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1. Introduction

Wavelet shrinkage methods have been very successful in nonparametric func-

tion estimation. They provide estimators that are spatially adaptive and (near)

optimal over a wide range of function classes. Standard approaches are based

on the term-by-term thresholds. The well-known examples are the hard and soft

thresholded estimators introduced by Donoho and Johnstone (1995). The perfor-

mances of such constructions are truly dependent of the choice of the threshold.

In the literature, several techniques have been proposed to determine the ’best’

adaptive threshold. There are, for instance, the RiskShrink and SureShrink meth-

ods (see Donoho and Johnstone (1995)), the cross-validation methods (see, for

instance, Nason (1995) and Jansen (2001)), the methods based on hypothesis

tests (see, for instance, Abramovich, Benjamini, Donoho and Johnstone (2006)),

the Lepski methods (see Juditsky (1997)) and the Bayesian methods (see, for

instance, Abramovich, Sapatinas and Silverman (1998)).

In the present paper, we propose to study the performances of a new adaptive

wavelet estimator based on a convex combination of weighted local thresholding
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estimators (hard, soft, non negative garotte, ...). In the framework of nonpara-

metric density estimation, we prove that, in some sense, it is at least as good as

the term-by-term thresholded estimator defined with the ’best’ threshold. In par-

ticular, we prove that the proposed estimator is optimal, in the minimax sense,

over Besov balls under the L2 risk. The proof is based on a non-adaptive minimax

result proved by Delyon and Juditsky (1996) and some powerful oracle inequality

satisfied by aggregation methods. Such methods use an exponential weighting

aggregation scheme, which has been studied, among others, by Augustin et al.

(1997), Yang (2000), Catoni (2001), Leung and Barron (2006), Bunea and Nobel

(2005) and Lecué (2005a,b,2006).

The paper is organized as follows. Section 2 presents general oracle inequal-

ities satisfied by the aggregation scheme using exponential weights. Section 3

describes the main procedure of the study and investigates its minimax perfor-

mances over Besov balls for the L2 risk. All the proofs are postponed in the last

section.

2. Oracle inequalities

2.1. Framework. Let (Z, T ) be a measurable space. Denote by P the set of

all probability measures on (Z, T ). Let F be a function from P with values in

an algebra F . Let Z be a random variable with values in Z and denote by π its

probability measure. LetDn be a family of n i.i.d. observations Z1, . . . , Zn having

the common probability measure π. The probability measure π is unknown. Our

aim is to estimate F (π) from the observations Dn.

In our estimation problem, we assume that we have access to an ”empirical

risk”. It means that there exists Q : Z × F 7−→ R such that the risk of an

estimator f ∈ F of F (π) is of the form A(f) = E [Q(Z, f)] . If the infimum

A∗ = inff∈F A(f) is achieved by at least one function, we denote by f∗ ∈ F such a

minimizer. In this paper we will assume that inff∈F A(f) is achievable, otherwise

we replace f∗ by f∗n, an element in F satisfying A(f∗n) ≤ inff∈F A(f) + n−1.

In most of the cases f∗ will be equal to our aim F (π). We don’t know the

risk A, since π is not available from the statistician, thus, instead of minimizing

A over F we consider an empirical version of A constructed from the observations
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Dn. It is denoted by

An(f) = (1/n)
n∑
i=1

Q(Zi, f). (2.1)

In order to illustrate this general statistical framework with a concrete problem,

let us focus our attention on the nonparametric density estimation.

In the density estimation setup, (Z, T ) is endowed with a finite measure µ

and we assume that π is absolutely continuous w.r.t. to µ. One version of the

density function of π w.r.t. µ is denoted by f∗. Consider F the set of all density

functions on (Z, T , µ). For any z ∈ Z and f ∈ F , the loss function considered is

Q(z, f) =
∫
Z
|f(y)|2dµ(y)− 2f(z). (2.2)

We have, for any f ∈ F ,

A(f) = E [Q(Z, f)] =
∫
Z
|f(y)|2dµ(y)− 2

∫
Z
f(y)f∗(y)dµ(y)

= ||f∗ − f ||22 −
∫
Z
|f∗(y)|2dµ(y).

Thus, the density function f∗ is a minimizer ofA over F andA∗ = −
∫
Z |f

∗(y)|2dµ(y).

Now, we introduce an assumption which improve the quality of estimation

in our framework. This assumption has been first introduced by Mammen and

Tsybakov (1999), for the problem of discriminant analysis, and Tsybakov (2004),

for the classification problem. With this assumption, parametric rates of conver-

gence can be achieved, for instance, in the classification problem (cf. Tsybakov

(2004) and Steinwart and Scovel (2007)).

Margin Assumption (MA): Let κ ≥ 1, c > 0 and F0 be a subset of F . We

say that the probability measure π satisfies the margin assumption MA(κ, c,F0)

if, for any f ∈ F0, we have:

E
[
|Q(Z, f)−Q(Z, f∗)|2

]
≤ c(A(f)−A∗)1/κ.

