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Abstract Given a finite set F of estimators, the problem of aggregation is to
construct a new estimator whose risk is as close as possible to the risk of the best esti-
mator in F . It was conjectured that empirical minimization performed in the convex
hull of F is an optimal aggregation method, but we show that this conjecture is false.
Despite that, we prove that empirical minimization in the convex hull of a well chosen,
empirically determined subset of F is an optimal aggregation method.
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1 Introduction

In this article, we first solve a problem concerning aggregation of estimators that
was posed by P. Massart. We then construct a new optimal aggregation procedure via
empirical risk minimization over the convex hull of an empirically chosen subset.

To formulate the problem we address we need several definitions. Let � be a
measurable space endowed with a probability measure µ and let F be a finite class of
real-valued functions on�. Let ν be a probability measure on�×R such that µ is its
marginal on � and put (X,Y ) and D := (Xi ,Yi )

n
i=1 to be n + 1 independent random

variables distributed according to ν.
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From a statistical point of view, we want to predict the values of Y at the point X
from the observations D. If f is a candidate predictor of Y , the quality of prediction
of Y by f is given by the risk of f :

R( f ) = E�( f (X),Y ),

where � : R
2 → R is a nonnegative function, called the loss function. If f̂ is a

random function determined using the data D, the quality of prediction of Y by f̂ is
the conditional expectation

R( f̂ ) = E

(
�( f̂ (X),Y )|D

)
.

Throughout this article, we will restrict ourselves to functions f and targets Y that are
bounded in L∞ by b. Also, we will only consider finite classes F of cardinality M .

Given a map (or learning algorithm) A that assigns to a sample D a function
AD ∈ F , and for any confidence parameter δ, the uniform error rate of A is defined
as the function H(n,M, δ) for which the following holds: for every integer n, every
class F of cardinality M and every target Y (all bounded by b), with νn-probability at
least 1 − δ (i.e. relative to samples of cardinality n),

R(AD) ≤ min
f ∈F

R( f )+ H(n,M, δ).

One can show [10,12,15,17] that, if �(x, y) = (x − y)2, then for every random map
A there exists a constant c depending only on the map and on δ, such that for every n,
H(n,M, δ) ≥ c/

√
n. In fact, the result is even stronger—this lower bound holds for

every individual class F that satisfies certain conditions (rather than a lower bound
for the “worst” case) and for a wider class of loss functions.

The lower bound on H(n,M, δ) implies that regardless of the estimation procedure
one chooses, it is impossible to obtain error rates that converge to 0 faster than 1/

√
n,

and that hold uniformly for every F of cardinality M . Thus, to find a procedure that
would give faster rates than 1/

√
n one has to consider maps into larger classes than F

itself. This leads to the notion of aggregation [4,20].
In the aggregation framework, one is given a set F of M functions (usually selected

in a preliminary stage out of a larger class as potentially good estimators of Y ). The
problem of aggregation is to construct a procedure that mimics the best element in F ,
without the restriction that A has to select a function in F itself. Having this in mind,
one can define the optimal rate of aggregation [22], in a similar way to the notion of
the minimax rate of convergence for the estimation problem. This is the smallest price
that one has to pay to mimic, in expectation, the best element in a function class F
of cardinality M from n observations. Here, we focus on results that hold with high
probability and consider the following definition of optimality.

Definition 1.1 A function ψ(n,M) is an optimal rate of aggregation with confidence
0 < δ < 1/2 and a procedure f̃ is an optimal aggregation procedure with confidence
δ if there exists a constant c1(δ) for which the following hold:

123



Aggregation via empirical risk minimization

• For any integers n and M , any set F of cardinality M and any target Y (all bounded
by b), with νn-probability at least 1 − δ, f̃ satisfies

R( f̃ ) ≤ min
f ∈F

R( f )+ c1(δ)ψ(n,M),

where R( f̃ ) is the conditional expectation E(�( f̃ (X),Y )|D).
• There exists an absolute constant c2 > 0 such that the following holds. For any

integers M and n, and any procedure f̄ , there exist a set F of cardinality M and a
target Y (all bounded by b) such that, with νn-probability at least 1/2,

R( f̄ ) ≥ min
f ∈F

R( f )+ c2ψ(n,M).

