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J’exprime toute ma reconnaissance à Sara van de Geer, Peter Bartlett et Pacal Massart pour
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Chapter 1

Introduction

In this document I present the works I undertook since the end of my Ph.D. I started my Ph.D in
September 2004 at the Laboratoire de Probabilités et Modèles Aléatoires of Université Paris 6.
I was then hired in October 2007 by the CNRS and spent my first two years at the Laboratoire
d’Analyse, Topologie et Probabilité in Marseille. In 2009, I moved to the Laboratoire d’Analyse
et Mathématiques Appliquées at the Université Paris-Est Marne-la-vallée. I will also use the
opportunity of writing this manuscript to add some remarks and extensions to these works.

My main research interests are in learning theory and their applications to high-dimensional
data analysis. The problem usually starts with a set of observations of the form input/output.
The problem is to understand the interplay between the inputs and the outputs. In particular,
given a new input, we want to associate, in a wise way, an output to this new input which
is in compliance with what has been observed so far. Very complex real world systems can
be understood in this paradigm and this is the reason why this theory has become so popular
in many different fields of application like bioinformatics, speech, text and image recognition,
computer vision, finance, energy and transport supply, etc..

Randomness comes into play at the step of the modelling of these data. It is common to
treat these observations as a familly of n random variables (X1, Y1), . . . , (Xn, Yn) representing
the data at hand. The input variables X1, . . . , Xn can take their values in very complicated
spaces in practice. In theory, we denote by X the space where these variables take their values.
The output variables Y1, . . . , Yn are in general real numbers and sometimes even just binary
labels with values for instance in {−1, 1}. Then, it is also common to assume that the variables
(X1, Y1), . . . , (Xn, Yn) are independent and identically distributed. This assumption is well suited
for modelling data coming at once: sometimes called the “batch setup”. Of course, at this very
first stage there are other ways of modelling these data. For instance, the input data can be
deterministic: in this case, we speak about “deterministic design” or the data may be acquired
one after the other: the “on line setup”. In this case, the i.i.d. assumption does not hold
anymore. We can think about many other ways of modelling a family of input/output data, but
in all my works I focused on the i.i.d. setup with a random design.

Therefore, we start our mathematical problem with n i.i.d. random variables (X1, Y1), . . . , (Xn, Yn)
with values in X × R. The aim is to use mathematical tools to answer our concrete question
concerning the interplay between the input and output data. There are many different ways
of using these data to construct procedures. We thus want to be able to compare procedures.
This is the role played by the loss function ` and the associated risk function R(·). We will be
interested in the construction of procedures having a risk as small as possible. In particular, we
are interested in oracle inequalities.

A big part of my work has been to prove oracle inequalities for particular procedures and
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to prove their optimality thanks to lower bounds. Among these procedures are aggregation
procedures which are studied in Chapter 2. The problem of aggregation is of particular interest
since classical procedures (empirical risk minimization and its regularized and penalized versions)
do not work in the aggregation context. Only very few optimal aggregation procedures have
been constructed so far and the reason is that the geometrical aspect of the problem is of first
importance. This point is at the heart of Chapter 2.

On the contrary, there are oracle inequalities which can be established without taking any
special care of the geometry of the problem and for which the classical procedures work very well.
Such oracle inequalities are shown in Chapter 3. It is interesting to note that very general oracle
inequalities can be established for the three classical procedures: empirical risk minimization,
regularized empirical risk minimization and penalized empirical risk minimization. In particular,
in Chapter 3, we provide some ways of constructing regularizing and penalty functions.

The general oracle inequalities obtained in Chapter 3 are then applied in different problems
like `1-regularization, S1-regularization, Cross-validation procedures, selection of variables, etc..

Even though we introduced the problem of Learning theory for data of the form input/output,
the area of action of Learning theory is much broader. Most of the results of this manuscript
concern a model generalizing the input/output problems. We introduce now this general model.

1.1 A general model, examples and notations

1.1.1 A general model and some examples

Let Z be a space endowed with a probability measure P and let Z and Z1, . . . , Zn be n + 1
independent random variables with values in Z, distributed according to P ; from the statistical
point of view, D = (Z1, . . . , Zn) is the set of given data. Let F be a linear space and define a
loss function

` : F × Z −→ R

which associates a real number `(f, z) to any element f ∈ F and point z ∈ Z. For any f ∈ F ,
we denote by `f the loss function `(f, ·) associated with f . For any f ∈ F , we assume that `f (Z)
is a random variable (when R is endowed with the Borel algebra) and set R(f) = E`f (Z) to be
the risk of f . The risk of any statistic f̂n(·) = f̂n(·,D) with values in F is defined by

R(f̂n) = E
[
` bfn(Z)|D

]
= E

[
`(f̂n, Z)|D

]
.

If the infimum
R∗ = inf

f∈F
R(f)

over all f in F is achieved, we write f∗ for some choice of such a minimizer in F . In this
manuscript, we assume that inff∈F R(f) is achieved — otherwise we can replace f∗ by f∗n, an
element in F satisfying R(f∗n) ≤ inff∈F R(f) + n−1, and still obtain the same results up to a
n−1 additive term.

This model is best illustrated by its three key examples: regression, density estimation and
classification.

The regression model

Take Z = X × R, where (X ,A) is a measurable space and let Z = (X,Y ) be a random pair on
Z. Denote by PX the probability distribution of X.
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For the first example, take F = L2(X ,A, PX). Assume that E|Y |2 < ∞ and define the
regression function of Y given X for PX -almost every x ∈ X by η(x) = E [Y |X = x] . The
square loss function is defined for any (x, y) ∈ X × R and f ∈ F by `(f, (x, y)) = (y − f(x))2.
The square risk is

R(f) = E [`(f, (X,Y ))] = ‖η − f‖2L2(PX) + E
[
ζ2
]
,

where ζ = Y − η(X) is usually called the noise. In particular, f∗ = η is a minimizer of R(·) over
F and the minimum achievable risk is R∗ = E[ζ2].

For the second example, we consider F = L1(X ,A, PX). Assume that E|Y | <∞ and define
a conditional median function of Y given X for PX -almost every x ∈ X by

m(x) ∈ {m ∈ R : P [Y ≤ m|X = x] ≥ 1/2 and P [Y ≥ m|X = x] ≥ 1/2}.

The L1-loss function is defined for any (x, y) ∈ X × R and f ∈ F by `(f, (x, y)) = |y − f(x)|.
The L1-risk is

R(f) = E [`(f, (X,Y ))] = E|Y − f(X)|.

For this example, any conditional median function m(·) = f∗(·) is a minimizer of R(·) over F .

The density estimation model

Let (Z, T , µ) be a measured space and take Z to be a random variable with values in Z. We
assume that the probability distribution P of Z is absolutely continuous with respect to µ and
denote by f∗ one version of its density. Consider F the set of all density functions on (Z, T , µ),
i.e., the set of all T -measurable functions f : Z → R+ that integrate to 1. We consider the loss
function `(f, z) = − log f(z) for any z ∈ Z and f ∈ F . The corresponding risk computes as

R(f) = E [`(f, Z)] = K(f∗|f)−
∫

Z
log(f∗(z))dP (z)

where K(f∗|f) =
∫
Z log

(
f∗(z)/f(z)

)
dP (z) is the Kullback-Leibler divergence between f∗ and f .

Thus f∗ is a minimizer ofR(·) over F and the minimum achievable risk isR∗ = −
∫
Z log(f∗(z))dP (z).

Instead of using the Kullback-Leibler loss, one can use the quadratic loss. The corresponding
loss function is `(f, z) =

∫
Z f

2dµ− 2f(z) for any z ∈ Z and f ∈ F . Using this loss function, the
risk of any f ∈ F works out as

R(f) = E [`(f, Z)] = ||f∗ − f ||2L2(µ) −
∫

Z
(f∗(z))2dµ(z).

Thus the density function f∗ is a minimizer of R(·) over F and the corresponding minimal risk
is R∗ = −

∫
Z(f∗(z))2dµ(z).

The classification model

Let (X ,A) be a measurable space. We assume that the space Z = X × {−1, 1} is endowed
with an unknown probability measure P , and consider a random pair Z = (X,Y ) which takes
on values in Z and whose probability distribution is P . Denote by F the set of all measurable
functions from X to R, and furthermore let φ be a function from R to R. For any f ∈ F consider
the φ−risk, R(f) = E[`(f, (X,Y ))], where the loss function is given by `(f, (x, y)) = φ(yf(x))
for any (x, y) ∈ X × {−1, 1}. In many situations, a minimizer f∗ of the φ−risk R(·) over
F (or the sign of f∗, if the latter takes on arbitrary real values) is equal to the Bayes rule
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f∗(x) = Sign(2η(x) − 1), ∀x ∈ X , where η(x) = P(Y = 1|X = x) (cf. [121] and [14]). Classical
examples of function φ are

x −→ 1(x≤0) classical loss or 0− 1 loss
x −→ max(0, 1− x) hinge loss (SVM loss)
x −→ log2(1 + exp(−x)) logit-boosting loss
x −→ exp(−x) exponential boosting loss
x −→ (1− x)2 squared loss
x −→ max(0, 1− x)2 2-norm soft margin loss

1.1.2 General notations

A subset F ⊂ F is called a model. Given a model F and a loss function `, the loss functions
class or loss class is the set

`F = {`f : f ∈ F} where `f = `(f, ·).

In what follows, we assume that the minimal risk over F is always achieved. Such a minimizer
is called an oracle. We chose an oracle f∗F ∈ argminf∈F R(f). For any f ∈ F , the excess loss of
f is the function Lf = `f − `f∗F and the set of all the excess loss functions is called the excess
loss functions class or the excess loss class and is defined by

LF = {Lf : f ∈ F} where Lf = `f − `f∗F .

We also consider another excess loss class. In this case, loss functions are compared with the loss
function of the best element f∗ in F . For a given f ∈ F , we denote the excess loss function with
respect to f∗ by Ef = `f − `f∗ and the excess loss functions class with respect to f∗ is defined by

EF = {Ef : f ∈ F} where Ef = `f − `f∗ .

Throughout the manuscript, we denote absolute constants or constants that depend on other
parameters by c, C, c1, c2, etc., (and, of course, we will specify when a constant is absolute and
when it depends on other parameters). The values of these constants may change from line to
line. The notation x ∼ y (resp. x . y) means that there exist absolute constants 0 < c < C such
that cy ≤ x ≤ Cy (resp. x ≤ Cy). If b > 0 is a parameter then x .b y means that x ≤ C(b)y
for some constant C(b) depending only on b. We denote by `dp the space Rd endowed with the

`p norm ‖x‖`dp =
(∑

j |xj |p
)1/p. The unit ball there is denoted by Bd

p and the unit Euclidean

sphere in Rd is Sd−1.
.

1.2 Oracle inequalities and classical procedures

Oracle inequalities are in Learning Theory as important as rates of convergence in Statistics.
Given a Learning setup, many authors have been working on proving Oracle inequalities for
some particular procedures. Trying to prove “optimal” oracle inequalities is one of the main
topics of this work as well. The concept of optimality of oracle inequalities is close in nature to
the one of minimax rate of convergence in Statistics and a precise definition will be given below.
We first start to recall the classical setups and problems treated in Learning theory.
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1.2.1 Three setups and three problems

Problems in Learning theory usually start with a set of n data and a large linear space F . If
one is able to determine some subset F ⊂ F of “small complexity” such that the best element
in F may be of some special interest for the learning problem we want to solve (for instance,
a good predictor of Y if the set of data are like input/output) then one may consider what
we call the “Model setup”. But, it is not always possible to find some subset F ⊂ F of small
complexity such that an oracle in F may be interesting for the learning problem we have in
mind. Either because the property we are looking for (smoothness or low-dimensionality, etc.)
cannot be characterized by a set F of small complexity. In this circumstance, one may introduce
some criterion function crit : F → R characterizing the property we have in mind. One of the
main issue in this setup is to construct, from this criterion function, a function reg : F → R
“regularizing” the empirical risk (this is the purpose of Section 3.5). This is what is called the
“regularization setup” (cf. Section 1.2.3 for more details on the motivation behind this setup).
Either, the model F is too large so that classical procedures like the ERM may fail due to a
phenomenon called the “over-fitting” (cf. Section 1.2.4 for more details on this phenomenon).
In this case, we usually write F as an increasing sequence M of sub-models with increasing
complexity and we look for a way to “penalize large models”. Since large models are the ones
for which the ERM may perform badly. This framework is called the “Model Selection setup”.
To summarize, there are mainly three different setups in learning theory with different statistical
motivations behind each one of them:

• Model setup: we are given a model F ⊂ F . Usually, the set F is not too complex
compared to the number of observations. The best element in F is of special interest. A
natural candidate is thus the ERM over F . The study of the ERM in this setup is carried
out in Section 2.2 and Section 3.3.

• Regularization setup: We are given a criterion function crit : F → R+ characterizing
some property (low-dimensional structure or smoothness, etc.) or having some special im-
plementation properties. We want to use this criterion function to regularize the empirical
risk by constructing what is called a regularizing function reg : F → R. In this setup,
natural candidates are the regularized ERM procedures. These procedures are studied in
Section 3.5.

• Model Selection setup: We are given a family M of models. We want to construct
some function pen :M→ R penalizing large models. In this setup, the natural procedure
is the penalized estimator. It is studied in Section 3.6.

For each of the three setups, we consider three problems: non-exact prediction, exact pre-
diction and estimation. As an introduction, let us present these three problems in the Model
setup in which we are given a model F ⊂ F .

• Exact prediction problem: construct a procedure having a risk close to inff∈F R(f)
in expectation or in deviation. For this problem, it is important to note that we want
to compare the risk of estimators to the exact minimal risk inff∈F R(f) with a leading
constant 1. This is the problem treated in Chapter 2 in aggregation theory in a broad
sense.

• Non-exact prediction problem: construct a procedure having a risk close to (1 +
ε) inff∈F R(f) for some ε > 0 — still in expectation or deviation. This problem is studied
in Chapter 3. In particular, it is interesting to underline the difference with the exact
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prediction problem for which the leading constant has to be 1 whereas for the non-exact
prediction problem, the leading constant is 1 + ε strictly greater than 1.

• Estimation problem: construct a procedure f̂n having an excess risk R(f̂n)−R(f∗) with
respect to the best element f∗ ∈ F as close as possible to (1 + ε) inff∈F

(
R(f) − R(f∗)

)

for some ε > 0 with high probability or in expectation.

These three problems can as well be considered in the two other Regularization and Model
Selection setups (cf. Section 1.2.3 and Section 1.2.4). Given one of the three setups, we will
see that depending on the problem considered, different assumptions will be introduced (the
Bernstein condition on `F or LF or the Margin assumption on EF ), different residual terms
will be obtained and different way of regularizing and penalizing will come out of our study in
Chapter 3. From a mathematical point of view, the study of the three problems in the three
different setups will be understood through nine different inequalities which are called oracle
inequalities. We consider three types of oracle inequalities depending on the setup: “oracle
inequalities on models” (when we are given a model F in the model setup) — these inequalities
are also called risk bounds —, “regularized oracle inequalities” (when we are given a criterion
function crit : F → R+ in the regularization setup) and “penalized oracle inequalities” (when
we are given a family M of models in the Model Selection setup). For each one of these oracle
inequalities, there are three type of oracle inequalities depending on the goal we pursue: non-
exact prediction, exact prediction or estimation.

All the results in Chapter 2 deal with the exact prediction problem in the model setup.
In Chapter 3, we study the three classical procedures in the different setups: empirical risk
minimization, regularized empirical risk minimization and penalized estimators, in the context
of the three different problems. We introduce now the different oracle inequalities and the
classical procedures for the three setups and the three problems.

1.2.2 Model setup: oracle inequalities and Empirical Risk Minimization

Let F ⊂ F be a model. In Learning theory, one wants to assume as little as possible on the
class F , or on the probability measure P . The aim is to construct procedures f̂n such that, for
some ε ≥ 0, with high probability,

R(f̂n) ≤ (1 + ε) inf
f∈F

R(f) + rn(F ), (1.2.1)

for the exact and non-exact prediction problems, or, for the estimation problem,

R(f̂n)−R(f∗) ≤ (1 + ε) inf
f∈F

(
R(f)−R(f∗

)
) + rn(F ). (1.2.2)

The role of the residual term (or rate) rn(F ) — which may depend on the probability distribution
P (like the variance of the noise or some uniform bound) — is to capture the “complexity” of
the problem, and the hope is to make it as small as possible.

When rn(F ) tends to zero as n tends to infinity, Inequality (1.2.1) is called an oracle in-
equality. When ε = 0, we say that f̂n satisfies an exact oracle inequality (the term sharp oracle
inequality has been also used) and when ε > 0 it satisfies a non-exact oracle inequality. Note
that inequalities (1.2.1) and (1.2.2) have been also called risk bounds since they can be seen as
a bound of the type “bias term + variance term”. In the present manuscript, a best element
f∗F ∈ argminf∈F R(f) is called an oracle that is the reason why we call inequalities (1.2.1) and
(1.2.2) oracle inequalities.
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A natural algorithm in this setup is the empirical risk minimization procedure (ERM) (ter-
minology due to [114]), in which the empirical risk functional

f 7−→ Rn(f) =
1
n

n∑

i=1

`f (Zi) =
1
n

n∑

i=1

`(f, Zi)

is minimized and produces
f̂ERMn ∈ argmin

f∈F
Rn(f). (1.2.3)

Note that when Rn(·) does not achieve its infimum over F or in case of ties, we define f̂ERMn

to be an element in F such that R(f̂ERMn ) ≤ inff∈F R(f) + 1/n. This algorithm has been
extensively studied, for instance, in [57, 15, 77]. We will also study this algorithm in Chapter 2
and Chapter 3.

1.2.3 Regularization setup: regularized Oracle inequalities and Regularized
Empirical Risk Minimization

Now, we turn to the study of regularized empirical risk minimization procedures and to the
introduction of regularized oracle inequalities. Usually a model F is chosen or constructed
according to the belief that an oracle f∗F in F is close, in some sense, to some minimizer f∗ of
the risk function in some larger class of functions F (for example, in the regression model with
respect to the square loss and for F = L2(PX), f∗ is the regression function of Y given X).
Hence, by choosing a particular model F ⊂ F , it implicitly means that we believe f∗ to be close
to F in some sense. It is not always possible to construct a class F that captures a property f∗

is believed to have (e.g., a low-dimensional structure or some smoothness properties). In such
situation, we are not given any model F (usually the set F is too large to be called a model),
but a functional crit : F −→ R+, called a criterion, that characterizes each function according
to its level of compliance with the desired property (roughly speaking, the smaller the criterion,
the “closer” to the property). For instance, when F is a reproducing kernel Hilbert space (for
a detailed exposition on RKHS and SVM we refer to [97]) one can take crit(f) = ‖f‖F where
‖·‖F is the reproducing norm over F (for some RKHS, if ‖f‖F is small then f is smooth) or
when F is the set of all linear functionals in Rd: F = {f(·) =

〈
·, β
〉

: β ∈ Rd} then one may
choose crit(β) = ‖β‖`p for some p ∈ [0,∞] (for p = 0, ‖β‖`0 is the size of the support of β,
thus a small criterion in this case means that β belongs to a small dimensional space). Instead
of considering the ERM over the too large class F , we want to construct a procedure having
both good empirical performances and a small criterion. One idea, that we will not develop
here, is to minimize the empirical risk over the set Fr = {f ∈ F : crit(f) ≤ r} (cf., for instance,
[102, 16]) and try to find a data-dependent way of choosing the radius r. Another popular idea
is to regularize the empirical risk: consider a non-decreasing function of the criterion called
a regularizing function and denoted by reg : F −→ R+ (the choice of reg in function of crit
depends on the complexity of the family of sets (Fr)r≥0 and is the main purpose of Section 3.5
below) and construct

f̂RERMn ∈ argmin
f∈F

(
Rn(f) + reg(f)

)
. (1.2.4)

If the infimum of f → Rn(f) + reg(f) over F is not attained, we can consider any function
in F approximating this infimum up to a 1/n error term. But for simplicity, we will assume
that the infimum is achieved. The procedure (1.2.4) is called regularized empirical risk mini-
mization procedure. Regularized ERM procedures have been introduced to select functions with
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additional properties, like smoothness (for instance, SVM estimators in [97]) or an underlying
low-dimensional structure (e.g. the LASSO estimator) or having some particular computational
interest (like the `1-norm being the convex relaxation of the `0 function).

The calibration of the regularizing function in terms of the criterion function is the main
subject of Section 3.5. Intuitively, the regularizing function is an increasing function of the
criterion. One way of constructing a “good” regularizing function in terms of a criterion (so
that the regularized ERM satisfy some oracle inequalities) is by considering the complexity of
the family of classes

(
`Fr
)
r≥0

,
(
LFr

)
r≥0

or
(
EFr
)
r≥0

(depending on the problem we want to
solve). Once the regularizing function is constructed (usually as reg(f) = h(crit(f)), ∀f ∈ F
where h is an increasing function), we are interested in constructing estimators f̂n realizing the
best possible trade-off between the risk and the regularizing function over F : there exists some
ε ≥ 0 such that with high probability

R(f̂n) + reg(f̂n) ≤ (1 + ε) inf
f∈F

(
R(f) + reg(f)

)
(1.2.5)

for the exact and non-exact prediction problem, or, for the estimation problem,

R(f̂n)−R(f∗) + reg(f̂n) ≤ (1 + ε) inf
f∈F

(
R(f)−R(f∗) + reg(f)

)
. (1.2.6)

Using the same terminology as in (1.2.1), Inequality (1.2.5) is called a regularized oracle in-
equality. When ε = 0, (1.2.5) is called an exact regularized oracle inequality and when ε > 0,
(1.2.5) is called a non-exact regularized oracle inequality. Such oracle inequalities are proved in
Chapter 3.

1.2.4 Model Selection setup: penalized oracle inequalities and penalized es-
timators

We recall the setup of Model Selection as introduced in [76]. We are given a collection M of
models. For every model m ∈M, an ERM procedure is constructed:

f̂m ∈ argmin
f∈m

Rn(f). (1.2.7)

We know that for “large” or “complex” models m the ERM f̂m will have some tendency to stick
to the data. When the data are corrupted by noise this is not very good to stick to them because
in such a case, the procedure will have poor generalization capabilities. This phenomenon is
called “over-fitting” and penalty functions have been introduced to circumvent this drawback of
the ERM.

The role of the penalty function is to penalize large models and then to choose a model real-
izing a trade-off between empirical performances and the complexity measured by the penalty.
Therefore, finding the “right” way to penalize models has been an important topic for many
years and still is. This problem is studied in Section 3.6. Once a penalty function pen :M→ R+

has been constructed and after running the different ERM over all models m ∈ M, the second
step is now to select a model m̂ by

m̂ ∈ argmin
m∈M

(
Rn(f̂m) + pen(m)

)
. (1.2.8)

The penalized estimator studied in Model Selection is f̂bm. Once again, we assume that the
infima in (1.2.7) and (1.2.8) are achieved. The aim is thus to prove penalized oracle inequalities:
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for some ε > 0, with high probability,

R(f̂bm) ≤ (1 + ε) inf
m∈M

(
inf
f∈m

R(f) + pen′(m)
)
, (1.2.9)

where pen′ is proportional to pen up to some 1/n order additive terms. Note that, most of
the oracle inequalities in Model Selection have been obtained for the estimation risk: with high
probability,

R(f̂bm)−R(f∗) ≤ (1 + ε) inf
m∈M

(
inf
f∈m

R(f)−R(f∗) + pen′(m)
)
. (1.2.10)

Penalized estimators are studied in Section 3.6.

1.3 Margin assumption and Bernstein condition

The Margin assumption has been introduced by [107, 75] in a statistical setup and the Bernstein
condition has been introduced in the Learning theory setup by [15]. We first recall the definition
of the Margin assumption:

Definition 1.3.1 ([107]) We say that the triple (F , `, P ) satisfies the Margin assumption
with parameters (β,B) for some 0 < β ≤ 1 and B ≥ 1 when there exists f∗ ∈ F such that
R(f∗) = minf∈F R(f) and for every f ∈ F , E (`f − `f∗)2 ≤ B (R(f)−R(f∗))β . The parameter
β is called the Margin parameter and B the Margin constant.

Then, we recall the definition of the Bernstein condition:

Definition 1.3.2 ([15]) We say that the triple (F, `, P ) satisfies the Bernstein condition,
or that F or LF satisfies the Bernstein condition, with parameters (β,B) for some 0 < β ≤ 1
and B ≥ 1 when there exists f∗F ∈ F such that R(f∗F ) = minf∈F R(f) and for every f ∈ F ,
E
(
`f − `f∗F

)2 ≤ B (R(f)−R(f∗F ))β . The parameter β is called the Bernstein parameter and
B the Bernstein constant.

Note that the only formal difference between the two definitions is that for the Margin
assumption, we compare the loss functions `f , for any f ∈ F , with the loss function `f∗ where
f∗ is a risk minimizer over F and, for the Bernstein condition, `f is compared with `f∗F for any
f ∈ F where f∗F is a risk minimizer over F . This difference makes the two assumptions actually
very different in nature. The Margin assumption is a “statistical” assumption, measuring how
good is the statistical problem whereas the Bernstein condition is a “geometrical” assumption
measuring how good is the geometry of the system (F, `, P ). In the case of input/output data
with respect to the square loss function, this is the relative position of Y and {f(X) : f ∈ F} in
L2(Ω,A,P) which is the key geometrical aspect of the Learning problem which is characterizes
by the Bernstein condition.

As an example, consider the bounded regression model with respect to the square loss. This is
the regression model defined in Section 1.1.1 (in particular F = L2(PX) and f∗ is the regression
function of Y given X) where it is further assumed that for some b > 0 and for a model F ⊂ F ,
we have

|Y |, sup
f∈F
|f(X)| ≤ b and `f (x, y) = (y − f(x))2,∀f ∈ F, (x, y) ∈ X × R. (1.3.1)
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In this model, the Margin assumption is satisfied with the best possible Margin parameter β = 1
and Margin constant B = (4b)2 since for any f ∈ F ,

(
`f (x, y)− `f∗(x, y)

)2 =
(
(y − f(x))2 − (y − f∗(x))2

)2

= (2y − f(x)− f∗(x))2(f∗(x)− f(x))2 ≤ (4b)2(f∗(x)− f(x))2

and R(f)− R(f∗) = E(Y − f(X))2 − E(Y − f∗(X))2 = E(f(X)− f∗(X))2. On the other side,
the Bernstein condition may have a very bad Bernstein constant B of the order of

√
n (meaning

that this condition does not help at all). To see this phenomenon, the set of multiple minimizer

N(F, `,X) =
{
Y ∈ L2(Ω,A,P) : Card{` ∈ `F : E`(X,Y ) = min

`∈`F
E`(X,Y )} ≥ 2

}
(1.3.2)

plays an important role as noticed in [80]. To be more precise, we see Y,X and f(X) for all f ∈ F
as random variables defined on the “Kolmogorov probability space” (Ω,A,P). Thus, N(F, `,X)
is the set of all the measurable outputs Y : Ω → R such that there are at least two oracles f1

and f2 in F for the loss function ` and the random variable X : Ω → R such that `f1 6= `f2 in
L2(X × R, σ((X,Y )), P ). If the set N(F, `,X) where ` is the square loss, is not empty and the
output Y is n−1/2-close to this set (cf. Figure 1.1) then this configuration may be unfavorable
to the Bernstein condition. As an example, take Y ≡ 0 and define X by P[X = 1] = 1/2−n−1/2

and P[X = −1] = 1/2 + n−1/2. Let f1 = 1[0,1] and f2 = 1[−1,0], and consider the dictionary
F = {f1, f2}. It is easy to verify that the best function in F (the oracle) with respect to the
quadratic risk is f1 and that the excess loss function of f2, L2 = f2

2 − f2
1 = f2− f1, satisfies that

L2(X) = −X, EL2(X) = 2n−1/2 and σ2 = E
(
L2(X)− EL2(X)

)2 = 1− 4/n. (1.3.3)

For this example, the Bernstein constant is B = E(f1 − f2)2/EL2 =
√
n/2. The set N(F, `,X)

of multiple minimizer where ` is the quadratic loss, F and X are defined above is the set
of all the real-valued random variables Y ∈ L2(Ω,A, X) such that if f∗(X) = E[Y |X] then
E
[
f∗(X)(f1(X) − f2(X))

]
= 1/

√
n. In particular the distance of Y ≡ 0 to this set is equal to

1/
√
n. That is the reason why the Bernstein constant behaves like

√
n and, we will see later,

that the ERM performs badly in this context.

f2(X)

f1(X) F = {f1, f2}

L2(Ω,A,P)

N(F, `,X) = {Y ∈ L2(Ω,A,P) : Card{` ∈ `F : E` = min`∈`F E`} ≥ 2}

PL2
f2

= BPLf2 , B ∼
√
n

Y
∼ 1/

√
n

Figure 1.1: A bad geometrical situation for the Bernstein condition.
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Therefore, simple examples exist for which the Margin assumption holds but not the Bern-
stein condition. Nevertheless, the two assumptions take their roots in the same idea: a control
of the variance term by the expectation improves the concentration of the empirical mean and
the level above which the empirical and actual mean are comparable. Indeed, in the case of
a bounded random variable ζ (the study of a family of random variables indexed by a model
will be studied in Subsection 3.2 and leads to the idea of localization), the Bernstein inequality
yields, for any x > 0, with probability greater than 1− 2 exp(−x),

∣∣∣ 1
n

n∑

i=1

ζi − Eζ
∣∣∣ ≤ Kσ(ζ)

√
x

n
+K ‖ζ‖∞

x

n
(1.3.4)

where K > 0 is an absolute constant, σ(ζ) =
(
E(ζ −Eζ)2

)1/2 is the standard deviation of ζ and
ζ1, . . . , ζn are n i.i.d. copies of ζ. If one has Eζ2 ≤ BEζ then it follows from (1.3.4) that for any
x > 0, with probability greater than 1− 2 exp(−x), if Eζ ≥ 4K(4B + ‖ζ‖∞)(x/n) then

(1/2)Eζ ≤ 1
n

n∑

i=1

ζi ≤ (3/2)Eζ (1.3.5)

and if Eζ ≤ 4K(4B + ‖ζ‖∞)(x/n), then

∣∣∣ 1
n

n∑

i=1

ζi − Eζ
∣∣∣ ≤

(
8KB + 2K ‖ζ‖∞

)x
n

(1.3.6)

Then, under the assumption Eζ2 ≤ BEζ there is a phase transition regarding the expectation
Eζ at level of the order of 1/n such that above this level, the empirical mean and the actual
mean are comparable (1.3.5) and below this level the empirical mean and the actual mean are
both of the order of 1/n (1.3.6). These two properties are of particular interest from a statistical
point of view when applied to the random variables ζ = `f (Z) − `f∗(Z) (when one wants
to obtain estimation results and when the Margin assumption holds, see Theorem 3.2.4), or
ζ = `f (Z)− `f∗F (Z) (when one wants exact prediction results and when the Bernstein condition
holds, see Theorem 3.2.3) or even ζ = `f (Z) (when one wants non-exact prediction results, see
Theorem 3.2.2). Indeed, for such variables the isomorphic property (1.3.5) means that the risk
or the excess risk are comparable to their empirical version (meaning that what is observed is
actually the truth up to some multiplying constants) and the property (1.3.6) means that the
empirical (excess) risk and actual (excess) risk are both of a small 1/n order.

Although the idea behind the Margin assumption and the Bernstein condition are similar,
they are, in fact, very different in nature, and have been also introduced in the context of
different types of problems.

In the “Statistical framework” (cf. Section 1.4 for more details on what is called “Statistical
framework”), one is given a model F with an upper bound on its complexity (whatever way of
measuring the complexity is chosen) and an unknown target f∗ ∈ F , which is the minimizer of
the risk over the entire set F . In this framework, one usually assumes that f∗ belongs to F and
the aim is to construct an estimator f̂ = f̂(·,D) for which the estimation risk R(f̂)− R(f∗) or
any other “distance” between f̂ and f∗ tends to zero quickly as the sample size tends to infinity.
In this framework, the Margin assumption can improve this rate of convergence thanks to a
better concentration of empirical means of `(f, ·) − `(f∗, ·) around its mean [107]. The Margin
assumption for β = 1 compares the performance of each f ∈ F to the best possible element
in F , but it has nothing to do with the geometric structure of F . The Margin is determined
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for every f separately, because f∗ does not depend on the choice of F at all. The role of the
Margin assumption is best seen in the classification model with respect to the 0 − 1 loss (i.e.
`f (x, y) = 1f(x)6=y). Indeed, for η(x) = P[Y = 1|X = x] and f∗(x) = 1η(x)≥1/2 defined for any
x ∈ X , it has been proved in [107] and [22] that the following are equivalent:

1. there exists B > 0 such that E
(
`f − `f∗

)2 ≤ B
(
E(`f − `f∗)

)β for any {0, 1}−valued
measurable function f ,

2. there exists C > 0 such that for any t ≥ 0, P[|2η(X)− 1| ≤ t] ≤ Ctβ/(1−β).

Therefore, the Margin assumption over the set of all {0, 1}−valued measurable functions charac-
terizes the behavior of η around 1/2 which determines the quality of the classification problem.
In this setup, the Margin assumption is “statistical” in nature.

In the “Learning theory framework” (cf. Section 1.4 for more details on the difference
between the “Statistical framework” and the “Learning theory framework”), we do not assume
that f∗ belongs to F . The aim is to construct a statistic f̂n whose risk is as close as possible
to that of the best element f∗F ∈ F . By assuming that the excess loss class LF satisfies the
Bernstein condition, one can improve the error rate (see, e.g., [82, 15]). On the other hand,
the Bernstein condition involves a lot of geometry of the function class F , because f∗F might
change significantly by adding a single function to F or by removing one. In fact, the difficulty of
“learning theory” problems is determined by the trade-off between concentration and complexity,
and the geometry of the given class, since one measures the performance of the learning algorithm
relative to the best in the class. Assuming that f∗ ∈ F , as is usually done in classical statistics,
exempts one from the need to consider the geometry of F , but we do not have that freedom in
the Learning theory framework. The Bernstein condition should be seen as a tool characterizing
the geometry of the Learning problem form which concentration properties can be derived. This
is thus a condition characterizing the interplay between geometry and concentration for a given
Learning problem. For instance, in the bounded regression model with respect to the square
loss function, when the model is convex then the Bernstein condition is satisfied:

Proposition 1.3.3 Let F be a convex set of F . Consider the bounded regression model with
respect to the square loss (1.3.1). Let f∗F ∈ argminf∈F R(f) and, for any f ∈ F , set Lf =
`f − `f∗F . We have

PL2
f ≤ (4b)2PLf .

Proof. By convexity, we have for any f ∈ F,E
(
(Y − f∗F (X))(f(X) − f∗F (X))

)
≤ 0.

Therefore, for any f ∈ F ,

PLf = ‖Y − f(X)‖22 − ‖Y − f
∗
F (X)‖22

= −2E
(
(Y − f∗F (X))(f(X)− f∗F (X))

)
+ ‖f∗F − f‖

2
2 ≥ ‖f

∗
F − f‖

2
2 .

The proof follows from the fact that for any f ∈ F ,

PL2
f = E(2Y − f(X)− f∗F (X))2(f(X)− f∗F (X))2 ≤ (4b)2 ‖f∗F − f‖

2
2 .

Note that an interesting condition has been introduced in [61] in the same spirit as the
Bernstein condition and which is of particular interest in the case where the model F has
multiple minimizers:

∀f ∈ F,∃f∗F ∈ F (0) : E
(
`f − `f∗F

)2 ≤ B
(
E(`f − `f∗F )

)β
, (1.3.7)
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where F (0) = {f ∈ F : R(f) = minf∈F R(f)} is the set of oracles in F . It is mentioned in
[61] that the same results obtained in [61] under the Bernstein condition for the ERM can be
obtained under (1.3.7) as well. The advantage of this condition can be seen on the two functions
case F = {f1, f2} and for a target Y in the set of multiple minimizers N(F, `,X). In this
situation, the Bernstein condition does not hold since R(f1) = R(f2) and E(`f1 − `f2) > 0 (since
`f1 6= `f2 in L2(Z, σ(Z), P )) but the ERM f̂n satisfies a very good oracle inequality since with
probability one R(f̂n) = minf∈F R(f). Thus in this particular example, the Bernstein condition
does not reflect the quality of prediction of the ERM (since it does not hold) whereas (1.3.7)
does (since F (0) = F — any element in F is an oracle).

Finally, note that in [3, P10], a “local margin assumption” was introduced: there exists
f∗ ∈ F such that R(f∗) = minf∈F R(f) and for every f ∈ F , E (`f − `f∗)2 ≤ B (R(f)−R(f∗))β

for some 0 < β ≤ 1 and B ≥ 1. This condition is weaker than the “global” margin assumption
of Definition 1.3.1 which requires that all the functions in F satisfies this condition whereas the
local margin assumption requires this property only on the model F .

1.4 Some differences between Statistics and Learning Theory

In this last introductory section, we would like to underline some points which have already
been discussed before concerning some differences between the Statistical framework and the
Learning theory framework. Both problems start with the same batch of data. But the analysis
of these data may be different if one adopts the Statistical or the Learning point of view.

For instance, consider a set of data D of the form input/output (X1, Y1), . . . , (Xn, Yn). Given
a new input X, we want to be able to predict the associated output Y in agreement with what
has been observed so far (here, we assume that (X,Y ) is distributed like the (Xi, Yi)’s). In
particular, we want to construct a function f̂n : X ×

(
X ×R

)n → R such that f̂n(X,D) is close
to Y in some sense.

In Statistics, we start with the remark that the best σ(X)-measurable function approaching
Y in L2 is the regression function of Y given X denoted by f∗. Thus, instead of predicting
the output Y one should estimate f∗(X) first. Because the best way to predict Y given X is
by f∗(X). The statistician is thus looking for a function f̂n(·,D) close to f∗ in L2(PX) (other
measure of proximity can also be considered, like Lp(PX) or Lp(λ) where λ is some Lebesgue
measure, or pointwise risk, etc.). We can now translate the prediction problem as the following
problem: estimate f∗ from noisy point-wise observations Yi = f∗(Xi) + εi, i = 1, . . . , n of f∗

where εi = Yi − f∗(Xi) is such that E[εi|Xi] = 0, i = 1, . . . , n. Of course, even in the free
noise setup εi = 0 — meaning that Y is a function of X — there is no hope to estimate in L2

the function f∗ just from f∗(X1), . . . , f∗(Xn). Therefore, if one wants to estimate f∗ we have
somehow to know more about f∗ than just f∗ ∈ L2(PX). This is the point where the Statistician
assumes that f∗ has some property. In particular, that f∗ belongs to some functions space F ⊂ F
called a model. Many different models have been studied in Statistics and, for many classes F ,
we know how to construct optimal procedures achieving, up to some multiplying constant, the
minimax rate of convergence over F defined by:

infbfn sup
f∗∈F

Ef∗
∥∥∥f̂n − f∗

∥∥∥
2

L2(PX)
(1.4.1)

where the infimum is taken over all statistic f̂n constructed from n observations (X1, Y1), . . . , (Xn, Yn)
and Ef∗ denotes the expectation with respect to the data D when E[Yi|Xi] = f∗(Xi), i = 1, . . . , n.
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The main difference between Statistics and Learning theory is that, in Learning theory, we
don’t assume that f∗ belongs to some particular space F or has some particular properties: we
want to assume as little as possible on the way the data have been generated.

In learning theory, we are given data and a model F ⊂ F . Sometimes, instead of being
given a model F , we are given a criterion crit : F → R (from which we want to construct some
regularizing function to “regularize” the empirical risk) or a family M of models (for which we
want to construct some penalty function to “penalize the empirical risk”). But for the purpose
of this section, let us consider the case where we are given a model F — what we called the
Model setup in Section 1.2.1. The model F may have nothing to do with the data but somehow
we think that a best element f∗F ∈ argminf∈F R(f) in F (for a given risk function R(·) and
where we assume that the infimum of R(·) over F is achieved) will provide a good prediction of
Y by f∗F (X). We do not assume that f∗ is in F or even close to F . We only want to construct
a procedure f̂n having a prediction risk comparable to the minimal risk over F . That is why we
are interested in oracle inequalities. That is for some ε ≥ 0, inequalities of the form

R(f̂n) ≤ (1 + ε) min
f∈F

R(f) + rn(F )

or
R(f̂n)−R(f∗) ≤ (1 + ε) min

f∈F

(
R(f)−R(f∗)

)
+ rn(F )

that hold with large probability. The role played by rn(F ) is the same as the one played by the
rates of convergence in Statistics. In particular, we can define optimal residual terms rn(F ) in the
same spirit as minimax rate of convergence (cf. for instance Definition 2.1.1 and Definition 2.1.2
in Chapter 2).

In particular, in oracle inequalities the bias term (“distance” of the best element in the model
to the truth) is left untouched. Somehow, only the stochastic term is analyzed in Learning theory.
Unlike in Statistics, there is no need for approximation theory of functions spaces in Learning
theory (usually once we assume f∗ ∈ F in Statistics, we try to approximate f∗ by some finite
dimensional objects or when F is very large the Statistician will try to write F as an increasing
sequence of models with increasing complexity). On the other side there is no need for geometry
in Statistics since the target is suppose to be inside the model thus somehow we don’t have to
look at F from “outside”. Moreover most of the models in Statistics are convex — except in
classification. Meaning that models in Statistics have already a good geometry in general.

That is the reason why even though the Margin assumption and the Bernstein condition look
similar they are in fact different. Because they have been introduced in different context and
they are related to different aspect of the models. Nevertheless, when we study the problem of
aggregation (which is a typical problem in Learning theory) under the Margin assumption (which
is an assumption in Statistics), the quantity R(f∗F ) − R(f∗) measuring the “distance” of f∗ to
the model F drives the residual term. Meaning that when f∗ gets closer to F then the Bernstein
condition gets “closer” to the Margin assumption and then classical residual terms under the
Bernstein condition can be recovered in this “mixed setup” (a Learning theory problem under
the Statistical Margin assumption).

From a technical point of view, this two theories share common tools in concentration and
complexity theory. But, they also have their own background. In Statistics, many tools from
approximation theory have been used to analyze the “bias term”. In Leaning theory, the role
played by the geometry aspect is of first importance. This is this aspect of Learning theory that
is underlined in Chapter 2.



Chapter 2

The trade-off complexity/geometry
in aggregation

Given a finite set F ⊂ F , the problem of aggregation is to construct an estimator whose risk
is as close as possible to the risk of the best element in F . Formally, we want to construct
procedures f̂n such that with large probability

R(f̂n) ≤ min
f∈F

R(f) + rn(F )

or in expectation
ER(f̂n) ≤ min

f∈F
R(f) + rn(F )

where, like before, rn(F ) is called the residual term or the rate of aggregation that we want as
small as possible. We are thus interested in proving exact oracle inequalities for finite models.

For this paradigm, it is possible to define an optimal rate of aggregation: this is the smallest
price that one has to pay to mimic, in expectation or deviation, the best element in a function
class F of cardinality M from n observations. A natural candidate is the ERM over F . Our
first result is to exhibit the geometrical reasons why this procedure does not work for the
aggregation problem. Then, after understanding the role played by the geometry in this problem,
it is somehow natural to consider the ERM over the convex hull of F as a potential optimal
aggregation procedure. We will show that this is still not the case: the ERM over the convex
hull is sub-optimal for the aggregation problem. This result will follow from the study of the
complexity of the intersection bodies BM

1 ∩
√
rSM−1 when 1/M ≤ r ≤ 1. In particular, the ERM

over the convex hull of F fails to achieve the optimal rate of aggregation for some complexity
reasons.

Starting our analysis of the aggregation problem with these two facts: the ERM over F fails
for some geometrical reason and the ERM over the convex hull of F fails for some complexity
reason, it comes out that there is some sort of trade-off between the geometry and the complexity
in the aggregation problem. Roughly speaking the set F has a very good complexity but very
poor geometrical structure (this is a finite set), on the other side, the convex hull of F has a very
good geometry (this is a convex set thus when working with a 2-convex loss function, we can hope
for some gain in the approximation term) but a poor complexity: taking the convex hull of a set
may increase drastically its complexity. Therefore, we will consider a procedure realizing some
sort of optimal trade-off between complexity and geometry in the aggregation problem. It will
come out an optimal aggregation procedure. We will see that the optimal aggregation procedure
of J.-Y. Audibert in [7] is also based on this idea of “increasing the geometrical properties of F”
without “increasing its complexity by too much”.
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Then we study a classical aggregation procedure: the aggregate with exponential weights.
We will show that this procedure is suboptimal both in deviation and expectation for low
temperatures (temperature smaller than a constant).