The margin assumption is linked to the convexity of the underlying loss. In

density estimation with the integrated squared risk, we can show that all prob-

ability measures π on (Z, T ) absolutely continuous w.r.t. µ satisfy the margin



4 Christophe Chesneau and Guillaume Lecué

assumption MA(1, 16B2,FB) where FB is the set of all non-negative functions

f ∈ L2(Z, T , µ) bounded by B. Other values for the margin parameter can be

met in classification, for instance.

2.2. Aggregation Procedures. Let’s work with the notations introduced in

the beginning of the previous Subsection. The aggregation framework considered,

among others, by Juditsky and Nemirovski (2000), Yang (2000), Nemirovski

(2000), Tsybakov (2003), Leung and Barron (2006), Birgé (2006) is the following:

take F0 a finite subset of F , our aim is to mimic (up to an additive residual)

the best function in F0 w.r.t. the risk A. For this, we consider the Aggregation

with Exponential Weights aggregate (AEW) over F0. The resulting procedure is

defined by

f̃n =
∑
f∈F0

w(n)(f)f, (2.3)

where the exponential weights w(n)(f) are defined by

w(n)(f) = exp (−nAn(f))/
∑
g∈F0

exp (−nAn(g)). (2.4)

2.3. Oracle Inequalities. In this Subsection we state an exact oracle inequal-

ity satisfied by the AEW procedure in the general framework of the beginning

of Section 2. From this exact oracle inequality, we deduce an oracle inequality

in the density estimation framework. Now, let us introduce a quantity which

is going to be our residual term in the exact oracle inequality. We define the

quantity γ = γ(n,M, κ,F0, π,Q) by

γ =


(
B1/κ logM/(β1n)

)1/2
if B ≥ (logM/β1n)κ/(2κ−1) ,

(logM/(β2n))κ/(2κ−1) otherwise,

(2.5)

where B = B(F0, π,Q) = minf∈F0 (A(f)−A∗), κ ≥ 1 is the margin parameter,

π is the underlying probability measure, Q is the loss function,

β1 = min
(

log 2/(96cK), 3log 2/(16K
√

2), (8(4c+K/3))−1, (576c)−1
)

(2.6)

and

β2 = min
(

8−1, 3 log 2/(32K), (2(16c+K/3))−1, β1/2
)
, (2.7)
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where the constant c > 0 appears in the margin assumption MA(κ, c,F0) and K

is considered in the following theorem.

Theorem 2.1 Let us consider the general framework introduced in the beginning

of Section 2. Let M ≥ 2 be an integer. Let F0 denote a finite subset of M

elements f1, . . . , fM in F . Assume that the underlying probability measure π

satisfies the margin assumption MA(κ, c,F0) for some κ ≥ 1, c > 0. Assume

that f 7−→ Q(z, f) is convex for π-almost z ∈ Z and, for any f ∈ F0, there exists

a constant K ≥ 1 such that |Q(Z, f)−Q(Z, f∗)| ≤ K. Then, the AEW procedure

f̃n defined by (2.3) satisfies

E
[
A(f̃n)−A∗

]
≤ min

j=1,...,M
{A(fj)−A∗}+ 4γ,

where γ = γ(n,M, κ,F0, π,Q) is defined by (2.5).

Now, we give a corollary of Theorem 2.1 in the density estimation framework.

Corollary 2.2 Let us consider the density estimation framework. Assume that

the underlying density function f∗ to estimate is bounded by B > 0. Let M ≥ 2 be

an integer. Let f1, . . . , fM be M functions such that ||fj ||∞ ≤ B, ∀j = 1, . . . ,M .

For β2 defined in (2.7) and any ε > 0, the AEW procedure f̃n defined by (2.3)

satisfies

E
[
||f̃n − f∗||22

]
≤ (1 + ε) min

j=1,...,M

{
||f∗ − fj ||22

}
+ 4 logM/(εβ2n). (2.8)

Thus, the AEW procedure mimics the best fj among the fj ’s up to a residual

term which can be very small according to the value of M . A similar result can

be found in Yang (2000 and 2001), where a randomized aggregate using expo-

nential weights w.r.t. the Kullback-Leiber loss satisfies an oracle inequality like

inequality (2.8) with a 2 in front of the main term minj=1,...,M ||f∗ − fj ||22.

3. Multi-thresholding wavelet estimator

In this section, we propose an adaptive estimator constructed from aggre-

gation techniques and wavelet thresholding methods. For the density model, we
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show that it is optimal in the minimax sense over a wide range of function spaces.