One can show [4,10,22] that if the loss satisfies a slightly stronger property than
convexity, then the optimal rate of aggregation (in the sense of the definition in [22]) is

log M

n
. (1.1)

This is significantly better than the rate of
√
(log M)/n, which is, in general, the best

rate that one can obtain when A is restricted to F itself.
Note that standard lower bounds on aggregation rates do not hold with large proba-

bility; they are given in expectation, following the definition of [23]. Nevertheless, by
using the same classical tools as in Chapter 2 of [23], it is easy to prove that the second
point of Definition 1.1 is fulfilled with the aggregation rate of ψ(n,M) = (log M)/n.

A natural procedure that is very useful in prediction is empirical risk minimization,
which assigns to each sample D a function that minimizes the empirical risk

Rn( f ) = 1

n

n∑
i=1

�( f (Xi ),Yi )

on a given set.
One can show that for the type of classes we have in mind—finite, of cardinality

M—empirical minimization in F gives the optimal rate among all the maps A res-
tricted to taking values in F . Since there are optimal aggregation procedures that are
convex combinations of elements in F [4,10], it is natural to believe that empirical risk
minimization performed in the convex hull of F rather than in F itself would achieve
the optimal rate of aggregation (1.1). This was the question asked by P. Massart.

Question 1.2 Is empirical minimization performed on conv(F) an optimal aggrega-
tion procedure?

In addition to its theoretical value, Question 1.2 is highly motivated by practical
considerations. Indeed, convex aggregation methods typically depend on some tuning
parameter (such as the temperature in the case of a Gibbs prior and a Bayesian aggre-
gation procedure [4,10]. Of course, one is led to choose the tuning parameter that
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minimizes the empirical risk, and this choice turns out to be a rather efficient one, as
shown by some empirical studies in [7]. Nevertheless, there is no known theoretical
result on the choice of the tuning parameter.

One is tempted to expect a positive answer to Question 1.2 because the approxima-
tion error inf f ∈conv(F) R( f ) is likely to be significantly smaller than min f ∈F R( f ) - to
a degree that outweighs the increased statistical error caused by performing empirical
minimization in the much larger set conv(F). However, our first result is that contrary
to this intuition, the answer to Question 1.2 is negative in a very strong way.

Theorem A There exist absolute constants c1, c2 and c3 for which the following holds.
For every integer n there is a set Fn of functions of cardinality M = c1

√
n and a target

Y (all bounded by 1), such that with νn-probability of at least 1 − exp(−c2
√

n),

R( f̂ ) ≥ min
f ∈Fn

R( f )+ c3√
n
,

where f̂ is the empirical minimizer in conv(F) and R is measured relative to the
squared loss �(x, y) = (x − y)2.

In other words, empirical minimization performed in conv(F) does not even come
close to the optimal aggregation rate. In fact, it is not far from the trivial rate that one can
achieve by performing empirical minimization in F itself - which is c(δ)

√
(log M)/n.

Nevertheless, understanding why empirical minimization does not perform well on
F and on conv(F) as an aggregation method does lead to an improved procedure. Our
second result shows that empirical minimization on an appropriate, data dependent
subset of conv(F) achieves the optimal rate of aggregation in (1.1). To formulate our
result, denote for every sample D = (Xi ,Yi )

2n
i=1, the subsamples D1 = (Xi ,Yi )

n
i=1

and D2 = (Xi ,Yi )
2n
i=n+1. For every x > 0, let α = ((x + log M)/n)1/2, and for every

sample D = (Xi ,Yi )
2n
i=1, set

F̂1 =
{

f ∈ F : Rn( f ) ≤ Rn( f̂ )+ C1 max
{
α‖ f̂ − f ‖Ln

2
, α2
}}
, (1.2)

where f̂ is an empirical minimizer in F with respect to D1, Ln
2 is the L2 space with

respect to the random empirical measure n−1∑n
i=1 δXi and C1 > 0 is a constant

depending only on � and b.

Theorem B Under mild assumptions on the loss �, there exists a constant c1 depen-
ding only on b and � for which the following holds. Let F be a class of functions
bounded by b and of cardinality M and assume that Y is bounded by b.

