problem: given some norm ‖ · ‖ on Rn, one would like to construct a
procedure of finding x̂ for which ‖x̂ − x0‖ is as small as possible.
• The prediction problem: given a new (random, independent) ‘input’ X ∈ Rn, one has

to find a good guess 〈x̂, X〉 of the most likely associated output z, knowing that (z,X)
shares the same distribution with the other couples (z1, X1), . . . , (zN , XN ).
• The de-noising problem: given a norm ‖ · ‖ on RN and a measurement matrix 0, one

has to construct x̂ for which ‖0x̂ − 0x0‖ is small.

These three problems are central in modern statistics, and feature in numerous statistical
monographs, particularly in the context of the Gaussian regression model (equation (4.1)).

Recently, all three problems have been recast in a ‘high-dimensional’ scenario, in
which the numberN of observations may be much smaller than the ambient dimension n.
Unfortunately, such problems are often impossible to solve without additional assump-
tions, and just as in the noiseless case, the situation improves dramatically if x0 has some
low-dimensional structure, for example, if it is s-sparse. The aim is therefore to design
a procedure that performs as if the true dimension of the problem were s rather than n,
despite the noisy data.

To that end, `0-penalization methods, sometimes called Model Selection procedures,
have been introduced and studied extensively (see e.g. [29, 4] for results in the context of
the model (4.1), as well as in other examples). However, just as in the noise-free problem,
the obvious downside of `0-penalization methods is that they are not computationally
feasible. This has led to the introduction of convex relaxations, based on `1-minimization.
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Two well established `1-based procedures are the LASSO (see e.g. [43]) defined by

x̂λ ∈ argmin
x∈Rn

(
1
N

N∑
i=1

(zi − 〈Xi, x〉)
2
+ λ‖x‖1

)
, (4.2)

and the Dantzig selector (see [11]).
Both procedures may be implemented effectively, and their estimation and de-noising

properties have been obtained under some assumptions on the measurement matrix (see
e.g. [6, 3, 44] or [24, Chapters 7 and 8]).

In this section, we shall focus on two such conditions on the measurement matrix.
The first, called the Compatibility Condition, was introduced in [44] (see also [45, Defi-
nition 2.1]); the second, the Restricted Eigenvalue Condition, was introduced in [3].

Definition 4.1. Let 0 be an N × n matrix. For L > 0 and a set S ⊂ {1, . . . , n}, the
compatibility constant associated with L and S is

φ(L, S) =
√
|S|min(‖0ζS − 0ζSc‖2 : ‖ζS‖1 = 1, ‖ζSc‖1 ≤ L), (4.3)

where ζS (resp. ζSc ) denotes a vector that is supported in S (resp. Sc).
0 satisfies the Compatibility Condition (CC) for the set S0 with constants L > 1

and c0 if φ(L, S0) ≥ c0; it satisfies the uniform Compatibility Condition of order s if
min|S|≤s φ(L, S) ≥ c0.

A typical result for the LASSO in the Gaussian model (4.1) and when 0 satisfies the
Compatibility Condition is [6, Theorem 6.1]:

Theorem 4.2 ([6, Theorem 6.1]). Fix x0 ∈ Rn and assume that the data (zi, Xi)Ni=1
have been drawn according to the Gaussian regression model (4.1). Denote by 0 =
N−1/2∑N

i=1〈Xi, ·〉fi the measurement matrix. Let t > 0. If S0 is the support of x0 and
λ = 4σ

√
(t2 + log n)/N , then with probability larger than 1− 2 exp(−t2/2),

‖0x̂λ − 0x0‖
2
2 ≤

64σ 2
‖x0‖0(t

2
+ log n)

Nφ2(3, S0)
and ‖x̂λ − x0‖1 ≤

64σ‖x0‖0

φ2(3, S0)

√
t2 + log n

N
.

Even though the Compatibility Condition in S0 suffices to show that the LASSO is an
effective procedure, the fact remains that S0 is not known. And while a non-uniform
approach is still possible (e.g. if 0 is a random matrix, one may try to show that with high
probability it satisfies the Compatibility Condition for the fixed, but unknown S0), the
uniform Compatibility Condition is a safer requirement—and the one we shall explore
below.

Another uniform condition of a similar flavour is the Restricted Eigenvalue Condition
from [3]. To define it, let us introduce the following notation: for x ∈ Rn and a set
S0 ⊂ {1, . . . , n} of cardinality |S0| ≤ s, let S1 be the subset of indices of the m largest
coordinates of (|xi |)ni=1 that are outside S0. Let xS01 be the restriction of x to S01 = S0∪S1.
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Definition 4.3. Let 0 be an N × n matrix. Given c0 ≥ 1 and an integer 1 ≤ s ≤ m ≤ n
for which m+ s ≤ n, the restricted eigenvalue constant is

κ(s,m, c0) = min(‖0x‖2/‖xS01‖2 : S0 ⊂ {1, . . . , n}, |S0| ≤ s, ‖xSc0
‖1 ≤ c0‖xS0‖1).

