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Empirical risk minimization is optimal for
the convex aggregation problem
GUILLAUME LECUÉ

CNRS, LAMA, Université Paris-Est Marne-la-vallée, 77454 France. E-mail: guillaume.lecue@univ-mlv.fr

Let F be a finite model of cardinality M and denote by conv(F ) its convex hull. The problem of convex
aggregation is to construct a procedure having a risk as close as possible to the minimal risk over conv(F ).
Consider the bounded regression model with respect to the squared risk denoted by R(·). If f̂ ERM-C

n denotes
the empirical risk minimization procedure over conv(F ), then we prove that for any x > 0, with probability
greater than 1 − 4 exp(−x),

R(f̂ ERM-C
n ) ≤ min

f ∈conv(F )
R(f ) + c0 max

(
ψ

(C)
n (M),

x

n

)
,

where c0 > 0 is an absolute constant and ψ
(C)
n (M) is the optimal rate of convex aggregation defined in

(In Computational Learning Theory and Kernel Machines (COLT-2003) (2003) 303–313 Springer) by

ψ
(C)
n (M) = M/n when M ≤ √

n and ψ
(C)
n (M) = √

log(eM/
√

n)/n when M >
√

n.
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1. Introduction and main results

Let X be a probability space and let (X,Y ) and (X1, Y1), . . . , (Xn,Yn) be n + 1 i.i.d.
random variables with values in X × R. From the statistical point of view, the set D =
{(X1, Y1), . . . , (Xn,Yn)} is the set of given data where the Xi ’s are usually considered as in-
put data taking their values in some space X and the Yi ’s are some outputs or labels associated
with these inputs. We are interested in the prediction of Y associated with a new observation X.
The data D are thus used to construct functions f : X → R such that f (X) provides a good guess
of Y . We measure the quality of this prediction by means of the squared risk

R(f ) = E
(
Y − f (X)

)2
,

when f is a real-valued function defined on X and by

R(f̂ ) = E
[(

Y − f̂ (X)
)2|D

]
when f̂ is a function constructed using the data D. For the sake of simplicity, throughout this
article, we restrict ourselves to functions f and random variables (X,Y ) for which |Y | ≤ b and
|f (X)| ≤ b almost surely, for some fixed b ≥ 0. Note that b does not have to be known from the
statistician for the construction of the procedures we are studying in this note.
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Given a finite set F of real-valued measurable functions defined on X (usually called a dictio-
nary), there are three main types of aggregation problems:

1. Model selection aggregation: construct a procedure whose risk is as close as possible to the
risk of the best element in F (cf. [2,3,12,14,15,17–19,23,37,38,41,42]).

2. Convex aggregation: construct a procedure whose risk is as close as possible to the risk of
the best function in the convex hull of F (cf. [1,9,11,12,18,27,37,43]).

3. Linear aggregation: construct a procedure whose risk is as close as possible to the risk of
the best function in the linear span of F (cf. [4,12,17,21,37]).

In this note, we focus on the convex aggregation problem. We want to construct a procedure
f̃ for which, with high probability,

R(f̃ ) ≤ min
f ∈conv(F )

R(f ) + ψn(M), (1.1)

where ψn(M) is called the residual term. The residual term is the quantity that we want as
small as possible. Results in expectation are also of interest: construct a procedure f̃ such that
ER(f̃ ) ≤ minf ∈conv(F ) R(f ) + ψn(M).

In [37], the author defined the optimal rates of the convex aggregation, by the smallest price in
the minimax sense that one has to pay to solve the convex aggregation problem. The definition
of [37] is given in expectation, as a function of the cardinality M of the dictionary F and of the
sample size n. It has been proved in [37] (see also [18] and [43]) that the optimal rate of convex
aggregation is

ψ(C)
n (M) =

⎧⎪⎪⎨⎪⎪⎩
M

n
, if M ≤ √

n,√
1

n
log

(
eM√

n

)
, if M >

√
n.