For any x > 0, if f̃ is the empirical minimizer in the convex hull of F̂1 with respect
to D2 then, with ν2n-probability at least 1 − 2 exp(−x),

R( f̃ ) ≤ min
f ∈F

R( f )+ c1(x + 1)
log M

n
.
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It is important to mention that the boundedness assumption on Y is crucial to
the analysis we present here. Nevertheless, it is possible to obtain similar results
under milder assumptions on Y and F , using the methods developed in [9,18,19]
for handling empirical processes indexed by powers of unbounded function classes
that satisfy suitable tail assumptions. Since the analysis of the unbounded case is
technically much harder and would shift the emphasis of this article away from the
main ideas we wish to present, we will only consider the uniformly bounded case.
Also, there are some known results in the unbounded case, where the assumption that
F and Y are uniformly bounded has been avoided by other methods (for example,
convex optimization). All the known procedures in that direction rely on exponential
aggregating schemes that depend on an unknown tuning parameter and some convexity
assumptions on the loss function, and are very different from what we do. Moreover,
these estimates hold only in expectation rather than with exponential probability as
we have here. Indeed, in [4,10], optimal inequalities of the same flavor as Theorem B
have been obtained (in expectation), as well as in [2], where the results are optimal
up to a logarithm factor, while in [5], PAC-Bayesian bounds [4] have been obtained
with respect to the empirical risk R̄n( f ) = (1/n)

∑n
i=1 f 2(Xi ). One should note that

unlike the aggregation procedures that are based on exponential weights, our procedure
enjoys some “sparsity” properties, in the sense that elements of the dictionary that are
not relevant do not appear in the final aggregate. This property is a consequence of
our pre-selection step which, we hope, might be used to solve some practical and
theoretical problems relating to sparsity.

The geometric motivation behind the proof of Theorem B will be explained in the
following section and the proof of the theorem will appear in Sect. 4. We will present
the proof of Theorem A in Sect. 5.

Finally, a word about notation. Throughout, we denote absolute constants or con-
stants that depend on other parameters by c1, c2, etc., (and, of course, we will specify
when a constant is absolute and when it depends on other parameters). The values
of constants may change from line to line. Constants whose value will remain fixed
are denoted by C1, C2, etc. Given a sample (Zi )

n
i=1, we set Pn = n−1∑n

i=1 δZi ,
the random empirical measure supported on {Z1, . . . , Zn}. For any function f let
(Pn−P)( f ) = n−1∑n

i=1 f (Zi )−E f (Z) and for a class of functions F , ‖Pn−P‖F =
sup f ∈F |(Pn − P)( f )|.

2 The role of convexity in aggregation

In this section, our goal is to explain the geometric idea behind the proofs of Theorems
A and B. To that end, we will restrict ourselves to the case of the squared loss �(x, y) =
(x − y)2 and a noiseless target function T : � → R.

Set f F = argmin f ∈FE�( f, T ) and observe that f F minimizes the L2(µ) distance

between T and F . Recall that our aim is to construct some f̃ , such that with probability
at least 1 − δ,

‖ f̃ − T ‖2
L2(µ)

≤ ‖ f F − T ‖2
L2(µ)

+ c(δ)�(n,M),

123



G. Lecué, S. Mendelson

where n is the sample size, the cardinality of F is |F | = M and �(n,M) is as small
as possible—hopefully, of the order of n−1 log M .

The motivation to select f̃ from C = conv(F) is natural, since one can expect
that minh∈C ‖h − T ‖L2(µ) = ‖ f C − T ‖L2(µ) is much smaller than ‖ f F − T ‖L2(µ).
Moreover, it is reasonable to think that empirical minimization performed in C has
a relatively fast error rate, which we denote by c1(δ)�(n,M). Therefore, if f̃ is the
empirical minimizer in C then

‖ f̃ − T ‖2
L2(µ)

≤ ‖ f C − T ‖2
L2(µ)

+ c1(δ)�(n,M)

≤ ‖ f F − T ‖2
L2(µ)

+ c1(δ)�(n,M)−
(
‖ f F − T ‖2

L2(µ)
− ‖ f C − T ‖2

L2(µ)