We will then say some word about the aggregation problem under the Margin assumption
and the Bernstein condition.

We will end up this chapter with the study of the ERM over the convex hull for the Convex
aggregation problem where the point here is to construct procedures doing as good as the best
element in the convex hull of F .

2.1 The aggregation problem

The aggregation problem is a problem in Learning theory where we consider finite models. Note
that in the “PAC-Bayesian” community, infinite models endowed with an a priori probability
measure are also considered as aggregation problems but here our point of view is different and
we will only consider finite model F . The problem is to construct a procedure having a risk as
close as possible to the risk of the best element in F . This problem of aggregation is sometime
called Model Selection aggregation or (MS) aggregation (cf. [8, 28, 42, 47, 53, P14, 103, 107,
118, 20, 25, 40, 51, 57, P11, 119, 120, 117, 39, 54]). There are other aggregation problems like
the Convex aggregation problem (also called the (C) aggregation) where one wants to mimic the
best element in the convex hull of F (cf. [5, 24, 25, 28, 53, 103, 120]) or the Linear aggregation
problem (sometimes called the (L) aggregation) where one wants to mimic the best element
in the linear span of F (cf. [28, 47, 57, 103]). For these problems, it is possible to define
optimal aggregation procedures and optimal rates of aggregation in the same spirit as minimax
procedures and minimax rates of convergence in statistics. The optimal rates of aggregation for
the three problems have been obtained in [103] in the Gaussian regression model with respect to
the square loss function. Those rates are now used as benchmarks for the aggregation problem
in the sense that if a procedure achieves one of these rates then it is an optimal aggregation
procedure. A formal definition of the concept of optimality in aggregation is now recalled in
the bounded setup. As will be explained later, we consider two definitions of optimality: one
in expectation and the other in deviation. We first start with the definition of optimality in
expectation.

Definition 2.1.1 ([103]) Let b > 0. We say that (ψn(M))n,M∈N∗ is an optimal rate of
aggregation in expectation when there exists two positive constants c0 and c1 depending only
on b for which the following holds for any n ∈ N∗ and M ∈ N∗:

1. there exists an aggregation procedure f̃n such that for any set F ⊂ F of cardinality M and
any random variable Z satisfying |`(f, Z)| ≤ b a.s. for all f ∈ F , one has

ER(f̃n) ≤ min
f∈F

R(f) + c0ψn(M), (2.1.1)

2. for any aggregation procedure f̄n there exists a set F ⊂ F of size M and a random variable
Z such that |`(f, Z)| ≤ b a.s. for all f ∈ F and

ER(f̄n) ≥ min
f∈F

R(f) + c1ψn(M).

A procedure f̃n satisfying (2.1.1) is called an optimal aggregation procedure in expectation.
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An aggregation procedure f̃n is a procedure having a dictionary F and a set of data D for
arguments f̃n(·, F,D) = f̃n(·). In our setup, one can show (cf. [103]) that, in general, an
optimal rate of aggregation in expectation is lower bounded by (logM)/n. Hence, procedures
satisfying an exact oracle inequality like (2.1.1) — that is an oracle inequality with a factor one
in front of minf∈F R(f) — with the residual term ψn(M) = (logM)/n are said to be optimal.
There are very few aggregation procedures that have been proved to achieve this optimal rate.
Some of them will be recalled in great details in the following like exponential aggregating
schemes studied in [39, 6, 118, 7, 54], the “empirical star algorithm” introduced in [7] and the
“preselection/convexification algorithm” defined in [P14].

Unlike other problems, the aggregation problem has different properties depending on one
wishes to obtain results in expectation or in deviation. Because some procedures are optimal
in expectation but on a constant probability event they can perform poorly (and thus are
suboptimal in deviation). This surprising fact was first noticed in [7] and underlines the role
of convexity and more generally of the geometry in the aggregation problem. We study this
phenomenon in details in Section 2.3 but for now, we recall the definition of the optimality in
deviation for the aggregation problem in the bounded case.

Definition 2.1.2 ([P14]) Let b > 0. We say that (ψn(M))n,M∈N∗ is an optimal rate of aggre-
gation in deviation with confidence 0 < δ < 1/2 if there exists three positive constants c1(δ), c2

and c3 for which the following holds for any n ∈ N∗ and M ∈ N∗:

• there exists an aggregation procedure f̃n such that for any set F ⊂ F of cardinality M
and any random variable Z satisfying |`(f, Z)| ≤ b a.s. for all f ∈ F , one has, with
P⊗n-probability at least 1− δ,

R(f̃n) ≤ min
f∈F

R(f) + c1(δ)ψn(M), (2.1.2)

• for any procedure f̄n, there exists a set F of cardinality M and a random variable Z
satisfying |`(f, Z)| ≤ b a.s. such that with P⊗n-probability at least c2,

R(f̄) ≥ min
f∈F

R(f) + c3ψn(M).

A procedure f̃n is an optimal aggregation procedure in deviation with confidence δ if it
satisfies (2.1.2).

Note that optimal rates of aggregation are defined both in expectation and deviation up to some
absolute multiplying constants.

These two definitions of optimality can be easily adapted to the two other Convex and Linear
aggregation problems. Let us consider for a moment the problem of aggregation in deviation. In
a general manner the three aggregation problems can be stated as follows: construct a procedure
f̃ such that with high probability

R(f̃) ≤ C min
f∈∆(F )

R(f) + ψ∆(F )
n (M) (2.1.3)

with C = 1 and ∆(F ) is either F , or conv(F ) or span(F ). It is worth mentioning that the
leading constant C in (2.1.3) should be equal to one in the aggregation setup for at least two
reasons. First, there are deep mathematical differences in the analysis leading to exact oracle
inequalities (C = 1) and non-exact oracle inequalities (C > 1). In particular, the geometry of
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the set ∆(F ) is of first importance to obtain exact oracle inequalities whereas non-exact oracle
inequalities are mainly based on complexity and concentration arguments. In Chapter 3, we
study non-exact oracle inequalities and we underline the differences between exact and non-
exact oracle inequalities. Second, an exact oracle inequality for the prediction risk R(·) leads to
an exact oracle inequality for the estimation risk; namely, for the regression model with respect
to the square loss, by subtracting the risk of f∗, it follows from an exact oracle inequality on
the risk that with high probability

E
[
(f̃(X)− f∗(X))2|D

]
≤ min

f∈∆(F )
E
[
(f(X)− f∗(X))2

]
+ ψ∆(F )

n (M),

where f∗ denotes the regression function of Y given X. Such an oracle inequality, which esti-
mates the regression function, cannot follow from a non-exact oracle inequality. In other words,
exact oracle inequalities can provide prediction and estimation results whereas non-exact oracle
inequalities only provide prediction results. More details on the difference between exact and
non-exact oracle inequalities can be found in Chapter 3.

Following Definition 2.1.1, one can define the optimal rates of the (MS), (C) and (L) aggre-
gation problems, respectively denoted by ψ

(MS)
n (M), ψ(C)

n (M) and ψ
(L)
n (M) (see, for example,

[103]). For the square loss, it has been proved in [103] (see also [53] and [120] for the (C)
aggregation problem) that

ψ(MS)
n (M) =

logM
n

,ψ(C)
n (M) =





M
n if M ≤

√
n√

1
n log

(
eM√
n

)
if M >

√
n

and ψ(L)
n (M) =

M

n
.

Note that these rates obtained in [103] hold in expectation. Nevertheless, lower bounds in
deviation follow from the arguments of [103] for the three aggregation problems with the same
rates ψ(MS)

n (M), ψ(C)
n (M) and ψ

(L)
n (M). In other words, there exist two absolute constants

c0, c1 > 0 such that for any sample cardinality n ≥ 1, any cardinality of dictionary M ≥ 1 and
any aggregation procedure f̄n, there exists a dictionary F of size M such that with probability
larger than c0,

R(f̄n) ≥ min
f∈∆(F )

R(f) + c1ψ
∆(F )
n (M), (2.1.4)

where the residual term ψ
∆(F )
n (M) is ψ(MS)

n (M) (resp. ψ(C)
n (M) or ψ(L)

n (M) ) when ∆(F ) = F
(resp. ∆(F ) = conv(F ) or ∆(F ) = span(F )). Procedures achieving these rates in deviation
have been constructed for the (MS) aggregation problem ([7] and [P14]) and the (L) aggregation
problem [57]. So far, there is no example of a procedure that achieves the rate of aggregation
ψ

(C)
n (M) with a high exponential probability bound for the (C) aggregation problem (a result in

deviation follows from the result in expectation from [103] by Markov inequality but only with a
polynomial probability deviation). In Section 2.8, we construct an optimal aggregation procedure
in deviation (with exponential bound) for the Convex aggregation problem with respect to the
square loss function.

In what follows, we study the (MS) aggregation problem in the bounded regression model
with respect to 2-convex risk function for the upper bounds. All the lower bounds will be proved
for this model and with respect to the square loss function. The last subsection is devoted to
the problem of (C) aggregation in the bounded regression model with respect to the square loss
function.
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2.2 On the suboptimality of the ERM

In this section, we study lower bounds for the empirical risk minimization algorithm over gen-
eral models F which does not have to be finite. We want to understand the geometrical and
complexity reasons why the ERM is suboptimal for the aggregation problem. In particular, we
construct bad geometrical/complexity configurations for which the ERM performs poorly. This
study is performed in the noiseless setup sometimes called the function learning problem, in
which one observes n independent random variables X1, . . . , Xn distributed according to PX ,
and the values T (X1), . . . , T (Xn) of an unknown target function T .

The goal is to construct a procedure that uses the data D = (Xi, T (Xi))1≤i≤n with a risk as
close as possible to the best one in F ; that is, we want to construct a statistic f̂n satisfying that
for every n, with high P⊗nX -probability

R(f̂n) ≤ inf
f∈F

R(f) + rn(F ), (2.2.1)

where the risk of f is defined by R(f) = E`(f(X), T (X)) and ` : R2 → R is the loss function
that measures the pointwise error between T and f . The residue rn(F ) somehow captures the
difficulty of the learning problem given by the triple (F, `, PX) from different point of view:
complexity, geometry and concentration.

It is well known (see, for example, [115]) that if the class F is not too large, e.g., if it satisfies
some kind of uniform Central Limit Theorem, T is bounded by 1 and ` is reasonable, there are
upper bounds on rn(F ) that are of the form

√
Comp(F )/n, where Comp(F ) is a complexity

term that is independent of n. The algorithm that is used to produce the function f̂n is the
ERM over F .

There is a well developed theory on ways in which the complexity term may be controlled,
using various parameters associated with the geometry of the class (cf. [113] [115] [46] [101]
and references therein). It turns out that this type of error rate, ∼ 1/

√
n, is very pessimistic

in many cases. In fact, if the class is small enough, then under the Bernstein condition, (cf.
Definition 1.3.2), rn(F ) can be much smaller - of the order of Comp(F )/n.

In this section, we focus on “small classes” F in which empirical risk minimization performs
poorly despite the size of the class. It has been shown in [80] that under mild assumptions on `
and F , if there is more than a single function in

V = {`(f, T ) : E`(f, T ) = inf
f∈F

E`(f, T )},

then the following holds: for every n large enough there will be a perturbation Tn of T (with
respect to the L∞ norm), for which E`(·, Tn) has a unique minimizer in F , but the empirical
risk minimization algorithm preforms poorly trying to predict Tn on samples of cardinality n.
To be more exact, relative to the target Tn, with P⊗nX -probability at least 1/12,

R(f̂) ≥ inf
f∈F

R(f) +
c√
n
, (2.2.2)

where c is a constant depending only on F .
Although it is reasonable to expect that the larger the set V is, the more likely it is that the

empirical risk minimization algorithm will perform poorly, it does not follow from the analysis
in [80]. Therefore, our goal here is to provide a bound on the constant c in (2.2.2) that does
take into account of the complexity of the set of minimizers V .

Just like in [80], our method of analysis can be applied to a wide variety of losses. However,
for the sake of simplicity we will only present here what is arguably the most important case — in
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which the risk is measured relative to the squared-loss that will be denoted by `(x, y) = (x−y)2

in this section.
To explain our result we need several definitions from empirical processes theory. Other

standard notions we require from the theory of Gaussian processes can be found in [46].
For every set F ⊂ L2(X , PX) let {Gf : f ∈ F} be the canonical Gaussian process indexed

by F (that is, with the covariance structure EGtGs =
〈
s, t
〉
) and set H(F ) = E supf∈F Gf - the

expectation of the supremum of the Gaussian process indexed by F . Also, for every integer n
and δ let

oscn(F, δ) = E sup
{f,h∈F :‖f−h‖≤δ}

∣∣∣∣∣
1√
n

n∑

i=1

gi(f − h)(Xi)

∣∣∣∣∣ ,

where (gi)ni=1 are standard, independent Gaussian random variables and (Xi)ni=1 are independent,
distributed according to PX . It is known that if F is a class consisting of uniformly bounded
functions then it is a PX -Donsker class if and only if for every δ > 0, oscn(F, δ) tends to 0 as n
tends to infinity (cf. [46], p.301). Given f ∈ F , we consider the oscillation in a ball around f

oscn(F, f, δ) = E sup
{h∈F :‖f−h‖≤δ}

∣∣∣∣∣
1√
n

n∑

i=1

gi(f − h)(Xi)

∣∣∣∣∣ .

The quantity oscn(F, f∗F , δ) is a natural upper bound for some local complexity measure of the
problem we study here.

Let V be as above — the set of loss functions `(f, T ) that minimize the risk in F , select
f∗F ∈ F for which `(f∗F , T ) ∈ V and consider the following subset of excess loss functions

Q = {`(f, T )− `(f∗F , T ) : `(f, T ) ∈ V }.

It turns out that the desired constant in (2.2.2) can be bounded from below by two parame-
ters: the expectation of the supremum of the canonical Gaussian process indexed by Q and the
oscillation around f∗F . In particular, if Q is a rich set and one of the minimizers of f → E`(f, T )
is isolated, then for any n large enough the error of the empirical risk minimizer with respect
to a wisely selected target (denoted by Tλn in what follows) which is a perturbation of T will
be at least ∼ H(Q)/

√
n. The core idea of this section is that a small wisely chosen pertubation

of a target function T with multiple oracles (functions achieving minf∈F E`(f, T )) is badly esti-
mated by the empirical risk minimization procedure (for more discussion on this fact, we refer
the reader to [80]).

Although the general philosophy of the proof presented here is similar to the proof from [80],
it is much simpler and, in fact, it seems that the method used in the proof from [80] cannot
be directly extended to obtain the sharper estimate on the constant as we do here. Naturally,
this result recovers the previous estimates on lower bounds for the empirical risk minimization
algorithm from [68, 57, P12, 80].

Finally before stating the main result of this section, a word about particular notation. We
recall that if E`(·, T ) has a unique minimizer in F we denote it by f∗F . If the minimizer is not
unique, we fix one function in the set of minimizers and denote it by f∗F . For every f ∈ F , let
L(f) = `(f, T ) − `(f∗F , T ) be the excess loss function associated with the target T . For every
0 < λ ≤ 1 set Tλ = (1 − λ)T + λf∗F and denote Lλ(f) = `(f, Tλ) − `(f∗F , Tλ). It is standard to
verify (cf. [80]) that f∗F is a minimizer of E`(·, Tλ), and that under mild convexity assumptions
on ` that clearly hold if ` is the squared loss, it is the unique minimizer in F of f → E`(f, Tλ).
If X1, . . . , Xn is an independent sample selected according to PX , set Pnf = n−1

∑n
i=1 f(Xi)

and let Pf = Ef(X). Thus, E supf∈F |(Pn − P )f | is the expectation of the supremum of the
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empirical process indexed by F . Finally, when the target function is Tλ, we denote the function
produced by the empirical risk minimization algorithm by f̂λ — which is one element of the set
argminf∈F Pn`(f, Tλ). Finally, if E is a normed space we denote its unit ball by B(E), the inner
product of L2(PX) will be denoted by

〈
·, ·
〉

and the corresponding norm by ‖ · ‖.

Theorem 2.2.1 ([P15]) Let F ⊂ L2(PX) ∩B(L∞) be PX-Donsker (cf. [46]) and assume that
T ∈ B(L∞). Set ` to be the squared loss and put Q = {L(f) : f ∈ F, EL(f) = 0}. There exist
some absolute constants C1 and C2 and an integer N(F ) for which the following holds. For
every n ≥ N(F ), with P⊗nX -probability at least C1,

ELλn(f̂λn) ≥ C2
H(Q)√

n
δ2‖T − f∗F ‖,

where δ satisfies that for every integer n ≥ N(F ), oscn(F, f∗F , δ) ≤ C2H(Q)/
√
n and λn =

C2H(Q)/
√
n.

Thus, two parameters control the behavior of the constant in (2.2.2). The complexity of the
set of excess loss functions of the oracles in F with respect to T and the parameter δ. When one
of the oracles f∗F in F with respect to T is isolated then one can take δ as an absolute constant.
This leads to a lower bound of the order of H(Q)/

√
n which is optimal in the sense that an upper

bound can be obtained of the order of H(Q0)/
√
n for some set Q0 such that Q ⊂ Q0 ⊂ LF (cf.

for instance [15] or [57]) . In other settings the lower bound obtained in theorem 2.2.1 may fail
to match exactly with an upper bound. For instance, in settings where the oscillation function
oscn(F, f∗F , ·) of all the oracles f∗F in F with respect to T decrease to zero very slowly and at
the same convergence rate, the factor δ2 should deteriorate the lower bound whereas it seems
that it should not appear in the lower bound. Finally, the noiseless model considered here is the
worst case scenario to prove the lower bound. Indeed, adding some noise to the target function
would increase the lower bound.

F

T

minf∈F E(f − T )2

f∗FTλ

fM
fM−1

· · ·

f3

f2
f1

Figure 2.1: A bad geometrical situation for the ERM when the target function is Tλ.

Therefore a bad configuration for the ERM is given in Figure 2.1 when the target function is
Tλ = (1−λ)T +λf∗F for some well-chosen λ. In this situation, there is only one oracle but many
functions in F which are far from the oracle but having a risk larger than the minimal one only
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by a term of the order of 1/
√
n. In some sort, the ERM is going to be misleading by all these

“approximately” oracles. This will result in increasing the residual term of the ERM each time
one of this approximately oracles is wrongly chosen by the ERM. Therefore, if all the complexity
of the class lies in the set of almost oracles then this geometrical/complexity configuration is
very disadvantageous for the ERM. In particular, in the aggregation problem if all the elements
in F are at equal distance to some target T (with the distance from T to F being constant) then
a small perturbation Tλ of this target for λ = λn =

√
(logM)/n will result in a bad aggregation

configuration for the ERM and it follows from Theorem 2.2.1 that with P⊗nX -probability at least
C1, the ERM f̂λn when the target function is Tλn satisfies

R(f̂λn) ≥ min
f∈F

R(f) + C2

√
logM
n

.

This explains why the ERM procedure is suboptimal for the (MS) aggregation problem.
Note that in the two functions case (i.e. dictionary of size two), a simple argument shows

that the ERM is suboptimal. Consider the example introduced in (1.3.3). The oracle is f1 such
that R(f1) = 1/2 − 1/

√
n < 1/2 + 1/

√
n = R(f2). Therefore, every time the ERM chooses

f2, its risk is larger than the risk of the oracle by the quantity 2/
√
n. This happens when

Rn(f2) < Rn(f1). On the other side, it follows from Berry-Esséen that for any t ∈ R,

∣∣∣P
[
Rn(f2)−Rn(f1) ≤ R(f2)−R(f1) +

σt√
n

]
− P[g ≤ t]

∣∣∣ ≤ c0E|X|3√
n

where g is a standard real Gaussian random variable and σ2 = E(X − EX)2 = 1 − 4/n. In
particular, there exists some absolute constant n0 ∈ N such that when n ≥ n0, with probability
greater then P[g ≤ −3]− c0/

√
n ≥ c1 > 0,

Rn(f2)−Rn(f1) ≤ R(f2)−R(f1) +
σt√
n
≤ 2√

n
− 3√

n
< 0.

Therefore, with probability greater than c1, the ERM is somehow misleading and chooses f2

which implies that R(f̂ERMn ) = R(f2) = minf∈F R(f) + 2/
√
n. This proves a 1/

√
n lower bound

for the ERM showing that the ERM cannot achieves the optimal 1/n rate in the context of a
two functions class.

2.3 Improving the geometry by taking the convex hull?

In this section, our goal is to explain the role of convexity in the aggregation problem and
that, even though the ERM over the convex hull seems a natural candidate to be an optimal
aggregation procedure, we prove that this is not the case.

We first start with a remark from [7] showing that the progressive mixture rule is an optimal
aggregation procedure in expectation but not in deviation. This procedure is defined for a
dictionary F and a temperature parameter T > 0 by

f̄n =
1
n

n∑

k=1

f̃AEWk (2.3.1)

where fAEWk is the aggregate with exponential weights constructed on the first k observations.
The aggregate with exponential weights is defined for a dictionary F = {f1, . . . , fM} and n
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observations by

f̃AEWn =
M∑

j=1

θ̂jfj where θj =
exp

(
− n

TRn(fj)
)

∑M
k=1 exp

(
− n

TRn(fk)
) . (2.3.2)

The procedures f̃AEWk for 1 ≤ k ≤ n are thus the same as in (2.3.2) but with the empirical risk
Rn(·) constructed on n observations replaced by the empirical risk Rk(·) constructed on the first
k observations for all 1 ≤ k ≤ n. It has been proved by several authors [39, 54, 117, 119] that the
progressive mixture rule is such that for T large enough and under some convexity assumption
on the risk function,

ER(f̄n) ≤ min
f∈F

R(f) + c0
T logM

n
. (2.3.3)

This proves that f̄n is an optimal aggregation procedure in expectation. But at the same time,
[7] proves that f̄n is suboptimal in deviation since under some regularity condition on the loss
function, it is proved that for a dictionary of cardinality two and for some particular probability
distribution P , with constant P⊗n-probability,

R(f̄n) ≥ min
f∈F

R(f) +
c1√
n
. (2.3.4)

This phenomenon is very unusual in statistics since results in deviation can be derived from
results in expectation by using Markov inequality in general. But for the aggregation problem,
this particular aspect of the problem is due to the fact that aggregation procedures are allowed
to take values outside of the class F — for instance in the convex hull of F . This is in particular
the case of the progressive mixture rule f̄n. In such situations, the random variable R(f̄n) −
minf∈F R(f) may take negative values. Meaning that the aggregate does actually better than
the oracle. Such a gain is due to convexity properties of the problem: convexity of the convex
hull of F and of the risk function. In the simple two functions class example of Figure 1.1, we
can already see that there is a large part of the convex hull of F where aggregation procedures
taking values in this part will actually do better than the oracle itself. This is the case for the
progressive mixture rule: even if there is a constant probability event on which f̄n does worse
than the oracle by a residual term of the order of 1/

√
n there is also a large event on which it

is does much better than the oracle, better enough to compensate the loss of (2.3.4) and to be
finally optimal in expectation as in (2.3.3). Therefore, convexity of the convex hull and of the
loss function are key points in constructing optimal aggregation procedures.

We want to keep this idea that we can gain by taking aggregates with values in the convex
hull of F when the loss function is convex. This is even worse than that for the aggregation
problem, since it is proved in [54] (cf. also the counter-example in page 81 of [39] in density
estimation with respect to the KL-loss in the two functions case) in the Gaussian regression
model with respect to the square loss that any aggregation procedure taking its values only in F
are necessarily suboptimal: there exists two absolute positive constants c0 and c1 such that for
any aggregation procedure f̂n with values in F (called a selector in [54]) their exists a dictionary
F of size M and a probability measure P for (X,Y ) such that with P⊗n-probability greater
than c0

R(f̂n) ≥ min
f∈F

R(f) + c1

√
logM
n

. (2.3.5)

Note that the result in [54] is given in expectation but the same argument holds for a result in
deviation as well (like in (2.3.5)). In other words, we have to look at aggregation procedures
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that take values in larger set than F and for which we can hope some gain due to convexity. A
natural procedure that may come to mind is thus the ERM over the convex hull:

f̂ERM−C ∈ argmin
f∈conv(F )

Rn(f) (2.3.6)

where the convex hull of F is defined for Λ = {λ ∈ RM : λj ≥ 0 and ‖λ‖1 = 1} by

conv(F ) = {fλ : λ ∈ Λ} where fλ =
M∑

j=1

λjfj . (2.3.7)

It is tempting to believe that f̂ERM−C is indeed an optimal aggregation procedure and
this question was asked to us by P. Massart: Is the ERM procedure over conv(F ) an opti-
mal aggregation procedure for the (MS) aggregation problem? To see why it is tempting to
believe that f̂ERM−C is indeed optimal, we consider the square loss function `(f, (x, y)) =
(y − f(x))2 and a noiseless target function T (X) : Ω → R (the function learning setup). Set
f∗F ∈ argminf∈F R(f) and observe that f∗F minimizes the L2(PX) distance between T and F since
R(f) = E(f(X) − T (X))2. The motivation to consider the ERM f̂ERM−C over C = conv(F )
is natural, since one can expect that minh∈C ‖h − T‖L2(PX) = ‖f∗C − T‖L2(PX) is much smaller
than ‖f∗F − T‖L2(PX) (i.e. there should be some gain in the approximation term). Moreover,
it is reasonable to think that empirical risk minimization performed in C has a relatively small
error rate, which we denote by c1(δ)Ψ(n,M), compared to the gain in the approximation term.
Therefore, the ERM f̂ERM−C in C is such that with probability greater than 1− δ

‖f̂ERM−C − T‖2L2(PX) ≤ ‖f
∗
C − T‖2L2(PX) + c1(δ)Ψ(n,M)

≤ ‖f∗F − T‖2L2(PX) + c1(δ)Ψ(n,M)−
(
‖f∗F − T‖2L2(PX) − ‖f

∗
C − T‖2L2(PX)

)
,

and the hope is that the gain in the approximation error

‖f∗F − T‖2L2(PX) − ‖f
∗
C − T‖2L2(PX)

is far more significant than Ψ(n,M), leading to a “fast” aggregation rate.
Although this approach is tempting, it has serious flaws. First of all, it turns out that the

statistical error of empirical minimization in a convex hull of M well chosen functions may be
as bad as 1/

√
n (see Theorem 2.3.1 below). Second, it is possible to construct such a class

and a target for which ‖f∗F − T‖L2(PX) = ‖f∗C − T‖L2(PX), and thus, there is no gain in the
approximation error by passing to the convex hull.

The class we shall construct is F = {0,±φ1, · · · ,±φM} where (φi)M+1
i=1 is a specific orthonor-

mal family of L2([0, 1], σ(X), PX) and the target Y is φM+1(X), implying that f∗F = f∗C = 0.
For this choice of (F, Y,X) one can show for instance that Ψ(n,M) ≥ c1/

√
n when M =

√
n

and for a suitable absolute constant c1 (see Theorem 2.3.1 below). And, since there is no gain
in the approximation term, the resulting convergence rate will be of the order of 1/

√
n for the

aggregation of
√
n functions which is suboptimal since the optimal rate of aggregation in this

case is of the order of (log n)/n. We now formulate this result showing that the ERM over
the convex hull is a sub-optimal aggregation procedure in the bounded regression model with
respect to the square loss function.

Theorem 2.3.1 ([P14, P18]) There exist two absolute positive constants c0 and c1 for which
the following holds. For any integer n and M such that logM ≤ c0n

1/3, there exists a dictionary
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F of cardinality M and a probability distribution P for (X,Y ) such that, with P⊗n-probability
greater than 3/4

R(f̃ERM−C) ≥ min
f∈F

R(f) + c2ψn(M),

where ψn(M) = M/n when M ≤
√
n and

(
n log(eM/

√
n
))−1/2 when M >

√
n.

Note that the residual term ψn(M) of Theorem 2.3.1 is much larger than the optimal rate
ψ

(MS)
n (M) = (logM)/n for the (MS) aggregation problem. It shows that ERM in the convex

hull satisfies a much stronger lower bound than the one mentioned in (2.1.4) that holds for
any algorithm. This result is of particular importance since at a first glance it was conjectured
that f̃ERM−C could be an optimal aggregation procedure for the (MS) aggregation problem.
Theorem 2.3.1 shows that this is not the case (unless when M is like a constant since an upper
bound for f̃ERM−C is proved in Subsection 2.8 with a residual term M/n for M ≤

√
n which is

of the same order as logM/n when M is a constant). Therefore, the ERM over conv(F ) is not
an optimal aggregation procedure for the (MS) aggregation problem.

The proof of Theorem 2.3.1 requires two separate arguments (as in the proofs of the lower
bounds in [120] and [103]). The case M ≤

√
n is easier than the other case M >

√
n. Some hint

for this proof are given in Subsection 2.8 where it is in particular showed that the rate ψn(M)
is indeed optimal for the special example of Theorem 2.3.1.

Finally to answer the question of this subsection: taking the convex hull indeed improves the
geometry of the aggregation problem but it increases so much its complexity that the resulting
aggregation procedure f̂ERM−C is not optimal. Therefore, we keep this idea of taking the convex
hull since it can provide a gain in the approximation term but in the next subsection we will
perform it on a relative small subset of F which is empirically selected.

2.4 A good trade-off geometry/complexity: the convex hull of
the set of almost ERM

Fortunately, not all is lost as far as using empirical risk minimization in a convex hull, but one
has to be more careful in selecting the set in which it is performed. The key point is to identify
situations in which there is a significant gain in the approximation error by passing to the convex
hull.

Assume that there are at least two functions in F that almost minimize the risk function
R(·) in F in the non-noisy function learning setup. For the square loss function, this means that
there are at least two functions in F almost minimizing the L2 distance between the target T
and F . Also, assume that these two functions are relatively “far away” from each other in L2.
By the parallelogram equality (or by a 2-convexity argument for a more general loss function),
if f1 and f2 are “almost minimizers” then

∥∥∥∥
f1 + f2

2
− T

∥∥∥∥
2

L2(PX)

≤ 1
2
‖f1 − T‖2L2(PX) +

1
2
‖f2 − T‖2L2(PX) −

1
4
‖f1 − f2‖2L2(PX)

≈ ‖f∗F − T‖2L2(PX) −
1
4
‖f1 − f2‖2L2(PX).

Thus, if F1 is the set of all the almost minimizers in F of the distance to T and the diameter of
F1 is large (to be precise, larger than c

√
(logM)/n), the approximation error in the convex hull

of F1 is significantly smaller than in F . On the other hand, one can show that if the diameter of
F1 is smaller that c

√
(logM)/n, the empirical risk minimization algorithm in conv(F1) has a fast
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error rate (because one has a very strong control on the variances of the various loss functions
associated with this set — the diameter being an upper bound for these variances). Therefore,
in both cases — but for two completely different reasons — if f̃n is the empirical minimizer
performed in the convex hull of F1 then ‖f̃n−T‖2L2(PX) ≤ ‖f

∗
F −T‖2L2(PX) + c(δ)(logM)/n, with

probability greater than 1− δ.
Naturally, using F1 is not realistic because it is impossible to identify the set of almost

true minimizers of the risk in F using the given data. However, it turns out that one can
replace F1 with a set that can be determined empirically and has similar properties to F1. We
now introduce such a set. Let x > 0 be the confidence bound that we want to achieve. For
simplicity, we consider a sample D = (Xi, Yi)2n

i=1 of size 2n. We split D into two sub-samples,
D1 = (Xi, Yi)ni=1 and D2 = (Xi, Yi)2n

i=n+1. We use D1 to define a random subset of F :

F̂1 =
{
f ∈ F : Rn(f) ≤ Rn(f̂) + C1 max

{
α‖f̂ − f‖Ln2 , α

2
}}

, (2.4.1)

where C1 is a constant to be named later that depends only on the loss function ` and b,
Rn(f) = n−1

∑n
i=1 `(f, (Xi, Yi)) is the empirical risk constructed over D1, f̂ is a minimizer of

the empirical risk Rn(·) in F , Ln2 is the L2 space endowed by the random empirical measure
n−1

∑n
i=1 δXi and α = ((x+logM)/n)1/2. To make the exposition of our results easier to follow,

we avoided presenting the computation of explicit values of constants. Our analysis showed that
one can take C1 = 4‖`‖lip(1 + 9b) — which, of course, is not likely to be the optimal choice of
C1. The set F̂1 is an empirical approximating set of the set of almost minimizers of the risk in
F . We hope that taking the convex hull of this set will increase the complexity of the set F̂1

only when there is a gain in the approximation term.
Once constructed the intermediate set F ⊂ conv(F̂1) ⊂ conv(F ), the second step in the

algorithm is performed using the second part D2 of the sample D. The algorithm produces the
empirical risk minimizer (relative to D2) in the convex hull of F̂1:

f̃ ∈ argmin
h∈conv( bF1)

1
n

2n∑

i=n+1

`(h, (Xi, Yi)). (2.4.2)

Note that considering only the “significant” part of a given class (like we do by using the
subset F̂1 ⊂ F ) is an idea that already appeared, for example, in [74]. In that article, the authors
used this idea to construct a sharp data-dependent penalty function which outperforms most of
the well known data-dependent penalties like local Rademacher penalties (see [61] and reference
therein) that are usually computed over the entire class. However, this type of “random subset”
is different from the one we introduce here. Usually, the random subset consists of functions for
which the empirical risk is smaller than the empirical risk of the empirical risk minimizer plus a
sample-dependent complexity term; this complexity term does not depend on each f ∈ F , but
rather, on the entire set. Here, in place of the complexity term we use a “function-dependent”
additive term: the empirical Ln2 distance between the function and an empirical risk minimizer.

The argument we have in mind heavily depends on the convexity of the loss function since
we hope that some gain may follow from the approximation term. Such an approximation term
exists “only” when the class is convex (this is the case of conv(F̂1)) and the loss function is
convex. Actually, we need more than just convexity for the loss function since we need to be
able to quantify the gain in the approximation term. That is why we recall now the definition
of 2-convexity.
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Definition 2.4.1 [14] Let φ : R→ R and set Ψφ : L2(X ×R, P )→ R by Ψφ(f) = Eφ(f(X,Y )).
The modulus of convexity of Ψφ is the function δφ defined by

δφ(ε) = inf
f,g∈L2(P )
‖f−g‖2≥ε

{
Ψφ(f) + Ψφ(g)

2
−Ψφ

(f + g

2

)}
. (2.4.3)

We say that Ψφ is uniformly convex with respect to the L2(P ) norm if δφ is positive for every
ε > 0. We say that Ψφ is 2-convex when there exists some absolute constant cφ > 0 such that
δφ(ε) ≥ cφε2 for any ε > 0.

For instance, if φ(x) = x2 then for every f ∈ L2(P ), Ψφ(f) = ‖f‖2L2(P ). Thus, using the
parallelogram equality, for every ε > 0, δφ(ε) = ε2/4. Note that the assumption that δφ(ε) ≥ cφε2

for every ε > 0 is a quantitative way of ensuring that the functional Ψφ : L2(P ) 7−→ R enjoys
some convexity properties that are close to the parallelogram equality satisfied by the quadratic
function risk f 7−→ ‖f‖2L2(P ).

Assumption 2.4.1 Assume that the risk function can be written as R(f) = E`(f(X), Y ) for
any f ∈ L2(PX) where ` : R2 → R+ is a Lipschitz function on [−b, b]2 with a Lipschitz constant
‖`‖lip. Assume further that there exists a convex function φ : R → R+ such that for any
f, g ∈ L2(P ), EP `(f, g) = EPφ(f − g) and that the function Ψφ : f → EPφ(f) is 2-convex with
respect to L2(P ).

In particular, if `(x, y) = (x − y)2 then δφ(ε) ≥ ε2/4 and so the quadratic risk satisfies As-
sumption 2.4.1. For example, if `(x, y) = |x − y|p for 1 < p ≤ 2 then φ(x) = |x|p and
δφ(ε) ≥ [(p− 1)/4]ε2 (cf. [93]).

Now, we are in position to state the result on the optimality in deviation of the procedure
introduced in (2.4.2) for the problem of (MS) aggregation.

Theorem 2.4.2 ([P14]) For every b and ‖`‖lip there exists a constant c1, depending only on
b and ‖`‖lip, for which the following holds. For any x > 0, every class F of M functions,
any target Y (all bounded by b) and any loss ` satisfying Assumption 2.4.1, the empirical risk
minimizer f̃ over the convex hull of F̂1 satisfies, with P⊗2n-probability at least 1− 2 exp(−x),

R(f̃) ≤ min
f∈F

R(f) + c1(1 + x)
logM
n

,

Remark 2.4.3 Note that the definition of the set F̂1, and thus the algorithm, depends on the
confidence x one is interested in through the factor α. Thus f̃ also depends on the confidence.

Theorem 2.4.2 and the fact that (logM)/n is the best rate one can hope for the problem
of (MS) aggregation proves that the procedure introduced in (2.4.2) is an optimal aggregation
procedure in deviation with confidence δ for any 0 < δ < 1 and one can take c1(δ) = c1(1 +
log(2/δ)) for the constant introduced in Definition 2.1.2.

The idea of the proof is based on the study of two cases. Either the diameter of F̂1 is small,
then the ERM over conv(F̂1) will preform very well for some concentration reasons: the variance
term will be small because the diameter is small (this is for instance the situation in the example
considered in Theorem 2.3.1 of Subsection 2.3 for which the ERM over conv(F ) is suboptimal).
Or the diameter of F̂1 is large, and there will be a major gain in the approximation error by
considering functions in the convex hull of F̂1 (this is for instance the situation considered in
Figure 2.1 or Figure 1.1 for which the ERM over F is suboptimal).
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To conclude, the set conv(F̂1) realizes some kind of optimal trade-off between complexity
and geometry since the complexity of the set conv(F̂1) is much bigger than the one of F̂1 only in
situations where there is a huge gain in the approximation term due to the geometry of conv(F̂1).
Whereas in the other situation where complexities of both conv(F̂1) and F̂1 are comparable then
somehow the geometrical situation of the relative position of Y compared to F is good enough
so that even the ERM on F could be optimal and that there is no need to look for some gain
due to convexity.

fM−1

· · ·

f2

f1

fM

Y

Conv(F̂1)

f̃ ∈ Arg min
f∈Conv( bF1)

Rn(f)

Figure 2.2: Improving the geometry of F without increasing its complexity by too much. Taking
the ERM over the convex hull of almost ERM provides an optimal aggregation procedure in
deviation.

2.5 Other optimal aggregation procedures

A careful inspection of the proof of Theorem 2.4.2 shows that we don’t really need to take the
entire convex hull of F̂1 and that the convexity argument used to prove Theorem 2.4.2 is used
only for one segment in conv(F̂1) having a L2(P ) diameter comparable to the diameter of F̂1.
Thus we can consider other “convexification” of the set F̂1 and then minimize the empirical risk
on this set to obtain an optimal aggregation procedure. For instance, in [P5] we propose to
minimize the empirical risk over the set of all the segments in F̂1 or the star-shaped hull of F̂1 in
the ERM f̂ . We end up with three optimal aggregation procedures which can be implemented
following the steps:

(0. Initialization) Choose a confidence level x > 0 and define

α = αn,M (x) = b

√
logM + x

n
.

(1. Splitting) Split the sample D = (Xi, Yi)2n
i=1 into D1 = (Xi, Yi)ni=1 and D2 = (Xi, Yi)2n

i=n+1.
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(2. Preselection) Use D1 to define a random subset of F :

F̂1 =
{
f ∈ F : Rn,1(f) ≤ Rn,1(f̂n,1) + cmax

(
α
∥∥∥f̂n,1 − f

∥∥∥
n,1
, α2
)}
,

where ‖f‖2n,1 = n−1
∑n

i=1 f(Xi)2, Rn,1(f) = n−1
∑n

i=1(f(Xi)−Yi)2, f̂n,1 ∈ argminf∈F Rn,1(f).

(3. Aggregation) Choose F̂ as one of the following sets:

F̂ = conv(F̂1) = the convex hull of F̂1

F̂ = seg(F̂1) = the segments between the all functions in F̂1

F̂ = star(f̂n,1, F̂1) = the segments between f̂n,1 with the elements of F̂1,

and return the ERM relative to D2 :

f̃ ∈ argmin
g∈ bF Rn,2(g),

where Rn,2(f) = n−1
∑2n

i=n+1(f(Xi)− Yi)2.

These algorithms are illustrated in Figures 2.3 and are optimal aggregation procedures as it
is stated in the following theorem.

F̂1

conv(F̂1)
f4

f6
f1

f̂n,1

f3

f F

f7

f5

f9

f10

F̂1

seg(F̂1)
f4

f6
f1

f̂n,1

f3

f F

f7

f5

f9

f10

F̂1

star( f̂n,1, F̂1)
f4

f6
f1

f̂n,1

f3

f F

f7

f5

f9

f10

Figure 2.3: Aggregation algorithms: ERM over conv(F̂1), seg(F̂1), or star(f̂n,1, F̂1).

Theorem 2.5.1 ([P5]) For every b and ‖`‖lip there exists a constant c1, depending only on b
and ‖`‖lip, for which the following holds. For any x > 0, any class F of M functions, any target
Y all bounded by b and any loss ` satisfying Assumption 2.4.1, the three ERM f̃ over conv(F̂1)
or seg(F̂1) or star(f̂n,1, F̂1) as defined in the previous algorithm satisfy, with P⊗2n-probability at
least 1− 2 exp(−x),

R(f̃) ≤ min
f∈F

R(f) + c1(1 + x)
logM
n

,
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Another optimal aggregation procedure was constructed in [7] which is based on the same idea
of improving the geometry of F without increasing its complexity by too much. This procedure
is called the empirical star algorithm and is constructed in two steps. First, run the ERM over
F : f̂n ∈ argminf∈F Rn(f). Then consider the star-shaped hull star(F, f̂n) = ∪f∈F [f, f̂n] of all
the segments [f, f̂n] for f ∈ F and run the ERM over star(F, f̂n):

f̃n ∈ argmin
f∈star(F, bfn)

Rn(f). (2.5.1)

It is proved in [7] that in the bounded regression model with respect to the square loss, for any
dictionary F of cardinality M and any x > 0, with probability greater than 1 − exp(−x), the
empirical star algorithm f̃n satisfies

R(f̃n) ≤ min
f∈F

R(f) + c0
x+ logM

n
.

This procedure shares the same idea as the three other optimal aggregation procedures intro-
duced previously: obtaining some gain in the approximation term thanks to a convexity argu-
ment by “improving the geometry of F” without increasing the complexity of the set F by too
much, which is the case since the complexity of a star-shaped hull of a set is “comparable” to the
complexity of the set itself. Indeed, a key point in the proof of [7] is the parallelogram identity
satisfied by the square risk which provides a way of quantifying the gain in the approximation
term. This argument is in the same spirit as the 2-convexity assumption which is one way of
considering risk functions satisfying some kind of parallelogram identity/inequality. Finally, it
is interesting to note that the procedure (2.5.1) does not require to fit any constant whereas the
three aggregation procedures that we proposed require to fit a constant in the preselection step
that is for the construction of F̂1.

2.6 Suboptimality of the aggregate with exponential weights for
low temperatures

It is now well understood that to have any chance of constructing optimal aggregation proce-
dures, one has to consider aggregation procedures taking values in larger sets than F , and the
most natural set that may come to mind is the convex hull of F . The aggregate with expo-
nential weights (AEW for short) takes its values in the convex hull of F and has been a very
popular candidate for an optimal procedure. It was one of the first procedures to be studied in
aggregation theory [54, 8, P11, 71, 39, 6, 118, 42]. The AEW was defined in (2.3.2) but for the
reader convenience we recall here its definition

f̃AEWn =
M∑

j=1

θ̂jfj where θ̂j =
exp

(
− n
TRn(fj)

)
∑M

k=1 exp
(
− n
TRn(fk)

) (2.6.1)

for the dictionary F = {f1, . . . , fM}. The parameter T > 0 is called the temperature1.
So far, there has been mainly three results surrounding the problem of the optimality of the

AEW. First, the progressive mixture rule is optimal in expectation for T larger than some pa-
rameters of the model (see [39], [117], [119], [54], [8] or [9]) and under some convexity assumption

1This terminology comes from Thermodynamics, since the weights (bθ1, . . . , bθM ) can be seen as a Gibbs measure
with temperature T on the dictionary F .
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on the loss function (cf. [9] for more details and for other procedures related to the progressive
mixture rule). This procedure was defined in (2.3.1) and its optimality in expectation is recalled
in (2.3.3).

