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We present an argument based on the multidimensional and the uniform central limit theorems, proving that,
under some geometrical assumptions between the target function T and the learning class F , the excess risk
of the empirical risk minimization algorithm is lower bounded by

E supq∈Q Gq√
n

δ,

where (Gq)q∈Q is a canonical Gaussian process associated with Q (a well chosen subset of F ) and δ is a
parameter governing the oscillations of the empirical excess risk function over a small ball in F .
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1. Introduction

In this note, we study lower bounds on the empirical minimization algorithm. To explain the
basic setup of this algorithm, let (�,μ) be a probability space and set X to be a random variable
taking values in �, distributed according to μ. We are interested in the function learning (noise-
less) problem, in which one observes n independent random variables X1, . . . ,Xn, distributed
according to μ, and the values T (X1), . . . , T (Xn) of an unknown target function T .

The goal is to construct a procedure that uses the data D = (Xi, T (Xi))1≤i≤n with a risk as
close as possible to the best one in F . That is, we want to construct a statistic f̂n such that for
every n, with high μn-probability,

R(f̂ |D) ≤ inf
f ∈F

R(f ) + rn(F ), (1.1)

where the risk of f is defined by R(f ) = E�(f (X),T (X)) and � : R2 → R is the loss function
that measures the pointwise error between T and f . The residue rn(F ) somehow captures the
complexity or richness of the class F and the risk of a statistic f̂ is the conditional expectation
R(f̂ |D) = E(�(f̂ (X),T (X))|D).

It is well known (see, e.g., [10]) that if the class F is not too large, for example, if it satisfies
some kind of uniform central limit theorem, T is bounded by 1 and � is reasonable, then there are
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upper bounds on rn(F ) that are of the form
√

Comp(F )/n, where Comp(F ) is a complexity term
that is independent of n. The algorithm that is used to produce the function f̂ is the empirical
risk minimization algorithm, in which one chooses a function in F that minimizes the empirical
risk function f �−→ ∑n

i=1 �(f,T )(Xi) in F .
There is a well developed theory concerning ways in which the complexity term may be con-

trolled, using various parameters associated with the geometry of the class (cf. [2,8–10] and
references therein). It turns out that this type of error rate, ∼ 1/

√
n, is very pessimistic in many

cases. In fact, if the class is small enough, then, under some structural assumptions (see, e.g.,
[1]), rn(F ) can be much smaller – of the order of Comp(F )/n.

In this note, we are going to focus on “small classes” in which empirical minimization per-
forms poorly, despite the size of the class. Recently, it has been shown (cf. [7]) that under mild
assumptions on � and F , if there is more than a single function in

V :=
{
�(f,T ): E�(f,T ) = inf

f ∈F
E�(f,T )

}
,

then the following holds: for every n large enough, there will be a perturbation Tn of T (with re-
spect to the L∞-norm) for which E�(·, Tn) has a unique minimizer in F , but where the empirical
minimization algorithm performs poorly trying to predict Tn on samples of cardinality n. To be
more exact, relative to the target Tn, with μn-probability at least 1/12,

R(f̂ |D) ≥ inf
f ∈F

R(f ) + c√
n
, (1.2)

where c is a constant depending only on F .
Although it is reasonable to expect that the larger the set V is, the more likely it is that the

empirical minimization algorithm will perform poorly, this does not follow from the analysis in
[7]. Therefore, our goal here is to provide a bound on the constant c in (1.2) that does take into
account the complexity of the set of minimizers V .

Just as in [7], our method of analysis can be applied to a wide variety of losses. However, for
the sake of simplicity, we will only present here what is arguably the most important case – that
in which the risk is measured relative to the squared loss, �(x, y) = (x − y)2.

To explain our result, we need several definitions from empirical processes theory. Other stan-
dard notions we require from the theory of Gaussian processes can be found in [2].