This rate is defined up to some multiplying constant. Note that the rate ψ
(C)
n (M) was achieved

in [37] in expectation for the Gaussian regression model with a known variance and a known
marginal distribution of the design. In [11], the authors were able to remove these assumptions
at a price of an extra logn factor for 1 ≤ M ≤ √

n (results are still in expectation). Last year,
there has been some striking results on different problems of aggregation including the convex
aggregation problem. To mention few of them, we refer the reader to [32,33,40]. Finally, we
also refer the reader to [7,43] for non-exact oracle inequalities (inequalities like (1.1) where
minf ∈conv(F ) R(f ) is multiplied by a constant strictly larger than 1) in the context of convex
aggregation.

A lower bound in deviation for the convex aggregation problem follows from the arguments
of [37]: there exist absolute positive constants c0, c1 and c2 such that for any sample cardinality
n ≥ 1, any cardinality of dictionary M ≥ 1 such that logM ≤ c0n, there exists a dictionary F of
size M such that for any aggregation procedure f̄n, there exists a random couple (X,Y ) such that
|Y | ≤ b and maxf ∈F |f (X)| ≤ b a.s. and with probability larger than c1,

R(f̄n) ≥ min
f ∈conv(F )

R(f ) + c2b
2ψ(C)

n (M). (1.2)



ERM in convex aggregation 2155

This means that, from a minimax point of view, one cannot do better than the rate ψ
(C)
n (M)

for the convex aggregation problem. Therefore, any procedure achieving the rate ψ
(C)
n (M) for

any dictionary F and couple (X,Y ) such that |Y | ≤ b and maxf ∈F |f (X)| ≤ b a.s. in an ora-
cle inequality like (1.1) is called an optimal procedure in deviation for the convex aggregation
problem.

The procedure constructed in [37] achieves the rate ψ
(C)
n (M) in expectation (i.e., a procedure

satisfying (1.1) in expectation with the optimal residual term ψ
(C)
n (M)). An optimal procedure

in deviation has been constructed in Theorem 2.8.1 in [22]. In both cases, the construction of
these optimal aggregation procedures require the aggregation of an exponential number in M of
functions in conv(F ) and thus cannot be used in practice. On the other side, it would be much
simpler and natural to consider the classical procedure of empirical risk minimization (cf. [39])
over the convex hull of F to solve the convex aggregation problem:

f̂ ERM-C
n ∈ argmin

f ∈conv(F )

Rn(f ), where Rn(f ) = 1

n

n∑
i=1

(
Yi − f (Xi)

)2
. (1.3)

In [17,18,25], the authors prove that, for every x > 0, with probability greater than 1 −
4 exp(−x)

R
(
f̂ ERM-C

n

) ≤ min
f ∈conv(F )

R(f ) + c0 max

(
φn(M),

x

n

)
, where φn(M) = min

(
M

n
,

√
logM

n

)
.

The rate φn(M) behaves like the optimal rate ψ
(C)
n (M) except for values of M such that n1/2 <

M ≤ c(ε)n1/2+ε for ε > 0 for which there is a logarithmic gap. In this note, we were able to
remove this logarithmic loss proving that f̂ ERM-C

n is indeed optimal for the convex aggregation

problem. Finally, note that in [25], the authors show that the rate ψ
(C)
n (M) can be achieved

by f̂ ERM-C
n for any orthogonal dictionary (i.e., such that ∀f �= g ∈ F,Ef (X)g(X) = 0). The

performance of ERM in the convex hull has been studied for an infinite dictionary in [9]. The
resulting upper bounds, in the case of a finite dictionary, is of the order of M/n for every n

and M .
Another motivation for this work comes from what is known about ERM in the context of

the three aggregation schemes mentioned above. It is well known that ERM in F is, in general,
a suboptimal aggregation procedure for the model selection aggregation problem (see [19,30]
or [24]). It is also known that ERM in the linear span of F is an optimal procedure for the
linear aggregation problem [21] (cf. Theorem 13 and Example 1) or [4]. Therefore, studying
the performances of ERM in the convex hull of F in the context of convex aggregation can
be seen as an “intermediate” problem which remained open. In fact, a lot of effort has been
invested in finding any procedure that would be optimal for the convex aggregation problem.
For example, many boosting algorithms (see [34] or [10] for recent results on this topic) are
based on finding the best convex combination in a large dictionary (for instance, dictionaries
consisting of “decision stumps”), while random forest algorithms can be seen as procedures that
try finding the best convex combination of decision trees. Thus, finding an optimal procedure for
the problem of convex aggregation for a general dictionary is of high practical importance. In
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the following result, we prove that empirical risk minimization is an optimal procedure for the
convex aggregation problem.