Second, the optimality in expectation of the AEW was obtained in [42] for the regression
model Yi = f(xi) + εi with a deterministic design x1, . . . , xn ∈ X with respect to the risk
‖g − f‖2n = n−1

∑n
i=1(g(xi)− f(xi))2 (with its empirical version being Rn(g) = n−1

∑n
i=1(Yi −

g(xi))2); that is, it was shown that for T ≥ cmax(b, σ2) (where σ2 is the variance of the noise
ε),

E
∥∥∥f̃AEWn − f

∥∥∥
2

n
≤ min

g∈F
‖g − f‖2n +

T logM
n+ 1

. (2.6.2)

Third, in [2], [6] and [40], the authors proved that in the high temperature regime, the AEW
can achieve the optimal rate (logM)/n under the Bernstein condition both in expectation and
in deviation.

Despite its long history, there has been no result on the optimality (or suboptimality) of the
AEW in the regression model with random design in the general case (when the dictionary does
not necessarily satisfy the Bernstein condition). In this section, we address this issue for the low
temperatures regime by proving the following:

- AEW is suboptimal for low temperatures T ≤ c1 (where c1 is an absolute positive con-
stant), both in expectation and in probability, for the quadratic loss function and a dic-
tionary of cardinality 2 (Theorem 2.6.1);

- AEW is suboptimal in probability for some large dictionaries (of cardinality M ∼
√
n log n)

and small temperatures T ≤ c1 (Theorem 2.6.2).

Theorem 2.6.1 ([P17]) There exists absolute positive constants c0, . . . , c5 for which the fol-
lowing holds. For any integer n ≥ c0, there are random variables (X,Y ) and a dictionary
F = {f1, f2} such that (Y − fi(X))2 ≤ 1 almost surely for i = 1, 2, for which the quadratic risk
of the AEW satisfies

1. if T ≤ c1 and n is odd then

ER(f̃AEWn ) ≥ min
f∈F

R(f) +
c2√
n

;

2. if T ≤ c3
√
n/ log n, then with probability greater than c4,

R(f̃AEWn ) ≥ min
f∈F

R(f) +
c5√
n
.

Theorem 2.6.1 proves that AEW is suboptimal in expectation in the low temperature regime,
and suboptimal in probability in both low and high temperature regimes since it is possible to
construct procedures that achieve the rate C/n with large probability (cf. [7, P14]) and in
expectation (cf. [39, 117, 119, 54, 8, 7]) in the same setup as in Theorem 2.6.1. Note that
the problem of the optimality in probability of the progressive mixture rule (and other related
procedures) was studied in [7]. Indeed, in [7], it is proved that, for a loss function ` satisfying some
convexity and regularity assumption (for instance, the quadratic loss used in Theorem 2.6.1) the
progressive mixture rule f̄n defined in (2.3.1) is such that for any temperature parameter, with
probability greater than an absolute constant c0 > 0, R(f̄n) ≥ minf∈F R(f) + c1n

−1/2.
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We recall that suboptimality in probability does not imply suboptimality in expectation for
the aggregation problem, nor vice-versa. This property of the aggregation problem was first
noticed in [7] where the progressive mixture rule (and other related aggregation procedures) was
proved to be suboptimal in probability for dictionaries of cardinality two, whereas it was known
to be optimal in expectation (cf. [39], [117], [119] or [54]). This peculiarity of the problem of
aggregation comes from the fact that an aggregate f̂ is not restricted to take values only in the
set F and therefore R(f̂) −minf∈F R(f) can take negative values. In [7], it is shown that, for
the progressive mixture rule f̄n, in average these negative values do compensate larger values
but there is still an event of constant probability on which R(f̄n) − minf∈F R(f) takes values
greater than C/

√
n.

Another consequence of the lower bounds stated in Theorem 2.6.1 is that AEW cannot be
an optimal aggregation procedure both in expectation and probability for low temperatures for
the problems of Convex and Linear aggregation, since, we have

min
f∈F

R(f) ≥ min
f∈conv(F )

R(f) ≥ min
f∈span(F )

R(f).

Also, the optimal rates of aggregation for the Convex and Linear aggregation problems for
dictionaries of cardinality two are of the order of n−1 (see [103, 57, P18]), while the residual
terms obtained in Theorem 2.6.1 are of the order of n−1/2 for such a dictionary. Hence, AEW
is suboptimal for these two other aggregation problems for low temperatures.

The proof of Theorem 2.6.1 shows that a dictionary consisting of two functions is enough
to give the lower bound in expectation in the low temperature regime and in probability in
both regimes (small temperatures regime 0 ≤ T ≤ c1 and large temperatures regime c1 ≤ T ≤
c3
√
n/ log n). It is based on the same counter-example introduced in (1.3.3) and Figure 1.1. In

the following theorem, we study the behavior of AEW for larger dictionaries. To our knowledge,
negative results on the behavior of exponential weights based aggregation procedures are not
known for dictionaries with more than two functions, and what we show is that the behavior of
the AEW deteriorates, in some sense, as the cardinality of the dictionary grows.

Theorem 2.6.2 ([P17]) There exists an integer n0 and absolute constants c1 and c2 for which
the following holds. For every n ≥ n0 there are random variables (X,Y ) and a dictionary
F = {f1, · · · , fM} of cardinality M = dc1

√
n log ne for which the quadratic loss function of any

element in F is bounded by 2 almost surely, and for every 0 < α ≤ 1/2, if T ≤ c2α, then with
probability at least 1− c3(α)nα−1/2,

R(f̃AEWn ) ≥ min
f∈F

R(f) + c4(α)

√
logM
n

.

Moreover, if f∗F ∈ F denotes the optimal function in F with respect to the quadratic loss (the
oracle), then there exists fj 6= f∗F whose excess risk is larger than c5(α)n−1/2 and for which the
weight of fj in the AEW procedure satisfies θ̂j ≥ 1− n−c6(α)/T .

Theorem 2.6.2 implies that the AEW procedure might cause the weights to concentrate
around a “bad” element in the dictionary (that is, an element whose risk is larger than the
best in the class by at least ∼ n−1/2) with high probability. In particular, Theorem 2.6.2 gives
additional evidence that the AEW procedure is suboptimal for low temperatures.

The analysis of the behavior of AEW for dictionary of cardinality larger than two is con-
siderably harder than the two-function case, and it requires some results on rearrangement of
independent random variables which are almost Gaussian.
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2.7 The aggregation problem under the Margin Assumption
and the Bernstein condition

Fortunately, not all is lost as far as optimality results for AEW go. In this section, we show
that under the Bernstein condition, AEW can achieve fast rates (rates faster than 1/

√
n); and

the same holds for the ERM over F . In fact, both procedures can even adapt to the “real
complexity” of the dictionary.

Intuitively, a good aggregation scheme should be able to ignore the elements in the dictionary
whose risk is far from the optimal risk in F , or at least the impact of such elements on the function
produced by the aggregation procedure should be small. Hence, a good procedure is one whose
residual term is of the order of ψ/n, where ψ is a complexity measure that is determined only
by the complexity of the set of “almost minimizers” in the dictionary.

By using the PAC-Bayesian approach, it was shown in [2], [6] and [40] that in the high
temperature regime (T greater than a constant), AEW can adapt to the real complexity of the
dictionary assuming that the class satisfies the Bernstein condition.

The Bernstein condition is very natural in the context of ERM because it has two conse-
quences. Firstly, the empirical excess risk has better concentration properties around the excess
risk, and secondly, the complexity of the subset of F consisting of almost minimizers is smaller
under this condition. As a consequence, if the class LF is a (β,B)-Bernstein class for 0 < β ≤ 1,
then the ERM algorithm can achieve fast rates (see, for example [15], and references therein).
As the results below show, the same is true for AEW. Indeed, under a Bernstein condition,
it was proved in ([2], [6] or [40]) that if R(·) is a convex risk function and if F is such that
|`(f, Z)| ≤ b almost surely for any f ∈ F then for every T ≥ c1 max{b, B} and x > 0, with
probability greater than 1− 2 exp(−x),

R(f̃AEWn ) ≤ min
f∈F

R(f) +
Tc2

n

(
x+ log

(∑

f∈F
exp

(
− (n/2T )(R(f)−R(f∗F ))

)))
. (2.7.1)

Although the PAC-Bayesian approach cannot be used to obtain (2.7.1) in the low tempera-
ture regime ( T ≤ c1 max{b, B}), such a result is not surprising. Indeed, since fast error rates
for the ERM are to be expected when the underlying excess loss functions class satisfies the
Bernstein condition and since AEW converges to the ERM when the temperature T tends to
zero, it is likely that for “small values” of T , AEW inherits some of the properties of ERM, for
example, fast rates under a Bernstein condition. This is what we show in the following theorem.

Before formulating Theorem 2.7.1, let us introduce the following measure of complexity. For
every r > 0, let

ψ(r) = log(|{f ∈ F : R(f)−R(f∗F ) ≤ r}|+ 1)

+
∞∑

j=1

2−j log(|{f ∈ F : 2j−1r < R(f)−R(f∗F ) ≤ 2jr}|+ 1),

where |A| denotes the cardinality of the set A. Observe that ψ(r) is a weighted sum of the
number of elements in F that assigns smaller and smaller weights to functions whose excess risk
is relatively large.

Theorem 2.7.1 ([P17]) There exists absolute constants c0, c1, c2 and c3 for which the following
holds. Let F ⊂ F be a finite model such that |`(f, Z)| ≤ b a.s. for any f ∈ F and the excess loss
class LF is a (1, B)-Bernstein class with respect to Z. If the risk function R(·) is convex and
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if T ≤ c0 max{b, B}, then for every x > 0, with probability at least 1 − 2 exp(−x), the function
f̃AEWn produced by the AEW algorithm satisfies

R(f̃AEWn ) ≤ R(f∗F ) + c1(b+B)
x+ ψ(θ)

n
,

where θ = c2(b+B)(log |F |)/n. In particular, we have

ER(f̃AEWn ) ≤ R(f∗F ) + c3(b+B)
ψ(θ)
n

.

In other words, the scaling factor θ we use is proportional to (b + B)(log |F |)/n, and if the
class is regular (in the sense that the complexity of F is well spread and not concentrated just
around one point), ψ(θ) is roughly the cardinality of the elements in F whose risk is at most
∼ (b+B)(log |F |)/n.

Observe that for every r > 0, ψ(r) ≤ c log |F | for a suitable absolute constant c. Therefore,
if T is reasonably small — below a level proportional to max{B, b}, the resulting aggregation
rate is the optimal one, proportional to (b+B) (x+ logM) /n with probability of 1−2 exp(−x),
and proportional to (b+B) (logM) /n in expectation.

Although the residual terms in Theorem 2.7.1 and in (2.7.1) are not the same, they are
comparable. Indeed, the contribution of each element in F in the residual term depends expo-
nentially on its excess risk.

Theorem 2.7.1 together with the result for high temperatures from [2], [6] and [40] shows
that the AEW is an optimal aggregation procedure under the Bernstein condition as long as
T = O(1) when M and n tend to infinity. In general, the residual term one obtains is of the
order of ((T + 1) logM)/n and it can be proved that the optimal rate of aggregation under the
Bernstein condition is proportional to (logM)/n by using the classical tools in [108].

Let us mention that in the proof of Theorem 2.7.1 we have restricted ourselves to the Berntein
parameter β = 1 simply to make the presentation as simple as possible. A very similar result
holds if one assumes a Bernstein condition for any 0 < β ≤ 1.

Therefore, much better rates of aggregation can be achieved by the AEW and the ERM
(Theorem 2.7.1 holds for T = 0 in which case the AEW is the ERM) than the 1/

√
n rates

obtained in the lower bounds of Theorem 2.6.1 and Theorem 2.2.1. The scenario is completely
different under the Margin assumption. Indeed, in the same general model of Subsection 1.1.1
and Theorem 2.7.1, the following result holds.

Theorem 2.7.2 ([P3, P10]) Let F ⊂ F be a finite model and Z be a random variable on Z
with probability distribution denoted by P . Assume that (F, `, P ) satisfies the “local” Margin
assumption with parameters (β,B) for some 0 < β ≤ 1 and B > 0 and |`(f, Z) − `(f∗, Z)| ≤ b
a.s. for any f ∈ F . Then there exists c0 depending only on β,B and b such that the risk of the
ERM over F satisfies

ER(f̂ERMn ) ≤ min
f∈F

R(f) + c0 max



√

minf∈F
(
R(f)−R(f∗)

)β log |F |
n

,
( log |F |

n

) 1
2−β


 .

In [P10], there are some examples for which the residual term of the oracle inequality sat-
isfied by the ERM in Theorem 2.7.2 is optimal. In particular, it is interesting to note that
this residual term depends on the approximation properties of f∗ by F through the term
minf∈F

(
R(f)−R(f∗)

)
= R(f∗F )−R(f∗). In particular, even if the Margin parameter β equals
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to one then if R(f∗F ) is greater than R(f∗) by a constant then the aggregation rate can be as
bad as

√
(logM)/n. Therefore, there is no gain by assuming the Margin assumption if the

approximation properties of the model F are bad (that is when f∗ is badly approximated by
the model F ).

The aggregation problem is a problem in Learning theory where the model is finite. Thus, if
one wants to make an assumption connecting the variance to the expectation, which improves the
concentration properties of the empirical (excess) risk to the actual (excess) risk then the natural
assumption is the Bernstein condition and not the Margin assumption. Margin assumption is
more an assumption in Statistics than an assumption in Learning theory. Nevertheless, since
aggregation procedures have been used for some statistical purpose like constructing adaptive
procedures it can be useful to analyze aggregation procedures under the Margin assumption.
An interesting fact that comes out of this analysis is that in general the Margin assumption
does not help in the aggregation setup unless the best minimizer f∗ ∈ F is close to the model F
(or in general when f∗ has a risk close to R(f∗F )). In this situation, the Learning problem and
the statistical problem become similar, the Margin assumption becomes closer to the Bernstein
condition and thus assuming the Margin assumption helps. Otherwise the Margin assumption
has no effect on the aggregation problem in general.

2.8 ERM for the convex aggregation problem

We finish this chapter with the problem of Convex aggregation and the study of the ERM over
the convex hull conv(F ) introduced in (2.3.6) by

f̂ERM−C ∈ argmin
f∈conv(F )

Rn(f).

The problem of Convex aggregation is very different from the problem of (MS) aggregation since
the class conv(F ) has a very good geometry (this is a convex set) whereas F does not have any
geometrical property in general. Therefore, one can hope that running the ERM in this situation
can provide an aggregation procedure which achieves the optimal rate of convex aggregation (cf.
[103])

ψ(C)
n (M) ∼





M
n if M ≤

√
n√

1
n log

(
eM√
n

)
if M >

√
n.

(2.8.1)

Note that the rates obtained in [103] hold in expectation and their optimality holds only in
that context (see also the lower bounds in the (C) aggregation context in [53] and [120]). It is
worth mentioning that the rate ψ(C)

n (M) was achieved in [103] (in expectation) in the Gaussian
regression model with a known variance and a known marginal distribution of the design. In
[25], the authors were able to remove these assumptions at a price of an extra log n factor for
1 ≤ M ≤

√
n (results are still in expectation). Nevertheless, it is not hard to prove that there

exists a procedure achieving the rate (2.8.1) with exponentially large probability.
To construct an optimal aggregation procedure in deviation for the convex aggregation prob-

lem, we follow the idea of [103]: when M ≤
√
n consider the ERM over the linear span of F ;

when M ≥
√
n consider an optimal aggregation procedure for the (MS) aggregation problem

and run this procedure on a “good” finite approximating set C′ of the convex hull conv(F ).
The construction of C′ follows from the empirical method of Carl-Maurey: C′ is the set of all
the convex combination of the elements f1, . . . , fM of F having coefficients equal to an integer
multiples of 1/m where m =

⌈(
n/ log

(
eM/
√
n
))1/2⌉. Now, consider an optimal aggregation
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procedure f̃n in deviation for the (MS) aggregation problem as defined in Subsection 2.5 for
instance and run it over the dictionary C′. Finally, we consider the aggregation procedure

f̄n =

{
f̂ERM−Ln ∈ argminf∈span(F )Rn(f) if M ≤

√
n,

f̃n an optimal aggregation procedure over C′ when M >
√
n.

(2.8.2)

The following result shows that this procedure is an optimal aggregation procedure in deviation
with an exponential deviation bound. A proof of this result can be found in Chapter 6.

Theorem 2.8.1 For every b there exists a constant c1, depending only on b, for which the
following holds. For any x > 0, every class F of M functions, any target Y (all bounded by b)
and for the quadratic loss, the procedure f̄n defined in (2.8.2) satisfies, with P⊗2n-probability at
least 1− 2 exp(−x),

R(f̄n) ≤ min
f∈conv(F )

R(f) + c1 max
(
ψ(C)
n (M),

x

n

)
,

This result also proves that the optimal rate of (C) aggregation in deviation is ψ(C)
n (M). But

the procedure f̄n used to achieve this rate cannot be used in practice since it requires to aggregate
an exponential number of elements. It would be much easier and somehow more natural to prove
that the ERM over the convex hull conv(F ) is an optimal aggregation procedure for the convex
aggregation problem. Moreover, another motivation comes from what is known about ERM
in the context of the three aggregation schemes introduced in Subsection 2.1. It follows from
Theorem 2.2.1 that the ERM in F is, in general, a suboptimal aggregation procedure for the
(MS) aggregation problem. Concerning the (L) aggregation problem, ERM in the linear span
of F is an optimal procedure (cf. [57]). Therefore, studying the performances of ERM in the
convex hull of F in the context of (C) aggregation can be seen as an “intermediate” problem
which may deserve some attention.

The performances of ERM in the convex hull have been studied for an infinite dictionary in
[24], in which estimates on its performance have been obtained in terms of the metric entropy
of F . The resulting upper bounds were conjectured to be suboptimal in the case of a finite
dictionary, since they provide an upper bound M/n for every n and M . And indeed, we establish
the following upper bound on the risk of f̃ERM−C as a (C)-aggregation procedure:

Theorem 2.8.2 ([P18]) For every b > 0 there is a constant c1(b) and an absolute constant c2

for which the following holds. Let n and M be integers which satisfy that logM ≤ c1(b)
√
n. In

the bounded regression model with respect to the square loss function (i.e. for any couple (X,Y )
and any finite dictionary F of cardinality M such that |Y |, supf∈F |f(X)| ≤ b), for any x > 0,
with probability greater than 1− exp(−x),

R(f̃ERM−C) ≤ min
f∈conv(F )

R(f) + c2b
2 max

[
min

(M
n
,

√
logM
n

)
,
x

n

]
.

Although Theorem 2.8.2 is new, it is probably known to experts, and its proof is based
on what is now, rather standard machinery (cf. for instance [57] or the upcoming Vladimir
Koltchinskii’s Saint Flour Lecture notes).

Note that the residual term of Theorem 2.8.2 behaves like ψ
(C)
n (M) except for values of

M for which n1/2 < M ≤ c(ε)n1/2+ε for ε > 0. Although there is a gap in this range in the
general case, under the additional assumption that the dictionary is orthogonal, this gap can be
removed.
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Theorem 2.8.3 ([P18]) Under the assumptions of Theorem 2.8.2, if F = {f1, . . . , fM} is such
that Efi(X)fj(X) = 0 for any i 6= j ∈ {1, . . . ,M}, then f̃ERM−C achieves the rate ψ(C)

n (M):
for any x > 0, with probability greater than 1− exp(−x)

R(f̃ERM−C) ≤ min
f∈conv(F )

R(f) + c2b
2 max

[
ψ(C)
n (M),

x

n

]
.

Removing the gap in the general case is likely to be a much harder problem, although we
believe that the orthogonal case is the “worst” one.

Combining Theorem 2.3.1 with Theorem 2.8.2, it follows that up to some logarithmic terms,
the rate ψ(C)

n (M) is the same rate of aggregation of f̃ERM−C for the (MS) and (C) aggregation
problems. In particular, it achieves the optimal rate ψ(C)

n (M) for the (C) aggregation problem,
up to a logarithmic factor that appears when

√
n < M ≤ c1(ε)n1/2+ε. However, it is far from

the optimal rate (logM)/n for the (MS) aggregation problem.
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Chapter 3

Oracle inequalities for ERM,
regularized ERM and penalized
estimators

In the previous chapter, the geometrical aspect of the aggregation problem was of first impor-
tance. This leads us to consider procedures trying “to improve the geometry of the model”
because the classical empirical risk minimization procedure or its penalized or regularized ver-
sions fail to satisfy exact oracle inequalities with the optimal residual term. In this section,
we are interested in these classical procedures: empirical risk minimization procedure and its
regularized and penalized versions. We want to understand the aspects of the problem driving
the residual terms of the oracle inequalities satisfied by these procedures. In particular, these
procedures somehow do not adapt to the geometry of the problem compared to the procedures
constructed in the previous section. Consequently, and contrary to the procedures introduced
in Chapter 2, some Margin/Bernstein conditions will be “required” to make these classical pro-
cedures satisfying oracle inequalities with fast rates.

In particular, we will see that they are some general situations where the Margin/Bernstein
condition is trivially satisfied so that the ERM, regularized ERM and penalized estimators satisfy
oracle inequalities with fast decreasing residual terms. This is the case when we compare their
risk to (1 + ε) inff∈F R(f) for some ε > 0. This kind of oracle inequalities are called non-exact
oracle inequalities. In particular, it is much easier to obtain non-exact oracle inequalities with
fast residual terms for the classical ERM based procedures than constructing procedures having
a risk as close as possible to the the best possible risk inff∈F R(f) as we did in the previous
chapter. At a first glance, the difference does not look that important but in fact, we will see in
this chapter that this far from being the case.

Another important part of this chapter is devoted to the construction of regularizing and
penalty functions. Given a family of models or a criterion, we will see how to construct penalty
and regularizing functions in terms of some isomorphic properties of some functions classes.
These oracle inequalities will be applied in Chapter 4 to concrete examples.

Finally, we study the ERM, regularized ERM and penalized estimators for the three different
problems introduced in Section 1.2.1: non-exact prediction problem, exact prediction problem
and estimation problem. We will see that depending on the goal pursued, different assumptions
will be introduced, different residual terms will be obtained and different regularizing and penalty
functions will come out of our study. One central aspect of our work relies on the isomorphic
profile of some functions classes.
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3.1 Isomorphic profile of functions classes

If we knew the value of the risk function R(·) over F then the problem would be done since
a minimizer over F of the true risk would be an optimal procedure for the three problems
introduced in Section 1.2.1. But we don’t know the value of R(·) over F , we only have access
to an empirical version of this function: the empirical risk Rn(f) = n−1

∑n
i=1 `(f, Zi), ∀f ∈ F .

Therefore, a natural problem is to relate the empirical risk to the actual risk uniformly over F .
This may follow from a uniform control over F of the deviation of the empirical risk around the
actual risk: find a sharp bound on the quantity

sup
f∈F

∣∣Rn(f)−R(f)
∣∣ = ‖P − Pn‖`F = sup

`∈`F

∣∣(Pn − P )`
∣∣. (3.1.1)

In particular, since the aim is to minimize the risk over F a natural procedure is the ERM over
F . A bound on the quantity (3.1.1) provides an excess risk bound for the ERM:

R(f̂ERMn )− inf
f∈F

R(f)

= R(f̂ERMn )−Rn(f̂ERMn ) +Rn(f̂ERMn )−Rn(f∗F ) +Rn(f∗F )−R(f∗F )
≤ 2 sup

f∈F

∣∣Rn(f)−R(f)
∣∣.

This is the strategy developed in [115]. It usually provides excess risk bounds for the ERM
of the order of 1/

√
n under some complexity assumptions on F . Since then some refinement

have improved this bound. In particular, better risk bounds of the order of 1/n have followed
from the localization argument under some Margin/Bernstein condition. This approach will be
detailed in the next section.

Another idea based on the isomorphy between the empirical and the actual structures has
been introduced in [15]. An excess risk bound for the ERM follows from the following isomorphic
property: for some 0 < η < 1, there exists r∗η > 0 such that, with high probability, for all f ∈ F ,
if PLf ≥ r∗η then

(1− η)PLf ≤ PnLf ≤ (1 + η)PLf (3.1.2)

where Lf = `f − `f∗F , ∀f ∈ F . Indeed, it follows from (3.1.2) that the ERM f̂ERMn over F has
an excess risk such that, with high probability,

R(f̂ERMn )− inf
f∈F

R(f) = PL bfERMn
≤ (1 + η)PnL bfERMn

+ r∗η ≤ r∗η. (3.1.3)

Therefore, finding the smallest “level of isomorphy” between the empirical and the actual excess
risk functions is of particular interest to derive excess risk bounds for the ERM. We introduce
the quantity: for any 0 < η < 1,

r∗(LF )η = inf
(
r > 0 : ∀L ∈ LF ,

PL > r ⇒ (1− η)PL ≤ PnL ≤ (1 + η)PL
PL ≤ r ⇒

∣∣PnL − PL
∣∣ ≤ ηr

)
,

where LF = {Lf : f ∈ F} is the excess loss functions class indexed by F . The quantity r∗(LF )η
is called the isomorphic profile of LF . In the next section, we will see how to derive bound on
r∗(LF )η that hold with high probability. Note that for exact oracle inequalities the parameter
0 < η < 1 does not play no important role and one should take in general η = 1/2.

So far, we have been interested only in the first problem: comparing the risk of the ERM
to inff∈F R(f). It appeared that r∗(LF )η bounds the difference R(f̂ERMn )− inff∈F R(f). If we
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are interested in the two other problems — non-exact prediction and estimation — then other
quantities are of interest.

Consider the isomorphic profile of the loss functions class `F = {`f : f ∈ F}:

r∗(`F )η = inf
(
r > 0 : ∀` ∈ `F ,

P ` > r ⇒ (1− η)P` ≤ Pn` ≤ (1 + η)P`
P` ≤ r ⇒

∣∣Pn`− P`
∣∣ ≤ ηr

)
.

Then the risk of the ERM over F is such that

R(f̂ERMn )− 1 + η

1− η
R(f∗F ) ≤

Pn` bfERMn

1− η
+ ηr∗(`F )η −

1 + η

1− η

(Pn`f∗F
1 + η

− ηr∗(`F )η
)

≤ (1− η)−1
(
Rn(f̂ERMn )−Rn(f∗F )

)
+

2η
1− η

r∗(`F )η ≤
2η

1− η
r∗(`F )η. (3.1.4)

Consider the excess loss functions class EF = {`f − `f∗ : f ∈ F} with respect to f∗ and its
isomorphic profile

r∗(EF )η = inf
(
r > 0 : ∀E ∈ EF ,

PE > r ⇒ (1− η)PE ≤ PnE ≤ (1 + η)PE
PE ≤ r ⇒

∣∣PE − PnE
∣∣ ≤ ηr

)
.

Then the excess risk of the ERM over F with respect to f∗ is such that

R(f̂ERMn )−R(f∗) ≤ (1− η)−1
(
Rn(f̂ERMn )−Rn(f∗)

)
+ ηr∗(EF )η (3.1.5)

≤ (1− η)−1
(
Rn(f∗F )−Rn(f∗)

)
+ ηr∗(EF )η ≤

1 + η

1− η
(
R(f∗F )−R(f∗)

)
+
η(2− η)

1− η
r∗(EF )η.

(3.1.6)

Therefore the isomorphic profile of the loss functions class `F and of the two excess loss
functions classes LF (with respect to f∗F ) and EF (with respect to f∗) are quantities bounding
the difference R(f̂ERMn ) − (1 + ε) inff∈F R(f) for some ε > 0, or R(f̂ERMn ) − inff∈F R(f) or
R(f̂ERMn ) − R(f∗) − (1 + ε) inff∈F

(
R(f) − R(f∗)

)
respectively. The isomorphic profile is thus

some sort of general tool to study the behaviour of the ERM for the three different problems
introduced in Section 1.2.1. We thus consider the following definition regarding the isomorphic
profile of a functions class.

Definition 3.1.1 ([15]) Let Z be a space endowed with a probability measure P and let Z1, . . . , Zn
be n independent random variables with values in Z, distributed according to P . Let F be a class
of real-valued measurable functions defined on Z and 0 < η < 1. The isomorphic profile of
F is defined by

r∗(F)η = inf
(
r > 0 : ∀f ∈ F,

∣∣Pnf − Pf
∣∣ ≤ ηmax(Pf, r)

)

In some circumstances, the isomorphic profile of a function class can be equal to 0, meaning
that the empirical structure and the actual structure are (1 + η)-isomorphic over the entire set
F. This is in particular the case in the Compressed Sensing setup. This property is called the
Restricted Isometry Property and is studied in Section 3.8 from the Learning theory point of
view. In general, the isomorphic profile is between quantities of the order of comp(F)/n and√

comp(F)/n where comp(F) is some complexity measure of F. An isomorphic profile of the
order of comp(F)/n results in an oracle inequality with a residual term of the same order. This
kind of rates are called fast rates. In general, any rate faster than 1/

√
n is called a fast rate.

On the other side, rates slower than 1/
√
n are called slow rates.
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In what follows, we study the isomorphic profile of the classes `F , LF and EF . As we have
seen so far, bounds on these quantities provide risk bounds for the ERM for the three problems.
It appears that the isomorphic profile of other classes of functions will be useful to derive oracle
inequalities for regularized ERM and penalized ERM (or penalized estimators). In the next
section, we obtain a general bound for the isomorphic profile of any functions class F thanks to
the localization argument.

3.2 Isomorphism, localization and Margin/Bernstein conditions

3.2.1 Isomorphic profile of loss and excess loss functions classes

The isomorphic profile of a functions class measures the “level” above which empirical means and
actual means are equivalent. This notion was introduced in [15]. Although it is not necessary,
if one wishes the isomorphic property to hold with exponential probability, one can use a high
probability deviation bound on the supremum of the localized process. A standard way (though
not the only way) of obtaining such a result is through Talagrand concentration inequality [100]
applied to localizations of the functions class, combined with a good control of the variance in
terms of the expectation (a Margin/Bernstein condition). When applied to the excess loss class
LF (respectively to EF ), this argument leads to exact oracle inequalities for the ERM (see for
example, [84, 16]) for the exact prediction problem (resp. oracle inequalities for the ERM for
the estimation problem). If we are interested in non-exact oracle inequalities (for the non-exact
prediction problem), we study the isomorphic properties of the loss functions class `F .

High probability bounds on the isomorphic profile of functions classes can be derived from
Talagrand concentration inequality [100]. Since we would like to avoid the assumption that the
classes `F , LF or EF consist of uniformly bounded functions, an important part of our analysis
is the following ψ1 version of Talagrand inequality [1].

To state this result, we need the following notation. Let G be a class of measurable real-
valued functions defined on Z. The supremum of the empirical process indexed by G is denoted
by

‖P − Pn‖G = sup
g∈G
|(P − Pn)g| (3.2.1)

where for every g ∈ G we set Pg = Eg(Z) and Png = n−1
∑n

i=1 g(Zi). Recall that for every
α ≥ 1, the ψα norm of g(Z) is

‖g(Z)‖ψα = inf
(
c > 0 : E exp

(
|g(Z)|α/cα

)
≤ 2
)
.

We control the supremum (3.2.1) using the quantities

σ(G) = sup
g∈G

√
Pg2 and bn(G) =

∥∥ max
1≤i≤n

sup
g∈G
|g(Zi)|

∥∥
ψ1
.

Note that for a bounded class G, one has bn(G) ≤ supg∈G ‖g‖∞ and in the sub-exponential case,
bn(G) . (log en)

∥∥supg∈G g
∥∥
ψ1

(this follows from Pisier inequality). Throughout the following
chapters, we also use the notation bn(g) = ‖max1≤i≤n g(Zi)‖ψ1

and for any pseudo-norm ‖·‖ on
L2(P ), we denote by diam(G, ‖·‖) = supg∈G ‖g‖ the diameter of G with respect to ‖·‖.

Theorem 3.2.1 ([1]) There exists an absolute constant K > 0 for which the following holds.
Let Z1, . . . , Zn be n i.i.d. random variables with values in a space Z and let G be a countable class
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of real-valued measurable functions defined on Z. For every x > 0 and α > 0, with probability
greater than 1− 4 exp(−x),

‖P − Pn‖G ≤ (1 + α)E ‖P − Pn‖G +Kσ(G)
√
x

n
+K(1 + α−1)bn(G)

x

n
.

Theorem 3.2.1 can be extended to classes G satisfying some separability property like con-
dition (M) in [77]: there exists G′ ⊂ G a countable set such that for any g ∈ G there exists a
sequence (gk)k∈N of elements in G′ such that for any z ∈ Z, (gk(z))k∈N tends to g(z) when k
tends to infinity. We apply Theorem 3.2.1 in this context and it will be implicitly assumed that
every time we use Theorem 3.2.1, the separability condition (M) in [77] holds.

To obtain the desired risk or excess risk bounds, we study empirical processes indexed by
sets associated with a functions class G, namely, the star-shaped hull of G around zero and the
localized subsets for different levels λ ≥ 0 defined by

V (G) = {θg : 0 ≤ θ ≤ 1, g ∈ G} and V (G)λ = {h ∈ V (G) : Ph ≤ λ}.

In particular, given a model F and a loss function `, we consider empirical processes indexed
by localized star-shaped hull of the loss functions class `F and of the two excess loss functions
classes LF and EF defined by

`F = {`f : f ∈ F}, LF = {`f − `f∗F : f ∈ F} and EF = {`f − `f∗ : f ∈ F}

respectively (assuming that an oracle f∗F exists in F and a risk minimizer f∗ exists in F).
In particular, Theorem 3.2.1 will be applied to the localized sets V (`F )λ (resp. V (LF )λ and
V (EF )λ) to get non-exact (resp. exact and estimation) oracle inequalities for the ERM algorithm
(cf. Section 3.3), to a family (V (`Fr)λ)r≥0 (resp. (V (LFr)λ)r≥0 and (V (EFr)λ)r≥0) to get non-
exact (resp. exact and estimation) regularized oracle inequalities for regularized ERM procedures
(cf. Section 3.5) and to a family (V (`m)λ)m∈M (resp. (V (Lm)λ)m∈M and (V (Em)λ)m∈M) to
get non-exact (resp. exact and estimation) model selection oracle inequalities for penalized
estimators (cf. Section 3.6).

Observe that Theorem 3.2.1 requires that the envelope function supg∈G |g| is bounded in
Lψ1(P ) (i.e. sub-exponential), but since ‖max1≤i≤n ζi‖ψ1 . ‖ζ‖ψ1 log n for identically dis-
tributed variables ζ1, . . . , ζn, ζ, it follows that bn(`F ) is not much larger than ‖ supg∈G g(Z)‖ψ1 .
However, this condition can be a major drawback. For instance, if the set G consists of linear
functions indexed by the Euclidean sphere Sd−1, and Z is the standard Gaussian vector of Rd,
the resulting envelope function is bounded in ψ1(P ), but its norm is of the order of

√
d. There-

fore, for high-dimensional statistical problems, where d can be much larger than n, the envelop
function of the model may have a bad ψ1-behaviour. Nevertheless, under some condition on
the ψ1-norm of the envelop of `F , we can obtain the following upper bound on the isomorphic
profile of `F .

Theorem 3.2.2 ([P16]) Let F ⊂ F be a model and assume that there exists Bn ≥ 0 such that
for every f ∈ F , P`2f ≤ BnP`f +B2

n/n. If 0 < η < 1/2 and λ∗η > 0 satisfy that

E‖Pn − P‖V (`F )λ∗η
≤ (η/4)λ∗η,

then for every x > 0, with probability larger than 1− 4e−x, for every f ∈ F

• if P`f > ρn(x) then (1− η)P`f ≤ Pn`f ≤ (1 + η)P`f ,
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• if P`f ≤ ρn(x) then
∣∣P`f − Pn`f

∣∣ ≤ ηρn(x).

where, for K the constant appearing in Theorem 3.2.1,

ρn(x) = max
(
λ∗η,

(
4Kbn(`F ) + (6K)2Bn/η

)
(x+ 1)

nη

)
.

Proof. The proof follows the ideas from [15]. Fix λ > 0 and x > 0, and note that by
Theorem 3.2.1, with probability larger than 1− 4 exp(−x),

‖P − Pn‖V (`F )λ
≤ 2E ‖P − Pn‖V (`F )λ

+Kσ(V (`F )λ)
√
x

n
+Kbn(V (`F )λ)

x

n
. (3.2.2)

Clearly, we have bn(V (`F )λ) ≤ bn(`F ) and

σ2(V (`F )λ) = sup
(
P (α`f )2 : 0 ≤ α ≤ 1, f ∈ F, P (α`f ) ≤ λ

)
≤ Bnλ+B2

n/n.

Moreover, since V (`F ) is star-shaped, λ > 0→ φ(λ) = E ‖P − Pn‖V (`F )λ
/λ is non-increasing,

and since φ(λ∗η) ≤ η/4 and ρn(x) ≥ λ∗η then

E ‖P − Pn‖V (`F )ρn(x)
≤ (η/4)ρn(x).

Combined with (3.2.2), there exists an event Ω0(x) of probability greater than 1 − 4 exp(−x),
and on Ω0(x),

‖P − Pn‖V (`F )ρn(x)
≤ (η/2)ρn(x) +K

√
(Bnρn(x) +B2

n/n)x
n

+K
bn(`F )x

n

≤ ηρn(x).

Hence, on Ω0(x), if g ∈ V (`F ) satisfies that Pg ≤ ρn(x), then |Pg − Png| ≤ ηρn(x). Moreover,
if P`f = β > ρn(x), then g = ρn(x)`f/β ∈ V (`F )ρn(x); hence |Pg − Png| ≤ ηρn(x), and so
(1− η)P`f ≤ Pn`f ≤ (1 + η)P`f .

In particular, it follows from Theorem 3.2.2, that the isomorphic profile of the loss function
class `F under the condition P`2f ≤ BnP`f + B2

n/n, ∀f ∈ F is less than ρn(x) with probability
greater than 1 − 4 exp(−x). Below, the condition “P`2f ≤ BnP`f + B2

n/n,∀f ∈ F” is called
the Bernstein condition for the loss functions class `F . Compared with the classical Bernstein
condition for LF or the Margin assumption for EF , this condition is satisfied in very general
situations (cf. Lemma 3.2.5 below).

Results similar to the one of Theorem 3.2.2 hold for the excess loss functions classes LF and
EF under the Bernstein condition and the Margin assumption. But since these conditions are
far from being trivially satisfied, we state these results depending on the Bernstein and Margin
parameters 0 < β ≤ 1. We first start with a result on the isomorphic profile of the excess loss
class LF under the Bernstein condition “PL2

f ≤ Bn
(
PLf

)β + B2
n/n,∀f ∈ F” (note that the

extra B2
n/n term does not play any role since in most of the cases there will be no such extra

term — as in Definition 1.3.2 — nevertheless, the following result holds with this extra term).

Theorem 3.2.3 Let F ⊂ F be a model. Assume that there exists 0 < β ≤ 1 and Bn ≥ 0 such
that for every f ∈ F , PL2

f ≤ Bn
(
PLf

)β +B2
n/n. If 0 < η < 1/2 and µ∗η > 0 satisfy that

E‖Pn − P‖V (LF )µ∗η
≤ (η/4)µ∗η,
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then for every x > 0, with probability larger than 1− 4e−x, the isomorphic profile of LF is such
that

r∗(LF )η ≤ max
(
µ∗η,

16
η

(xBnK2

n

(4
η

)β) 1
2−β +

4KBn
√
x

ηn
+

4Kbn(LF )x
ηn

)
.

Finally, we turn to a result on the isomorphic profile of EF under the Margin assumption
“ PE2

f ≤ Bn
(
PEf

)β + B2
n/n,∀f ∈ F”. Like previously, there is an extra additive term B2

n/n
compared to the classical definition of the Margin assumption introduced in Definition 1.3.1.
But this term does not play any role.

Theorem 3.2.4 Let F ⊂ F be a model. Assume that there exists 0 < β ≤ 1 and Bn ≥ 0 such
that for every f ∈ F , PE2

f ≤ Bn
(
PEf

)β + B2
n/n where Ef = `f − `f∗ , ∀f ∈ F . If 0 < η < 1/2

and ν∗η > 0 satisfy that
E‖Pn − P‖V (EF )ν∗η

≤ (η/4)ν∗η ,

then for every x > 0, with probability larger than 1− 4e−x, the isomorphic profile of EF is such
that

r∗(EF )η ≤ max
(
ν∗η ,

16
η

(xBnK2

n

(4
η

)β) 1
2−β +

4KBn
√
x

ηn
+

4Kbn(EF )x
ηn

)
.

The proofs of the Theorem 3.2.3 and Theorem 3.2.4 are provided in Chapter 6.

3.2.2 Localization and the Margin/Bernstein condition

In Theorem 3.2.2, the isomorphic profile of `F relies on a Bernstein-type condition: for every
f ∈ F ,

P`2f ≤ BnP`f +B2
n/n. (3.2.3)

A similar assumption on the excess loss functions Lf = `f − `f∗F ,∀f ∈ F is a key point in
Theorem 3.2.3: for some 0 < β ≤ 1,

PL2
f ≤ Bn

(
PLf

)β +B2
n/n. (3.2.4)

It is up to an extra B2
n/n term, the Bernstein condition of Definition 1.3.2. Similarly, the same

type of assumption is considered in Theorem 3.2.4: for some 0 < β ≤ 1,

PE2
f ≤ Bn

(
PEf

)β +B2
n/n (3.2.5)

where Ef = `f − `f∗ is the excess loss function of f with respect to f∗. This is up to an extra
B2
n/n term, the Margin assumption introduced in Definition 1.3.1.

As explained in Section 1.3 for one single variable, this type of assumption plays a key role
in the concentration properties of the empirical mean around its actual mean. In the case of an
empirical process indexed by a functions class

(
(P − Pn)g

)
g∈G, this type of property together

with the localization argument yield fast concentration rates of the supremum ‖P − Pn‖G around
(1 + α)E ‖P − Pn‖G for some α > 0 and for some well-chosen localized sets G.

In contrast to the two other Margin/Bernstein conditions in (3.2.4) and (3.2.5), Assump-
tion (3.2.3) is trivially satisfied when the loss functions are positive and uniformly bounded: if
0 ≤ `f ≤ B then P`2f ≤ BP`f . It also turns out that (3.2.3) does not require any “global”
structural assumption on F and is trivially verified if class members have sub-exponential tails.
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Lemma 3.2.5 ([P16]) Let X be a non-negative sub-exponential random variable (i.e. ‖X‖ψ1
<

∞). Then for every z ≥ 1,

EX2 ≤ log(ez) ‖X‖ψ1
EX +

(
4 + 6 log2(ez) ‖X‖2ψ1

)

ez
.

In particular, for any function f such that `f ≥ 0 and ‖`f‖ψ1
≤ D for some D ≥ 1, it follows

from Lemma 3.2.5 that, for every n ≥ 1,

E`2f ≤
(
c0D log(en)

)
E`f +

(
c0D log(en)

)2

n
.

This may be very different for the Bernstein condition. For instance, let us recall a result from
[82]. Consider the functional learning problem where one observes a target T at some random
points X1, . . . , Xn. Let 1 < p < ∞ and consider the Lp-loss function `f (x, y) = |y − f(x)|p
and the Lp-risk R(f) = E`f (X,T (X)) = E|f(X) − T (X)|p. Let F be a convex compact set of
Lp(PX) such that supf∈F ‖F‖∞ ≤ 1. We consider the excess loss function Lf = `f −`f∗F ,∀f ∈ F
where f∗F ∈ argminf∈F R(f). Then for any target T bounded by 1, one has ELf ≤ c(p)

(
ELf

)βp
for any f ∈ F where βp = min

(
p/2, 2/p

)
. This means that the excess loss class LF satisfies the

Bernstein condition with Bernstein parameter βp. Since βp can take any value in (0, 1), there
exists models and loss functions for which there is a non-trivial Bernstein parameter.

One can wonder why the Margin/Bernstein condition have become so useful in Learning
theory and what is the role played by such assumptions on oracle inequalities. For one single
variable, we have seen the role of such assumptions on the sub-gaussian term in the Bernstein
inequality in Section 1.3. For an empirical process indexed by a functions class, this property
is useful when used together with the localization on a star-shaped function class in Talagrand
concentration inequality. Indeed, in Talagrand inequality (cf. for instance Theorem 3.2.1),
the dominant term in the residue of the deviation inequality of ‖P − Pn‖G with respect to
(1 + α) ‖P − Pn‖G is the subgaussian term:

σ(G)
√
x

n
. (3.2.6)

If no effort is made on this term then the residual term in Talagrand inequality will be of the
order of 1/

√
n then yielding oracle inequalities with slow rates. One way of improving this rate

is to apply Talagrand inequality to functions g in G such that Pg2 is small. Therefore, this leads
to consider the functions classes indexed by some λ > 0,

Gλ = {g ∈ G : Pg2 ≤ λ}.