For every set F ⊂ L2(�,μ), let {Gf : f ∈ F } be the canonical Gaussian process indexed
by F (i.e., with the covariance structure EGtGs = 〈s, t〉) and set H(F) = E supf ∈F Gf – the
expectation of the supremum of the Gaussian process indexed by F . Also, for every integer n

and δ, let

oscn(F, δ) := 1√
n

E sup
{f,h∈F :‖f −h‖≤δ}

∣∣∣∣∣
n∑

i=1

gi(f − h)(Xi)

∣∣∣∣∣,
where (gi)

n
i=1 are standard, independent Gaussian random variables and (Xi)

n
i=1 are indepen-

dent, distributed according to μ. It is well known that if F is a class consisting of uniformly
bounded functions, then it is a μ-Donsker class if and only if for every δ > 0, oscn(F, δ) tends
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to 0 as n tends to infinity (cf. [2], page 301). For any f ∈ F , let

oscn(F,f, δ) := 1√
n

E sup
{h∈F :‖f −h‖≤δ}

∣∣∣∣∣
n∑

i=1

gi(f − h)(Xi)

∣∣∣∣∣,
that is, the oscillation in a ball around f . The quantity oscn(F,f ∗, δ) is a natural upper bound
for some intrinsic quantity of the problem we study here (cf. Lemma 2.3).

Let V be as above – the set of loss functions �(f,T ) that minimize the risk in F – select
f ∗ ∈ F for which �(f ∗, T ) ∈ V and consider the following subset of excess loss functions:

Q := {�(f,T ) − �(f ∗, T ): �(f,T ) ∈ V }.
It turns out that the desired constant in (1.2) can be bounded from below by two parameters: the

expectation of the supremum of the canonical Gaussian process indexed by Q and the oscillation
around f ∗. In particular, if Q is a rich set and one of the minimizers of f → E�(f,T ) is isolated,
then for any n large enough, the error of the empirical minimizer with respect to a wisely selected
target (denoted by Tλn in what follows) which is a perturbation of T will be at least ∼ H(Q)/

√
n.

The core idea of this work is that a small, wisely chosen perturbation of a target function T with
multiple oracles (functions achieving minf ∈F E�(t, T )) is badly estimated by the empirical risk
minimization procedure (for further discussion of this fact, we refer the reader to [7]).

Although the general philosophy of the proof presented here is similar to the proof from [7],
it is much simpler. And, in fact, it seems that the method used in the proof from [7] cannot
be directly extended to obtain the sharper estimate on the constant as we do here. Naturally,
this result recovers the previous estimates on lower bounds for the empirical risk minimization
algorithm from [3–6]

Next, a word about notation. Throughout, all absolute constants will be denoted by c, c1 and
C,C1, etcetera. Their values may change from line to line.

If E�(·, T ) has a unique minimizer in F , then we denote it by f ∗. If the minimizer is not
unique, then we will fix one function in the set of minimizers and denote it by f ∗. For every
f ∈ F , let L(f ) = �(f,T ) − �(f ∗, T ) be the excess loss function associated with the target T .
For every 0 < λ ≤ 1, set Tλ = (1 − λ)T + λf ∗ and define Lλ(f ) = �(f,Tλ) − �(f ∗, Tλ). It is
standard to verify (cf. [7] or Theorem 2.1 in what follows) that f ∗ is a minimizer of E�(·, Tλ)

and that under mild convexity assumptions on � that clearly hold if � is the squared loss, it is the
unique minimizer in F of f → E�(f,Tλ).

If X1, . . . ,Xn is an independent sample selected according to μ, we set Pnf = n−1 ×∑n
i=1 f (Xi) and let Pf = Ef . Thus, E supf ∈F |(Pn − P)(f )| is the expectation of the supre-

mum of the empirical process indexed by F . Finally, when the target function is Tλ, we will
denote the function produced by the empirical risk minimization algorithm by f̂λ – which is one
element of the set Arg minf ∈F Pn�(f,Tλ).

Finally, if E is a normed space, we denote its unit ball by B(E), the inner product of L2(μ)

will be denoted by 〈·, ·〉 and the corresponding norm by ‖ · ‖.
Let us now formulate our main result.

Theorem 1.1. Let F ⊂ L2(μ) ∩ B(L∞), which is μ-pre-Gaussian (cf. [2]), and assume that
T ∈ B(L∞). Set � to be the squared loss and put Q = {L(f ): f ∈ F,EL(f ) = 0}.
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There exist some absolute constants C1 and C2 and an integer N(F) for which the following
holds. For every n ≥ N(F), with μn-probability at least C1,

ELλn(f̂λn) ≥ C2
H(Q)√

n
δ2‖T − f ∗‖,

where δ is such that for every integer n ≥ N(F), oscn(F,f ∗, δ) ≤ C2H(Q)/
√

n and λn =
C2H(Q)/

√
n.