Theorem A. There exists absolute constants c0 and c1 such that the following holds. Let F be
a finite dictionary of cardinality M and (X,Y ) be a random couple of X × R such that |Y | ≤ b

and maxf ∈F |f (X)| ≤ b a.s. for some b > 0. Then, for any x > 0, with probability greater than
1 − 4 exp(−x)

R
(
f̃ ERM−C

n

) ≤ min
f ∈conv(F )

R(f ) + c0b
2 max

[
ψ(C)

n (M),
x

n

]
.

The optimality also holds in expectation:

ER
(
f̃ ERM−C

n

) ≤ min
f ∈conv(F )

R(f ) + c1b
2ψ(C)

n (M).

2. Preliminaries on isomorphic properties of functions classes

We recall the machinery developed in [5] to prove isomorphic results between the empirical and
actual structures of functions classes.

Let (Z, σ ) be a measurable space, Z,Z1, . . . ,Zn be n + 1 i.i.d. random variables with values
in Z distributed according to PZ and G be a class of real-valued measurable functions defined
on Z . We consider the star shaped hull of G in zero and its localized set at some level λ > 0:

V (G) = {αg: 0 ≤ α ≤ 1, g ∈ G} and V (G)λ = {
h ∈ V (G): Ph ≤ λ

}
.

For any functions class H (in particular for H being G, V (G) or V (G)λ for some λ), we denote
‖P − Pn‖H = suph∈H |(P − Pn)h|, where Ph = Eh(Z) and Pnh = n−1 ∑n

i=1 h(Zi), σ(H) =
suph∈H

√
Ph2 and ‖H‖∞ = suph∈H ‖h‖L∞(PZ). We also recall the separability condition of [29]

(cf. Condition (M)) for which Talagrand’s concentration inequality holds:

(M) There exists G0 ⊂ G such that G0 is countable and for any g ∈ G, there exists a sequence
(gk)k in G0 such that for any z ∈ Z , (gk(z))k tends to g(z) when k tends to infinity.

Theorem 2.1 ([5]). There exists an absolute constant c0 > 0 such that the following holds. Let
G be a class of real-valued measurable functions defined on Z satisfying condition (M) and such
that Pg2 ≤ BPg,∀g ∈ G for some constant B > 0. Let λ∗ > 0 be such that

E‖P − Pn‖V (G)λ∗ ≤ (1/8)λ∗. (2.1)

For every x > 0, with probability greater than 1 − 4 exp(−x), for every g ∈ G,

|Pg − Png| ≤ (1/2)max
(
Pg,ρn(x)

)
, where ρn(x) = max

(
λ∗, c0(B + ‖G‖∞)x

n

)
.

For the reader convenience, we recall the short proof of [5].
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Proof of Theorem 2.1. Without loss of generality, we can assume that G is countable. From a
limit argument, the result holds for classes of functions satisfying condition (M).

Fix λ > 0 and x > 0, and note that by Talagrand’s concentration inequality (cf. [8,20,28,35,
36]), with probability larger than 1 − 4 exp(−x),

‖P − Pn‖V (G)λ ≤ 2E‖P − Pn‖V (G)λ + Kσ
(
V (G)λ

)√x

n
+ K

∥∥V (G)λ
∥∥∞

x

n
, (2.2)

where K is an absolute constant. Clearly, we have ‖V (G)λ‖∞ ≤ ‖G‖∞ and

σ 2(V (G)λ
) = sup

(
P(αg)2: 0 ≤ α ≤ 1, g ∈ G,P (αg) ≤ λ

) ≤ Bλ.