3.1. Wavelets and Besov balls. We consider an orthonormal wavelet

basis generated by dilation and translation of a compactly supported ”father”

wavelet φ and a compactly supported ”mother” wavelet ψ. For the purposes

of this paper, we use the periodized wavelets bases on the unit interval. Let

φj,k(x) = 2j/2φ(2jx− k), ψj,k(x) = 2j/2ψ(2jx− k) be the elements of the wavelet

basis and φperj,k (x) =
∑

l∈Z φj,k(x− l), ψ
per
j,k (x) =

∑
l∈Z ψj,k(x− l), there periodized

versions, defined for any x ∈ [0, 1], j ∈ N and k ∈ {0, . . . , 2j − 1}. There exists

an integer τ such that the collection ζ defined by ζ = {φperτ,k , k = 0, ..., 2τ −
1; ψperj,k , j = τ, ...,∞, k = 0, ..., 2j − 1} constitutes an orthonormal basis

of L2([0, 1]). In what follows, the superscript ”per” will be suppressed from

the notations for convenience. A square-integrable function f∗ on [0, 1] can be

expanded into a wavelet series

f∗(x) =
2τ−1∑
k=0

ατ,kφτ,k(x) +
∞∑
j=l

2j−1∑
k=0

βj,kψj,k(x),

where αj,k =
∫ 1

0 f
∗(x)φj,k(x)dx and βj,k =

∫ 1
0 f
∗(x)ψj,k(x)dx. Further details on

wavelet theory can be found in Meyer (1990) and Daubechies (1992).

Now, let us define the main function spaces of the study. Let L ∈ (0,∞),

s ∈ (0,∞), p ∈ [1,∞) and q ∈ [1,∞). Let us set βτ−1,k = ατ,k. We say that a

function f∗ belongs to the Besov balls Bs
p,q(L) if and only if there exists L∗ > 0

such that the associated wavelet coefficients satisfy

[ ∞∑
j=τ−1

[
2j(s+1/2−1/p)

( 2j−1∑
k=0

|βj,k|p
)1/p]q]1/q

≤ L∗, if q ∈ [1,∞),

with the usual modification if q = ∞. We work with the Besov balls because

of their exceptional expressive power. For a particular choice of parameters s, p

and q, they contain the Hölder and Sobolev balls (see, for instance, Meyer (1990)).

3.2. Term-by-term thresholded estimator. In this subsection, we consider

the estimation of an unknown density function f∗ in L2([0, 1]).
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A term-by-term thresholded wavelet estimator is given by

f̂λ(Dn, x) =
2τ−1∑
k=0

α̂τ,kφτ,k(x) +
j1∑
j=τ

2j−1∑
k=0

Υλj (β̂j,k)ψj,k(x), (3.1)

where

α̂τ,k = (1/n)
n∑
i=1

φτ,k(Xi) and β̂j,k = (1/n)
n∑
i=1

ψj,k(Xi), (3.2)

j1 is an integer satisfying (n/ log n) ≤ 2j1 < 2(n/ log n), λ = (λτ , ...λj1) is a

vector of positive integers and, for any u > 0, the operator Υu is such that, for

any x, y ∈ R, there exist two constants C1, C2 > 0 satisfying

|Υu(x)− y|2 ≤ C1

(
|min(y, C2u)|2 + |x− y|21I{|x−y|≥2−1u}

)
. (3.3)

The inequality (3.3) holds for the hard thresholding rule Υhard
u (x) = x1I{|x|>u},

the soft thresholding rule Υsoft
u (x) = sign(x)(|x| − u)1I{|x|>u} (see Donoho and

Johnstone (1995), Donoho, Johnstone, Kerkyacharian and Picard (1995) and

Delyon and Juditsky (1996)) and the non-negative garrote thresholding rule

ΥNG
u (x) =

(
x− u2/x

)
1I{|x|>u} (see Gao (1998)).

In Delyon and Juditsky (1996), it is proved that for the threshold λ =

(ρ
√

(j − js)+/n)j=τ,...,j1 where js is an integer such that n1/(1+2s) < 2js ≤
2n1/(1+2s) and ρ satisfying

ρ2 ≥ 4(log 2)(8B + (8ρ/(3
√

2))(‖ψ‖∞ +B)), (3.4)

the term-by-term thresholded wavelet estimator f̂λ(Dn, .) achieves the minimax

rate of convergence n−2s/(1+2s) over Bs
p,q(L). In this study, we use aggregation

methods to construct an adaptive estimator at least as good, in the minimax

sense, as this non-adaptive estimator.

3.3. Multi-thresholding estimator. Let us divide our observations Dn into

two disjoint subsamples Dm, of size m, made of the first m observations and D(l),

of size l, made of the last remaining observations, where we take

l = dn/log ne and m = n− l.
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The first subsample Dm, sometimes called ”training sample”, is used to construct

a family of estimators (in our case this is thresholded estimators) and the second

subsample D(l), called the ”training sample”, is used to construct the weights of

the aggregation procedure.