The classes Gλ, λ ≥ 0 are called the localized sets of G. Applying Talagrand inequalty to the
localized set Gλ yields a deviation inequality with a residual term of the order of

√
λx/n ≤

λ+ x/n. Therefore, if E ‖P − Pn‖Gλ is also of the order of λ then we get with high probability

‖P − Pn‖Gλ ≤ c0 max
(
λ, x/n

)
= ρn(x). (3.2.7)

Finding the smallest λ∗ such that E ‖P − Pn‖Gλ∗ ≤ c1λ
∗ makes the bounds in (3.2.7) even

better. That is the reason why fixed points like λ∗ play such a central role in this approach.
The bound (3.2.7) for λ = λ∗ provides some concentration result for any function in Gλ

∗
:

∀g ∈ G,Pg2 ≤ λ∗ ⇒ |Pg − Png| ≤ ρn(x). But since G is star-shaped in zero, any function g
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in G such that Pg2 > λ∗ can be scaled down to an other function f = λ∗g/
√
Pg2 in Gλ

∗
for

which we know some concentration property. It follows that above the level λ∗, the empirical
and actual structure are isomorphic. That is the reason why star-shaped classes play such an
important role in our approach: it allows to derive properties for the entire set G only from
properties on the localized subsets Gλ.

In general, the localized sets Gλ = {g ∈ G : Pg ≤ λ} are “less complex” than the sets
Gλ = {g ∈ G : Pg2 ≤ λ} for 0 < λ < 1. But under the Bernstein condition with Bernstein
parameter β = 1 (i.e. Pg2 ≤ BPg,∀g ∈ G), the set Gλ has a complexity comparable to the
one of Gλ. This yields a smaller fixed point λ∗. This explains the role of the Margin/Bernstein
condition in our approach: classes satisfying a Margin/Bernstein condition have smaller localized
sets.

Fixed points have been used in Learning theory and Statistics for almost 20 years. Such
examples can be found in [21] in terms of the bracketing entropy of the localized models. Other
bounds of this type can be found in [109]. Below, the residual term of each oracle inequality
depends on a fixed point characterizing the complexity of the model. The fixed points ε2

∗ (cf.
[77] or (3.3.2) below) and δn(x) (cf. [57] or (3.3.4) below) are the residual terms of the oracle
inequalities satisfied by the ERM in those papers. There are two main ideas to explain the
introduction of fixed points in Learning theory. In [57, 62], iterative localization of the excess
risk of the ERM converges to the fixed point δn(x) (up to some multiplying constant depending
on the number of iterations). In [15] and in this document, fixed points are used to characterize
the level above which the actual and the empirical structures are isomorphic. For instance in
the case of the excess loss functions class LF with Bernstein parameter 0 < β ≤ 1: with high
probability, ∀f ∈ F s.t. PLf ≥ max

(
µ∗1/2, c0n

−1/(2−β)
)
, (1/2)PnLf ≤ PLf ≤ (3/2)PnLf . We

refer the reader to those papers for more details on the interpretation of fixed points in Learning
theory.

Finally, it should be remarked that Margin/Bernstein condition, localization, fixed points
and Talagrand concentration inequality are sufficient tools and conditions which allow to get
fast residual terms in some oracle inequalities for the ERM and its regularized and penalized
versions. They are not by any mean necessary conditions and tools to be used to get those fast
rates or to prove oracle inequalities in general (cf. for instance [109] or Section 3.10). A direct
approach to study the ERM like in the second part of [15] or Theorem 3.9.1 may provide better
bounds than the one following some fixed point argument.

3.2.3 Some bounds on E ‖P − Pn‖H
Let H be the loss functions class `F or the excess loss functions classes LF and EF associated
with a model F . To obtain oracle inequalities for the ERM, we want to compute the fixed point
of the empirical process indexed by the localized sets V (H)λ, that is, for some c0 < 1, we want
to find a small λ∗ for which

E ‖P − Pn‖V (H)λ∗
≤ c0λ

∗. (3.2.8)

First note that the complexity of the star-shaped hull V (H) is not far from the one of H
itself. Actually, a bound on the expectation of the supremum of the empirical process indexed
by V (H)λ follows from a bound on the expectation of the supremum of the empirical process
indexed by the localized sets Hµ = {h ∈ H : Eh ≤ µ} for different levels µ ∈ {2iλ : i ∈ N}. This
follows from the peeling argument of [16]:

V (H)λ ⊂
∞⋃

i=0

{θh : 0 ≤ θ ≤ 2−i, h ∈ H2i+1λ}.
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Therefore, for R∗ = infh∈H Eh,

E ‖P − Pn‖V (H)λ
≤

∑

{i:2i+1λ≥R∗}

2−iE ‖P − Pn‖H2i+1λ
, (3.2.9)

because for values of i such that 2i+1λ < R∗ the sets H2i+1λ are empty. Now, it remains to
bound E ‖P − Pn‖Hµ for any µ > 0.

Let us mention that a naive attempt to control these empirical processes using a contraction
argument is likely to fail, and will result in slow rates even in very simple cases (for example, a
regression model with a bounded design). We refer to [48, 83, 85] for more details.

The bounds obtained below on E ‖P − Pn‖Hµ are expressed in terms of a random metric
complexity of H, which is based on the structure of coordinate projections PσH. These random
sets are defined for every sample σ = (X1, · · · , Xn) by

PσH = {(h(X1), . . . , h(Xn)) : h ∈ H}.

The complexity of these random sets will be measured via a metric complexity called the γ2-
functional. This is the natural complexity measure coming out of the generic chaining mechanism
compared to the classical chaining method leading to the Dudley entropy integral.

Definition 3.2.6 ([101]) Let (T, d) be a semi-metric space. An admissible sequence of T is a
sequence (Ts)s∈N of subsets of T such that |T0| ≤ 1 and |Ts| ≤ 22s for any s ≥ 1. We define

γ2(T, d) = inf
(Ts)s∈N

sup
t∈T

∞∑

s=0

2s/2d(t, Ts)

where the infimum is taken over all admissible sequences (Ts)s∈N of T .

We refer the reader to [101] for an extensive survey on chaining methods and on the γ2-
functionals. In particular, one can bound the γ2-functional using Dudley entropy integral

γ2(T, d) .
∫ diam(T,d)

0

√
logN(T, d, ε)dε (3.2.10)

where N(T, d, ε) is the minimal number of balls with respect to d of radius ε needed to cover
T , and diam(T, d) is the diameter of the metric space (T, d). We will use the γ2-functional to
state our theoretical bounds because there are examples for which there is a gain at using the
γ2-functional over the Dudley entropy integral (2-convex bodies for instance). Nevertheless, in
all our concrete applications, we use the bound (3.2.10) since the computation is easier and the
loss is at most logarithmic. But, if one cares about logarithmic terms then the γ2-functional
should be preferred to the Dudley entropy integral in general.

Now, we turn to some concrete examples where H is the loss functions class in the regression
model with respect to the Lq-loss for some q ≥ 2. For any real-valued measurable function
f defined on X , the Lq-loss function of f is `(q)f (x, y) = |y − f(x)|q. In this case, the Lq-loss

functions class localized at some level µ is (`(q)F )µ = {`(q)f : f ∈ F,E`(q)f ≤ µ}. The following
result is a combination of a truncation argument and Rudelson’s Ln∞ method. To formulate it,
set M =

∥∥∥sup
`∈(`

(q)
F )µ
|`|
∥∥∥
ψ1

, for any A ⊂ Rd, let Ã = A∪−A, and if F (µ) = {f ∈ F : P`(q)f ≤ µ},

put Un = Eγ2
2

(
P̃σF (µ), `n∞

)
.
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Proposition 3.2.7 ([P16]) For every q ≥ 2, there exists a constant c0 depending only on q for
which the following holds. Let F ⊂ F be a functions class. For any µ > 0, we have

1. if q = 2 then E ‖P − Pn‖(`(q)F )µ
≤ c0 max

[√
µUnn ,

Un
n

]
,

2. if q > 2 then

E ‖P − Pn‖(`(q)F )µ
≤ c0 max

[√
µ
Un
n

√(
M log n

)(q−2)/q
,
Un
n

(
M log n

)(q−2)/q
,
M log n

n

]
.

An example of the computation of the complexity term Un can be found in [P16] for the
calibration of the regularizing function in terms of the `1-norm (used as a criterion function in
this example). Consider the family of models (Fr)r≥0 associated with the `1-criterion Fr = {fβ :
‖β‖1 ≤ r}, where fβ(x) =

〈
x, β

〉
is a linear functional on Rd. The following result is used to

prove Theorem 4.1.1 below.

Proposition 3.2.8 ([P16]) There exists an absolute constant c0 for which the following holds.
For every µ and r ≥ 0, and every σ = (X1, . . . , Xn),

γ2

(
P̃σF

(µ)
r , `n∞

)
≤ c0r

(
max

1≤i≤n
‖Xi‖`d∞

)
(log d) log

( √n
log d

)
.

Moreover, if there exists some constant cd (which may depends only on d) such that
∥∥∥‖X‖`d∞

∥∥∥
ψ2

≤

cd then
(
Eγ2

2

(
P̃σF

(µ)
r , `n∞

))1/2
≤ c0rcd(log n)3/2(log d).

The proof of the first part of the claim is rather standard and has appeared in one form or
another in several places (for example, see [16]). It follows from (3.2.10) and the Carl-Maurey
empirical method. The second part is an immediate corollary of the first one combined with
Pisier inequality.

Another example of the computation of Un can be found in [P6] for the computation of the
complexity of the Schatten balls rB(S1), ∀r ≥ 0 (cf. Section 4.3 for the definition of Schatten
norms). The following result is used to prove Theorem 4.2.1 below.

Proposition 3.2.9 ([P6]) There exists an absolute constant c0 > 0 such that if there exists
some constant cmT (which may depend only on the product mT ) satisfying

∥∥‖X‖S2

∥∥
ψ2
≤ cmT ,

then
(
Eγ2

2(rB(S1), ‖·‖∞,n)
)1/2 ≤ c0cmT r log n.

Random complexities like the quantity Un have been used in Empirical Process theory for
many years. For instance, let us recall a result due to Giné and Zinn (cf, e.g. Theorem 3.5 in
[115]). Let G be a set of measurable functions from Z to R and Z be a random variable on
Z satisfying supg∈G |Eg(Z)| ≤ c0. Under the appropriate conditions of measurability of G the
following are equivalent:

1. ‖P − Pn‖G → 0 a.s..

2. E supg∈G |g(Z)| <∞ and for any θ > 0 and ε > 0, when n tends to infinity,

E logN(PσG(θ), `n∞, ε)
n

−→ 0,

where G(θ) = {tθ(g) : g ∈ G} and tθ is a threshold function defined by tθ(x) equals θ when
x ≥ θ, equals x when |x| ≤ θ and −θ when x ≤ −θ for any x ∈ R and θ > 0.
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In particular, it follows from the key theorem in Learning theory (cf. Section 3.4 in [115]) that,
given a model F and a random variable Z, the ERM over F is strictly consistent (cf. definition
of strict consistency in Section 3.2 in [115]) if G = {`f : f ∈ F} and Z satisfy one of the previous
two points.

3.3 Oracle inequalities for the ERM

It follows from the risk bounds of Section 3.1 in terms of the isomorphic profile of LF , `F and EF
and the bounds on the isomorphic profile of these functions classes in Section 3.2.1 the following
risks bounds in terms of the fixed points λ∗η, µ

∗
η and ν∗η . We start with a non-exact oracle

inequality for the ERM for the non-exact prediction problem. The proof follows from (3.1.4)
and Theorem 3.2.2.

Theorem 3.3.1 ([P16]) There exists an absolute constant c0 > 0 for which the following holds.
Let F ⊂ F be a model assume that there exists Bn ≥ 0 such that for every f ∈ F , P`2f ≤
BnP`f +B2

n/n. Let 0 < η < 1, set λ∗η > 0 for which

E‖Pn − P‖V (`F )λ∗η
≤ (η/4)λ∗η.

Then, for every x > 0, with probability greater than 1− 4 exp(−x),

R(f̂ERMn ) ≤ 1 + η

1− η
inf
f∈F

R(f) +
2η

1− η
max

(
λ∗η, c0

(bn(`F ) +Bn/η)(x+ 1)
nη

)
.

Although the formulation of Theorem 3.3.1 requires that P`2 ≤ BnP` + B2
n/n,∀` ∈ `F , we

have seen in Lemma 3.2.5 that if ` is non-negative, this condition is trivially satisfied and one
may take Bn ∼ diam(`F , ψ1) log(n). This type of condition is far from being trivially satisfied
for the excess loss functions classes LF = {`f − `f∗F : f ∈ F} and EF = {`f − `f∗ : f ∈ F}, which
is one of the major difference between the problem of non-exact prediction on one side and the
problems of exact prediction and estimation on the other side. The classical Bernstein condition
for LF and the Margin assumption for EF are usually not trivially satisfied. That is the reason
why, the two following results depends on the Bernstein and Margin parameter 0 < β ≤ 1.
We start with an exact oracle inequality for the ERM for the exact prediction problem which
was obtained in [15] under some boundedness assumption that we extend to the case where the
envelope supL∈LF L is sub-exponential. The proof follows from (3.1.3) and Theorem 3.2.3.

Theorem 3.3.2 ([15]) There exists an absolute constant c0 > 0 for which the following holds.
Let F ⊂ F be a model and assume that there exists 0 < β ≤ 1 and Bn ≥ 0 such that for every
f ∈ F , PL2

f ≤ Bn
(
PLf

)β +B2
n/n. Let 0 < η < 1, set µ∗η > 0 for which

E‖Pn − P‖V (LF )µ∗η
≤ (η/4)µ∗η.

Then, for every x > 0, with probability greater than 1− 4 exp(−x),

R(f̂ERMn ) ≤ inf
f∈F

R(f) + max
(
µ∗η,

16
η

(xBnK2

n

(4
η

)β) 1
2−β +

4KBn
√
x

ηn
+

4Kbn(LF )x
ηn

)
.

Then, we state an oracle inequality for the ERM for the estimation prediction problem under
the Margin assumption. The proof follows from (3.1.5) and Theorem 3.2.4.
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Theorem 3.3.3 There exists an absolute constant c0 > 0 for which the following holds. Let
F ⊂ F be a model and assume that there exists 0 < β ≤ 1 and Bn ≥ 0 such that for every
f ∈ F , PE2

f ≤ Bn
(
PEf

)β +B2
n/n. Let 0 < η < 1, set ν∗η > 0 for which

E‖Pn − P‖V (EF )ν∗η
≤ (η/4)ν∗η .

Then, for every x > 0, with probability greater than 1− 4 exp(−x),

R(f̂ERMn )−R(f∗) ≤ 1 + η

1− η
inf
f∈F

(
R(f)−R(f∗)

)

+
η(2− η)

1− η
max

(
ν∗η ,

16
η

(xBnK2

n

(4
η

)β) 1
2−β +

4KBn
√
x

ηn
+

4Kbn(EF )x
ηn

)
.

Theorem 3.3.2 and Theorem 3.3.3 share strong similarities with the main result of [77] (cf.
Theorem 2 in [77]): if for every f ∈ F , ‖`f‖∞ ≤ 1 and EL2

f ≤ B
(
ELf

)β for some 0 ≤ β ≤ 1
then for every x ≥ 1, with probability greater than 1− exp(−x),

R(f̂ERMn ) ≤ inf
f∈F

R(f) + c0xε
2
∗ (3.3.1)

where ε∗ is the unique solution of the equation
√
nε2
∗ = φ(

√
Bεβ∗ ) (3.3.2)

where φ(λ) ≥
√
nE supf,g∈F,P (`f−`g)2≤λ2(P −Pn)(`f − `g) for any λ such that φ(λ) ≤

√
nλ2 and

φ is non decreasing, continuous, φ(1) ≥ 1 and x→ φ(x)/x is non increasing.
As an application in Learning theory for the 0 − 1 loss function `(f, (x, y)) = 1f(x) 6=y,

an exact oracle inequality for the ERM over a class F of VC dimension V ≤ n (cf. [115]
or [77] for more details) is derived in [77] with a residual term rn(F ) ∼ ε2∗ of the order of(
V log(enB1/β/V )/n

)1/(2−β) (a similar result can be derived from Theorem 3.3.2 as well). In
the same situation, for every f ∈ F , E`2f ≤ E`f , therefore, it follows from Theorem 3.3.1 and
the argument used to obtain Equation (29) in [77] (or Example 3 in [57]) combined with the
peeling argument (3.2.9) that for every x ≥ 1 and 0 < η < 1/2, with probability greater than
1− 8 exp(−x),

R(f̂ERMn ) ≤ (1 + 2η) inf
f∈F

R(f) + c0
xV log

(
en/V

)

η2n
. (3.3.3)

The residual term ε2∗ obtained in [77] is optimal and heavily depends on the parameter β,
it ranges between

√
V/n and V/n (up to a logarithmic factor). In particular, it can be as bad

as the square root of the residual term of the non-exact oracle inequality (3.3.3) in the same
situation. The main difference between the two results is that the condition “∀f ∈ F,E`2f ≤ E`f”

is always satisfied whereas the condition “∀f ∈ F,EL2
f ≤ B

(
ELf

)β” depends on the geometry
of the system (F, Y ) (relative position of Y with respect to F ). It is interesting to note that the
residual term in (3.3.3) is always a fast rate even for hard classification problem such that P[Y =
1|X] = 1/2. On one hand, this means that the non-exact prediction problem in classification is
completely blind to the geometry of the model and to its statistical estimation property. On the
other hand, the exact prediction problem is on the contrary heavily dependent of the geometry
of (F, Y ) and the estimation problem heavily depends on the Margin parameter.

Another related result is the one in [57] where (among other results) an exact oracle in-
equality is proved for the ERM with a residual term δn(x) expressed in terms of φn(δ) =
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E supf,g∈F (δ) |(P−Pn)(`f−`g)| where F (δ) = {f ∈ F : PLf ≤ δ} andD(δ) = supf,g∈F (δ)

√
P (`f − `g)2:

(cf. [57] for the general formulation):

δn(x) = argmin
(
δ > 0 : φn(δ) +

√
2x
n

(
D(δ)2 + 2φn(δ)

)
+

x

2n
≤ c0δ

)
. (3.3.4)

In [77, 57, 15] the risk bounds were obtained under the boundedness assumption supf∈F ‖`f‖∞ ≤
c0 which has been a major drawback in the analysis of procedures in Learning theory by using
tools from empirical processes (like Talagrand’s extension of Bennett’s inequality for the supre-
mum of random process or the contraction principle, cf. [66]). In particular, these results do
not apply to the Gaussian regression model. The approach that we developed in [P16] provides
a slight improvement since risk bounds hold if the envelop supf∈F `f is sub-exponential. This is
in particular the case for the Gaussian regression model with respect to the square loss. From
a technical point of view, we bypassed the boundedness assumption thanks to a result of [1] ex-
tending Talagrand concentration inequality to functions classes with a sub-exponential envelop
and through upper bounds on the expectation of the supremum of the empirical process using
a truncation argument and Rudelson’s method for the truncated part. Moreover, the results
in [77, 57, 15] and Theorem 3.3.2 are exact oracle inequalities relying on the properties of the
excess loss functions class LF and the result in Theorem 3.3.3 depends on the properties of EF ,
whereas Theorem 3.3.1 provides a non-exact oracle inequality for the non-exact prediction prob-
lem for the ERM relying on the property of the loss functions class `F which is “surprisingly”
much simpler. More details on the difference between exact and non-exact oracle inequalities
are provided in the next section.

3.4 Differences between exact and non-exact oracle inequalities
for the prediction problem

One motivation in obtaining non-exact oracle inequalities (Equation (1.2.1) with ε > 0 or Theo-
rem 3.3.1) is the observation that one can obtain such an inequality for the ERM with a residual
term rn(F ) of the order of 1/n, while the best residual term achievable by the ERM in an exact
oracle inequality (Equation (1.2.1) for ε = 0 or Theorem 3.3.2) will only be of the order of 1/

√
n

for the same problem.
For example, consider the simple case of a finite model F of cardinality M (cf. the (MS)

aggregation problem in Chapter 2) and the bounded regression model with the quadratic loss
function (that is Z = (X,Y ) ∈ X × R with |Y |,maxf∈F |f(X)| ≤ C for some absolute constant
C and `(f, (X,Y )) = (Y − f(X))2). It can be verified that for every x > 0, with probability
greater than 1 − 4 exp(−x), f̂ERMn satisfies a non-exact oracle inequality with a residual term
proportional to (x + logM)/(εn). On the other hand, it is known [67, 81, P15] that in the
same setup, there are finite models for which, with probability greater than a positive constant,
f̂ERMn cannot satisfy an exact oracle inequality with a residual term better than c0

√
(logM)/n

(cf. Theorem 2.2.1). Thus, it is possible to establish two optimal oracle inequalities (i.e. oracle
inequalities with a non-improvable residual term rn(F ) up to some multiplying constants) for
the same procedure — one exact and the other one non-exact — with two very different residual
terms: one being the square of the other one.

This huge difference in the residual terms of the exact and the non-exact oracle inequalities
was already pointed out in Section 3.3 for the classification problem over VC classes. The goal
of this section is to describe the difference between the analysis used in [15] or Theorem 3.3.2
to obtain exact oracle inequalities for the ERM, and the one used in Theorem 3.3.1 to establish
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non-exact oracle inequalities for the ERM. Our aim is to indicate why one may get faster rates
for non-exact inequalities than for exact ones for the same problem. One should stress that
this is not, by any means, a proof that it is impossible to get exact oracle inequalities with fast
rates (there are in fact examples in which the ERM satisfies exact oracle inequalities with fast
rates: the Linear aggregation problem, [57]). It is not even a proof that the localization method
presented here is sharp. However, we believe that this explanation will help to shed some light
on the differences between the two types of inequalities.

First note that the price to pay to obtain better rates for non-exact oracle inequalities
compared to the one obtained for exact oracle inequalities is that exact oracle inequalities are
somehow more “valuable” from a statistical point of view. Indeed, if the regression model with
the quadratic loss is considered then it follows from an exact oracle inequality on the prediction
risk (Equation (1.2.1) for ε = 0), an other exact oracle inequality but for the estimation risk:∥∥∥f̂ERMn − f∗

∥∥∥
2

L2

≤ inff∈F ‖f − f∗‖2L2
+ rn(F ) where f∗ is the regression function of Y given X

and ‖·‖L2
is the L2-norm with respect to the marginal distribution of X. Such a result cannot

follow from a non-exact oracle inequality on the prediction risk (Equation (1.2.1) for ε > 0). In
other words, exact oracle inequalities for the prediction risk R(·) provide both prediction and
estimation results (prediction of the output Y and estimation of the regression function f∗)
whereas non-exact oracle inequalities for the prediction risk provide only prediction results. The
point in studying non-exact oracle inequalities is that if we don’t really have to compare the
risk R(f̂n) of some estimator f̂n with inff∈F R(f) then it may be advantageous to compare it
with (1 + ε) inff∈F R(f). Because, in this case, the residual term can be much smaller. This is
in particular the situation, when one wants to construct adaptive prediction procedures. Even
though the two problems (exact and non-exact prediction) seem rather close they are already
different from a statistical point of view.

Now, let’s turn to the mathematical differences behind the two problems. Roughly put, and
as indicated in Section 3.2.2, localization arguments are based on two main aspects:

1. A Bernstein type condition, the essence of which is that it allows one to “replace” the
localized sets Gλ = {g ∈ G : Pg2 ≤ λ} by the “less complex” localized sets Gλ = {g ∈ G :
Pg ≤ λ}.

2. The fixed point of the empirical process indexed by the localized star-shaped hull of the
loss functions class V (`F )λ (for non-exact inequalities) or of the excess loss functions class
V (LF )λ (for exact ones).

Although the two aspects seem similar for the exact and non-exact cases, they are very
different when dealing with LF rather than `F . Indeed, for non-exact oracle inequality the Mar-
gin/Bernstein condition (3.2.3) is almost trivially satisfied and requires no special properties on
the learning problem (F, `, P ) — as long as the functions in `F have well behaved tails. As such,
it is an individual property of every class members (cf. Lemma 3.2.5). On the other hand, the
Bernstein condition (3.2.4) required for the exact oracle inequality obtained in Theorem 3.3.2
and in [15] is deeply connected to the geometry of the problem (see, for example, [82] or Sec-
tion 1.3). In particular, this explains the gap that we observed in the finite model example ((MS)
aggregation) introducing this section. In that case, the class is a finite set of functions and the
set N(F, `,X) of multiple minimizer (cf. Section 1.3 for more details) is not empty. Thus, one
can find a set F and a target Y in a “bad” position (cf. Figure 1.1), leading to an excess loss
class LF with a trivial Bernstein constant (i.e. of the order of

√
n). On the other hand, in this

example, regardless of the choice of Y , the Bernstein constant of `F is like a constant. Let us
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mention that when the gap between exact and non-exact oracle inequalities is only due to the
fact that the excess loss class LF does not satisfy the Bernstein condition (or that the Bernstein
constant is like

√
n), it is likely that in this setup ERM, regularized ERM and penalized esti-

mators satisfy suboptimal exact oracle inequalities [67, 81, P15]. In particular, when slow rates
are due to a lack of convexity of F (which is closely related to a bad Bernstein constant of LF
for 2-convex loss functions), one can consider procedures which “improve the geometry” of the
model (for instance, the “empirical star algorithm” of [7] or the “pre-selection-convexification”
method in [P14] - we refer to Chapter 2 for more details).

The second mathematical aspect of the problem is the fixed point of the localized empirical
process. Although the complexity of the sets LF and `F seem similar from a metric point
of view (LF is just a shift of `F ) the localized star-shaped hulls (V (LF ))λ and (V (`F ))λ are
rather different. Since there are many ways of bounding the supremum of the empirical process
indexed by these localized sets, let us show the difference for one of these methods — based
on the random projection of the classes, and for the sake of simplicity, we will only consider
the regression model with respect to the square loss function. Using this method of analysis at
hand, the dominant term of the bound on E ‖P − Pn‖V (`F )µ

(for the loss functions class) which
was obtained in Proposition 3.2.7 is

√
µ

√√√√Eγ2
2

(
P̃σF (µ), `n∞

)

n
. (3.4.1)

A similar bound can be obtained for E ‖P − Pn‖V (LF )µ
in [84] and [16], in which the dominant

term is

√(
inf
f∈F

R(f) + µ
)
√√√√Eγ2

2

(
P̃σF (µ), `n∞

)

n
. (3.4.2)

If this bound is sharp (and it is in many cases), and since R∗ = inff∈F R(f) is in general a non-

zero constant, the fixed point µ∗η in Theorem 3.3.2 or [15] is of the order of
√

Eγ2
2

(
˜PσF (µ∗), `n∞

)
/n

resulting in a exact oracle inequality with a slow rate larger than 1/
√
n. In contrast, the fixed

point in the non-exact case of Theorem 3.3.1 is λ∗η ∼ Eγ2
2

( ˜PσF (λ∗η), `n∞

)
/n which is of the order

of 1/n (up to logarithmic factors) when the complexity Eγ2
2

(
P̃σF , `

n
∞

)
is “reasonable”.

The reason for this gap comes from the observation that functions in the star hull of `F
whose expectation is smaller than R∗ are only “scaled down” versions of functions from `F . In
fact, the “complexity” of the localized sets below the level of R∗ can already be seen at the level
R∗. Hence, the empirical process those sets index (when scaled properly), becomes smaller with
λ.

In contrast, because there are functions Lf that can have an arbitrarily small expectation,
the complexity of the localized subsets of the star hull of LF (normalized properly), can even
increase as λ decreases. This happens in very simple situations; for example, even in regression
relative to the model BM

1 (close to the Convex aggregation problem or in general when the
model F is the convex hull of orthonormal functions), if R∗ 6= 0, the complexity of the localized
sets (LBM1 )µ remains almost stable and starts to decrease only at a very “low” level µ ≤ 1/M .

This is the reason for the phase transition in the error rate (∼ max{
√

(logM)/n,M/n}) that
one encounters in that problem (cf. Theorem 2.8.2). The first term is due to the fact that the
complexity of the localized sets (LBM1 )µ does not change as 1/M ≤ µ ≤ 1 decreases — up to
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some critical level µ = 1/M , while the second captures what happens when the localized sets
begin to “shrink” at levels 0 < µ ≤ 1/M . Whereas for any µ < R∗, the localized sets (`BM1 )µ
are empty. Thus in many situations the fixed point λ∗η associated with `BM1

is very small — it
can even be equal to zero — but, for the same situation,

(
LBM1

)
µ

is non empty and can still
be a complex set for small values of µ. A concrete example of this phenomenon is treated in
Section 4.5 for the Convex aggregation problem.

3.5 Oracle inequalities for regularized ERM

In this section, we study regularized empirical risk minimization procedures for the three prob-
lems (non-exact prediction, exact prediction and estimation). The study of regularized ERM
procedures is motivated in Section 1.2.3.

The next results are oracle inequalities for Regularized ERM procedures. Before stating these
results, one has to say a word on the way the regularizing function reg(·) and the criterion crit(·)
are related (cf. Section 1.2.3 for more details). We recall that we are given a criterion function
crit : F → R+ that characterizes each element in F to its level of compliance with a desired
property or having some particular computational interest. The choice of reg(·) in function
of crit(·) such that the regularized ERM f̂RERMn ∈ argminf∈F

(
Rn(f) + reg(f)

)
satisfies some

oracle inequalities is driven by the complexity of the sequence (Fr)r≥0 of models

Fr = {f ∈ F : crit(f) ≤ r}.

We first start with a non-exact oracle inequality for a regularized ERM procedure for the
non-exact prediction problem. In this context, for any r ≥ 0, the complexity of Fr is measured
by λ∗η(r) defined for some 0 < η < 1/2 such that

E‖Pn − P‖V (`Fr )λ∗η(r)
≤ (η/4)λ∗η(r). (3.5.1)

For any r ≥ 0, λ∗η(r) is usually the dominant term in the isomorphic profile of `Fr above which
the empirical and the actual structures are equivalent: with high probability, every ` ∈ `Fr for
which P` ≥ λ∗η(r), satisfies that (1 − η)P` ≤ Pn` ≤ (1 + η)P`. Thus, r → λ∗η(r) captures the
“isomorphic profile” of the collection (`Fr)r≥0. Roughly speaking, the regularizing function will
be like reg(f) = λ∗η(crit(f)),∀f ∈ F (up to some multiplying constants and second order terms;
cf. (3.5.4) for the exact definition of reg).

For technical reasons, we also introduce an auxiliary function αn, defined as follows: if there
exists Cn > 0 such that ∀f ∈ F , crit(f) ≤ Cn then take αn ≡ Cn, otherwise if r → λ∗η(r) tends to
infinity when r tends to infinity and if there exists K1 > 0 such that for every (r, x) ∈ R+×R∗+,
2ρ`n(r, x) ≤ ρ`n(K1(r + 1), x) (where ρ`n is defined in Theorem 3.5.1 below) then, let f0 be any
function in ∪r≥0Fr (for instance, when 0 ∈ ∪r≥0Fr, take f0 ≡ 0) and define for every x > 0 and
0 < η < 1/2,

αn(η, x) ≥ max
[
K1(crit(f0) + 2), (3.5.2)

(λ∗η)
−1
(
2(1 + η)(3R(f0) + 2K ′(bn(`f0) +Bn(crit(f0)))((x+ 1)/n))

)]
,

where (λ∗η)
−1 is the generalized inverse function of λ∗η (i.e. (λ∗η)

−1(y) = sup
(
r > 0 : λ∗η(r) ≤

y
)
,∀y > 0), bn and Bn are functions introduced in Theorem 3.5.1 below and K1,K

′ are absolute
constants. Fortunately, αn usually has little impact on the resulting rates. For instance, in the
main applications of Chapter 4, we have logαn(η, x) .η log(x+ n).
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Theorem 3.5.1 ([P16]) There exist absolute positive constants c0 and c1 for which the fol-
lowing holds. Assume that for every f ∈ F , `f (Z) ≥ 0 a.s. and that there are non-decreasing
functions φn and Bn such that for every r ≥ 0 and every f ∈ Fr,

bn(`Fr) ≤ φn(r) and P`2f ≤ Bn(r)P`f +B2
n(r)/n.

Let 0 < η < 1/2 and assume that there exists some function ρ`n increasing in its first argument
such that for every (r, x) ∈ R+ × R∗+,

ρ`n(r, x) ≥ max
(
λ∗η(r), c0

(φn(r) +Bn(r)/η)(x+ 1)
nη

)
.

Denote F = ∪r≥0Fr and take x > 0. We set

f̂RERMn ∈ argmin
f∈F

(
Rn(f) +

2
1 + η

ρ`n(crit(f) + 1, x+ logαn(η, x))
)
. (3.5.3)

Then, with probability greater than 1− 12 exp(−x),

R(f̂RERMn ) + ρ`n(crit(f̂RERMn ) + 1, x+ logαn(η, x))
)

≤ inf
f∈F

[
(1 + 2η)R(f) + 2ρ`n(crit(f) + 1, x+ logαn(η, x))

+ c1
(bn(`f ) +Bn(crit(f))/η)(x+ 1)

nη

]
.

Like in Theorem 3.3.1, the condition P`2 ≤ Bn(r)P` + B2
n(r)/n,∀` ∈ `Fr holds when ` is

non-negative and ψ1 for some function Bn such that Bn(r) . diam(`Fr , ψ1) log(n), and thus,
unlike the two other situations (exact prediction and estimation problems), the “geometry”
and statistical properties of the family (Fr)r≥0 do not play a crucial role to obtain non-exact
regularized oracle inequalities.

The choice of the regularizing function in terms of the criterion is now made explicit: for
every f ∈ F ,

reg(f) =
2

1 + η
ρ`n(crit(f) + 1, x+ logαn(η, x)). (3.5.4)

This choice of the regularizing function is the one suggested by our method to solve the non-exact
prediction problem.

The regularizing function may be different for the exact prediction problem. We introduce
r → µ∗1/2(r) such that for any r ≥ 0,

E‖Pn − P‖V (LFr )µ∗
1/2

(r)
≤ (1/8)µ∗1/2(r). (3.5.5)

Note that for exact oracle inequalities, we take η = 1/2 since this parameter does not play
any role for the exact prediction problem. Like in Theorem 3.5.1, we also consider an auxiliary
function βn defined by: if there exists Cn > 0 such that ∀f ∈ F , crit(f) ≤ Cn then take βn ≡ Cn,
otherwise if r → µ∗1/2(r) tends to infinity when r tends to infinity and if there exists K1 > 0
such that for every (r, x) ∈ R+ × R∗+, 2ρLn(r, x) ≤ ρLn(K1(r + 1), x) (where ρLn is defined in
Theorem 3.5.3 below) then, let f0 be any function in ∪r≥0Fr (for instance, when 0 ∈ ∪r≥0Fr,
take f0 ≡ 0) and define for every x > 0,

βn(x) ≥ max
[
K1(crit(f0) + 2), (µ∗1/2)−1

(
3
(

3R(f0) (3.5.6)

+ 256
(xBn(crit(f0))K2

n

) 1
2−β +

8KBn(crit(f0))
√
x

n
+

8Kbn(Lf0)x
n

))]
,
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where (µ∗1/2)−1 is the generalized inverse function of µ∗1/2 (i.e. (µ∗1/2)−1(y) = sup
(
r > 0 :

µ∗1/2(r) ≤ y
)
,∀y > 0), bn and Bn are functions introduced in Theorem 3.5.3 below and K1,K

′

are absolute constants. Fortunately, βn usually has little impact on the resulting rates. For
instance, in the main applications of Chapter 4, we have log βn(x) . log(x+n). We also consider
the following regularity assumption on the family of models (Fr)r≥0 which was introduced in
[16] and [84].

Definition 3.5.2 (Definition 2.4 in [84], [16]) We say that a family (Fr)r≥0 of subsets of F
is an ordered, parametrized hierarchy of F with respect to the loss function ` and
the probability distribution P when the following conditions are satisfied:

1. (Fr)r≥0 is non-decreasing (that is s ≤ t⇒ Fs ⊆ Ft);

2. for any r ≥ 0, there exists a unique element f∗r ∈ Fr such that R(f∗r ) = inf(R(f) : f ∈ Fr);
we consider the excess loss function associated with the class Fr: for any f ∈ Fr, Lr,f (·) =
Q(·, f)−Q(·, f∗r );

3. the map r 7−→ R(f∗r ) is continuous;

4. for every r0 ≥ 0, ∩r≥r0Fr = Fr0.

The following result is a slight modification of a result from [84] and [16]. A sketch of the
proof of this result can be found in Chapter 6.

Theorem 3.5.3 [Theorem 2.5, [84], [16]] There exist absolute positive constants c0 and c1, c2, c3

for which the following holds. Assume that for every f ∈ F , `f (Z) ≥ 0 a.s. and that there exists
0 < β ≤ 1 and two non-decreasing functions φn and Bn such that for every r ≥ 0 and every
f ∈ Fr,

bn(LFr) ≤ φn(r) and PL2
r,f ≤ Bn(r)

(
PLr,f

)β +B2
n(r)/n.

Assume that (Fr)r≥0 is an ordered, parametrized hierarchy of F and denote F = ∪r≥0Fr.
Consider a continuous function ρLn that is increasing in both argument such that for every
(r, x) ∈ R+ × R∗+,

ρLn(r, x) ≥ max
(
µ∗1/2(r), 256

(xBn(r)K2

n

) 1
2−β +

8KBn(r)
√
x

n
+

8Kφn(r)x
n

)
.

Let x > 0 and for θ(x) = x+ c0 log
(
1 +R(f∗0 )/ρLn(0, x+ c1) + log βn(x)

)
define

f̂RERMn ∈ argmin
f∈F

(
Rn(f) + c2ρ

L
n(2(crit(f) + 1), θ(x))

)
. (3.5.7)

Then, with probability greater than 1− 5 exp(−x),

R(f̂RERMn ) ≤ inf
f∈F

[
R(f) + c3ρ

L
n(2(crit(f) + 1), θ(x))

]
.

Therefore, in the context of the exact-prediction problem, the choice of the regularizing function
in terms of the criterion is given, for every f ∈ F , by

reg(f) = c0ρ
L
n(2(crit(f) + 1), θ(x)). (3.5.8)

An application of this result is given in Section 4.3. Note that when the criterion function takes
values in a countable set then we don’t need the family (Fr)r≥0 to be an ordered, parametrized
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hierarchy. This can be useful when models complexity is measured by their dimension, VC
dimension or in general by any discrete complexity measure.

To see the difference between the properties of regularized ERM for the exact prediction
problem and the non-exact prediction problem, it is interesting to compare the exact oracle in-
equalities for regularized ERM procedures obtained in [16, P6, 84] and Theorem 3.5.3 with Theo-
rem 3.5.1. Indeed, Theorem 3.5.1 implies that a possible way of regularizing to obtain non-exact
regularized oracle inequalities is roughly by the regularizing function f ∈ F → λ∗η(crit(f)). On
the other hand, for exact regularized oracle inequalities, the resulting regularizing function in [16,
P6, 84] and Theorem 3.5.3 is roughly f ∈ F → max

(
µ∗1/2(crit(f)),

(
Bn(crit(f))x/n

)1/(2−β)
)

.
Therefore, there are mainly two differences between the two different ways of regularizing. The
first difference comes from the residual terms of the deviation inequalities of the supremum of
the empirical process indexed by the two families

(
`Fr
)
r≥0

and
(
LFr

)
r≥0

. In the “loss function
case”, this residual term is of the order of x/n. This is due to the fact that the Margin/Bernstein
condition (3.2.3) is almost always satisfied in this case. On the other side, the residual term in
the case of the excess loss class is of the order of

(
x/n

)1/(2−β) depending on the Bernstein pa-
rameter 0 ≤ β ≤ 1. The second difference comes from the complexity aspect of the two problems
through the fixed point functions r → λ∗η(r) and r → µ∗1/2(r). Although the two isomorphic
profiles seem similar, λ∗η(·) can be the square of µ∗1/2(·) in some examples (cf. the discussion in
Section 3.4 and the example in Section 4.5). In those cases, one has to “regularize more” to
obtain an exact oracle inequality than for a non-exact one (cf. Section 3.4 and 4.5 below for
more details).

A similar result can be obtained for the estimation problem. Once again, we introduce a
fixed point function r → ν∗η(r) and an auxiliary function γn to obtain an oracle inequality for a
regularized ERM procedure for the estimation problem. We introduce r → ν∗η(r) such that for
any r ≥ 0,

E‖Pn − P‖V (EFr )ν∗η (r)
≤ (η/4)ν∗η(r). (3.5.9)

Like in Theorem 3.5.1 and 3.5.3, we also consider an auxiliary function γn defined by: if there
exists Cn > 0 such that ∀f ∈ F , crit(f) ≤ Cn then take γn ≡ Cn, otherwise if r → ν∗η(r) tends to
infinity when r tends to infinity and if there exists K1 > 0 such that for every (r, x) ∈ R+×R∗+,
2ρEn(r, x) ≤ ρEn(K1(r + 1), x) (where ρEn is defined in Theorem 3.5.4 below) then, let f0 be any
function in ∪r≥0Fr (for instance, when 0 ∈ ∪r≥0Fr, take f0 ≡ 0) and define for every x > 0 and
0 < η < 1/2,

γn(η, x) ≥ max
[
K1(crit(f0) + 2), (ν∗η)−1

(
2(1 + η)

(
3R(f0)

+ 4
(Bn(crit(f0))K2x

n

) 1
2−β +

KBn(crit(f0))
√
x

n
+

2Kbn(Ef0)x
n

))]
,

where (ν∗η)−1 is the generalized inverse function of ν∗η (i.e. (ν∗η)−1(y) = sup
(
r > 0 : ν∗η(r) ≤

y
)
, ∀y > 0), bn and Bn are functions introduced in Theorem 3.5.4 below and K1,K

′ are absolute
constants. Fortunately, γn usually has little impact on the resulting rates. A proof of the
following result can be found in Chapter 5.

Theorem 3.5.4 There exist an absolute positive constant c0 for which the following holds. As-
sume that for every f ∈ F , `f (Z) ≥ 0 a.s. and that there exists 0 < β ≤ 1 and two non-decreasing
functions φn and Bn such that for every r ≥ 0 and every f ∈ Fr,

bn(EFr) ≤ φn(r) and PE2
f ≤ Bn(r)

(
PEf

)β +B2
n(r)/n.
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Let 0 < η < 1/2 and assume that there exists some function ρEn increasing in its first argument
such that for every (r, x) ∈ R+ × R∗+,

ρEn(r, x) ≥ max
(
ν∗η(r),

16
η

(xBn(r)K2

n

(4
η

)β) 1
2−β +

4KBn(r)
√
x

ηn
+

4Kφn(r)x
ηn

)
.

Denote F = ∪r≥0Fr and let x > 0. We set

f̂RERMn ∈ argmin
f∈F

(
Rn(f) +

2
1 + η

ρEn(crit(f) + 1, x+ log γn(η, x))
)
. (3.5.10)

Then, with probability greater than 1− 12 exp(−x),

R(f̂RERMn )−R(f∗) + ρEn(crit(f̂RERMn ) + 1, x+ log γn(η, x))

≤ inf
f∈F

[
(1 + 2η)

(
R(f)−R(f∗)

)
+ 2ρEn(crit(f) + 1, x+ log γn(η, x))

+ c0

(Bn(crit(f))x
ηn

) 1
2−β +

c0Bn(crit(f))
√
x

n
+
c0bn(Ef )x

ηn

]
.

Therefore, in the context of the estimation problem, the choice of the regularizing function in
terms of the criterion is given, for every f ∈ F , by

reg(f) =
2

1 + η
ρEn(crit(f) + 1, x+ log γn(η, x)). (3.5.11)

As a conclusion, given a criterion function, the way the empirical risk is regularized depends
heavily of the problem we want to analyze. If one wants to solve a non-exact prediction problem
then one can regularize by (3.5.4), for the exact prediction problem a way of regularizing is
given in (3.5.8) and for the estimation problem a regularizing function in terms of the criterion
is given in (3.5.11). The three different ways of regularizing depend on the geometry and the
complexity of the families

(
`Fr
)
r≥0

,
(
LFr

)
r≥0

and
(
EFr
)
r≥0

and therefore can be very different.