Moreover, since V (G) is star-shaped, λ > 0 → φ(λ) = E‖P − Pn‖V (G)λ/λ is non-increasing,
and since φ(λ∗) ≤ 1/8 and ρn(x) ≥ λ∗ then

E‖P − Pn‖V (G)ρn(x)
≤ (1/8)ρn(x).

Combined with (2.2), there exists an event 	0(x) of probability greater than 1 − 4 exp(−x), and
on 	0(x),

‖P − Pn‖V (G)ρn(x)
≤ (1/4)ρn(x) + K

√
Bρn(x)x

n
+ K

‖G‖∞x

n
≤ (1/2)ρn(x)

as long as c0 ≥ 64(K2 + K). Hence, on 	0(x), if g ∈ V (G) satisfies that Pg ≤ ρn(x),
then |Pg − Png| ≤ (1/2)ρn(x). Moreover, if g ∈ V (G) is such that Pg > ρn(x), then h =
ρn(x)g/Pg ∈ V (G)ρn(x); hence |Ph − Pnh| ≤ (1/2)ρn(x), and so in both cases |Pg − Png| ≤
(1/2)max(Pg,ρn(x)). �

Therefore, if one applies Theorem 2.1 to obtain isomorphic properties between the empirical
and actual structures, one has to check the condition Pg2 ≤ BPg,∀g ∈ G, called the Bernstein
condition in [5], and to find a point λ∗ satisfying (2.1).

A point λ∗ such that (2.1) holds can be found thanks to the peeling argument of [6]: for any
λ > 0,

V (G)λ ⊂
∞⋃
i=0

{
αg: 0 ≤ α ≤ 2−i , g ∈ G,Pg ≤ 2i+1λ

}
which implies

E‖P − Pn‖V (G)λ ≤
∞∑
i=0

2−i
E‖P − Pn‖G2i+1λ

, (2.3)

where, for any μ > 0, Gμ = {g ∈ G: Pg ≤ μ}. Then if λ∗ > 0 is such that λ∗/8 upper bounds
the RHS in (2.3) this point also satisfies (2.1).

The Bernstein condition usually follows from some convexity argument. For instance, it is now
standard to check the Bernstein condition for the excess loss functions class LF = {Lf : f ∈ F }
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associated with a convex model F with respect to the squared loss function 
f (x, y) = (y −
f (x))2,∀x ∈ X , y ∈ R, where f ∗

F ∈ argminf ∈F E(Y − f (X))2 and Lf = 
f − 
f ∗
F

. Indeed, if
F is a convex set of functions and (X,Y ) is a random couple on X × R such that |Y | ≤ b and
supf ∈F |f (X)| ≤ b a.s. then it follows from convexity and definition of f ∗

F that for any f ∈ F ,
E[(f ∗

F (X) − Y)(f ∗
F (X) − f (X))] ≤ 0 and so

ELf = 2E
(
f ∗

F (X)−f (X)
)(

Y −f ∗
F (X)

)+E
(
f ∗

F (X)−f (X)
)2 ≥ E

(
f ∗

F (X)−f (X)
)2

. (2.4)

Moreover, since |Y | ≤ b and supf ∈F |f (X)| ≤ b a.s. then

EL2
f = E

(
2Y − f ∗

F (X) − f (X)
)2(

f (X) − f ∗
F (X)

)2 ≤ (4b)2
E

(
f (X) − f ∗

F (X)
)2

. (2.5)

Therefore, any f in F is such that EL2
f ≤ (4b)2

ELf .