Thus, two parameters control the behavior of the constant in (1.2): the complexity of the set
of excess loss functions of the oracles of T and the parameter δ. When one of the oracles f ∗ of
T is isolated, one can take δ as an absolute constant. This leads to a lower bound of the order
of H(Q)/

√
n, which is optimal in the sense that an upper bound can be obtained of the order

of H(Q0)/
√

n for some set Q0 such that Q ⊂ Q0 ⊂ LF (see, e.g., [1] or [3]). In other settings,
the lower bound obtained in Theorem 1.1 may fail to match exactly with an upper bound. For
instance, in settings where the oscillation function oscn(F,f ∗, ·) of all the oracles f ∗ of T

decreases to zero very slowly and at the same convergence rate, the factor δ2 should break down
the lower bound, whereas it seems that it should not appear in the lower bound. From a technical
point of view, this comes from the fact that we did not take into account the complexity “around”
the points in Q′ (cf. Theorem 2.2 and equation (2.2) in what follows).

Finally, the noiseless model considered here is the worst case scenario to prove the lower
bound. Indeed, adding some noise to the target function would increase the lower bound.

2. The lower bound

The core of the proof is to find a set that can “compete” with a set Br = {f ∈ F : ELλ(f ) ≤ r}
that contains f ∗, in the sense that the empirical excess risk function

En :f ∈ F �−→ 1

n

n∑
i=1

Lλ(f )(Xi)

will be more negative on the set than it can possibly be on Br . Once this task is achieved, it
is obvious that the empirical risk minimization algorithm will produce a function f̂λ which is
outside Br and, thus, with a certain probability,

E[Lλ(f̂λ)|D] > r.

Hence, the proof consists of two parts. First, we will show that the empirical excess risk func-
tion En is likely to be very negative on Q and we will then find some r on which the oscillations
in Br are small.

The first result we need is the following lower estimate on the expectation of the excess loss
relative to the target Tλ = (1 −λ)T +λf ∗, according to the distance of f from f ∗. This proposi-
tion is based on the fact that the functional (f, g) �−→ E�(f,g) inherits a strong convex structure
from the norm and was proven in [7] in a far more general situation.
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Theorem 2.1. Let D = supf ∈F ‖T − f ‖ and ρ = ‖T − f ∗‖. There exists an absolute constant
c such that for any function f ∈ F , if 0 ≤ λ ≤ 1/2, r > 0 and

r

λ
≤ c

ρ

D
‖f − f ∗‖2,

then

r ≤ ELλ(f ).

Recall that Q = {L(f ): EL(f ) = 0, f ∈ F } is the set of excess loss functions associated with
the true minimizers of f → E�(f,T ) in F . We will show that if Q′ ⊂ Q is a finite set, then for
n large enough, with a non-trivial μn-probability there will be some L(f ) ∈ Q′ for which the
empirical error PnLλn(f ) is very negative (for a well chosen λn).

Theorem 2.2. There exist constants c1, c2 and c3, depending only on the L∞(μ)-diameter of
F ∪ {T }, for which the following holds. If Q′ is a finite subset of Q that contains 0, then there
exists an integer n0 = n0(Q

′) such that for every integer n ≥ n0, with μn-probability at least c1,

inf
L(f )∈Q′

1

n

n∑
i=1

(Lλn(f ))(Xi) ≤ −c2
H(Q′)√

n
,

where λn = c3H(Q′)/
√

n and H(Q′) = E supq∈Q′ Gq is the expectation of the canonical
Gaussian process associated with Q′.