)
,

and the hope is that the gain in the approximation error

(
‖ f F − T ‖2

L2(µ)
− ‖ f C − T ‖2

L2(µ)

)

is far more significant than �(n,M), leading to a very fast aggregation rate.
Although this approach is tempting, it has serious flaws. First of all, it turns out

that the statistical error of empirical minimization in a convex hull of M well cho-
sen functions may be as bad as 1/

√
n (for M ∼ √

n, see Theorem 5.5). Second, it is
possible to construct such a class and a target for which ‖ f F − T ‖L2(µ) = ‖ f C −
T ‖L2(µ), and thus, there is no gain in the approximation error by passing to the convex
hull.

The class we shall construct will be {0,±φ1, . . . ,±φM } where (φi )
M
i=1 is a specific

orthonormal family on [0, 1] and the target Y is φM+1, implying that f F = f C = 0.
For this choice of F and Y one can show that �(n, c1

√
n) ≥ c2/

√
n for suitable

absolute constants c1 and c2.
Fortunately, not all is lost as far as using empirical minimization in a convex hull,

but one has to be more careful in selecting the set in which it is performed. The key
point is to identify situations in which there is a significant gain in the approximation
error by passing to the convex hull.

Assume that there are at least two functions in F that almost minimize the loss R
in F (which, in the square loss case, is the same as almost minimizing the L2 distance
between T and F), and that these two functions are relatively “far away” from each
other in L2. By the parallelogram equality (or by a uniform convexity argument for a
more general loss function), if f1 and f2 are “almost minimizers” then

∥∥∥∥
f1 + f2

2
− T

∥∥∥∥
2

L2(µ)

≤ 1

2
‖ f1 − T ‖2

L2(µ)
+ 1

2
‖ f2 − T ‖2

L2(µ)
− 1

4
‖ f1 − f2‖2

L2(µ)

≈ ‖ f F − T ‖2
L2(µ)

− 1

4
‖ f1 − f2‖2

L2(µ)
.
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Thus, if F1 is the set of all the almost minimizers in F of the distance to T and the
diameter of F1 is large (to be precise, larger than c/

√
n), the approximation error in the

convex hull of F1 is significantly smaller than in F . On the other hand, one can show
that if the diameter of F1 is smaller that c/

√
n, the empirical minimization algorithm

in conv(F1) has a very fast error rate (because one has a very strong control on the
variances of the various loss functions associated with this set). Therefore, in both
cases-but for two completely different reasons—if f̃ is the empirical minimizer per-
formed in the convex hull of F1 then ‖ f̃ −T ‖2

L2(µ)
≤ ‖ f F −T ‖2

L2(µ)
+c(δ)(log M)/n,

with probability greater than 1 − δ.
Naturally, using F1 is not realistic because it is impossible to identify the set

of almost true minimizers of the risk in F using the given data. However, it turns
out that one can replace F1 with a set that can be determined empirically and has
similar properties to F1. The set defined in (1.2) satisfies that if its L2(µ) diame-
ter is larger than c/

√
n then the gain in the approximation error in its convex hull is

dramatic (compared with the one in F), while if its diameter is smaller than c/
√

n
then empirical minimization performed in its convex hull yields a very fast error
rate.

3 Preliminaries from empirical processes theory

Here, we will present some of the results we need for our analysis, the first of which
is Talagrand’s concentration inequality for empirical processes indexed by a class of
uniformly bounded functions.

Theorem 3.1 [13] Let F be a class of functions defined on (�,µ) such that for every
f ∈ F, ‖ f ‖∞ ≤ b and E f = 0. Let X1, . . . , Xn be independent random variables
distributed according to µ and set σ 2 = n sup f ∈F E f 2. Define

Z = sup
f ∈F

n∑
i=1

f (Xi ) and Z̄ = sup
f ∈F

∣∣∣∣∣
n∑

i=1

f (Xi )

∣∣∣∣∣ .

Then, for every x > 0 and every ρ > 0,

Pr
({

Z ≥ (1 + ρ)EZ + σ
√

K x + K (1 + ρ−1)bx
})

≤ e−x ,

Pr
({

Z ≤ (1 − ρ)EZ − σ
√

K x − K (1 + ρ−1)bx
})

≤ e−x ,

and the same inequalities hold for Z̄ .