The matrix 0 satisfies the Restricted Eigenvalue Condition (REC) of order s with a con-
stant c if κ(s, s, 3) ≥ c.

Estimation and de-noising results follow from [3, Theorem 6.1] (for the Dantzig selector)
and [3, Theorem 6.2] (for the LASSO), when the measurement matrix 0, normalized by
having the diagonal elements of 0>0 equal to 1, satisfies the REC of an appropriate order
and with a constant that is independent of the dimension. We also refer to [6, Lemma 6.10]
for similar results that do not require normalization.

Because the two lead to bounds on the performance of the LASSO and the Dantzig
selector, a question that comes to mind is whether there are matrices that satisfy the uni-
form CC or the REC. And, as in Compressed Sensing, the only matrices that are known to
satisfy those conditions for the optimal number of measurements (rows) are well behaved
random matrices (see [35, 39, 34, 46] for some examples).

Our aim in this final section is to extend our results to the noisy setup, by identifying
almost necessary and sufficient moment assumptions for the uniform CC and the REC.
This turns out to be straightforward: on the one hand, the proof of Theorem A actually
provides a stronger quantitative version of the exact reconstruction property; on the other,
the uniform Compatibility Condition can be viewed as a quantitative version of a geo-
metric condition on the polytope 0Bn1 that characterizes exact reconstruction. A similar
observation is true for the REC: it can be viewed as a quantitative version of the null
space property (see [18, 19] and below) which is also equivalent to the exact reconstruc-
tion property.

Definition 4.4. Let 1 ≤ s ≤ N . A centrally symmetric polytope P ⊂ RN is s-neigh-
bourly if every set of s of its vertices, containing no antipodal pair, is the set of all vertices
of some face of P .

It is well known [16] that 0 satisfies ER(s) if and only if 0Bn1 has 2n vertices and 0Bn1 is a
centrally symmetric s-neighbourly polytope. It turns out that this property is characterized
by the uniform CC.

Lemma 4.5. Let 0 be an N × n matrix. The following are equivalent:

(1) 0Bn1 has 2n vertices and is s-neighbourly.
(2) min{φ(1, S) : S ⊂ {1, . . . , n}, |S| ≤ s} > 0.

In particular, min|S|≤s φ(L, S) for some L ≥ 1 is a quantitative measure of the s-neigh-
bourly property of 0Bn1 : if 0Bn1 is s-neighbourly and has 2n vertices then the two sets

{0ζS : ‖ζS‖1 = 1} and {0ζSc : ‖ζSc‖1 ≤ 1} (4.4)

are disjoint whenever |S| ≤ s. However, min|S|≤s φ(1, S) measures how far the two sets
are from each other, uniformly over all subsets S ⊂ {1, . . . , n} of cardinality at most s.
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Proof of Lemma 4.5. Let C1, . . . , Cn be the n columns of 0. It follows from [12, Propo-
sitions 2.2.13 and 2.2.16] that 0Bn1 has 2n vertices and is a centrally symmetric s-neigh-
bourly polytope if and only if for every S ⊂ {1, . . . , n} with |S| ≤ s and every choice of
signs (εi) ∈ {−1, 1}S ,

conv({εiCi : i ∈ S}) ∩ absconv({Cj : j /∈ S}) = ∅. (4.5)

It is straightforward to verify that⋃
(εi )∈{±1}S

conv({εiCi : i ∈ S}) = {0ζS : ‖ζS‖1 = 1}

and
absconv({Cj : j /∈ S}) = {0ζSc : ‖ζSc‖1 ≤ 1}.

As a consequence, (4.5) holds for every S ⊂ {1, . . . , n} of cardinality at most s if and
only if min{φ(1, S) : S ⊂ {1, . . . , n}, |S| ≤ s} > 0. ut

An observation of a similar nature is true for the REC: it can be viewed as a quantitative
measure of the null space property.

Definition 4.6. Let 0 be an N × n matrix. 0 has the null space property of order s if it
is invertible in the cone{

x ∈ Rn : there exists S ⊂ {1, . . . , n} with |S| ≤ s and ‖xSc‖1 ≤ ‖xS‖1
}
. (4.6)

In [18, 19], the authors prove that 0 satisfies ER(s) if and only if it has the null space
property of order s.

A natural way of quantifying the invertibility of 0 in the cone (4.6) is to consider its
smallest singular value, restricted to this cone, which is simply the restricted eigenvalue
constant κ(s, n − s, 1). Unfortunately, statistical properties of the LASSO and of the
Dantzig selector are not known under the assumption that κ(s, n − s, 1) is an absolute
constant (though if κ(s, s, 3) is an absolute constant, LASSO is known to be optimal [3]).

The main result of this section is the following:

Theorem E. Let L > 0, 1 ≤ s ≤ n and c0 > 0. Under the same assumptions as in
Theorem A and with the same probability estimate, 0 = N−1/2∑N

i=1〈Xi, ·〉fi satisfies:

(1) A uniform compatibility condition of order c1s:

min
|S|≤c1s

φ(L, S) ≥ u2β/4 for c1 = u
2β/(16e(1+ L)2).