Proof. Let M = |Q′| and recall that each q ∈ Q′ = {q1, . . . , qM} has mean zero. Consider the
random vector U = (q1(X), . . . , qM(X)) ∈ R

M and let (Ui)
∞
i=1 be independent copies of U

(i.e., Ui = (q1(Xi), . . . , qM(Xi))). By the vector-valued central limit theorem (see, e.g., [2]),
n−1/2 ∑n

i=1 Ui converges weakly to the canonical Gaussian process indexed by Q′, which we
denote by G. Fix t ≤ 0 and 0 < c < 1, to be given later, for which

At = {x ∈ R
M : ∀1 ≤ j ≤ M,xj > t}

is such that p := Pr(G ∈ At) ≤ c. Set n0 = n0(t, c) to be such that for n ≥ n0,∣∣∣∣∣Pr(G ∈ At) − Pr

(
n−1/2

n∑
i=1

Ui ∈ At

)∣∣∣∣∣ ≤ 1 − p

2
,

which clearly exists by weak convergence. Since

Pr

(
∃1 ≤ j ≤ M: n−1/2

n∑
i=1

〈Ui, ej 〉 ≤ t

)
= 1 − Pr

(
n−1/2

n∑
i=1

Ui ∈ At

)

≥ 1 − p

2
≥ 1 − c

2
=: c1 > 0,
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it follows that, with probability at least c1,

inf
q∈Q′

1

n

n∑
i=1

q(Xi) ≤ t√
n
.

It remains to show that one may take t = −(E supq∈Q′ Gq)/4. Indeed, by the symmetry of the
Gaussian process, it follows that (for this choice of t )

p = Pr(G ∈ At) = Pr
(

sup
q∈Q′

Gq <
(
E sup

q∈Q′
Gq

)/
4
)
.

Let Z = supq∈Q′ Gq and σ 2 = supq∈Q′ EG2
q . Since 0 ∈ Q′, it follows that if EZ = 0, then it is

clear that p = 1/2. Otherwise, using the concentration property of Z around its mean (see, e.g.,
[9]) and since σ ≤ c0EZ (where c0 is an absolute constant), there exists an absolute constant
A > 0 such that

E
[
Z1[Z≥EZ+Aσ ]

] ≤ (EZ)/4.

Therefore,

EZ = E
(
Z

(
1[Z≤(EZ)/4] + 1[(EZ)/4≤Z≤EZ+Aσ ] + 1[Z≥EZ+Aσ ]

))
≤ (EZ)/2 + (EZ)(1 + c0A)Pr

(
(EZ)/4 ≤ Z

)
.

Thus, Pr((EZ)/4 ≤ Z) ≥ [2(1 + c0A)]−1 and so p ≤ 1 − [2(1 + c0A)]−1 := c (which is an
absolute constant), implying that, with probability greater than c1,

inf
L(f )∈Q′

1

n

n∑
i=1

(L(f ))(Xi) ≤ −c2
E supq∈Q′ Gq√

n
.

Next, observe that for small values of λ (as we will have in our construction), L(f ) is a good
approximation of Lλ(f ) with respect to the L∞(μ)-norm. Indeed, Lλ(f ) = �(f,Tλ)−�(f ∗, Tλ)

and L(f ) = �(f,T ) − �(f ∗, T ); hence, for every f ∈ F ,

‖Lλ(f ) − L(f )‖∞ ≤ ‖�(f,Tλ) − �(f,T )‖∞ + ‖�(f ∗, Tλ) − �(f ∗, T )‖∞
≤ 2‖�‖lip‖T − Tλ‖∞ = 2λ‖�‖lip‖T − f ∗‖∞ ≤ c3λ.

Thus, if one selects λn = (c2/(2c3))n
−1/2

E supq∈Q′ Gq , then, with probability greater than c1,

inf
L(f )∈Q′ PnLλn(f ) ≤ −c2

E supq∈Q′ Gq

2
√

n
. �

Fix a finite set Q′ ⊂ Q for which H(Q′) ≥ H(Q)/2 and 0 ∈ Q′. Clearly, such a set exists
because Q is a pre-Gaussian as a subset of the pre-Gaussian class {L(f ): f ∈ F }. Let V ′ = {f ∈
F : L(f ) ∈ Q′}.