In our discussion, we will be interested in empirical processes indexed by a finite
class of functions F and in excess loss classes associated with F or with its convex
hull, which is denoted by C.
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Given a class G, the excess loss function associated with G and a function h is

LG(h)(X,Y ) = �(h(X),Y )− �(hG(X),Y ),

where hG minimizes h 
−→ E�(h(X),Y ) in G. Let LG(F) = {LG( f ) : f ∈ F} be
the excess loss class relative to G with a base class F .

In cases where the class G is clear and G = F , we denote the excess loss class by
L and the excess loss function of h by Lh .

The following lemma is rather standard and we present its proof for the sake of
completeness.

Lemma 3.2 There exist absolute constants c1, c2 and c3 for which the following holds.
If F is a finite class of functions bounded by b and

d(F) = diam(F, L2(µ)) and σ 2(F) = sup
f ∈F

E f 2,

then

E sup
f ∈F

1

n

n∑
i=1

f 2(Xi ) ≤ c1 max

{
σ 2(F), b2 log |F |

n

}
. (3.1)

Also, assume that the target Y is also bounded by b and that the loss � is a Lipschitz
function on [−b, b]2 with a constant ‖�‖lip. If C = conv(F) and H = LC(C) then

E‖Pn − P‖H ≤ c3‖�‖lip max

{
d(F) ·

√
log |F |

n
, b

log |F |
n

}
. (3.2)

Proof By the Giné–Zinn symmetrization argument [8], the fact that a Bernoulli process
is subgaussian with respect to the Euclidean metric and an entropy integral argument
(see, for example, [6,14,21,24]) it is evident that for any class F ,

E‖Pn − P‖F ≤ 2

n
EX Eε sup

f ∈F

∣∣∣∣∣
n∑

i=1

εi f (Xi )

∣∣∣∣∣≤
c1√

n
EX

r∫

0

√
log N (ε, F, Ln

2)dε, (3.3)

where Ln
2 is the L2 structure with respect to the random empirical measure n−1∑n

i=1 δXi

and

r2 = sup
f ∈F

1

n

n∑
i=1

f 2(Xi ).
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Set F2 = { f 2 : f ∈ F} and notice that by a symmetrization argument and the
contraction principle for Bernoulli processes [14, Chapter 4],

Er2 ≤ (E‖Pn − P‖F2
)+ sup

f ∈F
E f 2

≤ c2‖F‖∞E sup
f ∈F

∣∣∣∣∣
1

n

n∑
i=1

εi f (Xi )

∣∣∣∣∣+ σ 2(F),

where ‖F‖∞ = sup f ∈F ‖ f ‖∞.
Now, if F is a finite class of bounded functions then by setting

E = E sup
f ∈F

∣∣∣∣∣
1

n

n∑
i=1

εi f (Xi )

∣∣∣∣∣

and applying (3.3), it is evident that

E ≤ c1√
n

√
log |F |(EXr) ≤ c3√

n

√
log |F |

(
‖F‖∞E + σ 2(F)

)1/2
.

Thus,

E ≤ c4 max

{
σ(F)

√
log |F |

n
, ‖F‖∞

log |F |
n

}
,

and it follows that

E sup
f ∈F

1

n

n∑
i=1

f 2(Xi ) ≤ c5 max

{
σ 2(F), ‖F‖2∞

log |F |
n

}

as claimed.
Turning to the second part of the Lemma, let C = conv(F), set H = LC(C) and for

each u ∈ C, put LC(u) = Lu . Also, denote by f C the minimizer of h 
−→ E�(h(X),Y )
in C.