Assume that we want to estimate a density function f∗ from [0, 1] bounded

by B. For any y ∈ R, we consider the projection function

hB(y) = max(0,min(y,B)). (3.5)

For any u > 0, we consider the following truncated estimator:

f̂ tm,u(x) = hB(f̂vu(Dm, x)),

where vu = (ρ
√

(j − u)+/n)j=τ,...,j1 and ρ satisfying (3.4).

We define the multi-thresholding estimator f̃n : [0, 1] → [0, B] at a point

x ∈ [0, 1] by the following aggregate

f̃n(x) =
∑
u∈Λn

w(l)(f̂ tm,u)f̂ tm,u(x), (3.6)

where Λn = {0, ..., dlog ne} and, for any u ∈ Λn,

w(l)(f̂ tm,u) = exp
(
−lA(l)(f̂ tm,u)

)
/
∑
γ∈Λn

exp
(
−lA(l)(f̂ tm,γ)

)
,

where A(l)(f) = (1/l)
∑n

i=m+1Q(Zi, f) is the empirical risk constructed from the

l last observations, for any function f and for the choice of a loss function Q

defined in (2.2).

The multi-thresholding estimator f̃n realizes a kind of “adaptation to the

threshold” by selecting the best threshold vu for u describing the set Λn. Since

we know that there exists an integer j∗ in Λn, depending on the regularity of

f∗, such that the non-adaptive estimator f̂vj∗ (Dm, .) is minimax (see Delyon and

Juditsky (1996)), the multi-thresholding estimator is minimax independently of

the regularity of f∗. Moreover, the cardinality of Λn is only dlog ne, thus f̃n does

not require the construction of too many estimators.

4. Performances of the multi-thresholding estimator
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4.1 Main result. Theorem 4.3 below investigates the minimax perfor-

mances of the multi-thresholding estimator defined in (3.6) under the L2 risk

over Besov balls in the density estimation framework.

Theorem 4.3 Let us consider the problem of estimating a density function f∗

bounded by B > 0. For any p ∈ [1,∞], s ∈ (p−1,∞) and q ∈ [1,∞], there exists

a constant C > 0, depending only on s, p and q, such that the multithresholding

estimator f̃n defined in (3.6) satisfies, for n large enough,

sup
f∗∈Bsp,q(L)

E
[
‖f̃n − f∗‖22

]
≤ Cn−2s/(2s+1).

Let us recall that, for the density model, the rate of convergence n−2s/(1+2s) is

minimax over Bs
p,q(L). Further details about the minimax rate of convergence

over Besov balls under the L2 risk for the density model can be found in Delyon

and Juditsky (1996) and Härdle, Kerkyacharian, Picard and Tsybakov (1998).

4.2 Minimax comparison with other estimators. If we focus our at-

tention on the density model, there are several types of estimators which enjoy

good minimax performances under the L2 risk over Besov balls. We distinguish

the local thresholding estimators and the block thresholding estimators. The

local thresholding estimators include the soft thresholding and the hard thresh-

olding proposed by Donoho, Johnstone, Kerkyacharian and Picard (1996). The

block thresholding estimators include BlockShrink method and BlockJS method

investigated by Cai and Chicken (2005).

Table 4.1: Rates of convergence achieved by various wavelet thresholding

estimators for the density model under the L2 risk over Besov balls Bs
p,q(L).

Rates of convergence over Bs
p,q(L)

2 > p ≥ 1 p > 2

Local thresh (ln n/n)2s/(2s+1) (ln n/n)2s/(2s+1)

Block thresh (ln n/n)2s/(2s+1) n−2s/(2s+1) ,

Multi thresh n−2s/(2s+1) n−2s/(2s+1)
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As we notice in Table 4.1, the rates of convergence achieved by the Mul-

tithresholding estimator is better than those achieved by the local and block

thresholding estimators. We gain a logarithmic term.

Finally, Yang (2000) also took the approach of combining procedures to ob-

tain adaptive density estimators over Besov classes. He used exponential weights

with respect to the Kullback-Leiber loss (in this case, exponential weights are

related to the likelihood of the model (cf. Lecué (2005))). The resulting aggre-

gate achieves the minimax rate of convergence over all Besov Balls Bs
p,q(L) for

any s ∈ (p−1,∞). Nevertheless, the estimators aggregated in Yang (2000) are

constructed by using a metric entropy argument. This kind of estimators are not

easy to compute compare to the wavelet estimators that we used here.

Remark 4.1 In the bounded regression framework with random uniform design,

we can construct an aggregate with exponential weights of term-by-term thresh-

olded wavelet estimator achieving the minimax rate of convergence n−2s/(2s+1)

over all Besov balls Bs
p,q(L) for any p ∈ [1,∞], s ∈ (p−1,∞) and q ∈ [1,∞].