3. Proof of Theorem A

The proof of Theorem A for the case M ≤ √
n is now very classical and can be found in [21]

(cf. Theorem 13 and Example 1). Nevertheless, we reproduce here this short proof in order
to provide a self-contained note. The proof for the case M >

√
n is more tricky and relies on

isomorphic properties of an exponential number of segments in conv(F ) together with Maurey’s
empirical method (cf. [13,31]) which was first used in the context of convex aggregation in [17]
and [37]. Note that segments are models of particular interest in Learning theory because they
are convex models (in particular, they satisfy the Bernstein condition) and they are of small
complexity (essentially the same complexity as a model of cardinality two). On the contrary to
the classical entropy based approach which essentially consists in approximating a set by finite
sets, approaching models by union of segments may be of particular interest in Learning theory
beyond the convex aggregation problem. Note that finite models have no particular geometrical
structure and therefore are somehow “bad models” as far as ERM procedures are concerned.

Proofs are given for the deviation result of Theorem A. The result in expectation of Theorem A
follows from a direct integration argument.

3.1. The case M >
√

n

We apply Theorem 2.1 to excess loss functions classes indexed by segments. First, note that
segments of bounded functions are functions classes satisfying condition (M). We consider a set
C′ = {g1, . . . , gN } of real-valued measurable functions defined on X such that maxg∈C′ |g(X)| ≤
b a.s. For every i, j ∈ {1, . . . ,N}, we consider the segment [gi, gj ] = {θgi + (1 − θ)gj : 0 ≤ θ ≤
1} and take g∗

ij ∈ argming∈[gi ,gj ] R(g) where R(·) is the squared risk. We consider the excess
loss functions class

Lij = {
Lij

g : g ∈ [gi, gj ]
}
, where Lij

g = 
g − 
g∗
ij

for 
g(x, y) = (y − g(x))2,∀x ∈ X , y ∈ R.
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As a consequence of convexity of segments, we have for any g ∈ [gi, gj ], E(Lij
g )2 ≤

(4b)2
ELij

g (cf. (2.4) and (2.5) in Section 2). This implies that the functions class Lij sat-
isfies the Bernstein condition of Theorem 2.1. Now, it remains to find λ∗ > 0 such that
E‖P − Pn‖V (Lij )λ∗ ≤ (1/8)λ∗. Let μ > 0 and ε1, . . . , εn be n i.i.d. Rademacher variables. Note

that for any g ∈ [gi, gj ], P Lij
g ≥ P(g − g∗

ij )
2 = E(g(X) − g∗

ij (X))2 (cf. (2.4)). It follows from
the symmetrization argument and the contraction principle (cf. [26], page 95) that if gi �= gj then

E‖P − Pn‖(Lij )μ
≤ 2E sup

g∈[gi ,gj ]: P Lij
g ≤μ

∣∣∣∣∣1

n

n∑
k=1

εk Lij
g (Xk,Yk)

∣∣∣∣∣
≤ 8bE sup

g∈[gi ,gj ]: P Lij
g ≤μ

∣∣∣∣∣1

n

n∑
k=1

εk

(
g(Xk) − g∗

ij (Xk)
)∣∣∣∣∣

≤ 8bE sup
g∈[gi ,gj ]: P(g−g∗

ij )2≤μ

∣∣∣∣∣1

n

n∑
k=1

εk

(
g(Xk) − g∗

ij (Xk)
)∣∣∣∣∣

= 8bE sup
g∈[gi ,gj ]−g∗

ij : Pg2≤μ

∣∣∣∣∣1

n

n∑
k=1

εkg(Xk)

∣∣∣∣∣
≤ 8bE sup

g∈span(gi−gj ): Pg2≤μ

∣∣∣∣∣1

n

n∑
k=1

εkg(Xk)

∣∣∣∣∣
= 8b

√
μ

P(gi − gj )2
E

∣∣∣∣∣1

n

n∑
k=1

εk(gi − gj )(Xk)

∣∣∣∣∣
≤ 8b

√
μ

P(gi − gj )2

(
E

(
1

n

n∑
k=1

εk(gi − gj )(Xk)

)2)1/2

= 8b

√
μ

n
.

Note that when gi = gj the result is also true. Now, we use the peeling argument of (2.3) to
obtain

E‖P − Pn‖V (Lij )λ
≤

∞∑
k=0

2−k
E‖P − Pn‖(Lij )2k+1λ

≤
∞∑

k=0

2−k8b

√
2k+1λ

n
≤ c0b

√
λ/n.