Recall that [14, Chapter 4] there exists an absolute constant c6 such that for every
T ⊂ R

n ,

E sup
t∈T

∣∣∣∣∣
n∑

i=1

εi ti

∣∣∣∣∣ ≤ c6E sup
t∈T

∣∣∣∣∣
n∑

i=1

gi ti

∣∣∣∣∣ ,

where (gi )
n
i=1 are independent, standard Gaussian variables. Hence, for every

(Xi ,Yi )
n
i=1,

Eε sup
h∈H

∣∣∣∣∣
n∑

i=1

εi h(Xi ,Yi )

∣∣∣∣∣ ≤ c6Eg sup
h∈H

∣∣∣∣∣
n∑

i=1

gi h(Xi ,Yi )

∣∣∣∣∣ .
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Consider the Gaussian process v → Zv ≡ ∑n
i=1 giLv(Xi ,Yi ) indexed by C. For

every v, u ∈ C,

E|Zu − Zv|2 =
n∑

i=1

(Lu(Xi ,Yi )− Lv(Xi ,Yi ))
2

≤ ‖�‖2
lip

n∑
i=1

((
u − f C)−

(
v − f C))2

(Xi )

= ‖�‖2
lipE|Z ′

u − Z ′
v|2,

where Z ′
u ≡∑n

i=1 gi (u − f C)(Xi ). Therefore, by Slepian’s Lemma [6,14], for every
(Xi ,Yi )

n
i=1,

Eg sup
h∈H

∣∣∣∣∣
n∑

i=1

gi h(Xi ,Yi )

∣∣∣∣∣ ≤ ‖�‖lipEg sup
v∈conv(F)

∣∣Z ′
v

∣∣ = ‖�‖lipEg sup
f ∈F

∣∣∣Z ′
f

∣∣∣ .

Hence by (3.3) and (3.1) for the class {( f − f C) : f ∈ F},

E‖Pn − P‖H ≤ c7‖�‖lip

√
log |F |

n

(
EX sup

f ∈F
‖ f − f C‖2

Ln
2

)1/2

≤ c8‖�‖lip

√
log |F |

n
max

{
sup
f ∈F

‖ f − f C‖L2(µ), b

√
log |F |

n

}

≤ c9‖�‖lip

√
log |F |

n
max

{
d(F), b

√
log |F |

n

}
,

since by convexity, sup f ∈F ‖ f − f C‖L2(µ) ≤ d(F). ��
Lemma 3.2 combined with Theorem 3.1 leads to the following corollary.

Corollary 3.3 There exists an absolute constant c for which the following holds. Let
F be a finite class of functions bounded by b. For every x > 0 and any integer n, let
α = √(x + log |F |)/n and set d(F) = diam(F, L2(µ)). If C is the convex hull of F
and � and L are as above, then with probability at least 1 − exp(−x), for every v ∈ C,

∣∣∣∣∣
1

n

n∑
i=1

LC(v)(Xi ,Yi )− ELC(v)(X,Y )

∣∣∣∣∣ ≤ c‖�‖lip max
{
α · d(F), bα2

}
.

Sketch of the proof. We apply Theorem 3.1 to the process

Z = sup
v∈C

∣∣∣∣∣
1

n

n∑
i=1

LC(v)(Xi ,Yi )− ELC(v)(X,Y )

∣∣∣∣∣ ,
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and (3.2) provides an upper bound for the expectation EZ . The proof now follows
from a simple computation. ��

The final result we need follows immediately from Bernstein’s inequality [24]
combined with a union bound over the finite set F . Because the proof is standard we
will not present it here.

Lemma 3.4 There exists an absolute constant c for which the following holds. Consi-
der F andα as above and for every f ∈ F, letL f (X,Y )= �( f (X),Y )−�( f F (X),Y ),
where f F minimizes h 
−→ E�(h(X),Y ) in F. Then, with probability at least
1 − 2 exp(−x), for every f ∈ F,

∣∣∣∣∣
1

n

n∑
i=1

L f (Xi ,Yi )− EL f (X,Y )

∣∣∣∣∣ ≤ c‖�‖lip max
{

d f α, bα2
}
,

where d f = ‖ f − f F‖L2(µ). Also, with probability at least 1 − 2 exp(−x), for every
f, g ∈ F,

∣∣∣‖ f − g‖2
Ln

2
− ‖ f − g‖2

L2(µ)

∣∣∣ ≤ c max
{
‖ f − g‖L2(µ)bα, b2α2

}
.

4 The optimal aggregation procedure

Throughout this section, we will assume that F is a class of M functions bounded by b.
We will also need certain assumptions on the loss � and to that end, recall the following
definition, which originated from the notion of uniform convexity of normed spaces.