5. Proofs

Proof of Theorem 2.1: preliminaries. First of all, let us recall the nota-

tions of the general framework introduced in the beginning of Section 2. Consider

a loss function Q : Z × F 7−→ R, the risk A(f) = E[Q(Z, f)], the minimum risk

A∗ = minf∈F A(f), where we assume, w.l.o.g., that it is achieved by an element

f∗ in F and, for any f ∈ F , the empirical risk An(f) = (1/n)
∑n

i=1Q(Zi, f).

Now, let us consider the convex set C defined by

C =
{

(θ1, . . . , θM ) : θj ≥ 0, ∀j = 1, . . . ,M, and
M∑
j=1

θj = 1
}
. (5.1)

For any θ ∈ C, we define the functions Ã(θ) and Ãn(θ) by

Ã(θ) =
M∑
j=1

θjA(fj) and Ãn(θ) =
M∑
j=1

θjAn(fj).

The first function is the linear version of the risk A. The second is the empirical

version of this risk.
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We are now in position to explain the form of the exponential weights de-

scribed by (2.4). By virtue of the Lagrange method of optimization, we find

that the exponential weights w = (w(n)(fj))1≤j≤M are the unique solution of the

minimization problem

min
(θ1,...,θM )∈C

{
Ãn(θ) + (1/n)

M∑
j=1

θj log θj
}
, (5.2)

where we use the convention 0 log 0 = 0. Take ̂ ∈ {1, . . . ,M} such that An(f̂) =

minj=1,...,M An(fj). If ej denotes the vector in C with 1 for j-th coordinate and

0 elsewhere, then, by (5.2), the vector of exponential weights w satisfies

Ãn(w) + (1/n)
M∑
j=1

w(n)(fj) logw(n)(fj) ≤ Ãn(e̂).

Using the fact that
∑M

j=1w
(n)(fj) log(Mw(n)(fj)) ≥ 0 (because this is the Kullback-

Leibler divergence between the weights w and the uniform weights), we obtain

Ãn(w) ≤ Ãn(e̂) + logM/n. (5.3)

Now, observe that a linear function achieves its maximum over a convex polygon

at one of the vertices of the polygon. Thus, for j0 ∈ {1, . . . ,M} such that

Ã(ej0) = minj=1,...,M Ã(ej) (= minj=1,...,M A(fj)), we have Ã(ej0) = minθ∈C Ã(θ).

We obtain the last inequality by linearity of Ã and the convexity of C. We define

ŵ by either:

ŵ = w or ŵ = e̂. (5.4)

According to (5.3), we have

Ãn(ŵ) ≤ min
j=1,...,M

Ãn(ej) + logM/n ≤ Ãn(ej0) + logM/n. (5.5)

This inequality, justified by the form of our weights, will be at the heart of

the proof. Now, let us set two auxiliary lemmas.

Lemma 5.4 Consider the framework introduced in the beginning of Section 2.

Let F0 = {f1, . . . , fM} be a finite subset of F . We assume that π satisfies
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MA(κ, c,F0), for some κ ≥ 1, c > 0 and, for any f ∈ F0, there exists a con-

stant K ≥ 1 such that |Q(Z, f)−Q(Z, f∗)| ≤ K. Then, for any positive numbers

t, x and any integer n, we have:

P
[
max
f∈F

A(f)−An(f)− (A(f∗)−An(f∗))
A(f)−A∗ + x

> t

]
≤M

[(
1 +

4cx1/κ

n(tx)2

)
exp

(
−n(tx)2

4cx1/κ

)
+
(

1 +
4K

3ntx

)
exp

(
−3ntx

4K

)]
.

The proof of Lemma 5.4 is postponed at the end of the proof of Theorem 2.1.

Lemma 5.5 Let α ≥ 1 and x, y > 0. An integration by part yields∫ +∞

x
exp (−ytα) dt ≤ exp(−yxα)/(αyxα−1).

Proof of Theorem 2.1: technical details. Denote by ÃC the minimum

minθ∈C Ã(θ) where C is the set defined by (5.1). Using the following elementary

inequality: for any u ∈ R and random variable W ∈]−∞,K], we have E(W ) =

E(W1I{W<u} + W1I{W≥u}) ≤ u +
∫K

0 P(W1I{W≥u} ≥ ε)dε = 2u + 2
∫K/2
u/2 P(W ≥

2ε)dε, we obtain:

E[A(f̃n)− ÃC ] ≤ E
[
Ã(ŵ)− ÃC

]
≤ 2u+ 2

∫ K/2

u/2
P
[
Ã(ŵ) > ÃC + 2ε

]
dε, (5.6)

where ŵ is defined by (5.4).

Now, let us investigate the upper bound of the term P
[
Ã(ŵ) > ÃC + 2ε

]
.

Let us consider D, the subset of C defined by

D =
{
θ ∈ C : Ã(θ) > ÃC + 2ε

}
.