Recall that a bounded class of functions F is μ-Donsker if and only if for every u > 0,
there exist δ > 0 and an integer n0 such that for every n ≥ n0,oscn(F, δ) ≤ u. Also, note that



Lower bounds for ERM 611

oscn(F,f ∗, δ) ≤ oscn(F, δ). Let u = ηH(Q′), where η is an absolute constant, to be fixed later,
and set δ and n1 to be such that for n ≥ n1,

oscn(F,f ∗, δ) ≤ ηH(Q′) (2.1)

(such δ and n1 necessarily exist because F is μ-Donsker).
The next lemma is standard and follows from a symmetrization argument combined with

Slepian’s lemma. Its proof may be found in, for example, [7].

Lemma 2.3. There exists an absolute constant c for which the following holds. For any F ′ ⊂ F

such that f ∗ ∈ F ′ and any 0 ≤ λ ≤ 1,

E sup
f ∈F ′

|(P − Pn)(Lλ(f ))| ≤ cE sup
f ∈F ′

∣∣∣∣∣1

n

n∑
i=1

gi(f − f ∗)(Xi)

∣∣∣∣∣,
where (gi)

n
i=1 are independent, standard Gaussian variables.

We are now ready to control the oscillation of the empirical excess risk function in the set
Br = {f ∈ F : ELλ ≤ r}.

Theorem 2.4. Let c1, c2 and λn be defined as in Theorem 2.2, and let δ and n1 be as above.
There exists an absolute constant c3 such that for any integer n ≥ n1, with μn-probability at
least 1 − c1/2,

inf
{f ∈F :ELλn (f )≤rn}

PnLλn(f ) ≥ −c2H(Q′)
2
√

n
,

where

rn = c3
H(Q′)√

n
δ2‖T − f ∗‖2.

Proof. By Theorem 2.1, for any r, λ > 0, if f ∈ F is such that ELλ(f ) < r , then

r

λ
> c

ρ

D
‖f − f ∗‖2,

where D and ρ were defined in Theorem 2.1. Thus,

{f ∈ F : ELλ(f ) < r} ⊂ {
f ∈ F : ‖f − f ∗‖ < c4

√
r/λ

}
,

where c4 = c4(ρ,D). Hence, by Lemma 2.3, for n ≥ n1,

E sup
{f ∈F :ELλ(f )<r}

−PnLλ(f ) ≤ c5E sup
{f ∈F :‖f −f ∗‖≤c4

√
r/λ}

∣∣∣∣∣1

n

n∑
i=1

gi(f − f ∗)(Xi)

∣∣∣∣∣
≤ c5√

n
oscn

(
F,f ∗, c4

√
r/λ

) ≤ c5√
n
ηH(Q′),
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provided that c4
√

r/λ ≤ δ. Thus, for an appropriate choice of η (e.g., η = c1c2/(4c5) would do)
and setting rn := (c3/(2c2

4))n
−1/2H(Q′)δ2 (which is smaller than δ2λn/c

2
4), it is evident that

E sup
{f ∈F :ELλn (f )<rn}

−PnLλn(f ) ≤ c1c2

4
√

n
H(Q′).

Therefore, with μn-probability at least 1 − c1/2,

sup
{f ∈F :ELλn (f )<rn}

−PnLλn(f ) ≤ c2H(Q′)
2
√

n
,

as claimed. �

We can now prove our main result.

Proof of Theorem 1.1. By Theorem 2.2 applied to the set Q′, there exists some integer n0 =
n0(Q

′) such that for every n ≥ n0, with μn-probability at least c1,

inf
L(f )∈Q′ PnLλn(f ) ≤ −c2

H(Q′)√
n

, (2.2)

where c1 and c2 are two absolute constants.
By Theorem 2.4, for any integer n ≥ n1, with μn-probability at least 1 − c1/2,

inf
{f ∈F :ELλn (f )<rn}

PnLλn(f ) ≥ −c2H(Q′)
2
√

n
. (2.3)

Hence, combining equations (2.2) and (2.3), with μn-probability at least c1/2, the excess risk
of f̂λn is such that E[Lλn(f̂λn)|D] ≤ −c2H(Q′)/(

√
n), while for every function f ∈ F with

ELλn(f ) < rn, the empirical excess risk satisfies PnLλn(f ) ≥ −c2H(Q′)/(2
√

n). Therefore,
the empirical risk minimization algorithm has an excess risk (conditionally on the data D) larger
than rn, with probability greater than c1/2, as claimed. �
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