Therefore, for λ∗ = (8c0b)2/n, we have E‖P − Pn‖V (Lij )λ∗ ≤ (1/8)λ∗.

Now, we can apply Theorem 2.1 to the family of excess loss functions classes (Lij )1≤i,j≤N

together with a union bound to obtain the following result.
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Proposition 3.1. There exists an absolute constant c0 > 0 such that the following holds. Let
C′ = {g1, . . . , gN } be a set of measurable real-valued functions defined on X . Let (X,Y ) be
a random couple with values in X × R such that |Y | ≤ b and maxg∈C′ |g(X)| ≤ b a.s. For any
x > 0, with probability greater than 1−4 exp(−x), for any i, j ∈ {1, . . . ,N} and any g ∈ [gi, gj ],∣∣P Lij

g − PnLij
g

∣∣ ≤ (1/2)max
(
P Lij

g , γ (x)
)
, where γ (x) = c0b

2(x + 2 logN)

n
.

Now, we want to apply the isomorphic result of Proposition 3.1 to a wisely chosen subset C′
of C = conv(F ). For that, we consider the integer

m =
⌈√

n

log(eM/
√

n)

⌉
and the set C′ is defined by

C′ =
{

1

m

m∑
i=1

hi : h1, . . . , hm ∈ F

}
.

The set C′ is an approximating set of the convex hull conv(F ). We will, for instance, use the
following approximation property:

min
f ∈C′ R(f ) ≤ min

f ∈C
R(f ) + 4b2

m
. (3.1)

Indeed, to obtain such a result, we use Maurey’s empirical method. Let f ∗
C ∈ argminf ∈C R(f )

and denote f ∗
C = ∑M

j=1 λjfj where λj ≥ 0,∀j = 1, . . . ,M and
∑M

j=1 λj = 1. Consider a ran-
dom variable  :	 → F such that P[ = fj ] = λj ,∀j = 1, . . . ,M and let 1, . . . ,m be m

i.i.d. random variables distributed according to  and independent of (X,Y ). Denote by E the
expectation with respect to 1, . . . ,m. Since Ej = f ∗

C for any j = 1, . . . ,m, we have

min
f ∈C′ R(f ) ≤ ER

(
1

m

m∑
j=1

j

)
= EE

(
1

m

m∑
j=1

j(X) − Y

)2

= E

(
1

m2

m∑
j,k=1

E

(
Y − j(X)

)(
Y − k(X)

)) = R
(
f ∗

C
) + EV(Y − (X))

m
,

where V stands for the variance symbol with respect to . Equation (3.1) follows since |Y | ≤ b

and maxf ∈F |f (X)| ≤ b a.s.
Denote by N = |C′| the cardinality of C′ and by g1, . . . , gN the functions in C′. For simplicity,

assume that R(g1) = ming∈C′ R(g). Thanks to [13] for the first inequality and [16], page 218, or
[28], Proposition 2, for the second inequality, we know that∣∣C′∣∣ = N ≤

(
M + m − 1

m

)
≤

(
2eM

m

)m

. (3.2)
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Let x > 0. Consider the event 	(x) ⊂ 	 such that the following isomorphic property holds
for all the segments [g1, gj ], j = 1, . . . ,N :∣∣PnL1j

g − P L1j
g

∣∣ ≤ (1/2)max
(
P L1j

g , γ (x)
) ∀g ∈ [g1, gj ], (3.3)

where we recall that L1j
g = 
g − 
g∗

1j
is the excess loss function of g ∈ [g1, gj ] for the model

[g1, gj ] and

γ (x) = c0b
2(x + 2 logN)

n
.