Definition 4.1 [1] Let φ : R → R and set �φ : L2(�× R) → R by

�φ( f ) = Eφ( f (X,Y )).

We say that�φ is uniformly convex with respect to the L2(ν) norm if the function δφ ,
defined by

δφ(ε) = inf
f,g∈L2(ν)‖ f −g‖2≥ε

{
�φ( f )+�φ(g)

2
−�φ

(
f + g

2

)}
(4.1)

is positive for every ε > 0. The function δφ is called the modulus of convexity of �φ .

For instance, if φ(x) = x2 then for every f ∈ L2(ν),�φ( f ) = ‖ f ‖2
L2(ν)

. Thus, using

the parallelogram equality, for every ε > 0, δφ(ε) = ε2/4. Note that the assump-
tion that δφ(ε) ≥ cφε2 for every ε > 0 is a quantitative way of ensuring that the
functional �φ : L2(ν) 
−→ R enjoys some convexity properties that are close to the
parallelogram equality satisfied by the quadratic function risk f 
−→ ‖ f ‖2

L2(ν)
.
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Assumption 4.1 Assume that � is a Lipschitz function on [−b, b]2 with a constant
‖�‖lip. Assume further that there exists a convex function φ : R → R

+ such that for
any f, g ∈ L2(ν),

Eν�( f, g) = Eνφ( f − g)

and that the modulus of convexity δφ of �φ : f → Eνφ( f ) satisfies δφ(ε) ≥ cφε2

for every ε > 0.

In particular, if �(x, y) = (x − y)2 then δφ(ε) ≥ ε2/4.
We will denote � f = �( f (X),Y ), R( f ) = E� f and if f̂ is a function of the

sample D then R( f̂ ) = E

(
� f̂ |D

)
. Also, for h : (� × R, ν) → R, set Pnh =

n−1∑n
i=1 h(Xi ,Yi ), where (Xi ,Yi )

n
i=1 are independent, selected according to ν.

Finally, recall that α = ((x + log M)/n)1/2 where x is the desired confidence.
The procedure we have in mind is as follows. We consider a sample D = (Xi ,Yi )

2n
i=1

and split it into two sub-samples, D1 = (Xi ,Yi )
n
i=1 and D2 = (Xi ,Yi )

2n
i=n+1. We use

D1 to define a random subset of F :

F̂1 =
{

f ∈ F : Rn( f ) ≤ Rn( f̂ )+ C1 max
{
α‖ f̂ − f ‖Ln

2
, α2
}}
, (4.2)

where C1 is a constant to be named later and that depends only on ‖�‖lip and b,
Rn( f ) = n−1∑n

i=1 �( f (Xi ),Yi ), f̂ is a minimizer of the empirical risk Rn(·) in F
and Ln

2 is the L2 space endowed by the random empirical measure n−1∑n
i=1 δXi .

To make the exposition of our results easier to follow, we avoided presenting the
computation of explicit values of constants. Our analysis showed that one can take
C1 = 4‖�‖lip(1 + 9b)—which, of course, is not likely to be the optimal choice of C1.

The second step in the algorithm is performed using the second part of the sample
D. The algorithm produces the empirical minimizer (relative to D2) of � in the convex
hull of F̂1. Let us denote this minimizer by f̃ , that is

f̃ = argminh∈conv(F̂1)

1

n

2n∑
i=n+1

�(h(Xi ),Yi ).

Note that considering only the “significant” part of a given class (like we do by
using the subset F̂1 ⊂ F) is an idea that already appeared, for example, in [16]. In
that article, the authors used this idea to construct a very sharp data-dependent penalty
function which outperforms most of the well known data-dependent penalties like local
Rademacher penalties (see [11] and reference therein) that are usually computed over
the entire class. However, this type of “random subset” is different from the one we
introduce here. Usually, the random subset consists of functions for which the empirical
loss is smaller than the sum of the loss of the empirical minimizer and a sample-
dependent complexity term; this complexity term does not depend on each f ∈ F , but
rather, on the entire set. Here, in place of the complexity term we use a metric condition:
that the empirical L2 distance between a function and the empirical minimizer.