If ŵ ∈ D then the inequality (5.5) implies the existence of θ ∈ D such that

Ãn(θ)− Ãn(f∗) ≤ Ãn(ej0)− Ãn(f∗) + logM/n. Hence, for any ε > 0, we have

P
[
Ã(ŵ) > ÃC + 2ε

]
≤ P

[
inf
θ∈D

Ãn(θ)−An(f∗) ≤ Ãn(ej0)−An(f∗) + logM/n

]
≤ V1 + V2,
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where

V1 = P
[

inf
θ∈D

Ãn(θ)−An(f∗) < ÃC −A∗ + ε

]
and

V2 = P
[
Ãn(ej0)−An(f∗) ≥ ÃC −A∗ + ε− logM/n

]
.

Let us investigate the upper bounds for V1 and V2, in turn.

The upper bound for V1. We recall that ÃC denotes the minimum minθ∈C Ã(θ).

Assume that, for any x > 0, we have

sup
θ∈D

Ã(θ)−A∗ − (Ãn(θ)−An(f∗))
Ã(θ)−A∗ + x

≤ ε

ÃC −A∗ + 2ε+ x
.

Since, for any θ ∈ D, Ã(θ)−A∗ ≥ ÃC −A∗ + 2ε, we obtain

Ãn(θ)−An(f∗) ≥ Ã(θ)−A∗ − ε(Ã(θ)−A∗ + x)
(ÃC −A∗ + 2ε+ x)

≥ ÃC −A∗ + ε.

Hence, for any x > 0, we can bound V1 by

V1 ≤ P

[
sup
θ∈D

Ã(θ)−A∗ − [Ãn(θ)−An(f∗)]
Ã(θ)−A∗ + x

>
ε

ÃC −A∗ + 2ε+ x

]
. (5.7)

If, for any x > 0, we assume that

sup
θ∈C

Ã(θ)−A∗ − [Ãn(θ)−An(f∗)]
Ã(θ)−A∗ + x

>
ε

ÃC −A∗ + 2ε+ x
,

then, there exists θ(0) = (θ(0)
1 , . . . , θ

(0)
M ) ∈ C, such that

Ã(θ(0))−A∗ − [Ãn(θ(0))−An(f∗)]
Ã(θ(0))−A∗ + x

>
ε

ÃC −A∗ + 2ε+ x
.

The linearity of Ã yields

Ã(θ(0))−A∗ − (Ãn(θ(0))−An(f∗))
Ã(θ(0))−A∗ + x

=

∑M
j=1 θ

(0)
j [A(fj)−A∗ − (An(fj)−An(f∗))]∑M

j=1 θ
(0)
j [A(fj)−A∗ + x]

.

Let us notice that, for any numbers a1, . . . , aM and positive numbers b1, . . . , bM ,

we have
∑M

j=1 aj/
∑M

j=1 bj ≤ maxj=1,...,M (aj/bj). It follows that

max
j=1,...,M

A(fj)−A∗ − (An(fj)−An(f∗))
A(fj)−A∗ + x

>
ε

ÃC −A∗ + 2ε+ x
,
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where ÃC = minj=1,...,M A(fj) (which is equal to the ÃC previously defined).

Now, we use the relative concentration inequality of Lemma 5.4 to obtain

P
[

max
j=1,...,M

A(fj)−A∗ − (An(fj)−An(f∗))
A(fj)−A∗ + x

>
ε

ÃC −A∗ + 2ε+ x

]
≤ M

(
1 +

4c(ÃC −A∗ + 2ε+ x)2x1/κ

n(εx)2

)
exp

(
− n(εx)2

4c(ÃC −A∗ + 2ε+ x)2x1/κ

)

+M

(
1 +

4K(ÃC −A∗ + 2ε+ x)
3nεx

)
exp

(
− 3nεx

4K(ÃC −A∗ + 2ε+ x)

)
. (5.8)

Putting (5.7) and (5.8) together, for any x > 0, we obtain:

V1 ≤ M

(
1 +

4c(ÃC −A∗ + 2ε+ x)2x1/κ

n(εx)2

)
exp

(
− n(εx)2

4c(ÃC −A∗ + 2ε+ x)2x1/κ

)

+M

(
1 +

4K(ÃC −A∗ + 2ε+ x)
3nεx

)
exp

(
− 3nεx

4K(ÃC −A∗ + 2ε+ x)

)
. (5.9)

The upper bound for V2. Using the margin assumption MA(κ, c,F0) to up-

per bound the variance term and applying Bernstein’s inequality (cf. Massart

(2006)), for any ε > logM/n, we get

V2 ≤ exp
(
− n(ε− (logM)/n)2

2c(ÃC −A∗)1/κ + (2K/3)(ε− logM/n)

)
, (5.10)

Combining the obtained upper bounds of V1 with x = ÃC −A∗ + 2ε and V2,

then, for any logM/n < ε < K/2, we have

P
(
Ã(ŵ) > ÃC + 2ε

)
≤ V1 + V2

≤ exp
(
− n(ε− logM/n)2

2c(ÃC −A∗)1/κ + (2K/3)(ε− logM/n)

)
+M

(
1 +

16c(ÃC −A∗ + 2ε)1/κ

nε2

)
exp

(
− nε2

16c(ÃC −A∗ + 2ε)1/κ

)
+M

(
1 +

8K
3nε

)
exp

(
−3nε

8K

)
.