Thanks to Proposition 3.1, we know that P[	(x)] ≥ 1 − 4 exp(−x).
We are going to work on the event 	(x) but for the moment, we use a second time Maurey’s

empirical method. Fix X1, . . . ,Xn and write f̂ ERM-C
n = ∑M

j=1 βjfj . Consider a random variable
 :	′ → F defined on an other probability space (	′, A′,P

′) such that P
′[ = fj ] = βj ,∀j =

1, . . . ,M and let 1, . . . ,m be m i.i.d. random variables having the same probability distribu-
tion as . Once again, denote by E

′
 the expectation with respect to 1, . . . ,m and by V the

variance with respect to . Since E
′
j = f̂ ERM-C

n for any j = 1, . . . ,m, it follows from the
same method used to obtain (3.1) that

E
′
R

(
1

m

m∑
j=1

j

)
= R

(
f̂ ERM-C

n

) + EV
′
(Y − (X))

m
(3.4)

and the same holds for the empirical risk:

E
′
Rn

(
1

m

m∑
j=1

j

)
= Rn

(
f̂ ERM-C

n

) + 1

m

(
1

n

n∑
i=1

V
′


(
Yi − (Xi)

))
. (3.5)

Consider the following notation:

g = 1

m

m∑
j=1

j and i ∈ {1, . . . ,N} such that gi = g.

Note that g is a random point in C′ (as a measurable function from 	′ to C′) and that, on the
event 	(x), the following isomorphic property on the segment [g1, g] holds:∣∣PnL1i

g − P L1i
g

∣∣ ≤ (1/2)max
(
P L1i

g , γ (x)
) ∀g ∈ [g1, gi]. (3.6)

First note that for every 1, . . . ,m, we have

R
(
f̂ ERM-C

n

) = R
(
g∗

1i

) + R(g) − R
(
g∗

1i

) + R
(
f̂ ERM-C

n

) − R(g). (3.7)

By definition of g∗
1i

∈ argming∈[gi
,g1] R(g), we have R(g∗

1i
) ≤ R(g1) = ming∈C′ R(g) and

according to (3.1), we have minf ∈C′ R(f ) ≤ minf ∈C R(f )+(4b2)/m. Therefore, it follows from
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(3.7) that

R
(
f̂ ERM-C

n

) ≤ min
f ∈C

R(f ) + 4b2

m
+ P L1i

g
+ R

(
f̂ ERM-C

n

) − R(g). (3.8)

On the event 	(x), we use (3.6) to obtain for every 1, . . . ,m

R
(
f̂ ERM-C

n

) ≤ min
f ∈C

R(f ) + 4b2

m
+ 2PnL1i

g
+ γ (x) + R

(
f̂ ERM-C

n

) − R(g).

Moreover, by definition of f̂ ERM-C
n , we have

PnL1i
g

= Rn(g) − Rn

(
g∗

1i

) ≤ Rn(g) − Rn

(
f̂ ERM-C

n

)
.

Therefore, on the event 	(x), we have for every 1, . . . ,m

R
(
f̂ ERM-C

n

) ≤ min
f ∈C

R(f ) + 4b2

m
+ γ (x)

+ 2
(
Rn(g) − Rn

(
f̂ ERM-C

n

)) + R
(
f̂ ERM-C

n

) − R(g).

In particular, one can take the expectation with respect to 1, . . . ,m (defined on 	′) in the last
inequality. We have on 	(x),

R
(
f̂ ERM-C

n

) ≤ min
f ∈C

R(f ) + 4b2

m
+ γ (x)

+ 2E
′


(
Rn(g) − Rn

(
f̂ ERM-C

n

)) + E
′


(
R

(
f̂ ERM-C

n

) − R(g)
)
.

Thanks to (3.4), we have E
′
(R(f̂ ERM-C

n ) − R(g)) ≤ 0 and it follows from (3.5) that
E

′
(Rn(g) − Rn(f̂

ERM-C
n )) ≤ (2b)2/m. Therefore, on the event 	(x), we have

R
(
f̂ ERM-C

n

) ≤ min
f ∈C

R(f ) + 8b2

m
+ γ (x) ≤ min

f ∈C
R(f ) + c1b

2 max

(
ψ(C)

n (M),
x

n

)
,

where the last inequality follows from (3.2) and the definition of m.