3.6 Oracle inequalities for penalized estimators

We consider the Model Selection setup of [76] recalled in Subsection 1.2.4. We are given a
collection M of models. We assume that M is countable. The aim of this section is to show
that one way of penalizing can be derived from the isomorphic profiles of the family of loss
functions classes (`m)m∈M and excess loss functions classes

(
Lm
)
m∈M and

(
Em
)
m∈M defined

for any m ∈M by

`m = {`f : f ∈ m}, Lm = {`f − `f∗m : m ∈M} and Em = {`f − `f∗ : m ∈M}

where we assume that there exists f∗m ∈ argminf∈mR(f) for anym ∈M (and f∗ ∈ argminf∈F R(f)).
We first consider the non-exact prediction problem. Let 0 < η < 1/2. Assume that there

exists some function ρ`n :M× R+ → R+ such that for any m ∈M and x > 0, with probability
greater than 1− c0 exp(−x),

∣∣Pn`f − P`f
∣∣ ≤ ηmax

(
P`f , ρ

`
n(m,x)

)
, ∀f ∈ m. (3.6.1)

Let (xm)m∈M be a family of positive numbers such that
∑

m∈M exp(−xm) ≤ c1. Let x > 0. We
consider the penalty function

pen`(m) = ρ`n(m,x+ xm), ∀m ∈M (3.6.2)
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and the penalized estimator f̂bm where for any m ∈ M, f̂m ∈ argminf∈mRn(f) and m̂ ∈
argminm∈M

(
Rn(f̂m)+pen`(m)

)
. Once again, we assume that the ERM procedures f̂m,m ∈M

and m̂ exist otherwise approximated minimizers can be considered. It follows from a union
bound over M and (3.6.1) that with probability greater than 1− c0c1 exp(−x),

P` bf bm ≤ (1− η)−1
(
Pn` bf bm + ρ`n(m̂, x+ xbm)

)
= (1− η)−1

(
Pn` bf bm + pen`(m̂)

)

= (1− η)−1 inf
m∈M

(
Pn` bfm + pen`(m)

)
= (1− η)−1 inf

m∈M

(
inf
f∈m

Pn`f + pen`(m)
)

≤ 1 + η

1− η
inf
m∈M

(
inf
f∈m

P`f + pen`(m)
)
. (3.6.3)

Therefore, one way of obtaining a penalized oracle inequality for the non-exact prediction prob-
lem is by penalizing the empirical risk by the penalty function (3.6.2) associated with the iso-
morphic profile of the family

(
`m
)
m∈M and the weights (xm)m∈M.

Any way of controlling the isomorphic profile of a loss functions class will provide a way of
penalizing the empirical risk. For instance, we can apply Theorem 3.2.2 to construct a penalty
function. We introduce the following function m ∈ M → λ∗η(m) defined for some 0 < η < 1/2
by

E‖Pn − P‖V (`m)λ∗η(m)
≤ (η/4)λ∗η(m). (3.6.4)

For any m ∈ M, λ∗η(m) is usually the dominant term in the isomorphic profile of `m. Thus,
m → λ∗η(m) captures the “isomorphic profile” of the family (`m)m∈M. Roughly speaking, the
penalty function will be like pen(m) = λ∗η(m),∀m ∈ M (up to some multiplying constants and
second order terms; the exact definition of pen is provided in the following result and (3.6.5)).
The proof of the following result follows from (3.6.3) and Theorem 3.2.2.

Theorem 3.6.1 There exists an absolute positive constant c0 such that the following holds.
Assume that there are some functions φn and Bn such that for every m ∈M and every f ∈ m,

bn(`m) ≤ φn(m) and P`2f ≤ Bn(m)P`f +B2
n(m)/n.

Let 0 < η < 1/2 and assume that for every (m,x) ∈M× R∗+,

ρ`n(m,x) ≥ max
(
λ∗η(m), c0

(φn(m) +Bn(m)/η)(x+ 1)
nη

)
.

Let (xm)m∈M be a family of positive numbers such that
∑

m∈M exp(−xm) ≤ c1. Let x > 0
and consider the penalty function pen`(m) = ρ`n(m,x + xm) and the penalized estimator f̂bm
associated with this penalty function. Then, with probability greater than 1− 12c1 exp(−x),

R(f̂bm) ≤ 1 + η

1− η
inf
m∈M

(
inf
f∈m

P`f + pen`(m)
)
.

Like in Theorem 3.3.1 and Theorem 3.5.1, the condition P`2 ≤ Bn(m)P`+B2
n(m)/n,∀m ∈

M, ` ∈ `m holds when ` is non-negative and ψ1 for some function Bn such that Bn(m) .
diam(`m, ψ1) log(n). The penalty function for the non-exact prediction problem in terms of the
fixed point function λ∗η that comes out of our analysis in Theorem 3.6.1 is

pen`(m) = max
(
λ∗η(m), c0

(φn(m) +Bn(m)/η)(x+ xm + 1)
nη

)
. (3.6.5)
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As in Section 3.5 for the regularizing function, the choice of the penalty function for the esti-
mation problem may be different.

For the estimation problem, the choice of the penalty function can be derived from the
isomorphic profile of the family of excess loss functions classes

(
Em
)
m∈M. Let 0 < η < 1/2.

Assume that there exists some function ρEn : M× R+ → R+ such that for any m ∈ M and
x > 0, with probability greater than 1− c0 exp(−x),

∣∣PnEf − PEf
∣∣ ≤ ηmax

(
PEf , ρEn(m,x)

)
, ∀f ∈ m. (3.6.6)

Let (xm)m∈M be a family of positive numbers such that
∑

m∈M exp(−xm) ≤ c1. Let x > 0. We
consider the penalty function

penE(m) = ρEn(m,x+ xm), ∀m ∈M (3.6.7)

and the penalized estimator f̂bm associated with this penalty function. It follows from a union
bound over M and (3.6.6) that with probability greater than 1− c0c1 exp(−x),

PE bf bm ≤ (1− η)−1
(
PnE bf bm + ρEn(m̂, x+ xbm)

)
= (1− η)−1

(
PnE bf bm + penE(m̂)

)

= (1− η)−1 inf
m∈M

(
PnE bfm + penE(m)

)
= (1− η)−1 inf

m∈M

(
inf
f∈m

PnEf + penE(m)
)

≤ 1 + η

1− η
inf
m∈M

(
inf
f∈m

PEf + penE(m)
)
. (3.6.8)

Therefore, one way of obtaining a penalized oracle inequality for the estimation problem is by
penalizing the empirical risk by the penalty function (3.6.7) associated with the isomorphic
profile of the family

(
Em
)
m∈M and the weights (xm)m∈M.

Following the same strategy as in Theorem 3.6.1, we obtain a penalized oracle inequality
for the penalized estimator for the estimation problem. Once again, for some 0 < η < 1/2, we
introduce a fixed point function m ∈M→ ν∗η(m): for any m ∈M,

E‖Pn − P‖V (Em)ν∗η (m)
≤ (η/4)ν∗η(m). (3.6.9)

The fixed point function m→ ν∗η(m) characterizes the complexity of the family
(
Em
)
m∈M. The

proof of the following result follows from (3.6.8) and Theorem 3.2.4.

Theorem 3.6.2 There exist absolute positive constants c0 and c1 for which the following holds.
Assume that there exists 0 < β ≤ 1 and some functions φn and Bn such that for every m ∈ M
and every f ∈ m,

bn(Em) ≤ φn(m) and PE2
f ≤ Bn(m)

(
PEf

)β +B2
n(m)/n.

Let 0 < η < 1/2 and assume that for every (m,x) ∈M× R∗+,

ρEn(m,x) ≥ max
(
ν∗η(m),

16
η

(xBn(m)K2

n

(4
η

)β) 1
2−β +

4KBn(m)
√
x

ηn
+

4Kφn(m)x
ηn

)
.

Let (xm)m∈M be a family of positive numbers such that
∑

m∈M exp(−xm) ≤ c1. Let x > 0
and consider the penalty function penE(m) = ρEn(m,x + xm) and the penalized estimator f̂bm
associated with this penalty function. Then, with probability greater than 1− 12c1 exp(−x),

R(f̂bm)−R(f∗) ≤ 1 + η

1− η
inf
m∈M

(
inf
f∈m

(
R(f)−R(f∗)

)
+ penE(m)

)
.
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Therefore, in the context of the estimation problem, a possible way of penalizing the empirical
risk is by the function

penE(m) = max
(
ν∗η(m), c2(Bn(m) + φn(m))

(x+ xm
nη

) 1
2−β
)
. (3.6.10)

A similar result for the exact prediction problem can be obtained but its proof requires a
more subtle argument that can be found in [13]. We introduce a fixed point function m ∈M→
µ∗1/2(m): for any m ∈M,

E‖Pn − P‖V (Lm)µ∗
1/2

(m)
≤ (1/8)µ∗1/2(m) (3.6.11)

where Lm = {`f − `f∗m : f ∈ m} and f∗m ∈ argminf∈mR(f). Once again for the exact prediction
problem we take η = 1/2. The fixed point function m → µ∗1/2(m) characterizes the complexity
of the family

(
Lm
)
m∈M.

Theorem 3.6.3 ([13]) There exist absolute positive constants c0 and c1 for which the following
holds. Assume that the models in M =

(
mn

)
n∈N are nested i.e. m0 ⊂ m1 ⊂ m2 ⊂ · · · . Assume

that there exists 0 < β ≤ 1 and two non-decreasing functions φn and Bn such that for every
m ∈M and every f ∈ m,

bn(Lm) ≤ φn(m) and PL2
m,f ≤ Bn(m)

(
PLm,f

)β +B2
n(m)/n where Lm,f = `f − `f∗m .

Let ρLn be an increasing function such that for every (m,x) ∈M× R∗+,

ρLn(m,x) ≥ max
(
µ∗1/2(m), 256

(xBn(m)K2

n

) 1
2−β +

8KBn(m)
√
x

n
+

8Kφn(m)x
n

)
.

Let (xm)m∈M be a family of positive numbers such that
∑

m∈M exp(−xm) ≤ c1. Let x > 0
and consider the penalty function penL(m) = (7/2)ρLn(m,x + xm) and the penalized estimator
f̂bm associated with this penalty function. Then, with probability greater than 1− 12c1 exp(−x),

R(f̂bm) ≤ inf
m∈M

(
inf
f∈m

R(f)
)

+ (18/7) penL(m)
)
.

Therefore, for the exact prediction problem, a possible way of penalizing the empirical risk is by
the function

penL(m) = c2 max
(
µ∗1/2(m), (Bn(m) + φn(m))

(x+ xm
n

) 1
2−β
)

(3.6.12)

for some absolute constant c2.
Similar results hold when the models m ∈ M satisfy different Margin/Bernstein condi-

tion with different Bernstein parameter (βm)m∈M (one just have to replace β by βm in Theo-
rem 3.6.3). Similar results can be found in [76, 77] and a comparison with these results is given
in the following section.

As a conclusion, the way the empirical risk is penalized depends heavily of the problem we
have in mind. If one wants to solve a non-exact prediction problem then one may penalize by
(3.6.2), for the estimation problem one way of penalizing is given in (3.6.10) and for the exact
prediction problem, the empirical risk may be penalized by (3.6.12). The three different ways
of penalizing depend on the geometry and the complexity of the families

(
`m
)
m∈M,

(
Em
)
m∈M

and
(
Lm
)
m∈M and therefore can be very different.
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3.7 Connections between regularized ERM and penalized esti-
mators

In this section, we show that penalization and regularization of the empirical risk are related.
For instance, in the non-exact prediction problem, one can derive Model Selection theorems
(like Theorem 3.6.1) from the result of Theorem 3.5.1 originally crafted for regularized ERM.
The first step is to show that any regularized ERM procedure is a Model Selection procedure
for some particular class M of models and penalty function. Then, we can use Theorem 3.5.1
and derived non-exact oracle inequalities for the associated penalized estimators. For the sake
of completeness, we start to prove that the reverse is also true: any penalized estimator is a
regularized ERM procedure for some particular class F and regularizing function.

We recall the setup of Model Selection as introduced in [76] and recalled in Subsection 1.2.4.
We are given a collectionM of models and a penalty function pen :M→ R+. For every model
m ∈M, an ERM procedure is constructed:

f̂m ∈ argmin
f∈m

Rn(f). (3.7.1)

Then a model m̂ is empirically selected by

m̂ ∈ argmin
m∈M

(
Rn(f̂m) + pen(m)

)
. (3.7.2)

The penalized estimator studied in Model Selection is f̂bm. Once again, we assume that the
infimum in (3.7.1) and (3.7.2) are achieved. The next result shows that the penalized estimator
f̂bm is a regularized ERM.

Lemma 3.7.1 ([P16]) Define a class F and a regularizing function by

F =
⋃

m∈M
m and reg(f) = inf

m∈M:f∈m
pen(m),∀f ∈ F . (3.7.3)

Then the penalized estimator f̂bm satisfies

f̂bm ∈ argmin
f∈F

(
Rn(f) + reg(f)

)
.

It follows from Lemma 3.7.1 that any Model Selection procedure can be studied as a reg-
ularized ERM procedure over the function class F and for the regularizing function defined in
(3.7.3). It appears that the reverse is also true.

Lemma 3.7.2 ([P16]) Let F be a class of function and reg : F → R+ be a regularizing function
such that for any f ∈ F , reg(f) < ∞. Assume that there exists f̂RERMn ∈ F minimizing
f −→ Rn(f) + reg(f) over F . Denote by reg(F) ⊂ R+ the range of reg. For any r ∈ reg(F)
define the model mr = {f ∈ F : reg(f) ≤ r}. Define a class M of models and a penalty function
by

M = {mr : r ∈ reg(F)} and pen : mr ∈M −→ r ∈ R+. (3.7.4)

Then f̂RERMn is a penalized estimator for the class of models M endowed with the penalty
function pen.
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In particular, we can apply Theorem 3.5.1 to obtain results on regularized ERM procedures,
then construct a classM and a penalty function according to (3.7.4) and finally use Lemma 3.7.2
to obtain non-exact penalized oracle inequalities for the penalized estimator f̂bm constructed in
this framework for the non-exact prediction problem.

As an example of application, we consider the Model Selection setup studied in Chapter 8
of [76] on the classification problem over Vapnik-Chervonenkis models. We consider the 0 − 1
loss function `f (x, y) = 1f(x)6=y defined for any (x, y) ∈ X × {0, 1} and measurable function
f : X → {0, 1}. We are given a countable set M of countable models (that is a countable set
of measurable functions from X to {0, 1}) such that any m ∈ M has a finite VC dimension
denoted by Vm. In this setup, Theorem 3.5.1 can be applied without any extra assumption. In
particular, we do not assume any Margin/Bernstein condition. In this case, the penalty function
used in p. 285 of [76] is, for any m ∈M,

pen(m) = 2

√
2Vm(1 + log(n/Vm))

n
+

√
log n
2n

(3.7.5)

and the penalized estimator f̂bm satisfies the following risk bound (p.285 of [76]):

ER(f̂bm) ≤ inf
m∈M

(
inf
f∈m

R(f) + pen(m)
)

+
√

π

2n
. (3.7.6)

Now we turn to the application of Theorem 3.5.1 for this problem. We first need to consider
some “well-adapted” criterion. For that, we define

F =
⋃

m∈M
m and crit(f) = min

m∈M

(
Vm ∧ n : f ∈ m

)
,∀f ∈ F .

The next step is now to calibrate the regularizing function in terms of the criterion. The-
orem 3.5.1 provides one way of doing so by computing the isomorphic profile of the family
of loss functions classes (`Fr)r∈N where for any r ∈ N (note that crit takes its values in N)
Fr = {f ∈ F : crit(f) ≤ r}. The sets Fr can be very complex if M is made of many disjoint
models of small VC dimension. Our method cannot handle such situations. That is why we
assume that the models are embedded in an increasing way:

M = {mk : k ∈ N} such that m0 ⊂ m1 ⊂ m2 ⊂ · · · . (3.7.7)

This assumption is clearly a weak point compared to the result (3.7.6) which does not require
such a structure on M. Nevertheless, assumption (3.7.7) is a classical assumption in Model
Selection and allows to get in our situation Fr = mk(r) where k(r) = max(k ∈ N : Vmk ∧ n ≤ r).
The isomorphic function associated with the family of models (Fr)r∈N can be obtained in this
context following the same strategy used to get (3.3.3): we obtain, for any r ∈ N,

λ∗ε (r) =
c0(Vmk(r) ∧ n) log

(
en/(Vmk(r) ∧ n)

)

ε2n
. (3.7.8)

Moreover, we can check that bn(`Fr) = 1, Bn(r) = 1 for any r ≥ 0 and that αn ≡ n is a valid
choice for the auxiliary function αn since crit(f) ≤ n,∀f ∈ F (cf. (3.5.2)). We can now apply
Theorem 3.5.1: let 0 < x ≤ log n and 0 < ε < 1/2 and consider the regularized ERM f̂RERMn

over F = ∪m∈Mm associated with the regularizing function

reg(f) =
c1Vm(f) log

(
en/Vm(f)

)

ε2n
(3.7.9)
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where m(f) = max
(
m ∈ M : Vm ≤ crit(f) + 1

)
. It follows from Theorem 3.5.1 that with

probability greater than 1− 12 exp(−x),

R(f̂RERMn ) + c0reg(f̂RERMn ) ≤ (1 + 2ε) inf
f∈F

(
R(f) + c1reg(f)

)
+
c2(x+ 1)

n
. (3.7.10)

From this result, we can now derive a non-exact penalized oracle inequality for the penalized
estimator associated with the class of models M′ and the penalty function pen′ as defined in
(3.7.4):

M′ = {mr : r ∈ reg(F)} and pen′(mr) = r, ∀r ∈ reg(F) (3.7.11)

where reg(F) = {r0, . . . , rN}, N = max(k ∈ N : Vmk ≤ n) and

ri =
c1Vm′i log

(
en/Vm′i

)

ε2n
, ∀0 ≤ i ≤ N,

for m′N = mN ,m
′
i = max

(
m ∈ M : Vm < Vm′i+1

)
,∀0 ≤ i ≤ N − 1. In other words, M′ is the

largest subset of M of models with strictly increasing VC dimension smaller than n and with
the largest possible model for each one of these VC dimensions. Each one of these models of
VC dimension V is then penalized by c1V log(en/V )/(ε2n). We can now state a result for the
penalized estimator associated with the class M′ and the penalty function pen′.

Theorem 3.7.3 ([P16]) There exists some absolute constants c1, c2, c3 and c4 such that the
following holds. Let M = {m0, · · · ,mN} be a family of models such that m0 ⊂ · · · ⊂ mN and
Vm0 < Vm1 < · · · < VmN ≤ n where for any m ∈M, Vm is the VC dimension of m. Let 0 < ε <
1. Consider the penalty function pen : F → R+ defined by pen(m) = c1Vm log

(
en/Vm

)
/(ε2n).

Then the penalized estimator f̂bm constructed in this setup is such that for any 0 < x ≤ log n,
with probability greater than 1− 12 exp(−x),

R(f̂bm) + c2pen(m̂) ≤ (1 + 2ε) min
m∈M

(
inf
f∈m

R(f) + c3pen(m)
)
.

In particular, it is interesting to note that, up to a logarithmic factor, the penalty function in
(3.7.5) is of the order of

√
V/n whereas, in the same framework (up to the structural assumption

(3.7.7) which can be removed if we use a direct approach as in Theorem 3.6.1), the penalty
function defined in Theorem 3.7.3 is of the order of V/n up to a logarithmic term. This difference
can be explained from a “geometric viewpoint” by the fact that the Bernstein condition on the
loss functions class: E`2f ≤ BE`f , ∀f ∈ F is trivially satisfied in the setup of Theorem 3.7.3;
whereas the Bernstein condition for the excess loss functions class: EL2

f ≤ BELf ,∀f ∈ F or
the Margin assumption: E(`f − `f∗)2 ≤ BE(`f − `f∗), ∀f ∈ F are not true in general and are
somehow “required” to obtain oracle inequalities with fast rates for the penalized estimator for
the estimation and exact prediction problems. This difference can also be explained from a
“statistical viewpoint” since estimation results on the Bayes rules follow from (3.7.6): one just
have to subtract the risk of the Bayes rules on both sides of the inequality. But estimation
results cannot follow from the non-exact oracle inequality of Theorem 3.7.3. Once again the
non-exact oracle inequalities obtained in Theorem 3.3.1, 3.5.1, 3.6.1 and 3.7.3 deal only with the
(non-exact) prediction problem and do not provide any estimation result. To summarize, if one
wants some estimation results (either on the Bayes rules or the regression function), then one
should assume some kind of Margin/Bernstein condition to get fast rates. But if only prediction
results are of interest then no geometrical assumption are needed to get fast rates in this context.
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Finally, note that a direct approach based on the computation of isomorphic functions for the
family of loss functions class (`m)m∈M like in Theorem 3.6.1 would provide a way of constructing
penalty functions and obtaining oracle inequalities for the penalized estimator associated with
this penalty function. This approach will not require any structural assumption on M like
(3.7.7). Nevertheless, we did not apply Theorem 3.6.1 in that context. Somehow, we found
more interesting to prove that Model Selection methods can be seen as regularized procedures
and that Theorem 3.5.1, which was originally designed for regularized estimators, can also be
used to prove results for penalized estimators.

3.8 The Restricted Isometry property and the isomorphic pro-
file of the loss functions class

In this section, we assume that the data are n i.i.d. couples (Xi, Yi)1≤i≤n where the output
variables Y1, . . . , Yn are real numbers and the input variables X1, . . . , Xn take their values in
Rd. The aim of this section is to compare our approach based on the isomorphic profile of
some functions classes to the approach in Compressed Sensing based on the restricted isometry
property (RIP). To allow this comparison, we consider the Compressed Sensing setup where it
is assumed that the output is a free-noise linear combination of the input: there exists some
β0 ∈ Rd such that Yi =

〈
Xi, β0

〉
for every 1 ≤ i ≤ n.

We start with the definition of the RIP and its role in Compressed Sensing. Let 1 ≤ s ≤ d be
an integer and 0 < η < 1. The restricted isometry property RIP(s, η) is the following condition
on the design X1, . . . , Xn:

∀x ∈ Σs, (1− η) ‖x‖22 ≤
1
n

n∑

i=1

〈
Xi, x

〉2 ≤ (1 + η) ‖x‖22 , (3.8.1)

where Σs = {x ∈ Rd : |Supp(x)| ≤ s} is the set of all s-sparse vectors of Rd. This condition was
first introduced in [35] and since then extensively studied in the Compressed Sensing literature
and related fields. The main interest in this property of the sampling process is that under this
assumption and as long as η <

√
2− 1 (cf. [30]), the basis pursuit algorithm

∆1(Y1, . . . , Yn) ∈ argmin
(
‖x‖1 :

〈
Xi, x

〉
= Yi, i = 1, . . . , n

)
(3.8.2)

is such that ∆1(Y1, . . . , Yn) = β0 when β0 ∈ Σds/2e. This means that any ds/2e-sparse vector β0

can be reconstructed exactly from the n linear measurements
〈
X1, β0

〉
, . . . ,

〈
Xn, β0

〉
as long as

the sampling process (or the design) satisfies RIP(s, η) with η <
√

2− 1.
Of course, depending on the sparsity parameter, a minimal number of observations is needed

for the exact reconstruction problem. It follows from some entropy argument (cf. Chapter 2 in
[P2]) that if RIP(s, η) is satisfied with η <

√
2− 1 then necessarily

s log
(
c0d/s

)
≤ c1n. (3.8.3)

It appears that this bound is sharp up to the constants c0 and c1 in the sense that if X1, . . . , Xn

are n i.i.d. standard Gaussian vectors of Rd and if s log
(
ed/s

)
≤ c2n then with probability

greater than 1 − c3 exp(−c4n), RIP(s, η) holds with η <
√

2 − 1. This result follows from an
ε-net argument that can be found for instance in Chapter 2 of [P2].

Now, let us try to understand this problem from the Learning theory point of view. In this
setup, a model is a set of linear functions F = {fβ : β ∈ T} where T ⊂ Rd and fβ =

〈
·, β
〉
, ∀β ∈
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Rd. We consider the square loss function and thus the regression function is f∗ = fβ0 . To simplify
notation, we identify the model F to the set T of vectors and write `β(x, y) = (y −

〈
x, β

〉
)2 for

all β ∈ Rd. We also denote by `T = {`β : β ∈ T}, the set of all the loss functions indexed by T .
Given 0 < η < 1 and a model T ⊂ Rd, the isomorphic profile of `T is defined by

r∗(`T )η = inf
(
r > 0 : ∀β ∈ T,

∣∣Pn`β − P`β
∣∣ ≤ ηmax(P`β, r)

)
.

In particular, for an isotropic design (i.e. E
〈
X,β

〉2 = ‖β‖22 , ∀β ∈ Rd), we have

r∗(`T )η = inf
(
r > 0 : ∀β ∈ T,

∣∣∣ 1
n

n∑

i=1

〈
Xi, β0 − β

〉2 − ‖β0 − β‖22
∣∣∣ ≤ ηmax(‖β − β0‖22 , r)

)
.

If r∗(`T )η = 0 then the matrix A : Rd → Rn with row vectors n−1/2X>i , 1 ≤ i ≤ n behaves like
an η-isometry over the set β0 − T = {β0 − β : β ∈ T}:

∀β ∈ T, (1− η) ‖β0 − β‖22 ≤ ‖A(β0 − β)‖22 ≤ (1 + η) ‖β0 − β‖22 .

On the opposite, if A acts like a η-isometry on 2T = {t1 + t2 : t1, t2 ∈ T} and β0 ∈ T then
r∗(`T )η = 0. Therefore, there is an obvious equivalence at saying that the design operator A
acts like a η-isometry over the set β0 − T and saying that the isomorphic profile of `T is null.
In the particular case of sparse vectors, for the model T = Σs and β0 a ds/2e-sparse vector,
if r∗(`Σs)η = 0 then A satisfies RIP(ds/2e, η). Reciprocally, if A satisfies RIP(s, η) and β0 is
ds/2e-sparse then r∗(`Σds/2e)η = 0.

Assume now that the design is isotropic. We have seen that if the design operator A satisfies
RIP(2s, η) then the isomorphic profile r∗(`Σs)η is equal to zero. But we proved in Section 3.1 that
the isomorphic profile of `Σs drives the residual term of the ERM over Σs. As a consequence,
if A satisfies RIP(2s, η) and β0 is s-sparse then R(f̂ERMn ) = 0 and so β̂ERMn = β0 where
f̂ERMn = fbβERMn

and

β̂ERMn ∈ argmin
β∈Σs

Rn(fβ) = argmin
β∈Σs

1
n

n∑

i=1

(
Yi −

〈
Xi, β

〉)2
. (3.8.4)

This proves that the ERM can reconstruct exactly the vector β0 as long as the operator A satisfies
RIP(2s, η) and β0 is s-sparse. But the ERM procedure β̂ERMn of (3.8.4) has two drawbacks: the
sparsity parameter s has to be known in advance (which is never the case in practice); and
the minimization problem (3.8.4) is combinatorial in nature (since β0 ∈ Σs we have to find a s-
sparse vector β̂ERMn such that Aβ̂ERMn = Aβ0 - this requires to explore in general an exponential
number of support of size s among d coordinates). That is why the ERM procedure is never
used in practice. Nevertheless, not all is lost as far as ERM procedures are considered.

The important point in the analysis is that when A acts in a norm preserving way on a set
2T and β0 ∈ T then r∗(`T )η = 0 and as a consequence the ERM over T can reconstruct exactly
β0. Therefore, to avoid the two main drawbacks of the procedure (3.8.4) mentioned just before,
one has to perform the ERM over a set T that does not depend on the sparsity parameter s
and T has to be convex so that convex programming methods may help to construct this ERM
estimator. First, we look for a convex set T containing Σs ∩ ‖β0‖2Bd

2 (since there is no need
to search β0 outside the sets ‖β0‖2Bd

2 and Σs - the point that we are not supposed to know
‖β0‖2 and s in advance will be treated later). Moreover this set T does not have to be too
large so that A can still act on T in a norm preserving way (with high probability). A natural
candidate is the intersection body ‖β0‖2

(
Bd

2 ∩
√
sBd

1

)
. Second, as mentioned before, we don’t
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know in advance ‖β0‖2 but we have in mind that A is norm preserving thus there is some hope
that with high probability we have ‖β0‖22 ≤ 4 ‖Aβ0‖22 = 4 ‖y‖22 where y = (Y1, . . . , Yn)> is the
vectors of the outputs. Finally, we have to insure that the operator A acts like a η-isometry on
2 ‖y‖2

(
Bd

2 ∩
√
sBd

1

)
for some 0 < η < 1. For that we use a result of [85] (see also Chapter 3

in [P2]) saying that if the Gaussian complexity `∗(T ) = E supt∈T
〈
G, t

〉
- where G is a standard

Gaussian vector of Rd - of some set T ⊂ Rd is such that C
√
n ≤ `∗(T ) ≤ C2(η)

√
n (for some well

chosen constant C2(η)) and if the row vectors of A are sub-Gaussian, isotropic and independent
then with probability larger than 1− c0 exp(−c1Cn), A is a η-isometry on T . In the case we are
interested in, we have (cf. Chapter 3 in [P2])

c2 ‖y‖2

√
s log

(c3d

s

)
≤ `∗

(
2 ‖y‖2

(
Bd

2 ∩
√
sBd

1

))
≤ c4 ‖y‖2

√
s log

(c5d

s

)
.

Therefore, we consider the largest sparsity parameter insuring that A is a η-isometry over
2 ‖y‖2

(
Bd

2 ∩
√
sBd

1

)
:

ŝ = max
(
s ∈ N : c4 ‖y‖2

√
s log

(c5d

s

)
≤ C2(η)

√
n
)
.

Then the model we consider is T = 2 ‖y‖2
(
Bd

2 ∩
√
ŝBd

1

)
and the ERM estimator is

β̃ERMn ∈ argmin
β∈2‖y‖2

(
Bd2∩
√bsBd1)

1
n

n∑

i=1

(
Yi −

〈
Xi, β

〉)2
. (3.8.5)

Note that T is convex and its construction does not require any a priori knowledge on β0. The
ERM procedure β̂ERMn satisfies the following exact reconstruction property.

Theorem 3.8.1 There exists two absolute constants c0 and c1 such that the following holds. As-
sume that X1, . . . , Xn are subgaussian, isotropic and independent. Then with probability greater
than 1 − c0 exp(−c1n), any vector β0 such that the size of its support is smaller than ŝ is such
that

argmin
β∈2‖y‖2

(
Bd2∩
√bsBd1)

1
n

n∑

i=1

(〈
Xi, β0

〉
−
〈
Xi, β

〉)2 = {β0}.

Roughly speaking, the ERM algorithm introduced in (3.8.5) can reconstruct any vector β0 as

long as ‖β0‖2
√
‖β0‖0 log

(
ed/ ‖β0‖

)
.
√
n where ‖β0‖0 = |Supp(β0)| is the size of the support

of β0. On the other hand, the Basis Pursuit algorithm (3.8.2) can reconstruct any β0 as long

as
√
‖β0‖0 log

(
ed/ ‖β0‖

)
.
√
n independently of ‖β0‖2. In both cases, an isometry property of

the sampling process was used to prove the result: the RIP and a zero-valued isomorphic profile
of the loss functions class. Of course, in the noisy setup, one cannot hope to design any exact
reconstruction algorithm but still the RIP have been used to prove oracle inequalities for the
Basis Pursuit algorithm. Somehow, the RIP should be consider as a special property on the
design making the Basis Pursuit algorithm an efficient exact reconstruction algorithm. In the
same spirit, isomorphic profile of functions classes should be seen as a special tool designed for
the study of ERM procedures. It appears that these two tools coincide in the non-noisy case
but they are not by any means necessary properties of the sampling process or the design in
both setups (exact reconstruction of sparse vectors and Learning theory respectively). In fact,
these two properties are sometimes even too strong. One example for the Compressed Sensing
problem can be found in [P2] and an example in Learning theory is given in the following section.
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3.9 A counter-example in Convex aggregation

We have seen in Section 3.1 that the isomorphic profile of LF bounds the residual term of exact
oracle inequalities of the ERM procedure over F . It appears that this bound is in many cases
of the correct order. That is some lower bounds matching the upper bound obtained from the
isomorphic profile can be stated. But there are some examples for which this method does not
provide the correct residual term.

A counter-example was constructed in [15] showing that for every integer n, there exists a
class G star-shaped in zero and a probability measure P for which for any sample Z1, . . . , Zn
there is g ∈ G such that Pg = 1/4 and Png = 0 and therefore the isomorphic profile of G is at
least 1/4 leading to a trivial bound for the ERM ĝERM ∈ argming∈G Png. But still, by a direct
approach, one has EĝERM ≤ 1/n with constant probability. Therefore, in some situation, the
isomorphic profile does not provide the correct residual term.

The counter-example of [15] is somehow a bit artificial. The aim of this section is to construct
a “not too much artificial” example for which the approach based on the isomorphic profile is
sub-optimal. For that we consider the bounded regression framework with respect to the square
loss. We consider φ1, . . . , φM+1 real-valued functions defined on X and a random variable X such
that φ1, . . . , φM+1 are orthogonal in L2(PX), φ1(X), . . . , φM (X) are uniformly distributed over
[−
√

3,
√

3] and Y = φM+1(X) is a Rademacher variable independent of φ1(X), . . . , φM+1(X).
We consider the problem of convex aggregation over the class F = {0,±φ1, . . . ,±φM} and for
the orthogonal target Y = φM+1(X). A natural candidate is the ERM over the convex hull

f̃ERM−C ∈ argmin
f∈conv(F )

Rn(f).

It follows from a direct approach the following exact oracle inequality for f̃ERM−C .

Theorem 3.9.1 ([P18]) There exist absolute positive constants c0, c1 for which the following
holds. Consider the dictionary F and the couple (X,Y ) introduced previously. When M ≥

√
n,

with probability larger than 7/12,

R(f̃ERM−C) ≤ min
f∈conv(F )

R(f) + c3
c3√

n log(eM/
√
n
) .

The counter example used in Theorem 3.9.1 is the same as the one used in Theorem 2.3.1.
Since both residual term are of the same order up to multiplying absolute constants and, in this
case minf∈conv(F )R(f) = minf∈F R(f), Theorem 3.9.1 proves that the residual term obtained
in Theorem 2.3.1 is optimal in the case M ≥

√
n. Now, it remains to see that the residual term

1√
n log

(
eM/
√
n
) (3.9.1)

is not the one obtained by using the “isomorphic profile approach” and also to understand why
there is indeed a gap in this example.

The counter example we use for this result is a class FM = {0,±φ1, . . . ,±φM} such that
(φ)Mi=1 is a bounded orthonormal family of L2(PX) and Y = φM+1(X) is orthogonal to this
family in 0. We also assume that Φ(X) = (φ1(X), . . . , φM (X)) is isotropic (i.e. E

〈
Φ(X), λ

〉2 =
‖λ‖22 , ∀λ ∈ RM ) so that the complexity is measured with respect to the `M2 -norm. An element
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in conv(FM ) is of the form fλ =
〈
Φ, λ

〉
for some λ ∈ BM

1 . Its excess risk is Lfλ =
〈
Φ, λ

〉2 −
2
〈
Φ, λ

〉
φM+1 and the empirical process indexed by BM

1 that we study is for any λ ∈ BM
1

PnLfλ =
1
n

n∑

i=1

〈
Φ(Xi), λ

〉2 − 2
n

n∑

i=1

〈
Φ(Xi), λ

〉
φM+1(Xi). (3.9.2)

It follows from [85] that the oscillations of the quadratic term λ ∈ BM
1 → |(Pn−P )(

〈
Φ, λ

〉2)|
are second order terms and that the empirical process (3.9.2) behaves like λ ∈ BM

1 → ‖λ‖
2
2 −

2n−1/2
〈
V, λ

〉
where V = n−1/2

∑n
i=1 φM+1(Xi)Φ(Xi). Then, we use a Gaussian approximation

result from [90] saying that V essentially behaves like G a standard normal vector of RM . It
follows that the risk PL bf = ‖λ̂‖22 of the empirical risk minimization procedure f̂ = fbλ will be
essentially located around

argmin
0≤r≤1

min
λ∈BM1 ∩

√
rSM−1

(
r − 2n−1/2

〈
G,λ

〉)
= argmin

0≤r≤1

(
r − 2n−1/2 ‖G‖A◦r

)
,

where Ar = BM
1 ∩

√
rSM−1 and ‖G‖A◦r = supλ∈Ar

〈
G,λ

〉
. For every radius 1 ≤ r ≤ 1, we end

up with computing the interpolation norm ‖G‖A◦r . It appears that, for the range 1/M ≤ r ≤ 1
we are interested in, a slight modification of the radius r results in a very small logarithmic
change in the value of ‖G‖A◦r . That is the reason why we have to compute a second order

term approximation of ‖G‖A◦r for every r. This finally yields that ‖λ̂‖22 is essentially located
around argmin0≤r≤1

(
r−2n−1/2`∗(BM

1 ∩
√
rSM−1)

)
where `∗(T ) = E supt∈T

〈
G, t

〉
is the Gaussian

complexity for some T ⊂ RM and since `∗(BM
1 ∩
√
rSM−1) ∼

√
log(eMr), ‖λ̂‖22 is indeed of the

order of the rate (3.9.1). This is essentially the strategy we used to prove Theorem 2.3.1 and
Theorem 3.9.1 in the case M ≥

√
n.

An approach based on the isomorphic profile of Lconv(F ) will provide a residual term of the
order of

µ∗1/2 = inf
(
µ > 0 :

`∗(BM
1 ∩

√
µSM−1)

√
n

≤ c0µ
)
∼

√
log
(
eM/
√
n
)

n
. (3.9.3)

Therefore, there is a logarithmic gap between the direct approach used to prove Theorem 3.9.1
and the approach based on the isomorphic profile of Lconv(F ). Therefore, the Learning setup of
a model F which is BM

1 in L2(PX) with an output Y orthogonal to BM
1 in zero and constant

far away from BM
1 is a setup for which the isomorphic profile approach is suboptimal.

The surprising fact is that the rate (3.9.1) — which cannot be improved in this situation —
tends to zero as the dimension M grows. Since the model is BM

1 and the target Y is orthogonal
to BM

1 in 0, somehow this means that the complexity with respect to `M2 of BM
1 increases

around 0 as M increases. At a first analysis, we did not expect such a behaviour for BM
1 in

high dimensions and that is the reason why we chose Y to be orthogonal to BM
1 in 0 and not in

some other point of BM
1 . We believe that this unexpected high dimensional behaviour of BM

1

can find some geometrical explanation in the following paragraph.
We first try to find some structure inside BM

1 which is the source of complexity of BM
1 with

respect to `M2 . Denote by (e1, . . . , eM ) the canonical basis of RM and for any I ⊂ {1, . . . ,M}
define xI = |I|−1

∑
i∈I ei. It is known that for any k ∈ {1, . . . ,M} there exists Λk ⊂ {I ⊂

{1, . . . ,M} : |I| = k} such that log |Λk| ≥ c0k log
(
eM/k

)
and the symmetrical difference for

any I 6= J ∈ Λk is such that |I∆J | ≥ k/8 (cf. for instance [76] or [P2]). It is easy to check that

∪1≤k≤M
{
xI : I ∈ Λk

}
⊂ ∪1≤k≤M ∪I∈Λk k

−1/2BI
2 ⊂ BM

1
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where BI
2 is the set of vectors in BM

2 supported in I.
According to [95], the logarithm of the minimal number of translated of

√
rBM

2 needed to
cover BM

1 is of the order of r−1 log
(
eMr

)
when r ≥ 1/M . When 1/r is an integer, two different

points xI and xJ in
{
xI : I ∈ Λ1/r

}
are such that ‖xI − xJ‖2 = r

√
|I∆J | ≥

√
r/8. Therefore,{

xI : I ∈ Λ1/r

}
is a set of points

√
r/8-separated of log-cardinality at least c0r

−1 log
(
eMr

)
.

Therefore, the entropy numbers logN(BM
1 ,
√
rBN

2 ) and logN
({
xI : I ∈ Λ1/r

}
,
√
r/8BM

2

)
are

proportional and thus, the set
{
xI : I ∈ Λ1/r

}
is one of the source of complexity of BM

1 with
respect to `M2 at the resolution level

√
r. It is also interesting to note that, from Sudakov

inequality,

`∗(
{
xI : I ∈ Λ1/r

}
) ≥ c1 min

I 6=J∈Λ1/r

‖xI − xJ‖2
√

log |Λ1/r| ≥ c2

√
log
(
eMr

)

which is of the same order as the Gaussian complexity of BM
1 ∩
√
rSM−1 and

{
xI : I ∈ Λ1/r

}
⊂√

rSM−1, meaning that all the complexity of BM
1 (w.r.t. `M2 ) at the scale

√
r lies in BM

1 ∩√
rSM−1. In other words, one source of complexity of BM

1 (w.r.t. `M2 ) is an exponential number
of points with almost disjoint supports at any level

√
r when 1/r is an integer and, in general,

of an exponential number of euclidean balls of dimension d1/re with radius
√

1/d1/re having
almost disjoint support.

Roughly speaking, the ERM will be such that ‖λ̂‖22 is close to the argmin of r ∈ [0, 1] →
r− n−1/2`∗

(
∪I∈Λd1/re

√
rBI

2

)
. This argmin is proportional to (3.9.1). In particular, it decreases

with the dimension M increasing because for any two radii 1/M ≤ s < r ≤ 1 we have

`∗
(
∪I∈Λd1/re

√
rBI

2

)
− `∗

(
∪I∈Λd1/se

√
sBI

2

)

∼
√

log
(
c4Mr

)
−
√

log
(
c5Ms

)
∼ log(c6r/s)√

log
(
c7Mr

)

thus the complexity of ∪I∈Λd1/re

√
rBI

2 remains the same (up to some absolute multiplying con-
stant) for any radius r in the bandwidth


 c8√

n log
(
eM/
√
n
) , c9

√
log
(
eM/
√
n
)

n


 . (3.9.4)

It appears that the residual term derived from the isomorphic profile of Lconv(F ) chooses the
largest radius in this interval. This is the worst case: largest radius of a set of complexity
c10

√
log
(
eM/
√
n
)
. Whereas a direct approach picks up the smallest radius in this interval.

Somehow, the isomorphic approach starts the search of the localization of the ERM from “out-
side” the model (in (3.9.3), the point µ∗1/2 is obtained by decreasing µ up to a point where
8`∗
(
BM

1 ∩
√
µSM−1) ≤

√
nµ). Whereas in the direct approach, we start from the center of BM

1

— where the target Y is projected on the model — and we increase the radius r up to the first
point where `∗

(
BM

1 ∩
√
rSM−1) = 2

√
nr (cf. Figure 3.1). Since there is a whole interval (3.9.4)

for which r → `∗
(
BM

1 ∩
√
rSM−1) is constant equal to

√
log
(
eM/
√
n
)

up to some multiplying
constants, µ∗1/2 picks the upper bound of this interval whereas the direct approach picks its lower
bound. This is the source of the logarithmic gap between the two approaches and the reason of
the sub-optimality of the approach based on the isomorphic profile in this context.



72 Oracle inequalities for ERM, regularized ERM and penalized estimators

BM
1

Search from outside

Search from inside

c8

(
n log

(
eM/
√
n
))−1/2

c9

√
log
(
eM/
√
n
)
/n

Figure 3.1: The direct approach is searching the localization of the ERM from the center of BM
1

whereas the isomorphic profile approach is searching from outside the model BM
1 . Since there

are localized sets BM
1 ∩
√
rSM−1 with the same complexity — up to some multiplying constants

— but different radii the isomorphic profile approach fails to find the correct localization of the
ERM in this context.

To finish on the complexity of BM
1 around 0 in high-dimension. The source of complexity of

BM
1 with respect to `M2 at scale

√
r can be described by an exponential number of `I2-balls with

short support I of size d1/re and radius
√
r with almost disjoint supports. The complexity of BM

1

results from a trade-off between the distance between the center of these balls and the number
of such balls. In BM

1 , there is a whole bandwidth of radii r for which this trade-off results in

the same complexity (up to multiplying constants) which is of the order of
√

log
(
eM/
√
n
)
. In

particular the lower bound of this bandwidth (3.9.4) decreases with the dimension M increasing.
This means that, as the dimension M increases, we can find at smaller and smaller radii the same
complexity than at larger radii in smaller dimensions. Therefore the complexity of BM

1 around
zero increases with the dimension M increasing resulting in a decreasing rate of convergence for
the ERM when the oracle in BM

1 is chosen in zero.
At the time we consider this counter-example we did not expect such a residual term (3.9.1).