(2) A restricted eigenvalue condition of order c2s, with

κ(c2s,m, c0) ≥ u
2β/4

for any 1 ≤ m ≤ n, as long as (1+ c0)
2c2 ≤ u

2β/(16e).

On the other hand, if 0 is the matrix considered in Theorem C, then with probability at
least 1/2, φ(1, {e1}) = 0 and κ(1, m, 1) = 0 for any 1 ≤ m ≤ n.
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Just like Theorems A and C, Theorem E shows that the requirement that the coordinates of
the measurement vector have log nmoments is almost a necessary and sufficient condition
for the uniform Compatibility Condition and the Restricted Eigenvalue Condition to hold.
Moreover, it shows the significance of the small-ball condition, even in the noisy setup.

It also follows from Theorem E that if X satisfies the small-ball condition and its co-
ordinates have log n well behaved moments as in Theorem A, then 0Bn1 has 2n vertices
and is s-neighbourly with high probability for N ∼ s log(en/s). In particular, this im-
proves [1, Theorem 4.3] by a logarithmic factor for matrices generated by subexponential
variables.

Proof of Theorem E. Fix a constant c1 to be specified later and let S ⊂ {1, . . . , n} with
|S| ≤ c1s. Let ζS ∈ Rn be a vector supported on S with ‖ζS‖1 = 1 and let ζSc ∈ Rn be
supported on Sc with ‖ζSc‖1 ≤ L.

Consider γ = (ζS − ζSc )/‖ζS − ζSc‖2. Since

‖ζS − ζSc‖2 ≥ ‖ζS‖2 ≥
‖ζS‖1
√
|S|
=

1
√
|S|
,

it follows that γ ∈ ((1+ L)
√
|S|)Bn1 ∩ S

n−1.
Recall that by (2.7), if r = (1 + L)2c1s ≤ su2β/(16e), then ‖0γ ‖2 ≥ (u2β)/4.

Therefore,

‖0ζS − 0ζSc‖2 ≥
u2β

4
‖ζS − ζSc‖2 ≥

u2β

4
‖ζS‖2 ≥

u2β‖ζS‖1

4
√
|S|

=
u2β

4
√
|S|
,

and thus min|S|≤c1s φ(L, S) ≥ u
2β/4 for c1 = u

2β/(16e(1+ L)2).
Turning to the REC, fix a constant c2 to be specified later. Consider x in the cone

and let S0 ⊂ {1, . . . , n} with |S0| ≤ c2s and ‖xSc0‖1 ≤ c0‖xS0‖1. Let S1 ⊂ {1, . . . , n}
be the set of indices of the m largest coordinates of (|xi |)ni=1 that are outside S0, and set
S01 = S0 ∪ S1.

Observe that ‖x‖1 ≤ (1+ c0)‖xS0‖1 ≤ (1+ c0)
√
|S0| ‖x‖2; it follows that x/‖x‖2 ∈

((1+ c0)
√
|S0|)B

n
1 ∩ S

n−1. By (2.7) again, if (1+ c0)
2c2s ≤ su

2β/(16e), then ‖0x‖2 ≥
((u2β)/4)‖x‖2. Thus,

‖0x‖2

‖xS01‖2
≥
‖0x‖2

‖x‖2
≥
u2β

4

and κ(c2s,m, c0) ≥ u
2β/4 for any 1 ≤ m ≤ n as long as (1+ c0)

2c2 ≤ u
2β/(16e).

The second part of Theorem E is an immediate corollary of the construction used in
Theorem C. Recall that with probability at least 1/2, 0e1 ∈ absconv({0ej : 2 ≤ j ≤ n}.
Setting J = {e2, . . . , en}. There is ζ ∈ BJ1 for which ‖0e1 − 0ζ‖2 = 0. Therefore,
φ(1, {e1}) = 0 and κ(1, m, 1) = 0 for any 1 ≤ m ≤ n, as claimed. ut

Remark 4.7. The results obtained in Theorem A and in parts (1) and (2) of Theorem E
are also valid for the (columnwise) normalized measurement matrix:

01 = 0D̃
−1 where D̃ = diag(‖0e1‖2, . . . , ‖0en‖2).
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The proof is almost identical to the one for 0 itself, even though 01 does not have in-
dependent row vectors, due to the normalization. For brevity, we will not present the
straightforward proof of this observation.

Finally, the counterexample constructed in the proof of Theorem C and in which a typ-
ical 0 does not satisfy ER(1), does not necessarily generate 0Bn1 that is not s-neighbourly.
Indeed, an inspection of the construction shows that the reason ER(1) fails is that 0Bn1
has less than 2n − 2 vertices, rather than that 0Bn1 is not s-neighbourly. Thus, the ques-
tion of whether a moment condition is necessary for the random polytope 0Bn1 to be
s-neighbourly with probability at least 1/2 is still unresolved.

Acknowledgments. S. Mendelson was supported by the Mathematical Sciences Institute, The Aus-
tralian National University and by ISF grant 900/10.
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