It follows from (5.6) that, for any 2 logM/n < u < K/2, we have

E[A(f̃n)− ÃC ] ≤ 2u+ 2
∫ K/2

u/2
[T1(ε) +M(T2(ε) + T3(ε))] dε, (5.11)
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where the quantities T1(ε), T2(ε) and T3(ε) are defined by

T1(ε) = exp
(
− n(ε− (logM)/n)2

2c(ÃC −A∗)1/κ + (2K/3)(ε− logM/n)

)
,

T2(ε) =

(
1 +

16c(ÃC −A∗ + 2ε)1/κ

nε2

)
exp

(
− nε2

16c(ÃC −A∗ + 2ε)1/κ

)
and

T3(ε) =
(

1 +
8K
3nε

)
exp

(
−3nε

8K

)
.

Now, let us investigate the upper bounds of
∫ 1
u/2 T1(ε)dε,

∫ 1
u/2 T2(ε)dε and

∫ 1
u/2 T3(ε)dε,

in turn. We distinguish two cases: the case where ÃC−A∗ ≥ (logM/(β1n))κ/(2κ−1)

and the case where ÃC − A∗ < (logM/(β1n))κ/(2κ−1). Let us recall that β1 is

defined in (2.6).

- The case ÃC − A∗ ≥ (logM/(β1n))κ/(2κ−1) . Denote by µ(M) the unique

solution of the equation µ0 − 3M exp(−µ0) = 0. Then, clearly (logM)/2 ≤
µ(M) ≤ logM . Take u such that (nβ1u

2)/(ÃC − A∗)1/κ = µ(M). Using the

fact that ÃC − A∗ ≥ (logM/(β1n))κ/(2κ−1) and the definition µ(M), we get

u ≤ ÃC −A∗. Moreover, since u ≥ 4 logM/n, we have∫ K/2

u/2
T1(ε)dε ≤

∫ (ÃC−A∗)/2

u/2
exp

(
− n(ε/2)2

(2c+K/6)(ÃC −A∗)1/κ

)
dε

+
∫ K/2

(ÃC−A∗)/2
exp

(
− n(ε/2)2

(4c+K/3)ε1/κ

)
dε.

Using Lemma 5.5 and the inequality u ≤ ÃC −A∗, we obtain∫ K/2

u/2
T1(ε)dε ≤ 8(4c+K/3)(ÃC −A∗)1/κ

nu
exp

(
− nu2

8(4c+K/3)(ÃC −A∗)1/κ

)
.

(5.12)

Since 16c(ÃC −A∗ + 2u) ≤ nu2, Lemma 5.5 yields∫ K/2

u/2
T2(ε)dε ≤ 2

∫ (ÃC−A∗)/2

u/2
exp

(
− nε2

64c(ÃC −A∗)1/κ

)
dε

+2
∫ K/2

(ÃC−A∗)/2
exp

(
−nε

2−1/κ

128c

)
dε

≤ 2148c(ÃC −A∗)1/κ

nu
exp

(
− nu2

2148c(ÃC −A∗)1/κ

)
.(5.13)
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Since 16(3n)−1 ≤ u ≤ ÃC −A∗, we have∫ K/2

u/2
T3(ε)dε ≤ 16K(ÃC −A∗)1/κ

3nu
exp

(
− 3nu2

16K(ÃC −A∗)1/κ

)
. (5.14)

From (5.11), (5.12), (5.13), (5.14) and the definition of u (and, a fortiori, µ(M)),

we obtain

E
[
A(f̃n)− ÃC

]
≤ 2u+ 6M

(ÃC −A∗)1/κ

nβ1u
exp

(
− nβ1u

2

(ÃC −A∗)1/κ

)
= 4u ≤ 4

√
(ÃC −A∗)1/κ logM/(nβ1).

- The case ÃC − A∗ < (logM/(β1n))κ/(2κ−1). We now choose u such that

nβ2u
(2κ−1)/κ = µ(M), where µ(M) denotes the unique solution of the equa-

tion µ0 − 3M exp(−µ0) = 0 and β2 is defined in (2.7). Using the fact that

ÃC−A∗ < (logM/(β1n))κ/(2κ−1) and the definition of µ(M), we get u ≥ ÃC−A∗

(since β1 ≥ 2β2). Using the fact that u > 4 logM/n and Lemma 5.5, we find∫ K/2

u/2
T1(ε)dε ≤ 2(16c+K/3)

nu1−1/κ
exp

(
− 3nu2−1/κ

2(16c+K/3)

)
. (5.15)