The residual term coming out of the isomorphic approach
√

log
(
eM/
√
n
)
/n was our first guess.

But since there are matching upper and lower bounds with the rate (3.9.1) this is the correct
rate for the ERM in that context. This means that as the dimension M grows the rate of the
ERM get smaller and this due to the fact that the complexity of BM

1 around 0 increases as
the dimension grows. This is not the usual way of representing BM

1 in high dimension (cf. the
picture of BM

1 in Figure 3.1) since the complexity of BM
1 around zero is usually represented

by a ball M−1/2BM
2 which is of constant complexity (`∗(M−1/2BM

2 ) = 1) whereas “outside the
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ball M−1/2BM
2 ” BM

1 is usually represented by spikes. Each spike corresponds to a unit vector
±ei on the canonical axis. In particular, the number of spikes increases with the dimension and
thus at a first glance, one may think that the complexity outside of M−1/2BM

2 in BM
1 may grow

faster than the complexity of BM
1 around zero as the dimension grows. This counter-example

in Learning theory shows that this is not the case.
Nevertheless, we still believe that it is possible to construct a counter-example for the ERM-

C with a residual term of the order of
√

log
(
eM/
√
n
)
/n when M >

√
n. A possible counter-

example can be found in Chapter 5.

3.10 The shifted empirical process and non-exact oracle inequal-
ities

In [P19], we used another approach to prove non-exact oracle inequalities. The idea relies on the
fact that comparing an empirical mean ζ̄n = n−1

∑n
i=1 ζi of i.i.d. real-valued random variables

ζ1, . . . , ζn to the actual mean Eζ is sometimes harder than comparing it to (1+ ε)Eζ or (1− ε)Eζ
for some ε > 0 when a Margin/Bernstein condition Eζ2 ≤ B

(
Eζ
)β holds.

Indeed, it follows from Bernstein inequality that for any 0 < ε < 1 and 0 < x < n, with
probability greater than 1− 2 exp(−x),

∣∣ζ̄n − Eζ
∣∣ ≤ Kσ(ζ)

√
x

n
+K ‖ζ‖∞

x

n
≤ K

√
xB
(
Eζ
)β

n
+K ‖ζ‖∞

x

n

≤ εEζ +
[(K

√
B

ε

) 2
2−β +K ‖ζ‖∞

](x
n

) 1
2−β

.

In other words, for c(ζ) =
[(
K
√
B/ε

) 2
2−β +K ‖ζ‖∞

]
, with probability greater than 1−2 exp(−x),

− c(ζ)
(x
n

) 1
2−β + (1− ε)Eζ ≤ ζ̄n ≤ (1 + ε)Eζ + c(ζ)

(x
n

) 1
2−β

. (3.10.1)

The residual term (x/n)1/(2−β) in (3.10.1) is always better than the residual term
√
x/n in the

Bernstein inequality.
We want to use this remark to obtain non-exact oracle inequalities for the ERM with fast

residual terms. Let F ⊂ F be a model and consider the ERM over F :

f̂ERMn ∈ argmin
f∈F

Rn(f).

First consider the non-exact prediction problem. We have

R(f̂ERMn )− (1 + 4ε) inf
f∈F

R(f) = P` bfERMn
− (1 + 2ε)Pn` bfERMn

+ (1 + 2ε)Pn` bfERMn
− (1 + 2ε)Pn`f∗F + (1 + 2ε)Pn`f∗F − (1 + 4ε)P`f∗F

≤ sup
f∈F

((
P − (1 + 2ε)Pn

)
(`f )

)
+ (1 + 2ε) sup

f∈F

(
Pn −

1 + 4ε
1 + 2ε

P
)

(`f ).

Thus, it is enough to bound the supremum of the shifted empirical processes
(
(P − (1 +

η)Pn)`
)
`∈`F

and
(
(Pn − (1 + η)P )`

)
`∈`F

, for some 0 < η < 1 and `F = {`f : f ∈ F}, to
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obtain oracle inequalities for the ERM for the non-exact prediction problem. In an identical
manner, we obtain the following bound for the estimation problem:

R(f̂ERMn )−R(f∗)− (1 + 4ε) inf
f∈F

(
R(f)−R(f∗)

)

≤ sup
f∈F

((
P − (1 + 2ε)Pn

)
(`f − `f∗)

)
+ (1 + 2ε) sup

f∈F

(
Pn −

1 + 4ε
1 + 2ε

P
)

(`f − `f∗).

Therefore, oracle inequalities for the ERM in the estimation problem follow from upper bounds
on the supremum of the shifted empirical processes

(
(P − (1 + η)Pn)E

)
E∈EF

and
(
(Pn − (1 +

η)P )E
)
E∈EF

for some 0 < η < 1 and EF = {`f − `f∗ : f ∈ F}.
In the following result, we control the deviation and expectation of the supremum of the

“shifted” empirical process.

Theorem 3.10.1 ([P19]) Let η > 0 and G be a set of real-valued measurable functions defined
on Z. Let Z,Z1, . . . , Zn be i.i.d. random variables with values in Z such that ∀g ∈ G,Pg =
Eg(Z) ≥ 0. Suppose that there exists some constants c, L, λmin > 0 such that for all λ ≥ λmin
and all u ≥ 1, with probability greater than 1− L exp(−cu)

sup
g∈G:Pg≤λ

((P − Pn)g)+ ≤
uJ(λ)√

n
, (3.10.2)

where J is a strictly increasing function such that J−1 is strictly convex. Let ψ be the convex
conjugate of J−1 defined by ψ(u) = supv>0(uv − J−1(v)), ∀u > 0. Assume that for some r ≥ 1,
x > 0 7−→ ψ(x)/xr decreases and define for q > 1 and u ≥ 1,

λq(u) = ψ
(2qr+1(1 + η)u

η
√
n

)
∨ λmin.

Then, there exists a constant L1 (depending only on L) such that for every u ≥ 1, with probability
greater than 1− L1 exp(−cu)

sup
g∈G

(
(P − (1 + η)Pn)g

)
+
≤ ηλq(u/q)

q
.

Moreover, assume that ψ increases such that ψ(∞) =∞, then there exists a constant c1 depend-
ing only on L and c such that

E sup
g∈G

(
(P − (1 + η)Pn)g

)
+
≤ ηc1λq(1/q)

q

The function λ > 0 7−→ supg∈G:Pg≤λ(P −Pn)g, appearing in Equation (3.10.4), is a classical
measure of the complexity of the set of functions G (cf. for instance [109], [15], [57] and references
therein). A common way to upper bound this function is to use some exponential bounds on the
increments of the empirical process (where some Margin/Bernstein condition may improve the
bounds) together with a chaining argument. This results in an exponential bounds depending
on some metric complexity measure like the Dudley entropy integral (cf. for instance [113] or
Section 3.2.3) or the gamma functional (cf. [101] or Section 3.2.3). In particular, this way of
bounding empirical processes does not require Talagrand concentration inequality and has been
extensively used in Statistics before [100] and also after to handle the unbounded case. Thanks
to [1] (cf. Theorem 3.2.1), the unbounded case can now also be handled by Talagrand inequality.

It follows from Theorem 3.10.1, oracle inequalities for the ERM over F in the non-exact
prediction problem.
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Theorem 3.10.2 Let F ⊂ F be a model, ` be a loss function and 0 < ε < 1. Assume that for
any f ∈ F, P`f ≥ 0. Suppose that there exists some constants c, L, λmin > 0 such that for all
λ ≥ λmin and all u ≥ 1, with probability greater than 1− L exp(−cu)

sup
`∈`F :P`≤λ

((P − Pn)`)+, sup
`∈`F :P`≤λ

((Pn − P )`)+ ≤
uJ(λ)√

n
, (3.10.3)

where J is a strictly increasing function such that J−1 is strictly convex. Let ψ be the convex
conjugate of J−1 defined by ψ(u) = supv>0(uv − J−1(v)), ∀u > 0. Assume that for some r ≥ 1,
x > 0 7−→ ψ(x)/xr decreases and define for q > 1 and u ≥ 1,

λq(u) = ψ
(2qr+1(1 + 4ε)u

ε
√
n

)
∨ λmin.

Then, there exists a constant L1 (depending only on L) such that for every u ≥ 1, with probability
greater than 1− L1 exp(−cu)

R(f̂ERMn ) ≤ (1 + 4ε) inf
f∈F

R(f) +
8ελq(u/q)

q
.

It follows from Theorem 3.10.1, oracle inequalities for the ERM in the estimation problem.

Theorem 3.10.3 Let F ⊂ F be a model, ` be a loss function and 0 < ε < 1. Suppose that there
exists some constants c, L, λmin > 0 such that for all λ ≥ λmin and all u ≥ 1, with probability
greater than 1− L exp(−cu)

sup
E∈EF :PE≤λ

((P − Pn)E)+, sup
E∈EF :PE≤λ

((Pn − P )E)+ ≤
uJ(λ)√

n
, (3.10.4)

where J is a strictly increasing function such that J−1 is strictly convex. Let ψ be the convex
conjugate of J−1 defined by ψ(u) = supv>0(uv − J−1(v)), ∀u > 0. Assume that for some r ≥ 1,
x > 0 7−→ ψ(x)/xr decreases and define for q > 1 and u ≥ 1,

λq(u) = ψ
(2qr+1(1 + 4ε)u

ε
√
n

)
∨ λmin.

Then, there exists a constant L1 (depending only on L) such that for every u ≥ 1, with probability
greater than 1− L1 exp(−cu)

R(f̂ERMn )−R(f∗) ≤ (1 + 4ε) inf
f∈F

(
R(f)−R(f∗)

)
+

8ελq(u/q)
q

.

Theorem 3.10.2 and Theorem 3.10.3 provide an alternative way of proving oracle inequalities
for the ERM to the results in Section 3.3. In particular, the two last results do not require any
tail assumption on the loss functions `f (Z), f ∈ F (nevertheless, explicit computation of the
function J requires such deviation bounds). Whereas in Section 3.3, the envelop supf∈F `f
needs to be sub-exponential. We use these results in [P19] to obtain oracle inequalities for
Cross-Validation type procedures. These results are recalled in the following chapter devoted to
applications.
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Chapter 4

Applications to High-Dimensional
data analysis

In this chapter, we obtain oracle inequalities for different ERM and regularized ERM procedures.
These results are derived from the general oracle inequalities obtained in Chapter 3.

4.1 `1-regularization

The formulation of Theorem 3.5.1 seems cumbersome, but it is not very difficult to apply it —
and here we will present one application dealing with high-dimensional vectors of short support.

Formally, let (X,Y ), (Xi, Yi)1≤i≤n be n + 1 i.i.d. random variables with values in Rd × R
and denote by PX the marginal distribution of X. The dimension d can be much larger than
n but we believe that the output Y can be well predicted by a sparse linear combination of
covariables of X: Y can be reasonably approximated by

〈
X,β0

〉
for some β0 ∈ Rd of short

support (even though, we do not need any assumption of this type to obtain our results). These
kind of problems are called high-dimensional problems because there are more covariables than
observations. Nevertheless, one hopes that under the structural assumption that Y “depends”
only on a few number of covariables of X, it would still be possible to construct efficient statistical
procedures to predict Y .

In this framework, a natural criterion function is the `0 function measuring the size of the
support of a vector. But since this function is far from being convex, using it in practice is hard
(cf. [87]). Therefore, it is natural to consider a convex relaxation of the `0 function as a criterion:
the `1 norm (see e.g. [102, 36]). In what follows, we apply Theorem 3.5.1 to show non-exact
regularized oracle inequalities for `1-based regularized ERM procedures, and with fast error rates
— a residual term that tends to 0 like 1/n up to logarithmic terms. The regularizing function
resulting from Theorem 3.5.1 for the Lq-loss (q ≥ 2) will be the q-th power of the `1-norm. In
particular, for the quadratic loss, we regularize by ‖ · ‖2`1 , the square of the `1-norm:

β̂n ∈ argmin
β∈Rd

( 1
n

n∑

i=1

(Yi −
〈
Xi, β

〉
)2 + κ(n, d, x)

‖β‖2`1
n

)
(4.1.1)

while the standard LASSO regularizes by the `1 norm itself. This choice of the exponent is
dictated by the complexity of the underlying models: the sequence of `1-balls (rBd

1)r≥0 in
the spirit of [12, 76], trough the isomorphic profile function r → λ∗η(r) of the family of loss
functions class

(
`Fr
)
r≥0

as defined in Section 3.5. Observe that since ‖β‖`1 /
√
n ≥ ‖β‖2`1 /n
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when ‖β‖`1 ≤
√
n, a non-exact oracle inequality for the LASSO estimator itself follows from

Theorem 3.5.1, but with a slow rate of 1/
√
n. Using the q-th power of the `1-norm as a penalty

function for the Lq-risk yields a fast 1/n rate (see Theorem 4.1.1 below). Finally, note that for
the case q = 2, it follows from the theory of proximal operator (cf. [93]) that the estimator β̂n
defined in (4.1.1) is the solution of the fixed point equation β̂n = prox(β̂n + 2X>y − 2X>Xβ̂n)
where prox is some multidimensional threshold operator. Indeed, denote y = (Y1, . . . , Yn)> the
vector of outputs and X ∈ Mn,d the design matrix with rows vectors X>i , 1 ≤ i ≤ n. Define
the functions f1(β) = κ ‖β‖2`1 where κ = κ(n, d, x) and f2(β) = ‖y − Xβ‖2`2 for any β ∈ Rd

where ‖z‖2`2 =
∑n

i=1 z
2
i , ∀z ∈ Rn. We have β̂n ∈ argminβ∈Rd

(
f2(β) + f1(β)

)
in particular, 0 ∈

∂−(f2+f1)(β̂n) = {∇f2(β̂n)}+∂−f1(β̂n) where ∂− denotes the sub-differential multidimensional
mapping and ∇ denotes the gradient operator. In particular, β̂n is such that

−∇f2(β̂n) ∈ ∂−f1(β̂n). (4.1.2)

On the other hand, the proximal operator of the convex function f1 is defined for any α ∈ Rd

by

proxf1(α) = argmin
β∈Rd

(1
2
‖α− β‖2`2 + f1(β)

)
,

the minimizer being unique because of the strict convexity of β → (1/2) ‖α− β‖2`2 + f1(β). But
since ∂−

(
(1/2) ‖α− ·‖2`2 + f1(·)

)
(β) = {β − α} + ∂−f1(β) the point proxf1(α) is the unique

solution of
α− proxf1(α) ∈ ∂−(proxf1(α)). (4.1.3)

This holds for any α ∈ Rd. In particular, for α = β̂n − ∇f2(β̂n), we have β̂n − ∇f2(β̂n) −
proxf1(β̂n − ∇f2(β̂n)) ∈ ∂−f1(proxf1(β̂n − ∇f2(β̂n))). But it follows from (4.1.2) that β̂n −
∇f2(β̂n)− β̂n ∈ ∂−f1(β̂n). Thus β̂n and proxf1(β̂n−∇f2(β̂n)) satisfy the same equation having
only one solution therefore β̂n = proxf1(β̂n − ∇f2(β̂n)). To compute the proximal function of
f1, we use (4.1.3) and ∂−f1(β) = 2 ‖β‖`1

(
∂− ‖·‖`1

)
(β) to check that for any α ∈ Rd, we can

take proxf1(α) such that, for any 1 ≤ i ≤ d,

(
proxf1(α)

)
i

=





0 if |αi| ≤ 2κt0(α)
αi − 2κt0(α) if αi > 2κt0(α)
αi + 2κt0(α) if αi < −2κt0(α),

where t0(α) is the unique solution of t0(α) =
∑

i:|αi|>2κt0(α)

(
|αi| − 2κt0(α)

)
. In particular, in

addition to its prediction properties, β̂n may also enjoy some support recovery or estimation
properties.

Now, we turn to oracle inequalities for the regularized ERM introduced here. We will perform
this study for the Lq-loss function, and in which case, for every β ∈ Rd,

R(q)(β) = E|Y −
〈
X,β

〉
|q and R(q)

n (β) =
1
n

n∑

i=1

|Yi −
〈
Xi, β

〉
|q.

The following result is obtained only under the assumption that Y and ‖X‖`d∞ belong to Lψq .
Since there are no “statistically reasonable” ψq variables for q > 2, it sounds more “statistically
relevant” to assume that |Y |, ‖X‖`d∞ are almost surely bounded when one wants results for the
Lq-risk with q > 2, or that the functions are in Lψ2 for q = 2 (for example, linear models with
sub-gaussian noise and a sub-gaussian design satisfy this condition).
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Theorem 4.1.1 ([P16]) Let q ≥ 2. There exist constants c0 and c1 that depend only on q for
which the following holds. Assume that there exists some constant cd > 0 (which may depend
only on d) such that ‖Y ‖ψq ,

∥∥∥‖X‖`d∞
∥∥∥
ψq
≤ cd. For x > 0 and 0 < ε < 1/2, let

λ(n, d, x) = c0c
q
d(log n)(4q−2)/q(log d)2(x+ log n)

and consider the regularized ERM estimator

β̂n ∈ argmin
β∈Rd

(
R(q)
n (β) + λ(n, d, x)

‖β‖q`1
nε2

)
.

Then, with probability greater than 1− 12 exp(−x), the Lq-risk of β̂n satisfies

R(q)(β̂n) ≤ inf
β∈Rd

(
(1 + 2ε)R(q)(β) + η(n, d, x)

(1 + ‖β‖q`1)
nε2

)
,

where η(n, d, x) = c1c
q
d(log n)(4q−2)/q(log d)2(x+ log n).

Procedures based on the `1-norm as a regularizing or constraint function have been studied
extensively in the last few years. We only mention a small fraction of this very extensive body
of work [19, 27, 36, 58, 60, 73, 78, 79, 102, 110, 122, 123]. In fact, it is almost impossible to make
a proper comparison even with the results mentioned in this partial list. Some of these results
are close enough in nature to Theorem 4.1.1 to allow a comparison. In particular, in [16], the
authors prove that with high probability, the LASSO satisfies an exact oracle inequality with
a residual term ∼ ‖β‖`1 /

√
n up to logarithm factors, under tail assumptions on Y and X. In

[27], upper bounds on the risks E[
〈
X, β̂n − β0

〉2] and
∥∥∥β̂n − β0

∥∥∥
`1

were obtained for a weighted

LASSO β̂n when E
(
Y |X

)
=
〈
X,β0

〉
for β0 with short support. Exact oracle inequalities for

regularized ERM, based on an entropy or on an `p with p close to 1 criterion were obtained
in [59, 60] for any convex and regular loss function and with fast rates. Similar bounds were
obtained in [110] for a regularized ERM using a weighted `1-criterion. In [19] it is shown that
the LASSO and Dantzig estimators [36] satisfy oracle inequalities in the deterministic design
setup and under the REC condition. In fact, in most of these results the authors obtained exact
oracle inequalities with an optimal residual term of |Supp(β0)|(log d)/n, which is clearly better
than the rate ‖β‖2`1 /n obtained in Theorem 4.1.1 for the quadratic loss and in the same context.

However, it is important to note that all these exact oracle inequalities were obtained under
an assumption that is similar in nature to the Restricted Isometry Property (RIP), whereas in
Theorem 4.1.1 one does not need that kind of assumption on the design. Although it seems
strange that it is possible to obtain fast rates without RIP there is nothing magical. In fact,
the isomorphic argument used to prove Theorem 3.5.1 (and thus Theorem 4.1.1) shows that the
random operator β ∈ Rd → n−1/2

∑n
i=1(Yi −

〈
Xi, β

〉
)ei ∈ Rn satisfies some sort of an RIP. And

that this isomorphic property coincides with the RIP property in the non noisy case Y =
〈
X,β0

〉

with isotropic design (cf. Section 3.8 for more details on the comparisons between the RIP and
the isomorphic properties of the loss functions class). This indicates that RIP is not the key
property in establishing oracle inequalities for the prediction risk, but rather, the “isomorphic
profile” of the problem at hand, which takes into account the structure of the class of functions.
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4.2 S1-regularization

For the second application of Theorem 3.5.1, we observe n i.i.d. couples input/output (Xi, Yi)1≤i≤n
where the input variables X1, . . . , Xn take their values in the space X = Mm×T of all m × T
matrices with entries in R and the output variables Y1, . . . , Yn are real-valued. Being given a
new input X, the goal is to predict the output Y using a linear function of X when (X,Y )
is assumed to have the same probability distribution as the (Xi, Yi)’s. In this setup, it is now
common to assume that there are more covariables than observations (mT � n) and thus more
information on the best linear prediction of Y by X are required. A common assumption is that
Y can be well predicted by a function of the form

〈
X,A0

〉
= Tr(X>A0) where A0 is a m × T

matrix of low rank. Once again this will not constitute any assumption in our framework since
our techniques are taken from Learning theory where one try to assume as little as possible.
Nevertheless, it can be useful to treat this problem having this low-dimensional structure in
mind.

Indeed, having this structure in mind, it is natural to penalize linear estimators
〈
X,A

〉
where

A is of large rank. Unfortunately, the rank(·) function is not convex and thus cannot be used
in practice as a criterion. A more popular choice is to use a convex relaxation of the rank(·)
function: the S1 norm (“Schatten one” norm) (see [11, 31, 32, 29, 34, 55, P6, 50, 88, 94, 63] and
references therein), which is the `1-norm of the singular values of a matrix. Formally, for every
A ∈ Mm×T , ‖A‖S1

=
∑m∧T

i=1 si(A), where s1(A), . . . , sm∧T (A) are the singular values of A and,

in general for p ≥ 1, ‖A‖Sp =
(∑m∧T

i=1 si(A)p
)1/p

. The S1-norm was originally used in this type
of problems to study exact reconstruction (see, for example, [34, 92, 33]), but other regularizing
functions have been used in this context (e.g. [56, 49, P6]) for the prediction and estimation
problems.

In the following result, we apply Theorem 3.5.1 to obtain non-exact oracle inequalities for
a S1-based regularized ERM procedure for the Lq-loss function, for some q ≥ 2. For every
A ∈Mm×T let

R(q)(A) = E|Y −
〈
X,A

〉
|q and R(q)

n (A) =
1
n

n∑

i=1

|Yi −
〈
Xi, A

〉
|q.

Again, it seems more “statistically relevant” to assume that |Y | and ‖X‖S2
are almost surely

bounded rather than bounded in ψq for q > 2, and the two most interesting cases are the
uniformly bounded one and the subgaussian case for q = 2. We have stated the results under
the more general ψq assumption to point out the places in which the decay properties of the
functions involved are really needed.

Theorem 4.2.1 ([P16]) For every q ≥ 2 there are constants c0 and c1 depending only on q for
which the following holds. Let m and T be as above and assume that there exists some constant
cmT which may depend only on the product mT such that ‖Y ‖ψq ,

∥∥‖X‖S2

∥∥
ψq
≤ cmT . Let x > 0

and 0 < ε < 1/2, and put λ(n,mT, x) = c0c
q
mT (log n)(4q−2)/q(x+log n). Consider the regularized

ERM procedure

Ân ∈ argmin
A∈Mm×T

(
R(q)
n (A) + λ(n,mT, x)

‖A‖qS1

nε2

)

Then, with probability greater than 1−10 exp(−x), the Lq-risk of Ân satisfies for ηε(n,mT, x) =
c1c

q
mT (log n)(4q−2)/q(x+ log n)

R(q)(Ân) ≤ inf
A∈Mm×T

(
(1 + 2ε)R(q)(A) + η(n,mT, x)

(1 + ‖A‖qS1
)

nε2

)
.
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Once again, in the same spirit as in Theorem 4.1.1, it can be interesting to note that for the
quadratic loss (q = 2), the estimator which comes out of our analysis is

Ân ∈ argmin
A∈Mm×T

( 1
n

n∑

i=1

(Yi −
〈
Xi, A

〉
)2 + λ(n,mT, x)

‖A‖2S1

nε2

)

where the regularizing function uses the square of the S1-norm unlike the classical estimator for
this problem which uses the S1 norm itself as a regularizing function.

The first results in the direction of matrix completion have focused on the exact recon-
struction of a low-rank matrix A0 where Yi =

〈
Xi, A0

〉
, i = 1, . . . , n [31, 32, 34, 92, 50].

The best results [92, 50] to date are that if the number of measurements n is larger than
rank(A0)(m+T ) log(m+T ) and if the “incoherence condition” holds (see [34] for more details),
then with high probability, a constrained nuclear norm minimization algorithm can reconstruct
A0 exactly.

Prediction results and statistical estimation involving low-rank matrices has become a very
active field. The most popular methods are regularized ERM based on S1-norm penalty functions
(cf. for instance [11, 26, 31, 32, 88, 94, P6, 56, 63, 94]). To specify some results, fast rates for
the noisy matrix completion problem are derived in [94] — in the context of empirical prediction
and under an RIP-type assumption. In [63] the authors prove exact oracle inequalities for the
prediction error E

〈
X, Ân − A0

〉2 when E
(
Y |X

)
=
〈
X,A0

〉
and A0 is either of low-rank or of

a small S1-norm, and when the probability distribution of the design of X is known. In [88],
optimal rates for the quadratic risk were obtained under a “spikiness assumption” on the SVD
of A0, and in [56], fast convergence rates were derived for regularized ERM based on the von
Neuman entropy penalization and for a known design. However, so far only few results have
been obtained for the prediction risk as considered here. Probably the closest result in this setup
is an exact oracle inequality with slow rates satisfied by a regularized ERM using a mixture of
several norms in [P6] which is developed in the next section.

Note that for the two applications in Theorem 4.1.1 and Theorem 4.2.1, we obtain fast
convergence rates under only tail assumptions on the design X and the output Y for every Lq-
loss (for q ≥ 2). In particular, one does not need to assume that E

(
Y |X

)
is a linear combination

of the covariables of X, nor that Y has any low-dimensional structure. If one happens to be in
a “low-dimensional” situation, the residual terms of Theorem 4.1.1 and Theorem 4.2.1 will be
small. Hence, the `1 and S1 based regularized ERM procedures used there automatically adapt
to this low-dimensional structure.

4.3 Exact oracle inequalities for high-Dimensional Matrix pre-
diction

In this third application, we consider the matrix completion setup as introduced in the previous
Section 4.2. We prove an exact oracle inequality for a regularized ERM with a regularizing
function being a mixture of several norms. In particular, instead of applying Theorem 3.5.1
which led to a non-exact oracle inequality in Theorem 4.2.1, we apply Theorem 3.5.3.

If E(Y |X) =
〈
X,A0

〉
where A0 is low rank, in the sense that rank(A0) � n, nuclear norm

regularization is likely to enjoy some good prediction performances. But, if we know more about
the properties of A0, then some additional regularization can be considered. For instance, if we
know that the non-zero singular values of A0 are “well-spread” (that is almost equal) then it may
be interesting to use the “regularization effect” of the S2 norm in the same spirit as a “ridge”



82 Applications to High-Dimensional data analysis

regularization for vectors or functions. Moreover, if we know that many entries of A0 are close
or equal to zero, then using also a `1-regularization on the entries

A 7→ ‖A‖1 =
∑

1≤p≤m
1≤q≤T

|Ap,q| (4.3.1)

may improve even further the prediction. As a consequence, we consider in this section, a
regularizing function that uses a mixture of several norms: for λ1, λ2, λ3 > 0, we consider

regλ1,λ2,λ3
(A) = λ1 ‖A‖S1

+ λ2 ‖A‖2S2
+ λ3 ‖A‖1 (4.3.2)

and we study the prediction properties of the regularized ERM

Ân(λ1, λ2, λ3) ∈ argmin
A∈Mm,T

{
Rn(A) + regλ1,λ2,λ3

(A)
}

(4.3.3)

where Rn(A) = n−1
∑n

i=1

(
Yi −

〈
Xi, A

〉)2
,∀A ∈ Mm,T . Of course, if more is known on the

structure of A0, other regularizing functions can be considered.
We obtain sharp oracle inequalities for the procedure Ân(λ1, λ2, λ3) for any values of λ1, λ2, λ3 ≥

0 (excepted for (λ1, λ2, λ3) = (0, 0, 0) which provides the well-studied empirical risk minimiza-
tion procedure). In particular, depending on the “a priori” knowledge that we have on A0 we
will consider different values for the triple (λ1, λ2, λ3). If A0 is only known to be low-rank, one
should choose λ1 > 0 and λ2 = λ3 = 0. If A0 is known to be low-rank with many zero entries,
one should choose λ1, λ3 > 0 and λ2 = 0. If A0 is known to be low-rank with well-spread
non-zero singular values, one should choose λ1, λ2 > 0 and λ3 = 0. Finally, one should choose
λ1, λ2, λ3 > 0 when a significant part of the entries of A0 are zero, that A0 is low rank and that
the non-zero singular values of A0 are well-spread.

4.3.1 Assumptions and examples

We will use the following notation: for a matrix A ∈ Mm,T , vec(A) denotes the vector of RmT

obtained by stacking its columns into a single vector. Note that this is an isometry between
(Mm,T , ‖·‖S2

) and (RmT , | · |`mT2
) since

〈
A,B

〉
=
〈
vecA, vecB

〉
. We introduce also the `∞ norm

‖A‖∞ = maxp,q |Ap,q|. Let us recall that for α ≥ 1, the ψα-norm of a random variable Z is
given by ‖Z‖ψα := inf{c > 0 : E[exp(|Z|α/cα))] ≤ 2} (cf. [66], p. 10) and a similar norm can be
defined for 0 < α < 1.

The first assumption concerns the “covariate” matrix X.

Assumption 4.3.1 (Matrix X) There are positive constants bX,∞, bX,`∞ and bX,2 such that
‖X‖S∞ ≤ bX,∞, ‖X‖∞ ≤ bX,`∞ and ‖X‖S2

≤ bX,2 almost surely. Moreover, we assume that the
“covariance matrix”

Σ := E[vecX(vecX)>]

is invertible.

This assumption is very mild. It is met in the matrix completion and the multitask-learning
problems, defined below.

Example. [Uniform matrix completion] The matrix X is uniformly distributed over the set
{ep,q : 1 ≤ p ≤ m, 1 ≤ q ≤ T} where ep,q is the m × T matrix with zero entries everywhere
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except (ep,q)p,q = 1. In this case Σ = (mT )−1ImT (where ImT stands for the identity matrix on
RmT ) and bX,2 = bX,∞ = bX,`∞ = 1.

Example. [Weighted matrix completion] The distribution of X is such that P(X = ep,q) = πp,q
where (πp,q)1≤p≤m,1≤q≤T is a family of positive numbers summing to 1. In this situation Σ is
invertible and again bX,2 = bX,∞ = bX,`∞ = 1.

Example. [Multitask-learning, or “column-masks”] The distribution of X is uniform over a set
of matrices with only one non-zero column (all the columns have the same probability to be non-
zero). The distribution is such that the j-th column takes values in a set {xj,s : s = 1, . . . , kj},
each vector having the same probability. So, in this case Σ is equal to T−1 times the mT ×mT
block matrix with T diagonal blocks of size m×m made of the T matrices k−1

j

∑kj
i=1 xj,sx

>
j,s for

j = 1, . . . , T .
If we assume that the smallest singular values of the matrices k−1

j

∑kj
i=1 xj,sx

>
j,s ∈Mm,m for

j = 1, . . . , T are larger than a constant σmin (note that this implies kj ≥ m), then Σ has its
smallest singular value larger than σminT

−1, so it is invertible. Moreover, if the vectors xj,s are
normalized in `2, then one can take bX,∞ = bX,`∞ = bX,2 = 1.

The next assumption deals with the regression function of Y given X. It is standard in
regression analysis.

Assumption 4.3.2 (Noise) There are positive constants bY , bY,∞, bY,ψ2 , bY,2 such that EY 2 ≤
b2Y , ‖E(Y |X)‖L∞ ≤ bY,∞, E[(Y − E(Y |X))2|X] ≤ b2Y,2 almost surely and ‖Y − E(Y |X)‖ψ2

≤
bY,ψ2.

In particular, any model Y =
〈
A0, X

〉
+ε where ‖A0‖S∞ < +∞ and ε is a centered sub-gaussian

noise satisfies Assumption 4.3.2. Note that in the matrix completion problem, if σ2 = E(ε2),
the signal-to-noise ratio is given by E(〈X,A0〉2)/σ2 = ‖A0‖2S2

/(σ2mT ), so that σ2 has to scale
like 1/(mT ) for the signal-to-noise ratio to have a reasonable value.

4.3.2 Main results

In this section we state our main results. We give sharp oracle inequalities for the regularized
ERM procedure

Ân ∈ argmin
A∈Mm,T

{ 1
n

n∑

i=1

(Yi − 〈Xi, A〉)2 + reg(A)
}
, (4.3.4)

where reg(A) is a regularizing function which will be either a pure ‖·‖S1
regularization, or a

“matrix elastic-net” regularization ‖·‖S1
+ ‖·‖2S2

or other regularizing functions involving the
‖·‖1 norm.

Theorem 4.3.1 (Pure ‖·‖S1
regularization, [P6]) There is an absolute constant c > 0 for

which the following holds. Let Assumptions 4.3.1 and 4.3.2 hold, and let x > 0 be some fixed
confidence level. Consider any

Ân ∈ argmin
A∈Mm,T

{
Rn(A) + λn,x ‖A‖S1

}
,

for

λn,x = cX,Y
(x+ log n) log n√

n
,
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where cX,Y := c(1 + b2X,2 + bY bX + b2Y,ψ1
+ b2Y,∞ + b2Y,2 + b2X,∞). Then one has, with a probability

larger than 1− 5e−x, that

R(Ân) ≤ inf
A∈Mm,T

{
R(A) + λn,x(1 + ‖A‖S1

)
}
.

When there is an underlying model, namely if E(Y |X) = 〈X,A0〉 for some matrix A0, an
immediate corollary of Theorem 4.3.1 is that for any x > 0, we have

E〈X, Ân −A0〉2 ≤ cX,Y
(x+ log n) log n√

n
(1 + ‖A0‖S1

)

with a probability larger than 1− 5e−x. The rate obtained here involves the nuclear norm of A0

and not the rank. In particular, this rate is not deteriorated if A0 is of full rank but close to a
low rank matrix, and it is also still meaningful when m+ T is large compared to n. This is not
the case for rates of the form rank(A0)(m+ T )/n, obtained for instance in [55] and [94], which
are obtained under stronger assumptions.

Concerning the optimality of Theorem 4.3.1, the following lower bound can be proved by
using the classical tools of [106]. Consider the model

Y =
〈
A0, X

〉
+ σζ (4.3.5)

where ζ is a standard Gaussian variable and X is distributed like the m × T diagonal matrix
diag[ε1, . . . , εm∧T ] where ε1, . . . , εm∧T are i.i.d. Rademacher variables. Then, there exists abso-
lute constants c0, c1 > 0 such that the following holds. Let n,m, T ∈ N−{0} and R > 0. Assume
that m ∧ T ≥

√
n. For any procedure Â constructed from n observations in the model (4.3.5)

(and denote by P⊗nA0
the probability distribution of such a sample), there exists A0 ∈ RB(S1)

such that with P⊗nA0
-probability greater than c1,

R(Â)−R(A0) ≥ c0σR

√
1
n

log
(c0σm ∧ T

R
√
n

)
.

This shows that, up to some logarithmic factor, the residual term obtained in Theorem 4.3.1 is
optimal. The only point is that the S2 norm of the design in (4.3.5) is not nicely upper bounded
(‖X‖S2

= m ∧ T a.s.) as it is required in Assumption 4.3.1. Nevertheless, the assumption
‖X‖S2

≤ bX,2 a.s. is mostly technical: it comes from the fact that we use the weak inclusion
B(S1) ⊂ B(S2) for the computation of the complexity of B(S1). This inclusion is clearly a
source of looseness and we believe that Theorem 4.3.1 is also valid if we only assume that
‖X‖S∞ ≤ bX,∞ a.s. in place of ‖X‖S2

≤ bX,2 a.s..
We now state three sharp oracle inequalities for procedures of the form (4.3.4) where the

regularizing function is a mixture of norms.

Theorem 4.3.2 (Matrix Elastic-Net, [P6]) There is an absolute constant c > 0 for which
the following holds. Let Assumptions 4.3.1 and 4.3.2 hold. Fix any x > 0, r1, r2 > 0, and
consider

Ân ∈ argmin
A∈Mm,T

{
Rn(A) + λn,x(r1 ‖A‖S1

+ r2 ‖A‖2S2
)
}
,

where

λn,x = cX,Y
log n√
n

( 1
r1

+
(x+ log n) log n

r2
√
n

)
,
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where cX,Y = c(1 + b2X,2 + bX,2bY + b2Y,ψ1
+ b2Y,∞ + b2Y,2). Then one has, with a probability larger

than 1− 5e−x, that

R(Ân) ≤ inf
A∈Mm,T

{
R(A) + λn,x(1 + r1 ‖A‖S1

+ r2 ‖A‖2S2
)
}
.

Theorem 4.3.2 guarantees the performances of the Matrix Elastic-net estimator (mixture of
the S1-norm and the S2-norm to the square). The use of this algorithm is particularly relevant
for matrices with a spectra spread out on the few first singular values, namely for matrices with
a singular value decomposition of the form

U diag[a1, . . . , ar, εr+1, . . . , εm∧T ]V >, (4.3.6)

where U and V are orthonormal matrices, where (a1, . . . , ar) is well-spread (roughly speaking,
the ai’s are of the same order) and where the εi are small compared to the ai.

Theorem 4.3.3 (‖·‖S1
+ ‖·‖1 regularization, [P6]) There is an absolute constant c > 0 for

which the following holds. Let Assumptions 4.3.1 and 4.3.2 hold. Fix any x, r1, r3 > 0, and
consider

Ân ∈ argmin
A∈Mm,T

{
Rn(A) + λn,x(r1 ‖A‖S1

+ r3 ‖A‖1)
}

for

λn,x := cX,Y

( 1
r1
∧
√

log(mT )
r3

)(x+ log n)(log n)3/2

√
n

,

where cX,Y = c(1 + b2X,2 + bX,2bY + b2Y,ψ1
+ b2Y,∞ + b2Y,2 + b2X,∞ + b2X,`∞). Then one has, with a

probability larger than 1− 5e−x, that

R(Ân) ≤ inf
A∈Mm,T

{
R(A) + λn,x(1 + r1 ‖A‖S1

+ r3 ‖A‖1))
}
.

Theorem 4.3.3 guarantees the statistical performances of a mixture of the S1-norm and
the `1-norm. This mixed regularization shall improve upon the pure S1 regularization when
the underlying matrix contains many zeros. Note that, in the matrix completion case, the
term

√
logmT can be removed from the regularization (and thus the residual) term thanks to

Theorem 1 in [95].

Theorem 4.3.4 (‖·‖S1
+ ‖·‖2S2

+ ‖·‖1 regularization, [P6]) There is an absolute constant c >
0 for which the following holds. Let Assumptions 4.3.1 and 4.3.2 hold. Fix any x, r1, r2, r3 > 0,
and consider

Ân ∈ argmin
A∈Mm,T

{
Rn(A) + λn,x(r1 ‖A‖S1

+ r2 ‖A‖2S2
+ r3 ‖A‖1)

}

for

λn,x := cX,Y
(log n)3/2

√
n

( 1
r1
∧
√

log(mT )
r3

+
x+ log n
r2
√
n

)
,

where cX,Y = c(1 + b2X,2 + bX,2bY + b2Y,ψ1
+ b2Y,∞ + b2Y,2). Then one has, with a probability larger

than 1− 5e−x, that

R(Ân) ≤ inf
A∈Mm,T

{
R(A) + λn,x(1 + r1 ‖A‖S1

+ r2 ‖A‖2S2
+ r3 ‖A‖1))

}
.
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All these results follow from Theorem 3.5.3 or [84, 16]. In particular, we can point out that
Theorem 3.5.3 can be used to handle very general criterion functions. The parameters r1, r2 and
r3 in the above procedures are completely free and can depend on n,m and T . Intuitively, it is
clear that r2 should be smaller than r1 since the ‖·‖S2

term is used for “regularization” of the
non-zero singular values only, while the term ‖·‖S1

makes Ân of low rank, as for the elastic-net
for vectors (see [124]). Indeed, for the ‖·‖S1

+ ‖·‖2S2
regularization, any choice of r1 and r2 such

that r2 = r1 log n/
√
n leads to a residual term smaller than

cX,Y (1 + x+ log n)
((log n)2

r2n
+

log n√
n
‖A‖S1

+
(log n)2

n
‖A‖2S2

)
.

Note that the rate related to ‖A‖S1
is (up to logarithms) 1/

√
n while the rate related to ‖A‖2S2

is
1/n. The choice of r3 depends on the number of zeros in the matrix. Note that in the ‖·‖S1

+‖·‖1
case, any choice 1 ≤ r3 ≤ r1 entails a residue smaller than

cX,Y
(x+ log n) log n√

n
(1 + ‖A‖S1

+ ‖A‖1),

which makes again the residue independent of m and T .
It is interesting to point that regularized procedures that involve the 1-Schatten norm (and

also for regularizations involving other norms), the residue does not depend on m and T directly:
it only depends on the 1-Schatten norm of A0. This fact points out an interesting difference
between nuclear-norm regularization (also called “Matrix Lasso”) and the Lasso for vectors.
In [94], upper bounds for p-Schatten regularization procedures for 0 < p ≤ 1 are given in the
same setting as ours, including in particular the matrix completion problem. The results are
stated without the incoherency assumption for matrix completion. But for this problem, the

upper bounds are given using the empirical norm
∥∥∥Ân −A0

∥∥∥
2

n
=
∑n

i=1

〈
Xi, Ân − A0

〉2
/n only.

An upper bound using this empirical norm gives information only about the denoising part and
not about the generalizing/filling part of the matrix completion problem. Estimation results
follow from our exact oracle inequalities: when E(Y |X) =

〈
X,A0

〉
for some A0 ∈ Mm,T our

estimators Ân satisfy

E
〈
X, Ân −A0

〉2 ≤ inf
A∈Mm,T

{
E
〈
X,A−A0

〉2 + rn(A)
}
,

and taking A0 in the infimum leads to the upper bound

E
〈
X, Ân −A0

〉2 ≤ rn(A0).

Note that E
〈
X, Ân − A0

〉2 =
∥∥∥Ân −A0

∥∥∥
2

S2

/(mT ) in the uniform matrix completion problem

(see Example 4.3.1 below).

4.4 Selection of variables and dimension reduction in high-dimensional
non-parametric regression

We consider the non-parametric Gaussian regression model

Yi = f(Xi) + ei, i = 1, . . . , n,
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where the design variables (or input variables) X1, . . . , Xn are n i.i.d. random variables with
values in Rd, the noise e1, . . . , en are n i.i.d. Gaussian random variables with variance σ2

independent of the Xi’s and f is the unknown regression function. In this section, we are
interested in the pointwise estimation of f at a fixed point x = (x1, . . . , xd) ∈ Rd. We want
to construct some estimation procedures f̂n having the smallest pointwise integrated quadratic
risk

E(f̂n(x)− f(x))2 (4.4.1)

using only the set of data Dn = (Yi, Xi)1≤i≤n.
We assume f to be β-Hölderian around x. We recall that a function f : Rd 7−→ R is β-

Hölderian at the point x with β > 0, denoted by f ∈ Σ(β, x), when the two following points
hold:

• f is l-times differentiable in x (where l = bβc is the largest integer which is strictly smaller
than β),

• there exists L > 0 such that for any t = (t1, . . . , tn) ∈ Bd
∞(x, 1),

|f(t)− Pl(f)(t, x)| ≤ L‖t− x‖β1 ,

where Pl(f)(·, x) is the Taylor polynomial of order l associated with f at the point x, ‖ · ‖1
is the l1 norm and Bd

∞(x, 1) is the unit l∞-ball of center x and radius 1.

When f is only assumed to be in Σ(β, x), no estimator can converge to f (for the pointwise
risk given in equation (4.4.1)) faster than

n−2β/(2β+d). (4.4.2)

This rate can be very slow when the dimension d of the input variable X is large compared to
the regularity β of the regression function f . In many practical problems, the dimension d can
depend on the number n of observations in such a way that the rate (4.4.2) does not even tend
to zero when n tends to infinity. This phenomenon was called the “curse of dimensionality” by
R.Bellman (cf. [115] for some discussion on this phenomenon). Fortunately, in some of these
problems the regression function really depends only on a few number of coordinates of the input
variables. We formulate this heuristic by the following assumption:

Assumption 4.4.1 There exist an integer d∗ ≤ d, a function g : Rd∗ → R and a subset
J = {i1, . . . , id∗} ⊂ {1, . . . , d} of cardinality d∗ such that for any (x1, . . . , xd) ∈ Rd

f(x1, . . . , xd) = g(xi1 , . . . , xid∗ ).