3.2. The case M ≤ √
n

We use the strategy developed in [5] together with the one of [21] (cf. Example 1) to prove
Theorem A in the case M ≤ √

n. Define C = conv(F ) and LC = {Lf : f ∈ C} the excess loss
class associated with C where Lf = 
f − 
f ∗

C
,∀f ∈ C and f ∗

C ∈ argminf ∈C R(f ).
Let x > 0. Assume that we can find some ρn(x) > 0 such that with probability greater than

1 − 4 exp(−x), for any f ∈ C ,

|PnLf − P Lf | ≤ (1/2)max
(
P Lf , ρn(x)

)
. (3.9)
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Then, the ERM over conv(F ) would satisfy with probability greater than 1 − 4 exp(−x),

R
(
f̂ ERM-C

n

) − min
f ∈conv(F )

R(f ) = P Lf̂ ERM-C
n

≤ 2PnLf̂ ERM-C
n

+ ρn(x) ≤ ρn(x).

This means that if we can prove some isomorphic properties between the empirical and the
actual structures of the functions class L C like in (3.9), then we can derive oracle inequalities for
f̂ ERM-C

n . This is the strategy used in [5] that we follow here.
According to Theorem 2.1 in Section 2, a function ρn(x) satisfying (3.9) can be constructed

if we prove that LC satisfies some Bernstein condition and if we find some fixed point λ∗ > 0
such that E‖P − Pn‖V (L C )λ∗ ≤ (1/8)λ∗. The Bernstein condition follows from the convexity of
conv(F ) and the strategy used in Section 2: for any f ∈ C,P L2

f ≤ (4b)2P Lf .
We use the peeling argument of Section 2 together with the following observations due to [21]

(cf. Example 1) to find a fixed point λ∗. Let S be the linear subspace of L2(PX) spanned by
the dictionary F and consider an orthonormal basis (e1, . . . , eM ′) of S in L2(PX) (where M ′ =
dim(S) ≤ M). For any μ > 0, it follows from the symmetrization argument and the contraction
principle (cf. Chapter 4 in [26]) that

E‖P − Pn‖(L C )μ ≤ 8bE sup
f ∈S: Pf 2≤μ

∣∣∣∣∣1

n

n∑
i=1

εif (Xi)

∣∣∣∣∣
≤ 8bE sup

β∈RM ′ : ‖β‖2≤√
μ

∣∣∣∣∣1

n

n∑
i=1

εi

(
M ′∑
j=1

βj ej (Xi)

)∣∣∣∣∣
≤ 8b

√
μE

(
M ′∑
j=1

(
1

n

n∑
i=1

εiej (Xi)

)2)1/2

≤ 8b

√
M ′μ

n
.

We use the peeling argument of (2.3) to prove that for λ∗ = c0b
2M/n and c0 an absolute constant

large enough, we have indeed E‖P − Pn‖V (L C )λ∗ ≤ (1/8)λ∗.
Now, it follows from Theorem 2.1 that for any x > 0, with probability greater than 1 −

4 exp(−x),

R
(
f̂ ERM-C

n

) ≤ min
f ∈C

R(f ) + c1b
2 max

(
M

n
,
x

n

)
.

This concludes the proof for the case M ≤ √
n.

Remark 3.2. We did not use the condition M ≤ √
n in the last proof. In fact, the result holds

in the following more general framework. Let � be any closed convex subset of R
M and for

any dictionary F = {f1, . . . , fM} denote by �(F) the set of all functions
∑M

j=1 λjfj when

(λ1, . . . , λM)� ∈ �. Let (X,Y ) be a random couple with values in X × R such that |Y | ≤ b

and maxf ∈F |f (X)| ≤ b a.s. Consider the ERM procedure

f̂n ∈ argmin
f ∈�(F)

Rn(f ).
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Then, it follows from Theorem 2.1 and the argument used previously in this section that for any
x > 0, with probability greater than 1 − 4 exp(−x),

R(f̂n) ≤ min
f ∈�(F)

R(f ) + c1b
2 max

(
M

n
,
x

n

)
.

The same result can be found in [4] under very weak moment assumptions.
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