Since u ≥ (128c/n)κ/(2κ−1), Lemma 5.5 yields∫ K/2

u/2
T2(ε)dε ≤ 256c

nu1−1/κ
exp

(
−nu

2−1/κ

256c

)
. (5.16)

Since u > 16K/(3n), we have∫ K/2

u/2
T3(ε)dε ≤ 16K

3nu1−1/κ
exp

(
−3nu2−1/κ

16K

)
. (5.17)

Putting (5.11), (5.15), (5.16) and (5.17) together and using the definition of u

(and, a fortiori, µ(M)), we obtain

E
[
A(f̃n)− ÃC

]
≤ 2u+ 6M

exp
(
−nβ2u

(2κ−1)/κ
)

nβ2u1−1/κ
= 4u ≤ 4(logM/(nβ2))κ/(2κ−1).

This completes the proof of Theorem 2.1.
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Proof of Lemma 5.4. We use a ”peeling device”. Let x > 0. For any

integer j, we consider Fj = {f ∈ F : jx ≤ A(f)−A∗ < (j + 1)x} . Define the

empirical process Zx(f) by

Zx(f) =
A(f)−An(f)− (A(f∗)−An(f∗))

A(f)−A∗ + x
.

Using Bernstein’s inequality and margin assumption MA(κ, c,F0) to upper bound

the variance term, we have

P
[
max
f∈F

Zx(f) > t

]
≤

+∞∑
j=0

P
[
max
f∈Fj

Zx(f) > t

]

≤
+∞∑
j=0

P
[

max
f∈Fj

A(f)−An(f)− (A(f∗)−An(f∗)) > t(j + 1)x
]

≤ M
+∞∑
j=0

exp
(
− n[t(j + 1)x]2

2c((j + 1)x)1/κ + (2K/3)t(j + 1)x

)

≤ M

+∞∑
j=0

exp
(
− n(tx)2(j + 1)2−1/κ

4cx1/κ

)
+ exp

(
− (j + 1)

3ntx
4K

)
≤ M

[
exp

(
−nt

2x2−1/κ

4c

)
+ exp

(
−3ntx

4K

)]

+M
∫ +∞

1

[
exp

(
−nt

2x2−1/κ

4c
u2−1/κ

)
+ exp

(
−3ntx

4K
u

)]
du.

Lemma 5.5 completes the proof.

Proof of Corollary 2.2. In density estimation with the integrated squared

risk, any probability measure π on (Z, T ), absolutely continuous satisfies the

margin assumption MA(1, 16B2,FB) where FB is the set of all non-negative

function f ∈ L2(Z, T , µ) bounded by B. To complete the proof we use that, for

any ε > 0, we have

[B(F0, π,Q) logM/(β1n)]1/2 ≤ εB(F0, π,Q) + logM/(β2nε).

Proof of Theorem 4.3. We apply Theorem 2.2, with ε = 1, to the multi-

thresholding estimator f̂n defined in (3.6). Since Card(Λn) = dlog ne, m ≥ n/2



18 Christophe Chesneau and Guillaume Lecué

and the density function f∗ to estimate takes its values in [0, B], conditionally

to the first subsample Dm, we have

E
[
‖f∗ − f̂n‖22 |Dm

]
≤ 2 min

u∈Λn

(
||f∗ − hB(f̂vu(Dm, .))||22

)
+ 4(log n) log(log n)/(β2n)

≤ 2 min
u∈Λn

(
||f∗ − f̂vu(Dm, .)||22

)
+ 4(log n) log(logn)/(β2n), (5.18)

where hB is the projection function introduced in (3.5) and β2 is given in (2.7).

Now, for any s > 0, let us consider js an integer in Λn such that n1/(1+2s) ≤ 2js <

2n1/(1+2s). A result proved by Delyon and Juditsky (1996) says that the local

thresholding estimator defined with threshold vjs = ρ
√

(j − js)+/n satisfies:

sup
f∗∈Bsp,q(L)

E
[
||f∗ − f̂vjs (Dm, .)||22

]
≤ Cn−2s/(1+2s).

Therefore, for any p ∈ [1,∞], s ∈ (1/p,∞), q ∈ [1,∞] and n large enough,

the previous inequality and (5.18) yield

sup
f∗∈Bsp,q(L)

E
[
‖f̃ − f∗‖22

]
= sup

f∗∈Bsp,q(L)
E
[
E
[
‖f̃ − f∗‖22 |Dm

]]
≤ 2 sup

f∗∈Bsp,q(L)
E
[

min
u∈Λn

(||f∗ − f̂vu(Dm, .)||22
]

+ 4(log n) log(logn)/(β2n)

≤ 2 sup
f∗∈Bsp,q(L)

E
[
||f∗ − f̂vjs (Dm, .)||22

]
+ 4(log n) log(log n)/(β2n) ≤ Cn−2s/(1+2s).

This completes the proof of Theorem 4.3.
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