Under Assumption 4.4.1, the ”real” dimension of the problem is not anymore d but d∗. Then,
we hope that if f ∈ Σ(β, x) (which is equivalent to say that g is β-Hölderian at the point x), it
would be possible to estimate f(x) at the rate given in equation (4.4.2) where d is replaced by d∗,
leading to a real improvement of the convergence rate when d∗ � d. Nevertheless, starting from
the data Dn, it is not clear that detecting the set J of interesting coordinates is an easy task.
To select this set, we use a l1 regularization technique. This technique has been mostly used
in the parametric setup. We adapt it to the non-parametric setup and we obtain the following
informal selection result which is a short version of Theorem 4.4.2 below.

Theorem A (selection of the subset J) [P1] Under Assumption 4.4.1 it is possible to
construct, only from the data Dn, a subset Ĵ ⊂ {1, . . . , d} such that, with probability greater
than 1− c0 exp(c0d− c1nh

d+2) (for a free parameter 0 < h < 1), Ĵ = J.
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Once the set J is empirically determined with high probability, we then run a classical
local polynomial estimation procedure on the set of indices Ĵ to obtain the following informal
estimation result which is a short version of Theorem 4.4.3 below.

Theorem B (estimation of f) [P1] For any f ∈ Σ(β, x), with β > 1, satisfying Assumption
4.4.1, it is possible to construct, only from the data Dn, an estimation procedure f̂n such that
P[|f̂n(x)− f(x)| ≥ δ] ≤ c exp(−cδ2n2β/(2β+d∗)), ∀δ > 0 where c does not depend on n.

The last theorem proves that it is possible, only from the set of data, to reduce and to detect
the ”real” dimension of the problem under Assumption 4.4.1.

The problem we consider in the section is called a high-dimensional problem. In the last
years, many papers have studied these kinds of problems and summarizing here the state of the
art is not possible (we refer the reader to the bibliography of [65]). We just mention some papers.
In [18, 72, 17, 44], it is assumed that the design variable X belongs to a low dimensional smooth
manifold of dimension d∗ < d. All of these work are based on heuristics techniques. In [65], the
same problem as the one considered here is handled. Their strategy is a greedy method that
incrementally searches through bandwidth in small steps. If the regression f is in a Sobolev ball
of order 2, their procedure is nearly optimal for the pointwise estimation of f in x. It achieves
the convergence rate n−4/(4+d∗+ε) for every ε > 0, when d = O(log n/ log log n) and d∗ = O(1).
Our procedure improves this result. First, the optimal rate of convergence is achieved. Second,
the regression function does not have to be twice differentiable (actually Theorem B holds for
any smoothness parameter β > 1). Third, the dimension d can be taken of the order of log n.

Our goal is twofold. First, we want to determine the set of indices J = {i1, . . . , id∗}. Second,
we want to construct an estimator of the value f(x) that converges to the rate n−2β/(2β+d∗) when
f ∈ Σ(β, x) for β > 1. To achieve the first goal, we use a l1 regularization of local polynomial
estimators.

4.4.1 Selection Procedure

We consider the following set of vectors

Θ̄(λ) = argmin
θ∈Rd+1

[
1
nhd

n∑

i=1

(
Yi − U

(
Xi − x
h

)
θ

)2

K

(
Xi − x
h

)
+ 2λ‖θ‖1

]
, (4.4.3)

where U(v) = (1, v1, . . . , vd) for any v = (v1, . . . , vd)> ∈ Rd, ‖θ‖1 =
∑d

j=0 |θj | for any θ =
(θ0, . . . , θd)> ∈ Rd+1, h > 0 is called the bandwidth, λ > 0 is called the regularization parameter
and K : Rd −→ R is called the kernel. We will explain how to choose the parameters h and λ
in what follows. In the following, we denote U0(v) = 1 and Ui(v) = vi, for i = 1, . . . , d for any
v = (v1, . . . , vd) ∈ Rd. The kernel K is taken such that the following set of assumptions holds:

Assumption 4.4.2 The kernel K : Rd −→ R is symmetric, supported in Bd
∞(0, 1), the matrix

(
∫

Rd K(y)Ui(y)Uj(y)dy)i,j∈{0,...,d} is diagonal with positive coefficients independent of d in the
diagonal and there exists a constant MK ≥ 1 independent of d which upper bounds the quanti-
ties maxu∈Rd |K(u)|, maxu∈Rd K(u)2, maxu∈Rd |K(u)|‖u‖21, maxu∈Rd |K(u)|‖u‖22,

∫
Rd K(y)2(1 +

‖y‖22)dy,
∫

Rd |K(u)|2‖u‖41du and
∫

Rd K(y)2(Ui(y)Uj(y))2dy.

Note that for example the uniform kernel K(u) =
1
2d
1Bd∞(0,1)(u) satisfies Assumption 4.4.2.

Any statistic θ̄ ∈ Θ̄(λ) is a l1 regularized version of the classical local polynomial estimator.
Usually, for the estimation problem of f(x), only the first coordinate of θ̄ is used. Here, for the
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selection problem, we use all the coordinates except the first one. We denote by θ̂ the vector of
Rd made of the d last coordinates of θ̄.

We expect the vector θ̂ to be sparse (that is with many zero coordinates) such that the
set of all the non-zero coordinates of θ̂, denoted by Ĵ , will be the same as the set J of all the
non-zero coordinates of (θ∗1, . . . , θ

∗
d)
> where θ∗i = h∂if(x), for i ∈ {1, . . . , d}, and ∂if(x) stands

for the i−th derivative of f at point x. We remark that, under Assumption 4.4.1, the vector
(θ∗1, . . . , θ

∗
d)
> is sparse.

Note that, the estimator θ̄ ∈ Θ̄(λ) may not be unique (depending on d and n). Hence,
the subset selection method may provide different subsets Ĵ depending on the choice of θ̄.
Nevertheless, Theorem 4.4.3 holds for any subset Ĵ , whatever is the vector θ̄ chosen in Θ̄(λ).

We also consider another selection procedure close to the previous one which requires less
assumption on the regression function. We just need to assume that there exists fmax > 0 such
that |f(x)| ≤ fmax. With the same notation, we consider the following set of vectors

Θ̄2(λ) = argmin
θ∈Rd+1

[
1
nhd

n∑

i=1

(
Yi + fmax + Ch− U

(
Xi − x
h

)
θ

)2

K

(
Xi − x
h

)
+ 2λ‖θ‖1

]
,

(4.4.4)
where C and h are defined later. We just translate the outputs Yi’s by fmax + Ch. This
translation affects the estimator since the LASSO method is not a linear procedure. We denote
by Ĵ2, this subset selection procedure.

Remark 4.4.1 The l1 penalization technique can be related to the problem of linear aggregation
(cf. [105] and [89]) in a sparse setup. Indeed, l1 penalization is known to provide sparse esti-
mators if the underlying object to estimate is sparse with respect to a given dictionary. Assump-
tion 4.4.1 can be interpreted in terms of sparsity of f w.r.t. to a certain dictionary. For that,
we consider the set F = {f0, f1, . . . , fd} of functions from Rd to R where f0 = 1 is the constant
function equals to 1 and fj(t) = (tj − xj)/h for any j ∈ {1, . . . , d} and t = (t1, . . . , td) ∈ Rd.
The set F is the dictionary. That is the set within we are looking for the best sparse linear
combination of elements in F approaching f in a neighborhood of x. In this setup, the Taylor
polynomial of order 1 at point x, denoted by P1(f)(·, x), is a linear combination of the elements
in the dictionary F . When f is assumed to belong to Σ(β, x), the polynomial P1(f)(·, x) is a
good approximation of f in a neighborhood of x. Moreover, under Assumption 4.4.1, this lin-
ear combination is sparse w.r.t. the dictionary F . Thus, we hope that, with high probability,
minimizing a localized version of the empirical L2-risk penalized by the l1 norm over the set
of all the linear combinations of elements in F will detect the right locations of the interesting
indices i1, . . . , id∗ (which correspond to the non-zero coefficients of P1(f)(·, x) in the dictionary
F). That is the main idea behind the procedures introduced in this section since we have:

Θ̄(λ) = argmin
θ∈Rd+1


 1
nhd

n∑

i=1


Yi −

d∑

j=0

fj(Xi)θj




2

K

(
Xi − x
h

)
+ 2λ‖θ‖1


 ,

Of course, we can generalize this approach to other dictionaries (this will lead to other sparsity
and regularity properties of f) provided that some kind of “orthogonality properties” of F still
holds.

4.4.2 Estimation Procedure

We now construct a classical local polynomial estimator (LPE) (cf. [64, 104]) on the set of
coordinates Ĵ2 previously constructed.
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We assume that the selection step is now done. We have at hand a subset Ĵ2 = {̂ı1, . . . , ı̂cd∗} ⊂
{1, . . . , d} of cardinality d̂∗. For the second step, we consider γx a polynomial on Rcd∗ of degree
l = bβc which minimizes

n∑

i=1

(Yi − γx(p(Xi − x)))2K?

(
p
(Xi − x

h?

))

where h? = n−1/(2β+ bd∗), p(v) = (vbı1 , . . . , vbıcd∗ )> for any v = (v1, . . . , vd)> ∈ Rd and K? : Rcd∗ −→
R is a kernel function. The local polynomial estimator of f at the point x is γ̂x(0) if γ̂x is unique
and 0 otherwise. We denote by f̂(x) the projection onto [−fmax, fmax] of the LPE of f(x). Here,
we don’t use the other coefficients of γ̂x(0) like we did in the selection step.

For the estimation step, we use a result on the convergence of multivariate LPE from [10].
We recall here the properties of the kernel required in [10] to obtain this result.

Assumption 4.4.3 The kernel K? : Rcd∗ −→ R is such that: there exists c > 0 satisfying

K?(u) ≥ c1‖x‖2≤c,∀u ∈ Rcd∗ ;∫
Rcd∗ K

?(u)du = 1;

∫

Rcd∗ (1 + ‖u‖4β2 )(K?(u))2du <∞; sup
u∈Rcd∗(1 + ‖u‖2β2 )K?(u) <∞.

4.4.3 A selection and estimation theorem

In this subsection, we provide the main results of this section. To avoid any technical complexity
we will assume that the density function µ of the design X satisfies the following assumption:

Assumption 4.4.4 There exists some constants η, µm > 0, µM ≥ 1 and Lµ > 0 such that

• Bd
∞(x, η) ⊂ supp(µ) and µm ≤ µ(y) ≤ µM for almost every y ∈ Bd

∞(x, η),

• µ is Lµ-Lipschitz around x, that is for any t ∈ Bd
∞(x, 1), |µ(x) − µ(t)| ≤ Lµ‖x − t‖∞

(remark that the value µ(x) is the value of the continuous version of µ around x).

The first result deals with the statistical properties of the selection procedure. For this step,
we require a weaker regularity assumption for the regression function f . This assumption is
satisfied for any β-Hölderian function in x with β > 1.

Assumption 4.4.5 There exists an absolute constant L > 0 such that the following holds. The
regression function f is differentiable and

|f(t)− P1(f)(t, x)| ≤ L‖t− x‖β1 , ∀t ∈ Bd
∞(x, 1),

where P1(f)(·, x) is the Taylor polynomial of degree 1 of f at the point x.

To achieve an efficient selection of the interesting coordinates, we have to be able to distinguish
the non-zero partial derivatives of f from the null partial derivatives. For that, we consider the
following assumption:

Assumption 4.4.6 There exists a constant C ≥ 72(µM/µm)LMK

√
d0 such that |∂jf(x)| ≥ C

for any j ∈ J , where the set J is given in Assumption 4.4.1 and d0 is an integer such that
d∗ ≤ d0.
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Theorem 4.4.2 ([P1]) There exists some constants c0 > 0 and c1 > 0 depending only on Lµ,
µm, µM , MK , L, C and σ for which the following holds. We assume that the regression function
f satisfies the regularity Assumption 4.4.5, the sparsity Assumption 4.4.1 such that the integer
d∗ is smaller than a known integer d0 and the distinguishable Assumption 4.4.6. We assume
that a density function µ of the input variable X satisfies Assumption 4.4.4.

We consider θ̄ = (θ̄0, . . . , θ̄d) ∈ Θ̄(λ) ⊂ Rd+1 and θ̄2 = ((θ̄2)0, . . . , (θ̄2)d) ∈ Θ̄2(λ) ⊂ Rd+1

where Θ̄(λ) and Θ̄2(λ) are defined in equations (4.4.3) and (4.4.4) with a kernel satisfying
Assumption 4.4.2, a bandwidth and a regularization parameter such that

0 < h <
µm

32(d0 + 1)LµMK
∧ η and λ = 8

√
3MKµMLh (4.4.5)

We denote by Ĵ the set {j ∈ {1, . . . , d} : θ̄j 6= 0} and by Ĵ2 the set {j ∈ {1, . . . , d} : (θ̄2)j 6= 0}.

• If |f(x)| > Ch, where C is defined in Assumption 4.4.6 or f(x) = 0, then with probability
greater than 1− c1 exp(c1d− c0nh

d+2), Ĵ = J .

• If |f(x)| ≤ fmax, then with probability greater than 1− c1 exp(c1d− c0nh
d+2), Ĵ2 = J .

We remark that Theorem 4.4.2 still holds when we only assume that there exists a subset
J ⊂ {1, . . . , d} such that ∂jf(x) = 0 for any j /∈ J instead of the more global Assumption 4.4.1.

Theorem 4.4.3 ([P1]) We assume that the regression function f belongs to the Hölder class
Σ(β, x) with β > 1 and satisfies the sparsity Assumption 4.4.1 such that the integer d∗ is smaller
than a known integer d0 and the distinguishable Assumption 4.4.6. We assume that a density
function µ of the input variable X satisfies Assumption 4.4.4 and |f(x)| ≤ fmax. We assume
that the dimension d is such that d+ 2 ≤ (log n)/(−2 log h) (h satisfies (4.4.5)).

We construct the set Ĵ2 of selected coordinates with a kernel, a bandwidth and a regularization
parameter as in Theorem 4.4.2. The LPE estimator f̂(x) constructed in subsection 4.4.2 on the
subset Ĵ2 and a kernel K? satisfying Assumption 4.4.3, satisfies

∀δ > 0,P[|f̂(x)− f(x)| ≥ δ] ≤ c1 exp
(
− c2n

2β
2β+d∗ δ2

)
,

where c1, c2 > 0 are constants independent of n, d, d∗.

Note that, by taking the expectation, we obtain E[(f̂(x)− f(x))2] ≤ cn
−2β

2β+d∗ . The selection
procedure is efficient provided that c1nh

d+2 − c0d tends to infinity when n tends to infinity.
Namely, we need (with 0 < h < 1)

d+ 2 <
log n
− log h

. (4.4.6)

It is interesting to note that, for d of the order of log n (like in (4.4.6)), the rate of convergence
in (4.4.2) does not tend to zero. Therefore, in this case and without any previous selection step,
a classical LPE can fail to estimate f(x).

A remarkable point of Theorem 4.4.2 is that the bandwidth h does not have to tend to 0
when n tends to infinity. This particular behavior does not appear when LPE are used for
estimation and not for selection. This can be explained because, we do not need to control any
bias term in the selection step. In the selection context, the restriction on h comes only from
the fact that we need the dictionary F to be approximatively orthogonal.

Finally, once the set of interesting coordinates is selected, we can use it to run other non-
parametric methods to estimate the function f with other pointwise risks or integrated risks
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and under other smoothness assumptions on f . Note that, by considering other order of the
l1-penalized LPE in the selection step, it is easy to find other properties of the function f . For
instance, inflection points or convexity of f can be detected with a second order method in the
selection step.

4.5 Non-exact oracle inequalities for the Convex aggregation
problem

The problem of Convex aggregation is the following: take a finite model F = {f1, . . . , fM} for
some M ∈ N and try to find a procedure that is “as good as” the best convex combination of
elements in F . To define what is meant by “as good as”, we introduce some notation.

For any λ = (λ1, . . . , λM )> ∈ RM , we define fλ =
∑M

j=1 λjfj and the convex hull of F is

the set conv(F ) =
{
fλ :

∑M
j=1 λj = 1 and λj ≥ 0

}
. There are many different ways of defining

the Convex aggregation problem. The one that we will be interested in is the following: for
some 0 ≤ ε ≤ 1 construct a procedure f̃n such that, for any x > 0 with probability larger than
1− exp(−x),

R(f̃n) ≤ (1 + ε) inf
f∈conv(F )

R(f) + c0 max
(
rn(M),

x

n

)
(4.5.1)

where the residual term rn(M) should be as small as possible. From both mathematical and
statistical point of view, the most interesting case to study is for ε = 0. In this case, it follows
from classical minimax result that no algorithm can do better than the rate

ψCn (M) =





M/n if M ≤
√
n,√

log
(
eM/
√
n
)

n otherwise.
(4.5.2)

It is shown in [103] that there is indeed a procedure f̃n achieving this rate in expectation:
ER(f̃n) ≤ inff∈conv(F )R(f) + ψCn (M) and in Theorem 2.8.1, this rate is achieved in deviation.

In this setup, we apply Theorem 3.3.1 to obtain inequalities like (4.5.1) with 0 < ε < 1 for
the ERM over conv(F ):

f̃ERM−C ∈ argmin
f∈conv(F )

Rn(f). (4.5.3)

To make the argument simple, we consider the bounded regression framework with respect to the
quadratic loss: |Y |, supf∈F |f(X)| ≤ 1 a.s. and `f (x, y) = (y − f(x))2,∀f ∈ F,∀(x, y) ∈ X × R.

Theorem 4.5.1 ([P16]) There exists an absolute constant c0 such that the following holds.
For any 0 < x < log n, with probability greater than 1− 8 exp(−x),

R(f̃ERM−C) ≤ (1 + 2ε) inf
f∈conv(F )

R(f) +
c0(logM)(log n)

n
.

It is interesting to note that the proofs of Theorem 4.5.1 and Theorem 4.1.1 are closely
related. In the case of Theorem 4.1.1, the result follows from the analysis of the loss functions
classes indexed for the family of models (rBd

1)r≥0. In the case of Theorem 4.5.1, the result
follows from the analysis of the loss function class indexed by the model Λ = {λ ∈ RM : λj ≥
0, ‖λ‖`1 = 1} (we identify every function fλ ∈ conv(F ) to its parameter λ ∈ Λ) which is in-
cluded in BM

1 . Therefore, the proof of Theorem 4.5.1 follows the same path as the proof of
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Theorem 4.1.1 but since we assume boundedness some extra logarithms appearing in Theo-
rem 4.1.1 can be saved here. Indeed, for the loss functions class `conv(F ) = {`f : f ∈ conv(F )},
we can apply Theorem 3.3.1 with bn(`conv(F )) = 1, Bn = 1 and take for isomorphic function
ρn(x) ≡ c0(logM)(log n)/n.

Note that the residual term of the non-exact oracle inequality satisfied by f̃ERM−C in Theo-
rem 4.5.1 is of the order of (logM)(log n)/n and is thus uniformly better than the optimal rate
ψCn (M) for exact oracle inequalities in this setup. Up to logarithms, this residual term can even
be the square of ψCn (M) when M ≥

√
n.

For this example, the gap between the rates obtained for non-exact oracle inequalities and
exact oracle inequalities is not anymore due to the Bernstein condition since in both situations
this condition holds: for any f ∈ conv(F ),

E`2f ≤ E`f and EL2
f ≤ BELf .

The Bernstein condition for the excess loss functions class Lconv(F ) holds in this context because
of the convexity of the set conv(F ) (cf. Proposition 1.3.3). In other words, the geometry of
the Convex aggregation problem is good. Thus to explain this gap we have to look somewhere
else. It appears that, in this case, the gap comes from complexity. Indeed, it follows from
Proposition 3.2.7 that (up to some logarithmic factors), for any λ > 0,

E ‖P − Pn‖V (`conv(F ))λ
.

√
λ

n
.

Therefore, the fixed point λ∗η defined in Theorem 3.3.1 and associated with the loss functions class
`conv(F ) will be of the order of 1/n (up to some logarithmic factors). Whereas, for the particular
case conv

(
{f(X) : f ∈ F}

)
= {

∑M
j=1 λjεj : λ ∈ BM

1 } and Y = εM+1, where ε1, . . . , εM+1 are
i.i.d. Rademacher variables, we can prove that for any µ ≥ 1/M ,

E ‖P − Pn‖V (Lconv(F ))µ
&

1√
n
.

Hence, the fixed point µ∗η of Theorem 3.3.2 associated with the excess loss class Lconv(F ) will
be of the order of 1/

√
n when M ≥

√
n. To conclude, the problem of Convex aggregation is

an instructive case showing that the complexity aspect of the problem plays also a key role
in understanding the difference between exact and non-exact oracle inequalities. Unlike the
example of (MS) aggregation for which the geometrical aspect was more underlined through the
Bernstein condition.

The result of Theorem 4.5.1 rises two questions in Convex aggregation theory: What is the
optimal rate of aggregation for the Convex aggregation problem for non-exact oracle inequalities?
Is the ERM an optimal procedure for this problem? Furthermore, for the Model Selection
aggregation problem (where one wants to be as good as the best in F ), it is known that non-
exact oracle inequalities and exact oracle inequalities share the same optimal rate of aggregation
(logM)/n. Therefore, a natural question would be to characterize aggregation problems (we
can extend the definition of aggregation problem to any subsets A ⊂ RM : A = {e1, . . . , eM} for
Model Selection aggregation, A = Λ for the Convex aggregation, A = RM for Linear aggregation,
etc.) for which there is indeed a gap between the residual terms for non-exact and exact oracle
inequalities (up to some absolute multiplying constants). This question will be analyzed in
Chapter 5.
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4.6 Oracle inequalities for cross-validation type procedures

In this section, we construct adaptation procedures inspired by cross-validation. Adaptation
procedures are of particular interest when one wants to adapt to an unknown parameter. Such a
parameter can appear in statistical procedures for two reasons: either it is an unknown parameter
of the model (complexity parameter, “concentration” parameter, geometric parameter, variance
of the noise, etc.), or the construction of the procedure requires fitting a parameter that no theory
is able to determine (regularization parameter, smoothing parameter, threshold, etc.). Thus it
is very useful to have at hand some statistical procedures which can choose these unknown
parameters in a data-dependent way. The construction of adaptation procedures has been one
of the main topics in non-parametric statistics for the two last decades. Retracing the entire
bibliography here is not possible. Nevertheless, we would like to refer the reader to some classical
— and now pioneering — steps in this field like the Model Selection approach (cf. i.e. [12] and
[76]), aggregation methods (cf. i.e. [89], [39] and [40]), empirical risk minimization (cf. i.e.
[116], [57] and [15]), Lepskii’s adaptation method in [70, 69] or wavelet thresholding methods
in [45]. Of course many other approaches in some particular setups have been developed. But
one of the most popular and universal strategy used for fitting unknown parameters or more
generally to select algorithms is the Cross-Validation (CV). Cross-validation is a very important
and widely applied family of model/ estimator/ parameter selection methods. Among other,
the CV procedure was studied for the selection of the bandwidth in kernel density estimation
in [52] and [98], for the regression model in [99], in classification in [43]. Many other authors
have been studying or using this method and we refer the reader to the survey of CV methods
in Model Selection [4], the PhD thesis [41], [96] or [112, 111] for more bibliographical references
on this topic. The aim of this section is to present and to study three procedures inspired by
the CV procedure in the general framework introduced in Section 1.1.1.

We say that a statistic is a sequence of functions f̂ = (f̂ (n))n∈N such that each f̂ (n) is a map
associating a function f̂ (n)(·) = f̂ (n)(D(n))(·) in F to each data set D(n) = {Z1, . . . , Zn}. If f̂ is
a statistic, the risk of f̂ is given for each n by

R(f̂ (n)(D(n))) = E[`(f̂(D(n)), Z)|D(n)].

We assume that we know how to construct some statistics f̂λ for λ in a set of indexes Λ. We
want to construct procedures f̄ = (f̄ (n))n∈N satisfying oracle inequalities that is, for any sample
size n,

E[R(f̄ (n)(D(n)))−R∗] ≤ C inf
λ∈Λ

E[R(f̂ (n)
λ (D(n)))−R∗] + r(n,Λ) (4.6.1)

where C ≥ 1 is a constant and r(n,Λ) is a residue term which we would like to keep as small as
possible. Controlling this residue will depend on some complexity parameter of the excess loss
functions class {`(f̂ (n)

λ (D(n)), ·)− `(f∗, ·) : λ ∈ Λ}, as well as on a Margin parameter that limits
the behaviour of the contrast function around the risk minimizer (cf. Assumptions (A) below).

We introduce now different adaptation procedures: two modified versions of the cross-
validation procedure and then the cross-validation procedure itself.

4.6.1 Classical Cross-validation procedures

The key feature of the CV procedure, the use of multiple splits to train and test the candidate
estimator, renders it somewhat more difficult to handle in a theoretial way. Nevertheless, we
shall show that a carefully crafted risk inequality opens the door to oracle inequalities for cross-
validation too. In this section, we have to pay careful attention to the exact choice of the splits
of our data, especially when retraining the selected model to obtain our final estimator(s).
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First we shall introduce some notation. Let n be an integer, and V a divisor of n. We split
the data set D(n) into V disjoint subsets of equal size nC = n/V , namely, for every k = 1, . . . , V ,

Bk = {Z(k−1)nC+1, . . . , ZknC}, (4.6.2)

which shall be test sets, and their complements

Dk = ∪Vj=1:j 6=kBj , (4.6.3)

the corresponding training sets. Note that Dk is a data set of size nV = n− nC .
Let `(f, Z) be a contrast function whose arguments are a data point Z and a parameter

f ∈ F . For a statistic f̂ = (f̂ (n))n, we define the V-fold CV empirical risk by

Rn,V (f̂) =
1
V

V∑

k=1

1
nC

knC∑

i=(k−1)nC+1

`(f̂ (nV )(Dk), Zi). (4.6.4)

Let p statistics f̂1, . . . , f̂p be given. The V-fold CV procedure is the procedure f̄V CV = (f̄ (n)
V CV )n

defined, for any n, by

f̄
(n)
V CV (D(n)) = f̂

(n)b(D(n))
(D(n)) s.t. ̂(D(n)) ∈ argmin

j∈{1,...,p}
Rn,V (f̂j). (4.6.5)

Perhaps the oldest, and certainly the most frequently studied, cross-validation scheme is
n-fold or leave-one-out cross-validation. It forms the intersection between the class of V -fold
cross-validation schemes and the class of leave-m-out CV schemes, defined by

f̄
(n)
lmo(D

(n)) = f̂
(n)b(D(n))

(D(n)) s.t. ̂(D(n)) ∈ argmin
j∈{1,...,p}

Rn,−m(f̂j), (4.6.6)

where Rn,−m is defined as

Rn,−m(f̂) =
(
n

m

)−1 ∑

C⊂{1,...,n}:|C|=m

1
m

∑

i∈C
`(f̂ (n−m)((Zk)k∈{1,...,n}\C), Zi).

This method does however become very computationally inadequate as soon as m is no longer
1, as there are far too many subsets of {1, . . . , n} to average over. One possible solution for this
is balanced incomplete cross-validation, where cross-validation is treated as a block design and
the available pieces of data are all used equally often for training, and equally often for testing.
Alternatively, we could use Monte Carlo cross-validation, where the training and testing subsets
are drawn randomly — without replacement — from the available data. See [96] for a discussion
of all these methods.

We can place all of these cross-validation schemes into one general framework as follows. For
any subset C ⊂ {1, . . . , n} of indices, write D(C) for {Zi : i ∈ C} and D(C)′ for {Zi : i /∈ C}.
Assume that a fixed value nC be given (the size of test sets), and define nV = n − nC . Let
C1, . . . , CNC be NC subsets of {1, . . . , n}, each of size nV . Now for any statistic f̂ define the CV
risk

RnC (f̂) =
1
NC

NC∑

k=1

1
nC

∑

i/∈Ck

`(f̂ (nV )(D(Ck)), Zi), (4.6.7)

and its minimizer by

f̂
(n)
CV (D(n)) = f̂

(n)b(D(n))
(D(n)) s.t. ̂(D(n)) ∈ argmin

j∈{1,...,p}
RnC (f̂j). (4.6.8)
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4.6.2 The modified CV procedure and its average version

In this subsection, we introduce the selecting procedures that we will be studying later. We use
the notations introduced in the previous subsection.

To introduce the modified CV procedure, we consider some integer V and we assume that V
divides n. We consider the splits (B1, D1), . . . , (BV , DV ) of the data introduced in (4.6.2) and
(4.6.3). We define the modified CV procedure (mCV) by

f̄
(n)
mCV (D(n)) = f̂

(nV )b(D(n))
(D(nV )) (4.6.9)

where D(nV ) = {Z1, . . . , ZnV } and, for the V-fold CV empirical risk Rn,V introduced in (4.6.4),

̂(D(n)) ∈ argmin
j∈{1,...,p}

Rn,V (f̂j).

For the average version of the mCV procedure, we don’t have to split the data in the same
“organized” way as in (4.6.2) and (4.6.3). We can consider the more general second partition
scheme introduced in the second part of the previous subsection that we recall now for the reader
convenience: Let NC and 1 ≤ nC < n be two integers and set nV = n−nC . Let C1, . . . , CNC be
subsets of {1, . . . , n} each of size nV . We define the averaged version of the modified CV
procedure (amCV) by:

f̂
(n)
amCV (D(n)) =

1
NC

NC∑

k=1

f̂
(nV )b(D(n))

(D(Ck)) (4.6.10)

where, for the CV-risk RnC introduced in (4.6.7),

̂(D(n)) ∈ argmin
j∈{1,...,p}

RnC (f̂j).

We did not consider the same partition scheme of the data for the two procedures. The one
considered for the amCV is more general but to obtain oracle inequalities for the amCV we will
need the convexity of the risk. Whereas for the mCV, the partition scheme is the one used for
the VCV method and will only require a weak assumption on the basis statistics f̂1, . . . , f̂p. For
each one of our results, we will consider two different setups depending on the procedure that
we want to study and the assumptions of the problem.

Note that the difference between the classical VCV procedure defined in (4.6.5) and our mCV
procedure is that f̄ (n)

mCV takes its values in {f̂ (nV )
1 , . . . , f̂

(nV )
p } whereas f̄ (n)

V CV takes its values in
{f̂ (n)

1 , . . . , f̂
(n)
p }. Therefore, under some extra “regularity” assumptions on the basis statistics

f̂1, . . . , f̂p saying that for every j, f̂ (n)
j is somehow more efficient as n increases (cf., for instance,

the “stability” assumption in [23]) the VCV procedure should outperform our mCV procedure.
Nevertheless, we will not explore this kind of regularity assumption and will require only weak
assumptions on the basis estimators. Under these weak assumptions, the mCV (as well as the
amCV) will, in fact, outperform the classical VCV and CV procedures (cf. Theorem 4.6.2 and
Example 4.6.5 below).

4.6.3 Oracle inequalities for the modified CV procedures (mCV) and its av-
erage version (amCV)

In this subsection, we shall not yet introduce any conditions on how a candidate statistic f̂
behaves when its training sample size changes, i.e. about the relationship of f̂m and f̂n for
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m 6= n. As the usual application of cross-validation involves retraining the selected model using
all the available data to obtain a final estimator, such assumptions are crucial for avoiding
such pathological “counter-examples” as that found in Example 4.6.5 below. As we shall only
introduce such conditions in Subsection 4.6.4, we will first prove a simpler case — the case where
even after selection involving estimation with training size nV , we still only use training samples
of size nV to build the final estimator. The case where we retrain on all available data will then
be handled in Subsection 4.6.4.

We will require some simple (fixed sample size) properties on the estimators f̂1, . . . , f̂p to
obtain an oracle inequality for the modified CV procedure.

Definition 4.6.1 We say that a statistic f̂ = (f̂ (n))n is exchangeable when for any integer n,
for any permutation φ : {1, . . . , n} 7−→ {1, . . . , n} for any π⊗n-almost vector (z1, . . . , zn) ∈ Zn,
we have f̂ (n)(z1, . . . , zn) = f̂ (n)(zφ(1), . . . , zφ(n)).

Remark that most of the statistics in the batch setup (the setup of this section) satisfy this prop-
erty. On the other side, statistics coming from the on-line setup are likely to be un-exchangeable.

We shall also use the following assumptions on the tail behavior and the “Margin” (cf. [75]
and [107]) of the excess loss function of an estimator f̂ .

(A) There exist κ ≥ 1 and K0,K1 > 0 such that the following holds. For any m ∈ N and
any data set D(m) = {Z1, . . . , Zm}

1.
∥∥∥`(f̂ (m)(D(m)), ·)− `(f∗, ·)

∥∥∥
Lψ1

(π)
≤ K0

2.
∥∥∥`(f̂ (m)(D(m)), ·)− `(f∗, ·)

∥∥∥
L2(π)

≤ K1

(
R(f̂ (m)(D(m)))−R(f∗)

)1/2κ
.

The next oracle inequality for the amCV and the mCV procedures follow from a result similar
in nature to the result on the shifted empirical process in Theorem 3.10.1.

Theorem 4.6.2 ([P19]) Let f̂1, . . . , f̂p be p statistics satisfying Assumption (A). We have two
different setups depending on the procedure that we want to study. Assume that one of the two
conditions holds:

1. The risk function f 7−→ R(f) is convex and our estimator is the amCV procedure f̄ (n) =
f̂

(n)
amCV introduced in (4.6.10).

2. The statistics f̂1, . . . , f̂p are exchangeable and our procedure is the modified CV procedure
f̄ (n) = f̄

(n)
mCV introduced in (4.6.9).

Then for any a > 0, there exists a constant c = c(a, κ) such that

ED(n)

(
R(f̄ (n)(D(n)))−R(f∗)

)
≤(1 + a) min

j=1,...,p

[
ED(nV )R(f̂ (nV )

j (D(nV )))−R(f∗)
]

+ c
( log p
nC

) κ
2κ−1 ∨

( log nC log p
nC

)
.

4.6.4 Oracle inequalities for cross-validation itself

In Part 1 of Theorem 4.6.2, we make the assumption that the risk R(·) is convex — for which e.g.
the conditional convexity of the contrast function `(f, z), for all z, would suffice, and thereafter
in Part 2 we assume that our candidate statistics are exchangeable. To derive a result for a
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CV estimator retrained on the full data D(n) (instead of the only data D(nV ) like in (4.6.9) and
(4.6.10)), we shall combine and strengthen these two assumptions.

Regard the mCV procedure, whose final estimator f̄ (n)
mCV (D(n)) = f̂

(nV )b(D(n))
(D(nV )) is retrained

on the first nV pieces of data. For symmetry reasons, Part 2 of Theorem 4.6.2 remains true for
any k = 1, . . . , V , if we replace f̄ (n)

mCV (D(n)) by f̄
(n)
mCV,k(D

(n)) = f̂
(nV )b(D(n))

(Dk) using the training
set Dk from the k−th split.

Now assume that Z = R and the statistics f̂1, . . . , f̂p can all be written as functionals on the
cumulative distribution function of the data, i.e. that there exist functionals G1, . . . , Gp such
that

f̂
(m)
j (D(m)) = Gj(FD(m)), j = 1, . . . , p,m ∈ N, (4.6.11)

where FD(m)(z) = 1
m

∑m
i=1 1{Zi ≤ z},∀z ∈ R. (This assumption automatically implies the

exchangeability of the statistics. In particular, all M-estimators, such as the mean or me-
dian, have such a functional form). Obviously FD(n) = V −1

∑V
k=1 FDk . Thus if the risk R(·) is

convex, and all the compositions R ◦ Gj too, then we can combine the upper bounds for the
estimators f̄ (n)

mCV,k(D
(n)) obtained in Part 2 of Theorem 4.6.2 to derive a bound for the VCV

procedure (4.6.5) as follows:

R
(
f̄

(n)
V CV (D(n))

)
= R

(
Gb(D(n)) (FD(n))

)
= R

(
Gb(D(n))

(
1
V

V∑

k=1

FDk

))

≤ 1
V

V∑

k=1

R
(
Gb(D(n)) (FDk)

)
=

1
V

V∑

k=1

R
(
f̄

(n)
mCV,k(D

(n))
)
,

and thus it easily follows from Part 2 of Theorem 4.6.2 the result:

Theorem 4.6.3 Let f̂1, . . . , f̂p be p statistics that can be written as functionals G1, . . . , Gp as in
(4.6.11) and which satisfy Assumption (A), and assume that all the compositions R◦G1, . . . , R◦
Gp are convex, as also is the risk function R(·). Then for the V-fold cross-validation procedure,
we have the oracle inequality

ED(n)

(
R(f̄ (n)

V CV (D(n)))−R(f∗)
)

≤ (1 + a) min
j=1,...,p

[
ED(nV )R(f̂ (nV )

j (D(nV )))−R(f∗)
]

+ c
( log p
nC

) κ
2κ−1 ∨

( log nC log p
nC

)
.

Remark 4.6.4 The “functional convexity condition” on the R◦Gj is a strong one, but need not
be exactly fulfilled — it suffices for it to hold up to a summand that converges to zero no slower
than the residual term in Theorem 4.6.2, and versions of it averaged over the training data may
also suffice. In most practical cases, the only straightforward way of showing the convexity of the
R◦Gj (with high certainty) is by simulation. In the standard example of least-squares regression
with underlying Gaussian linear model, for instance, R ◦Gj is convex for the fixed-design setup,
regardless of other parameters, but for the random-design setup we need additional conditions
such as a reasonable signal-to-noise ratio or large enough sample size (indicating that such a
convexity condition does in fact hold up to a quickly-decaying extra summand). Simulations of
a straightforward sparse Lasso example with 100-dimensional Gaussian covariates and Gaussian
noise have shown that the neccessary functional convexity condition for 10-fold cross-validation
holds from a sample size of 40 and a signal-to-noise ratio of 2.0 upwards, for a range of penalty
tuning parameters. However, discussing this issue at length is beyond the scope of this section.
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The reason why we need extra assumptions such as the functional form of the candidate
statistics is that the computation of the index ̂(D(n)) only involves the performances of the
estimators for nV observations (RnC (f̂) depends only on f̂ (nV )). Without extra assumptions, it
is thus easy to contrive counter-examples for which f̂ (nV ) performs well and f̂ (n) performs badly:

Example 4.6.5 Fix an integer V and a sample size n > 1 that is a multiple of V . We will
construct a set Fn = {f̂1, f̂2} of two estimators (which are functionals of the training data) for
which V-fold cross-validation does not satisfy the oracle inequality from Theorem 4.6.3.

We consider the classification problem with 0 − 1 loss `(f, Z) = `(f, (X,Y )) = 1f(X)6=Y .
Assume that Y ≡ 1 a.s. and X is uniformly distributed on [0, 1]. The Bayes rule is thus given
by f∗(x) = P(Y = 1|X = x) = 1, ∀x ∈ [0, 1]. We define statistics f̂1 = (f̂ (n)

1 )n and f̂2 = (f̂ (n)
2 )n

by

f̂
(p)
1 ≡

{
0 if 1 ≤ p ≤ n− 1
1 if p ≥ n and f̂ (p)

2 ≡
{

1 if 1 ≤ p ≤ n− 1
0 if p ≥ n .

It is easy to see that ̂(D(n)) = arg minj∈{1,2}Rn,V (f̂j) is always equal to 2. Thus the V -fold CV

procedure is f̄ (n)
V CV (D(n)) = f̂

(n)b(D(n))
(D(n)) = f̂

(n)
2 (D(n)). Set Fn = {f̂1, f̂2}. For any 1 ≤ p ≤ n,

it is easy to check that

minbf∈Fn ED(n) [R(f̂ (p)(D(p)))−R∗] = 0 and ED(n) [R(f (n)
V CV (D(n)))−R∗] = 1.

As we can do this for arbitrarily high sample sizes n, V-fold cross-validation is not even risk-
consistent at this level of generality — and certainly does not satisfy any meaningful oracle
inequalities.

4.6.5 The continuous case

We consider Θ a set of indexes and F = {f̂θ : θ ∈ Θ} a set of statistics indexed by Θ. In the
previous part of this section, we have explored the case Θ = {1, . . . , p}. In this section, we need
not assume Θ to be finite.

We consider the notation introduced in Subsection 4.6.1, and define the continuous version
of the modified CV procedure by

f̄
(n)
mCV (D(n)) = f̂

(nV )bθ(D(n))
(D(nV )) where θ̂(D(n)) ∈ argmin

θ∈Θ
Rn,V (f̂θ) (4.6.12)

and the continuous version of the averaged version of the modified CV procedure by

f̂
(n)
amCV (D(n)) =

1
NC

NC∑

k=1

f̂
(nV )bθ(D(n))

(D(Ck)) where θ̂(D(n)) ∈ argmin
θ∈Θ

RnC (f̂θ). (4.6.13)

Remark that we assume that the infimum of θ 7−→ Rn,V (f̂θ) and θ 7−→ RnC (f̂θ) are achieved.
We also called these two infima by the same name but there will be no ambiguity since we will
use them in two clearly separated setups. It follows from similar results on the shifted empirical
process as in Theorem 3.10.1, a continuous version of Theorem 4.6.2.

Theorem 4.6.6 ([P19]) Let Θ be a set of indexes and F = {f̂θ : θ ∈ Θ} be a set of statistics
indexed by Θ. Fix nV ≤ n the size of the validation sample and define the set of excess loss
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functions associated with F by EF = {`(f̂ (nV )
θ (D(nV )), ·)− `(f∗, ·) : θ ∈ Θ}. We assume that the

tail behavior of the statistics in F and the complexity of F satisfy the following assumptions:
Any statistic f̂ in F satisfies (A) and there exist λmin and a strictly increasing function J

such that J−1 is strictly convex, the convex conjugate ψ of J−1 increases, ψ(∞) =∞ and there
exists r ≥ 1 such that x 7→ ψ(x)/xr decreases and

J(λ) ≥ γ2(EλF , ‖ · ‖L2) +
(log nC)γ1(EλF , ‖ · ‖ψ1)

√
nC

, ∀λ > λmin

where EλF = {E ∈ EF : ‖E(Z)‖L2 ≤ λ1/2κ}.
We consider two different setups depending on the procedure we want to study. Assume that

one of the two conditions holds:

1. The risk function f 7−→ R(f) is convex and our procedure is the amCV procedure f̄ (n) =
f̂

(n)
amCV defined in (4.6.13).

2. The statistics f̂1, . . . , f̂p are exchangeable and our procedure is the mCV procedure f̄ (n) =
f̄

(n)
mCV introduced in (4.6.12).

Then, for every a > 0 and q > 1, the following inequality holds

ED(n)

(
R(f̄ (n)(D(n)))−R(f)

)
≤ (1 + a) inf

θ∈Θ

[
ED(nV )R(f̂ (nV )

θ (D(nV )))−R(f∗)
]

+
acλq(1/q)

q
,

where we set λq(u) = ψ
(2qr+1(1+a)u

a
√
nC

)
∨ λmin,∀u > 0.

Note that Theorem 4.6.6 generalizes Theorem 4.6.2 to a continuous family of estimators.
Indeed, it is easy to verify that, in the finite case |Θ| = p, we obtain the same result as in
Theorem 4.6.2. For instance, under the assumptions of Theorem 4.6.2 by using Equation (3.2.10),
we have, for any λ > 0,

(log nC)γ1(QL2
λ , ‖ · ‖ψ1)

√
nC

+ γ2(QL2
λ , ‖ · ‖L2) ≤ K0(log nC) log p

√
nC

+ λ1/2κ
√

log p = J(λ);

thus, the convex conjugate of J−1 is

ψ(v) =
K0(log nC) log p

√
nC

v + cκ
(
v
√

log p
) 2κ

2κ−1 ,∀v > 0.

Thus, λq(1/q) is, up to some constant depending only on K0 and κ, of the same order as the
residue of the oracle inequality of Theorem 4.6.2. Furthermore, the same reasoning used for
Theorem 4.6.3 can also be applied here in sufficiently convex setups where the full data set is
used for retraining. Nevertheless, from a technical point of view, there is a major difference
between the finite and the continuous cases. In the finite case, it is only a side effect of the
Margin assumption (cf. second point of Assumption (A)) that is actually used, namely a better
concentration of the empirical risk to the actual risk. Whereas in the continuous case, all the
strength of the Margin assumption is used: a reduction of the complexity of the localized sets.
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4.6.6 Adaptive choice of the regularization parameter for the Lasso

We consider the linear regression model Y =
〈
X,β∗

〉
+ σε, where Y ∈ R is a random variable,

X ∈ Rp is a random vector and ε ∈ R is a random variable (the noise) independent of X such that
Eε = 0 and Eε2 = 1. We have n i.i.d. observations in this model, and the total dataset consists
of Y = (Y1, . . . , Yn)> and X = (X1, . . . , Xn)>. We consider the function Φ : Rp × R+ 7−→ R
defined by

Φ(β, λ) = |Y −Xβ|2n + λ|β|1.

Given a regularization parameter λ, the Lasso estimator f̂λ is defined by

f̂
(n)
λ (·, D(n)) =

〈
·, β̂(λ)(n)(D(n))

〉
where β̂(λ)(n)(D(n)) ∈ Arg min

β∈Rp
Φ(β, λ).

We consider the regularization parameter λ to be normalized so as to lie in [0, 1]. Such a
normalization is possible, since for λmax = 2 maxi |

〈
Xi, Y

〉
|, the zero vector is a minimizer of

Φ(β, λmax); that is, the Lasso penalty is always able to shrink the coefficient estimate for β down
to zero. Thus the dictionary of estimators that we consider is a finite set {f̂λ : λ ∈ G} where G
is a finite grid of [0, 1].

Now, we construct the mCV procedure (cf. (4.6.9)) in this setup. Let (B1, D1), . . . , (BV , DV )
be the family of splits of D(n) defined in (4.6.2) and (4.6.3) for some 1 ≤ V ≤ n dividing n. For
any Lasso estimator f̂λ the r-V-fold CV empirical risk, for r > 0, is defined by

R
(r)
n,V (f̂λ) =

1
V

V∑

k=1

1
nC

knC∑

i=(k−1)nC+1

|Yi −
〈
Xi, β̂(λ)(nV )(Dk)

〉
|r.

The mCV procedure is defined in this context by

f̄
(n)
mCV (·, D(n)) = f̂

(nV )bλr(D(n))
(·, D(nV )) =

〈
·, β̂(λ̂r(D(n)))(nV )(D(nV ))

〉
=
〈
·, β̄(n)

mCV (D(n))
〉

where
λ̂r(D(n)) ∈ argmin

λ∈G
R

(r)
n,V (f̂λ).

Now, we construct the amCV (cf. (4.6.10)) procedure using the subsets C1, . . . , CNC of
{1, . . . , n} each of size nV : the mCV is defined, in this context, by

f̂amCV (D(n))(·, D(n)) =
1
NC

NC∑

k=1

f̂
(nV )bλr(D(n))

(·, D(Ck))

=
〈
·, 1
NC

NC∑

k=1

β̂(λ̂r(D(n)))(nV )(D(Ck))
〉

=
〈
·, β̂(n)

amCV (D(n))
〉
,

where λ̂r(D(n)) ∈ argminλ∈G R
(r)
nC (f̂λ) and R

(r)
nC is the r-CV risk.

From a theoretical point of view, of course, we should have minimized the r-CV risk over
λ ∈ [0, 1] (for the mCV and the amCV). But we have in mind to perform the Lasso procedure
by means of the LARS algorithm. This algorithm provides a family of regularization parameters
0 = λ(0) < λ(1) < . . . < λ(N), where N may differ from n, and the corresponding Lasso estimators
f̂λ(j) , j = 1, . . . , N . Thus we believe that using the LARS algorithm combined with the mCV or
amCV procedures with a grid G ⊂ {λ(0), . . . , λ(N)} will prove to be efficient.
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Note that for values of r close to 0, the Lasso vector β̄(n)
mCV constructed with a data-driven

choice of the regularization parameter λ̂r(D(n)) is likely to enjoy some model selection (or sign
consistency) properties. Nevertheless, from a theoretical point of view, we will obtain results
only for the prediction problem with respect to the L2-risk.

We would like to apply Theorem 4.6.2 to the two procedures that we have introduced here.
To this end, we have to check assumption (A) for the elements of the dictionary F = {f̂λ : λ ∈ G}
and so the design vector X has to enjoy some properties.

Definition 4.6.7 Let X be a random vector of Rp and denote by µ its probability distribution.
We say that X is log-concave when for all nonempty measurable sets A,B ⊂ Rp and every
α ∈ [0, 1], µ(αA + (1 − α)B) ≥ µ(A)αµ(B)1−α. We say that X is a ψ2 vector when ‖X‖ψ2

=
sup

x∈Sp−1
2

∥∥〈X,x
〉∥∥

ψ2
<∞.

Many natural measures are log-concave. Among the examples are measures that have a
log-concave density, the volume measure of a convex body, and many others. A well known fact
on a log-concave random vector X of Rp follows from Borell’s inequality (cf. [86]): for every
x ∈ Rp,

∥∥〈X,x
〉∥∥

ψ1
≤ c

∥∥〈X,x
〉∥∥

L1
where c is an absolute constant. In particular, the moments

of linear functionals satisfy, for all p ≥ 1,
∥∥〈X,x

〉∥∥
Lp
≤ cp

∥∥〈X,x
〉∥∥

L1
.

In the following we assume that X is a ψ2, log-concave vector and the noise ε is ψ2.
Let m ∈ N, β = β̂(λ)(m)(D(m)) be fixed for the moment, and let Lβ(X,Y ) = (Y −

〈
X,β

〉
)2−

(Y −
〈
X,β∗

〉
)2 be the corresponding excess loss function. We need to bound the ψ1-norm of

Lβ and to check the Margin assumption. For the second task, we use the log-concavity of X to
obtain

ELβ(X,Y )2 ≤2E
〈
X,β − β∗

〉4 + 8σ2E
〈
X,β − β∗

〉2

≤(c+ 8σ2)E
〈
X,β − β∗

〉2 = (c+ 8σ2)ELβ.

This proves that the dictionary F satisfies the Margin assumption with κ = 1. For the first task,
we use the fact that X is ψ2 to get

‖Lβ(X,Y )‖ψ1
=
∥∥∥
〈
X,β − β∗

〉2 + 2σε
〈
X,β∗ − β

〉∥∥∥
ψ1

≤ (1 + 2σ)
∥∥〈X,β − β∗

〉∥∥2

ψ2
+ 2σ ‖ε‖2ψ2

≤ (1 + 2σ) ‖X‖2ψ2
‖β − β∗‖22 + 2σ ‖ε‖2ψ2

.

Now for the construction of the dictionary, we threshold all the Lasso vectors β̂(λ(j)) provided
by the LARS algorithm, in such a way that the `2-norm of these vectors is smaller than a constant
K ′0. Then the dictionary F satisfies Assumption (A) (with K0 = K ′0 + ‖β∗‖2). Thus, we are
now in position to apply Theorem 4.6.2.

Let β̂ be either β̄(n)
mCV (D(n)) or β̂(n)

amCV (D(n)), we have

E[(Y −
〈
X, β̂

〉
)2] ≤(1 + a) min

λ∈G
E[(Y −

〈
X, τ(β̂(λ)(nV )(D(nV )))

〉
)2]

+ c
log |G| log(nC)

nC
,

where τ is a thresholded function such that ∀β ∈ Rp, ‖τ(β)‖2 ≤ K ′0.
This proves that the adaptation procedures constructed in this section optimize the predic-

tion task of the Lasso thanks to a data-driven choice of the regularization parameter.
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Open problems

5.1 Optimality of the AEW in the regression model with ran-
dom design

The suboptimality in expectation of the AEW, obtained in Theorem 2.6.1, is rather surprising for
two reasons. First of all, it is known that the progressive mixture rule is optimal in expectation
for T larger than some parameters of the model (see [39], [117], [119], [54] or [8]). This procedure
is defined by

f̄ =
1
n

n∑

k=1

f̃AEWk ,

where f̃AEWk is the function generated by AEW (with common temperature parameter T ) as-
sociated with the dictionary F and constructed using the first k observations Z1, . . . , Zk. Thus,
this aggregate is the mean of f̃AEWk for 1 ≤ k ≤ n, where, for every k < n, f̃AEWk is constructed
using only the first k observations. In particular, f̄ is the mean of aggregates that are (or
should be) less “efficient” than f̃AEWn , since the latter is constructed using all the observations
Z1, . . . , Zn, rather than a subset of the given observations. That is why one expects the AEW to
be an optimal aggregation procedure in expectation — at least in the high temperature regime.
Theorem 2.6.1 shows that, even for temperature of the order of a constant, f̃AEWn might have a
very bad behavior, of the order of (1/

√
n).

Second, the optimality in expectation of AEW was obtained in [42] for the regression model
Yi = f(xi) + εi with a deterministic design x1, . . . , xn ∈ X with respect to the risk ‖g − f‖2n =
n−1

∑n
i=1(g(xi)−f(xi))2 (with its empirical version being Rn(g) = n−1

∑n
i=1(Yi−g(xi))2); that

is, it was shown that for T ≥ cmax(b, σ2) (where σ2 is the variance of the noise ε),

E
∥∥∥f̃AEWn − f

∥∥∥
2

n
≤ min

g∈F
‖g − f‖2n +

T logM
n+ 1

. (5.1.1)

Theorem 2.6.1 shows that the behavior of the AEW is very different, at least in the low temper-
ature regime. The fact that the same procedure (although in different models) can exhibit such
two extreme behaviors - and for roughly the same temperature parameter is rather striking. The
1/
√
n lower bound of Theorem 2.6.1 vs. the 1/n upper bound derived from the oracle inequality

(5.1.1) can have one of the two following explanations. Either that the two seemingly similar
scenarios are, in fact very different, or that AEW exhibits a sharp phase transition at T ∼ c.
And, if the latter is true, then an important outcome of Theorem 2.6.1 is that the temperature
parameter is of the highest importance with regard to the optimality of the AEW in expecta-
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tion and that a slightly modified choice of this parameter can result in a huge difference in the
residual term.

All the optimal upper bounds on AEW or on the progressive mixture need T to be larger
than some unknown parameters of the model (the variance of the noise in particular). This
means that in practice, AEW is likely to be a very “risky” aggregation procedure because of its
sensitivity to the temperature parameter. Moreover, and to make things even worse, even for
large values of T , AEW is suboptimal with a constant probability for small dictionaries (Part 2
of Theorem 2.6.1) and with probability that tends to 1 for larger dictionaries (Theorem 2.6.2).
Hence, given a set of data and a dictionary, AEW is likely to behave very poorly regardless of
what T is. In contrast, Theorem 2.7.1 shows that the choice of the temperature parameter has
no significant effect on the performance of the AEW (residual term of the order of T (logM)/n)
under the Bernstein condition.

From a practical point of view, we believe that exponential aggregating schemes simply
should not be used in the regression setup with random design because (cf. also the comments
in [7]):

1. for any temperature T ≤ c0
√
n/ log n, there is an event of constant probability such that

AEW performs poorly (second point of Theorem 2.6.1);

2. if the temperature parameter is chosen too small (like a constant) then even in expectation
the AEW can perform badly (first part of Theorem 2.6.1).

Nevertheless, from a theoretical point of view it remains to be seen whether AEW is an optimal
aggregation procedure in expectation and for high temperatures (larger than some constant) in
the regression model with random design. This question is mainly interesting from a theoretical
point of view.

5.2 Optimality of ERM in Convex aggregation

In Section 2.8, we studied the problem of Convex aggregation. We constructed an optimal aggre-
gation procedure in deviation for this problem. We also proved that the ERM over the convex
hull of the dictionary (called ERM-C) achieves the rate M/n when M ≤

√
n and

√
logM/n

when M >
√
n. Moreover, when the dictionary is orthogonal then the optimal rate ψ(C)

n (M) is
achieved by ERM-C. It still remains to prove that this procedure is indeed an optimal aggre-
gation procedure for the Convex aggregation problem in deviation in its full generality: for any
integers n and M , any dictionary F of size M any couple of random variables (X,Y ) such that
|Y |,maxf∈F |f(X)| ≤ 1 a.s. and any x > 0, with probability greater than 1 − c0 exp(−x), the
quadratic risk of ERM-C is such that

R(f̃ERM−Cn ) ≤ min
f∈conv(F )

R(f) + c1 max
(
ψ(C)
n (M),

x

n

)
.

I solved this problem one month after the submission of this work in [P20].

5.3 An optimal lower bound for the ERM-C in the context of
(MS) aggregation

In Section 2.3, we improve the geometry of the model F by considering the ERM over the convex
hull of F and try to use this procedure f̃ERM−Cn for the (MS) aggregation problem. It appears
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that this procedure is suboptimal for this problem. We prove in Theorem 2.3.1 that for any n
and M such that logM ≤ c0n

1/3, there exists a dictionary F of cardinality M and a probability
measure P for (X,Y ) such that with P⊗n-probability greater than 3/4,

R(f̃ERM−Cn ) ≥ min
f∈F

R(f) + c2ψn(M) (5.3.1)

where ψn(M) = M/n when M ≤
√
n and

(
n log

(
eM/
√
n
))−1/2 when M >

√
n. We proved in

Theorem 3.9.1 that the rate ψn(M) is optimal for the counter-example used in Theorem 2.3.1.
Roughtly speaking the counter-example used here is BM

1 for the model and the target Y is
orthogonal to the model in 0. It appears that the complexity around 0 in BM

1 increases as the
dimension M grows that is the reason why the residual term ψn(M) decreases as M increases.

We believe that a better counter-example would provide an optimal lower bound for the pro-
cedure f̃ERM−Cn for the (MS) aggregation problem of the order of ψ(C)

n (M) which is M/n when

M ≤
√
n and

√
log
(
eM/
√
n
)
/n when M >

√
n. It may be possible that the following counter-

example would provide the desired lower bound: Consider the bounded regression framework
with respect to the square loss. Let φ1, . . . , φM+1 be real-valued functions defined on X and
X be a random variable such that φ1, . . . , φM+1 are orthogonal in L2(PX), φ1(X), . . . , φM (X)
are uniformly distributed over [−

√
3,
√

3] and φM+1(X) is a Rademacher variable independent
of φ1(X), . . . , φM (X). Take m =

⌈(
n/ log

(
eM/
√
n
))1/2⌉ and defined φ = m−1

∑m
j=1 φj . We

consider the model F = {φ,±φ1, . . . ,±φM} and the target Y = φM+1(X) + φ(X). Since
minf∈F R(f) = minf∈conv(F )R(f), the model is roughly speaking BM

1 and the target is orthog-
onal to the model at the point x0 = m−1

∑m
j=1 ej where e1, . . . , eM is the canonical basis of RM .

Somehow, since the complexity of BM
1 increases around 0, we believe that the complexity of

BM
1 around x0 may slightly decrease when the dimension M grows. This may then provide this

extra logarithmic term in the lower bound of the ERM-C that we were not able to achieve in
(5.3.1) when M >

√
n.

5.4 Convex model and the ERM

In this section, we sum up some results on the problem of aggregation and we expose a problem
which follows.

Given a functions class F , the natural candidate to achieve inff∈F R(f) is the ERM over
F : f̂ ∈ argminf∈F Rn(f). This procedure has been intensively studied in the Learning theory
literature. Nevertheless, finding properties on F for which the ERM algorithm is an “optimal”
algorithm remains still an open problem.

For the (MS) aggregation problem, according to Theorem 2.2.1, for any n and M , there exists
a set F of M functions and a couple (X,Y ) for which the ERM will be a suboptimal procedure
(a
√

(logM)/n lower bound can be obtained for the ERM whereas, in the same setting, a
procedure achieving the fast rate (logM)/n can be constructed). On the other side, for the (L)
aggregation problem, when F = span(f1, . . . , fM ) then the ERM is an optimal procedure. And
for the (C) aggregation problem, when F = conv(f1, . . . , fM ), we conjecture that the ERM is
also an optimal aggregation procedure (note that in Theorem 2.8.3 we were able to prove that
the ERM-C achieves the optimal rate of Convex aggregation when all the elements in F are
orthogonal). Therefore, we wonder why in the linear and convex situation, the ERM should be
optimal whereas for the (MS) aggregation problem, this is not the case. Thus, one can ask the
question: what is the fundamental difference between, on one side, a set of M functions and,
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on the other side, the convex hull or the linear span of M functions which is at the heart of the
sub-optimality of the ERM in one case and its optimality in the other case?

Considering the complexity point of view to this question leads to the important concept of
“over-fitting”: for classes of functions F which are too rich the ERM is not optimal (cf. [21])
because it is likely that in the set F one function will perform very nicely on the data but will
have very bad generalization capability. Understanding this concept was the leading idea to the
introduction of penalized empirical risk minimization procedures (cf. penalized estimators).

Now, fix the complexity of F to be “small”, for instance F is contained in a linear span of
M functions where M is small compared to n, so that the reason of the suboptimality of the
ERM cannot lie anymore in the concept of “over-fitting”. The question on the fundamental
structure of F at the heart of the difference between “the ERM over F is on optimal procedure
to mimic the oracle in F” and “the ERM over F fails to mimic the oracle in F at the optimal
rate” becomes now a problem on the geometrical structure of F . Understanding what is the
fundamental concept behind this question may provide algorithms which can encounter this
structural problem (like the concept of “over-fitting” was the reason of the introduction of
penalty functions). This reasoning is behind the procedures introduced in Chapter 2.

To be more precise, we now introduce the problem in a formal way. Let F be a functions
class. We say that (rn(F ))n∈N is the optimal rate of aggregation of F when, there exists some
absolute positive constants c1, c2 and c3, such that for any n ∈ N:

1. there exists an estimators f̂n such that for any random couple (X,Y ) of probability measure
P such that |Y | ≤ 1 and maxf∈F |f(X)| ≤ 1 and for any x > 0, with P⊗n-probability
greater than 1− c0 exp(−x),

R(f̂n) ≤ inf
f∈F

R(f) + c1 max
(
rn(F ),

x

n

)
, (5.4.1)

2. for any statistic f̂n, there exists a couple (X,Y ) of probability measure P such that
|Y |, |f(X)| ≤ 1 almost surely for all f ∈ F and, with P⊗n-probability greater than c2,

R(f̂n) ≥ inf
f∈F

R(f) + c3rn(F ). (5.4.2)

The question now boils down to finding a property (P ) such that the ERM over F can achieve
the optimal rate of aggregation of F if and only if F satisfies (P ).

This question can also be asked in the aggregation framework. Let M ∈ N∗ and Λ ⊂ RM .
We define the optimal rate of aggregation of Λ by a sequence (rn(Λ))n∈N such that there exists
some absolute positive constants c1, c2 and c3 for which for any n ∈ N,

1. there exists an aggregation procedure f̂n(·) such that for any set F = {f1, . . . , fM} and any
couple (X,Y ) of random variables such that |Y |,maxf∈F |f(X)| ≤ 1 and for any x > 0,
with P⊗n-probability greater than 1− c0 exp(−x),

R(f̂n) ≤ inf
f∈Λ(F )

R(f) + c1 max
(
rn(Λ),

x

n

)
, (5.4.3)

where Λ(F ) = {
∑M

j=1 λjfj : λ ∈ Λ}.

2. for any statistic f̂n, there exist a set F = {f1, . . . , fM} and a couple (X,Y ) of probability
measure P satisfying |Y |,maxf∈F |f(X)| ≤ 1 such that with P⊗n-probability greater than
c2,

R(f̂n) ≥ inf
f∈Λ(F )

R(f) + c3rn(Λ). (5.4.4)
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The problem is here to find a property (P ′) on Λ such that for any set F = {f1, . . . , fM} of
bounded functions the ERM over Λ(F ) can achieve the optimal rate of aggregation of Λ if and
only if Λ satisfies (P ′).

Good progresses on these questions were made by the introduction of the Bernstein’s condi-
tion (cf. [15]). Nevertheless, it appears that this condition does not seem to be necessary and
sufficient for the optimality of the ERM over F or Λ(F ). It may be true that the properties (P )
and (P ′) are geometrical properties like convexity. This would mean that ERM is optimal only
over convex model and that for non-convex models one has to find some surrogate procedures
like the one introduced in Chapter 2.

5.5 Optimal rate of aggregation for exact and non-exact oracle
inequalities

In the previous section, we define the optimal rate of aggregation of a function class. This
definition was given with respect to exact oracle inequalities. Here, we consider non-exact oracle
inequalities and define an optimal rate of aggregation for the non-exact prediction problem.

Let M ∈ N∗, Λ ⊂ RM and 0 < ε < 1. We define the optimal rate of aggregation of Λ for the
non-exact prediction problem by a sequence (rn,ε(Λ))n∈N such that there exists some absolute
positive constants c0, c1, c2 and c3 for which for any n ∈ N,

1. there exists an aggregation procedure f̂n such that for any set F = {f1, . . . , fM} and any
couple (X,Y ) of random variables of probability measure P satisfying |Y |,maxf∈F |f(X)| ≤
1 a.s. and for any x > 0, with P⊗n-probability greater than 1− c0 exp(−x),

R(f̂n) ≤ (1 + ε) inf
f∈Λ(F )

R(f) + c1 max
(
rn,ε(Λ),

x

n

)
, (5.5.1)

where Λ(F ) = {
∑M

j=1 λjfj : λ ∈ Λ}.

2. for any statistic f̂n, there exist a set F = {f1, . . . , fM} and a couple (X,Y ) of random
variables of probability measure P satisfying |Y |,maxf∈F |f(X)| ≤ 1 such that with P⊗n-
probability greater than c2,

R(f̂n) ≥ (1 + ε) inf
f∈Λ(F )

R(f) + c3rn,ε(Λ). (5.5.2)

The problem is to find a property (P ′′) such that the optimal rates of aggregation rn(Λ) and
rn,ε(Λ) are proportional up to some constant depending only on ε if and only if Λ satisfies (P ′′).
We already know that this is the case for Λ = {e1, . . . , eM} and Λ = RM and that this is not
the case for Λ = BM

1 . In particular property (P ′′) is not a convexity property.
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Chapter 6

Proofs

Proof of Theorem 3.2.3 and Theorem 3.2.4

We prove Theorem 3.2.3. The proof of Theorem 3.2.4 follows exactly from the same argument
(just replace LF by EF , Lf by Ef and µ∗η by ν∗η every time these terms appear).

The proof follows the ideas from [15]. Fix λ > 0 and x > 0, and note that by Theorem 3.2.1,
with probability larger than 1− 4 exp(−x),

‖P − Pn‖V (LF )λ
≤ 2E ‖P − Pn‖V (LF )λ

+Kσ(V (LF )λ)
√
x

n
+Kbn(V (LF )λ)

x

n
. (6.0.1)

Clearly, we have bn(V (LF )λ) ≤ bn(LF ) and

σ2(V (LF )λ) = sup
(
P (αLf )2 : 0 ≤ α ≤ 1, f ∈ F, P (αLf ) ≤ λ

)
≤ Bnλβ +B2

n/n.

Since V (LF ) is star-shaped, λ > 0 → φ(λ) = E ‖P − Pn‖V (LF )λ
/λ is non-increasing, and

since φ(µ∗η) ≤ η/4 and ρn(x) ≥ µ∗η where

ρn(x) = max
(
µ∗η,

16
η

(xBnK2

n

(4
η

)β) 1
2−β +

4KBn
√
x

ηn
+

4Kbn(LF )x
ηn

)
,

we have
E ‖P − Pn‖V (LF )ρn(x)

≤ (η/4)ρn(x).

Combined with (6.0.1), there exists an event Ω0(x) of probability greater than 1 − 4 exp(−x),
and on Ω0(x),

‖P − Pn‖V (LF )ρn(x)
≤ (η/2)ρn(x) +K

√
(Bnρn(x)β +B2

n/n)x
n

+K
bn(LF )x

n

≤
(
3η/4

)
ρn(x) + 4

(xBnK2

n

(4
η

)β) 1
2−β +

KBn
√
x

n
+
Kbn(LF )x

n
≤ ηρn(x).

Hence, on Ω0(x), if g ∈ V (LF ) satisfies that Pg ≤ ρn(x), then |Pg − Png| ≤ ηρn(x). Moreover,
if PLf = β > ρn(x), then g = ρn(x)Lf/β ∈ V (LF )ρn(x); hence |Pg − Png| ≤ ηρn(x), and so
(1− η)PLf ≤ PnLf ≤ (1 + η)PLf .
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Sketch of the proof of Theorem 3.5.3

First, like in the proof of Theorem 3.5.1 (cf. Lemma 6.0.1 below as well), we prove that with
probability greater than 1− 4 exp(−x),

r̂ = crit(f̂RERMn ) ≤ βn(x).

Second, recall that for any r ≥ 0, f∗r ∈ argminf∈Fr R(f). Set

r∗ ∈ argmin
r≥0

(
R(f∗r ) + c2ρ

L
n(2(r + 1), θ(x))

)
.

In particular, we have inff∈F
(
R(f)+c2ρ

L
n(2(crit(f)+1), θ(x))

)
=
(
R(f∗r∗)+c2ρ

L
n(2(r∗+1), θ(x)).

Let Ω0(x) be the event such that r̂ = crit(f̂RERMn ) ≤ βn(x) and ρLn is an upper bound on the
isomorphic profile of LFr∗ and of LFr for any r∗ ≤ r ≤ βn(x) (when r∗ ≤ βn(x)), that is

1
2
PLr∗,f − 4ρLn(2(r∗+ 1), βn(x)) ≤ PnLr∗,f ≤ 2PLr∗,f + 8ρLn(2(r∗+ 1), βn(x)), ∀f ∈ Fr∗ (6.0.2)

and for any r∗ ≤ r ≤ βn(x) (when r∗ ≤ βn(x)),

1
2
PLr,f − 4ρLn(2(r + 1), βn(x)) ≤ PnLr,f ≤ 2PLr,f + 8ρLn(2(r + 1), βn(x)), ∀f ∈ Fr. (6.0.3)

On the event Ω0(x), we adapt the argument of [13] to get the following. If r∗ ≥ r̂ then
f̂RERMn ∈ Fr∗ and thus by (6.0.2), we have

R(f̂RERMn ) ≤ R(f∗r∗) + 2PnLr∗, bfRERMn
+ 8ρLn(2(r∗ + 1), βn(x))

and by definition of f̂RERMn , we have PnLr∗, bfRERMn
≤ c2ρ

L
n(2(r∗ + 1), βn(x)). It follows that

R(f̂RERMn ) ≤ R(f∗r∗) + (8 + c2)ρLn(2(r∗ + 1), βn(x)). Otherwise, when r∗ < r̂, we use the
isomorphic properties of LFbr (since r∗ ≤ r̂ ≤ βn(x)):

R(f∗r∗)−R(f∗br ) ≥ 1
2
(
Rn(f∗r∗)−Rn(f∗br )

)
− 4ρLn(2(r̂ + 1), βn(x))

=
1
2
(
Rn(f∗r∗) + c2ρ

L
n(2(r∗ + 1), βn(x))− c2ρ

L
n(2(r∗ + 1), βn(x))−Rn(f∗br )

)
− 4ρLn(2(r̂ + 1), βn(x))

≥ 1
2
(
Rn(f̂RERMn ) + c2ρ

L
n(2(r̂ + 1), βn(x))− c2ρ

L
n(2(r∗ + 1), βn(x))−Rn(f∗br )

)
− 4ρLn(2(r̂ + 1), βn(x))

≥ 1
2
(
c2ρ
L
n(2(r̂ + 1), βn(x))− c2ρ

L
n(2(r∗ + 1), βn(x))− 4ρLn(2(r̂ + 1), βn(x))

)
− 4ρLn(2(r̂ + 1), βn(x))

= ρLn(2(r̂ + 1), βn(x))
(c2

2
− 6
)
− c2

2
ρLn(2(r∗ + 1), βn(x)) (6.0.4)

where we use in the last but one inequality the isomorphic properties of LFbr for f̂RERMn :
PnLbr, bfRERMn

≥ (1/2)PLbr, bfRERMn
− 4ρLn(2(r̂ + 1), βn(x)) ≥ −4ρLn(2(r̂ + 1), βn(x)). On the other

side, we have by definition Rn(f̂RERMn ) + c2ρ
L
n(2(r̂+ 1), βn(x)) ≤ Rn(f∗br ) + c2ρ

L
n(2(r̂+ 1), βn(x))

therefore Rn(f̂RERMn ) ≤ Rn(f∗br ) and thus thanks to (6.0.3) for the level r̂,

R(f̂RERMn )−R(f∗br ) ≤ 2
(
Rn(f̂RERMn )−Rn(f∗br )

)
+ 8ρLn(2(r̂ + 1), βn(x)) ≤ 8ρLn(2(r̂ + 1), βn(x)).
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It follows from (6.0.4) and the last inequality that

R(f̂RERMn ) ≤ R(f∗br ) + 8ρLn(2(r̂ + 1), βn(x))

≤ R(f∗r∗) + ρLn(2(r̂ + 1), βn(x))
(

14− c2

2

)
+
c2

2
ρLn(2(r∗ + 1), βn(x)).

For c2 = 28, we obtain R(f̂RERMn ) ≤ R(f∗r∗) + 14ρLn(2(r∗ + 1), βn(x)). Therefore, in any case,
we obtain R(f̂RERMn ) ≤ R(f∗r∗) + 36ρLn(2(r∗ + 1), βn(x)).

We conclude with the same peeling argument of [84, 16] together with the fact that r̂ ≤ βn(x)
on Ω0(x) to prove that P[Ω0(x)] ≥ 1− 5 exp(−x).

Proof of Theorem 3.5.4

The proof of Theorem 3.5.4 follows the same lines as the proof of Theorem 3.5.1: First, one
needs to find a “trivial” bound on crit(f̂RERMn ), giving preliminary information on where one
must look for that function (this is the role played by the function γn). Then, one combines
peeling and fixed point arguments to identify the exact location of the RERM.

We begin with the following rough estimate on the criterion of the regularized ERM in
the case where no trivial bound crit(f) ≤ Cn,∀f ∈ F holds but when r → ν∗η(r) tends to
infinity when r tends to infinity and there exists K1 > 0 such that for every (r, x) ∈ R+ × R∗+,
2ρEn(r, x) ≤ ρEn(K1(r + 1), x). Recall that, in this case, for every x > 0 and 0 < η < 1/2, we set
γn to satisfy that

γn(η, x) ≥ max
[
K1(crit(f0) + 2), (ν∗η)−1

(
2(1 + η)

(
3R(f0)

+ 4
(Bn(crit(f0))K2x

n

) 1
2−β +

KBn(crit(f0))
√
x

n
+

2Kbn(Ef0)x
n

))]
,

where f0 is any fixed function in F (for instance, when 0 ∈ F , one may take f0 ≡ 0), and (ν∗η)−1

is the generalized inverse function of ν∗η .
We also need the following concentration result: for every single function g ∈ L2(P ) and

every α, x > 0, with probability greater than 1− 4 exp(−x),

Png ≤ (1 + α)Pg +K

√
xPg2

n
+K(1 + α−1)

bn(g)x
n

,

where bn(g) = ‖max1≤i≤n g(Zi)‖ψ1
and, in particular, if there exists some Bn ≥ 0 and 0 < β ≤ 1

for which Pg2 ≤ Bn
(
Pg
)β +B2

n/n, then for every 0 < α < 1 and x > 0, with probability greater
than 1− 4 exp(−x),

Png ≤ (1 + 2α)Pg + 4
(BnK2x

nαβ

) 1
2−β +

KBn
√
x

n
+

2Kbn(g)x
αn

. (6.0.5)

This result follows from the truncation argument of [1] (cf. for instance [P19]).

Lemma 6.0.1 Assume that r → ν∗η(r) tends to infinity when r tends to infinity and that there
exists K1 > 0 such that for every (r, x) ∈ R+ × R∗+, 2ρEn(r, x) ≤ ρEn(K1(r + 1), x). Then, under
the assumptions of Theorem 3.5.4 , for every x > 0 and 0 < η < 1/2, with probability greater
than 1− 4 exp(−x), crit(f̂RERMn ) ≤ γn(η, x).
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Proof. By the definition of f̂RERMn ,

Rn(f̂RERMn ) +
2

1 + η
ρEn
(
crit(f̂RERMn ) + 1, x+ log γn(η, x)

)

≤ Rn(f0) +
2

1 + η
ρEn
(
crit(f0) + 1, x+ log γn(η, x)

)
.

Since for every f ∈ F , `f (Z) ≥ 0 a.s., then Rn(f̂RERMn ) ≥ 0, and thus

ρEn
(
crit(f̂RERMn ) + 1, x+ log γn(η, x)

)

≤ (1 + η)Rn(f0) + ρEn
(
crit(f0) + 1, x+ log γn(η, x)

)

≤ max
(

2(1 + η)Rn(f0), 2ρEn
(
crit(f0) + 1, x+ log γn(η, x)

))
.

Since ρEn(r, x) ≥ ν∗η(r), ∀r ≥ 0, one of the following two situations occurs: either

ν∗η(crit(f̂RERMn )) ≤ 2(1 + η)Rn(f0),

or, noting that for every (r, x) ∈ R+ × R∗+, 2ρEn(r, x) ≤ ρEn(K1(r + 1), x), then

ρEn
(
crit(f̂RERMn ) + 1, x+ log γn(η, x)

)
≤ 2ρEn

(
crit(f0) + 1, x+ log γn(η, x)

)

≤ ρEn
(
K1(crit(f0) + 2), x+ log γn(η, x)

)
,

and since ρEn is monotone in r then crit(f̂RERMn ) ≤ K1(crit(f0) + 2).
Hence, in both cases

crit(f̂RERMn ) ≤ max
(
(ν∗η)−1

(
2(1 + η)Rn(f0)

)
,K1(crit(f0) + 2)

)
. (6.0.6)

On the other hand, according to (6.0.5), with probability greater than 1− 4 exp(−x),

Rn(f0) ≤ 3R(f0) + 4
(Bn(crit(f0))K2x

n

) 1
2−β +

KBn(crit(f0))
√
x

n
+

2Kbn(Ef0)x
n

.

The result follows by plugging the last inequality in (6.0.6).

The next step is to find an “isomorphic” result for f̂RERMn . The idea is to divide the set
given by the trivial estimate on crit(f̂RERMn ) into level sets and analyze each piece separately.

Lemma 6.0.2 Under the assumptions of Theorem 3.5.4, for every x > 0, with probability
greater than 1− 8 exp(−x),

PE bfRERMn
≤ (1 + η)PnE bfRERMn

+ ρEn
(
crit(f̂RERMn ) + 1, x+ log γn(η, x)

)
.

Proof. Let Ω0(x) be the event

PE bfRERMn
≥ (1 + η)PnE bfRERMn

+ ρEn
(
crit(f̂RERMn ) + 1, x+ log γn(η, x)

)
,

and we will show that this event has the desired small probability.
Clearly,

P[Ω0(x)] ≤ P
[
Ω0(x) ∩ {crit(f̂RERMn ) ≤ γn(η, x)}

]
+ P

[
crit(f̂RERMn ) ≥ γn(η, x)

]
, (6.0.7)
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and by Lemma 6.0.1,
P
[
crit(f̂RERMn ) ≥ γn(η, x)

]
≤ 4 exp(−x). (6.0.8)

Recall that Fi = {f ∈ F : crit(f) ≤ i}, ∀i ∈ N, and since ρEn is monotone in r then

P
[
Ω0(x) ∩ {crit(f̂RERMn ) ≤ γn(η, x)}

]

≤
bγn(η,x)c∑

i=0

P
[
Ω0(x) ∩ {i ≤ crit(f̂RERMn ) ≤ i+ 1}

]

≤
bγn(η,x)c∑

i=0

P
[
∃f ∈ Fi+1 : PEf ≥ (1 + η)PnEf + ρEn(i+ 1, x+ log γn(η, x))

]
. (6.0.9)

By Theorem 3.2.3, for every t > 0 and i ∈ N, with probability greater than 1 − 4 exp(−t),
for every f ∈ Fi+1, PEf ≤ (1 + η)PnEf + ρEn(i+ 1, t). In particular,

P
[
∃f ∈ Fi+1 : PEf ≥ (1 + η)PnEf + ρEn(i+ 1, x+ log γn(η, x))

]

≤ 4 exp
(
− (x+ log γn(η, x))

)
.

Hence, the claim follows, since

P
[
Ω0(x) ∩ {crit(f̂RERMn ) ≤ γn(η, x)}

]

≤
bγn(η,x)c∑

i=0

4 exp
(
− (x+ log γn(η, x))

)
≤ 4 exp(−x).

End of the proof of Theorem 3.5.4: Let x > 0 and 0 < η < 1. Without loss of generality,
we assume that, for the constant K ′ defined in (6.0.5), there exists f∗∗ ∈ F minimizing the
function

f ∈ F −→ (1 + 2η)PEf + ρEn(crit(f) + 1, x+ log γn(η, x))

+ 2K ′
(Bn(crit(f∗∗))x

ηn

) 1
2−β +

2K ′Bn(crit(f∗∗))
√
x

n
+

2K ′bn(Ef∗∗)x
ηn

.

Let Ω∗(x) be the event on which

PnEf∗∗ ≤
1 + 2η
1 + η

PEf∗∗ +K ′
(Bn(crit(f∗∗))x

ηn

) 1
2−β +

K ′Bn(crit(f∗∗))
√
x

n
+
K ′bn(Ef∗∗)x

ηn
.

Since f∗∗ ∈ Fcrit(f∗∗) then PE2
f∗∗ ≤ Bn(crit(f∗∗))

(
PEf∗∗

)β + B2
n(crit(f∗∗))/n, and by (6.0.5)

(applied with α = η/(1 + η)), P(Ω∗(x)) ≥ 1− 4 exp(−x).
Consider the event Ω0(x), on which

PE bfRERMn
≤ (1 + η)PnE bfRERMn

+ ρEn
(
crit(f̂RERMn ) + 1, x+ log γn(η, x)

)
,

and observe that by Lemma 6.0.2, P[Ω0(x)] ≥ 1 − 8 exp(−x). Therefore, on Ω0(x) ∩ Ω∗(x), we
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have

PE bfRERMn
+ ρEn

(
crit(f̂RERMn ) + 1, x+ log γn(η, x)

)
− (1 + 2η)PEf∗∗

≤(1 + η)
(
PnE bfRERMn

− PnEf∗∗
)

+ 2ρEn
(
crit(f̂RERMn ) + 1, x+ log γn(η, x)

)

+ 2K ′
(Bn(crit(f∗∗))x

ηn

) 1
2−β +

2K ′Bn(crit(f∗∗))
√
x

n
+

2K ′bn(Ef∗∗)x
ηn

≤(1 + η)
(
PnE bfRERMn

+
2

1 + η
ρEn
(
crit(f̂RERMn ) + 1, x+ log γn(η, x)

)
− PnEf∗∗

− 2
1 + η

ρEn
(
crit(f∗∗) + 1, x+ log γn(η, x)

))
+ 2ρEn

(
crit(f∗∗) + 1, x+ log γn(η, x)

)

+ 2K ′
(Bn(crit(f∗∗))x

ηn

) 1
2−β +

2K ′Bn(crit(f∗∗))
√
x

n
+

2K ′bn(Ef∗∗)x
ηn

≤2ρEn
(
crit(f∗∗) + 1, x+ log γn(η, x)

)

+ 2K ′
(Bn(crit(f∗∗))x

ηn

) 1
2−β +

2K ′Bn(crit(f∗∗))
√
x

n
+

2K ′bn(Ef∗∗)x
ηn

where the last inequality follows from the definition of f̂RERMn . Hence, by the choice of f∗∗, it
follows that on Ω1(x) ∩ Ω∗(x),

PE bfRERMn
+ ρEn

(
crit(f̂RERMn ) + 1, x+ log γn(η, x)

)

≤ (1 + 2η)PEf∗∗ + 2ρEn
(
crit(f∗∗) + 1, x+ log γn(η, x)

)

+ 2K ′
(Bn(crit(f∗∗))x

ηn

) 1
2−β +

2K ′Bn(crit(f∗∗))
√
x

n
+

2K ′bn(Ef∗∗)x
ηn

= inf
f∈F

(
(1 + 2η)PEf + 2ρEn

(
crit(f) + 1, x+ log γn(η, x)

)

+ 2K ′
(Bn(crit(f))x

ηn

) 1
2−β +

2K ′Bn(crit(f))
√
x

n
+

2K ′bn(Ef )x
ηn

)
.

Proof of Theorem 2.8

When M ≤
√
n then f̄n = f̂ERM−Ln and it is proved in [57] that for any x > 0, with probability

greater than 1− 2 exp(−x),

R(f̄n) = R(f̂ERM−Ln ) ≤ min
f∈span(F )

R(f) + c1 max
(M
n
,
x

n

)

≤ min
f∈conv(F )

R(f) + c1 max
(
ψ(C)
n (M),

x

n

)
.

We now turn to the case M >
√
n. We recall that m =

⌈(
n/ log

(
eM/
√
n
))1/2⌉ and

C′ =
{ 1
m

m∑

i=1

θi : θi ∈ F
}
.
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We know by Carl-Maurey empirical method that C′ is a
(
b/
√
m
)
-net of C = conv(F ) with respect

to the L2(PX)-norm (cf. [38] and [91]). But here we don’t use this global approximation result
and instead we follow [89] and [103] to prove that

min
f∈C′

R(f) ≤ min
f∈conv(F )

R(f) +
4b2

m
. (6.0.10)

Indeed, take f∗C ∈ C such that R(f∗C ) = minf∈C R(f) and denote f∗C =
∑M

j=1 λjfj where∑M
j=1 λj = 1 and λj ≥ 0, ∀j = 1, . . . ,M . Consider a random variable Θ : Ω′ → F such

that P′[Θ = fj ] = λj ,∀j = 1, . . . ,M . In particular, note that E′θ = f∗C . Let Θ1, . . . ,Θm be m
i.i.d. realizations of Θ independent of X and Y . We denote by E′Θ the expectation with respect
to Θ1, . . . ,Θm and by EX,Y the expectation with respect to X,Y . We have

E′ΘEX,Y

∥∥∥∥∥
1
m

m∑

i=1

Θi(X)− Y

∥∥∥∥∥

2

2

= EX,Y E′Θ
1
m2

m∑

i,j=1

(Y −Θi(X))(Y −Θj(X))

=
m2 −m
m2

E
(
Y − f∗C (X)

)2 +
E(Y − f∗C (X))2

m
≤ min

f∈C
R(f) +

4b2

m
.

In particular, Equation (6.0.10) holds. Moreover, it is proved in [37], that

|C′| ≤
(
M +m− 1

m

)
≤
(2eM
m

)m
. (6.0.11)

We consider an optimal aggregation procedure for the (MS) aggregation problem and we run
this procedure over the dictionary C′. We denote this procedure by f̃n and we set f̄n = f̃n. Let
x > 0, we have (cf. for instance Section 2.4 or 2.5), with probability greater than 1− 2 exp(−x),

R(f̃n) ≤ min
f∈C ′

R(f) + c0 max
( log |C′|

n
,
x

n

)
.

Thus, it follows from (6.0.10) and (6.0.11) that for any x > 0, with probability greater than
1− 2 exp(−x),

R(f̄n) ≤ min
f∈C

R(f) + c0 max
(ψ(C)

n (M)
n

,
x

n

)
.
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[12] Andrew Barron, Lucien Birgé, and Pascal Massart. Risk bounds for model selection via penalization.
Probab. Theory Related Fields, 113(3):301–413, 1999.

[13] Peter L. Bartlett. Fast rates for estimation error and oracle inequalities for model selection. Econometric
Theory, 24(2), 2008. (To appear. Was Department of Statistics, U.C. Berkeley Technical Report number
729, 2007).

[14] Peter L. Bartlett, Michael I. Jordan, and Jon D. McAuliffe. Convexity, classification, and risk bounds. J.
Amer. Statist. Assoc., 101(473):138–156, 2006.

[15] Peter L. Bartlett and Shahar Mendelson. Empirical minimization. Probab. Theory Related Fields,
135(3):311–334, 2006.

[16] Peter L. Bartlett, Shahar Mendelson, and Joseph Neeman. `1-regularized linear regression: Persistence and
oracle inequalities. To appear in Probability theory and related fields, 2009.

[17] Mikhail Belkin and Partha Niyogi. Laplacian eigenmaps for dimensionality reduction and data representa-
tion. Neural Computation, 15:1373–1396, 2003.

[18] Peter J. Bickel and Bo Li. Local polynomial regression on unknown manifolds, volume 54 of IMS Lecture
Notes-Monograph Series. Complex Datasets and Inverse Problems: Tomography, Networks and Beyond,
pages 177–186. 2007.

[19] Peter J. Bickel, Ya’acov Ritov, and Alexandre B. Tsybakov. Simultaneous analysis of lasso and Dantzig
selector. Ann. Statist., 37(4):1705–1732, 2009.
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[48] Evarist Giné, Rafa l Lata la, and Joel Zinn. Exponential and moment inequalities for U -statistics. In High
dimensional probability, II (Seattle, WA, 1999), volume 47 of Progr. Probab., pages 13–38. Birkhäuser
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