The main result of this section was formulated in Theorem B.
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Theorem 4.2 For every b and ‖�‖lip there exists a constant c1, depending only on
b and ‖�‖lip, for which the following holds. For any x > 0, every class F of M
functions, any target Y (all bounded by b) and any loss � satisfying Assumption 4.1,
the empirical minimizer f̃ over the convex hull of F̂1 satisfies, with ν2n-probability at
least 1 − 2 exp(−x),

R( f̃ ) = E

(
� f̃ (X,Y )|(Xi ,Yi )

2n
i=1

)
≤ min

f ∈F
R( f )+ c1(1 + x)

log M

n
,

Remark 4.3 Note that the definition of the set F̂1, and thus the algorithm, depends on
the confidence x one is interested in through the factor α. Thus f̃ also depends on the
confidence.

Theorem 4.2 and the fact that (log M)/n is the best rate one can hope for proves our
optimality claim. One can take c1(δ) = c1(1 + log(2/δ)) for the constant introduced
in Definition 1.1.

The idea of the proof is based on constructing a set of “almost minimizers” in
F—that is, functions whose “distance” from the target (as measured by R) is almost
optimal. Then, one has to consider two possibilities: if the diameter of that set is small,
the empirical minimization algorithm will preform very well on its convex hull, giving
us the fast error rate we hope for. On the other hand, if the diameter of that set is large,
there will be a major gain in the approximation error by considering functions in the
convex hull. We will show that the set F̂1 is an empirical version of the set we would
have liked to have.

Lemma 4.4 There exists a constant c depending only on ‖�‖lip and b for which the
following holds. Let F, x, α and F̂1 be defined as above. Then, with νn-probability
at least 1 − 2 exp(−x), the best element f F in the class F belongs to F̂1 and any
function f in F̂1 satisfies

R( f ) ≤ R( f F )+ c max
{
αd(F̂1), (1 + b)α2

}
,

where d(F̂1) = diam(F̂1, L2(µ)).

Proof Let L f be the excess loss function associated with f (relative to F) and recall
that f F minimizes h 
−→ E�(h(X),Y ) in F . By the second part of Lemma 3.4, with
µn-probability at least 1 − exp(−x), every f, g ∈ F satisfy

∣∣∣‖ f − g‖2
Ln

2
− ‖ f − g‖2

L2(µ)

∣∣∣ ≤ c1 max
{
‖ f − g‖L2(µ)bα, b2α2

}
,

and hence, with that probability,

‖ f − g‖2
L2(µ)

≤ c2 max
{
α2b2, ‖ f − g‖2

Ln
2

}
, (4.3)
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and

‖ f − g‖2
Ln

2
≤ c3 max

{
α2b2, ‖ f − g‖2

L2(µ)

}
.

Also, by the first part of Lemma 3.4, with νn-probability at least 1 − exp(−x), for
every f ∈ F

∣∣∣∣∣
1

n

n∑
i=1

L f (Xi ,Yi )− EL f (X,Y )

∣∣∣∣∣ ≤ c4‖�‖lip max
{

d f α, bα2
}
, (4.4)

where d2
f = ‖ f − f F‖2

L2(µ)
.

Let A be the event in (� × R)n on which both (4.3) and (4.4) hold, and clearly
νn(A) ≥ 1 − 2 exp(−x). Using (4.3), it is evident that on A

d2
f ≤ c2 max

{
α2b2, ‖ f − f F‖2

Ln
2

}
,

and thus, by (4.4), for every f ∈ F

∣∣∣∣∣
1

n

n∑
i=1

L f (Xi , Yi )− EL f (X,Y )

∣∣∣∣∣ ≤ c5‖�‖lip max
{
α‖ f − f F‖Ln

2
, α2b

}
.

Moreover, since EL f ≥ 0, then on A

Pn� f F = Pn� f̂ − PnL f̂

≤ Pn� f̂ − E

(
L f̂ (X,Y )|D

)
+
∣∣∣Pn(L f̂ )− E

(
L f̂ (X,Y )|D

)∣∣∣
≤ Pn� f̂ + c5‖�‖lip max

{
α‖ f̂ − f F‖Ln

2
, α2b

}
,

where D = (Xi ,Yi )
n
i=1. Therefore, if one chooses C1 properly, f F belongs to F̂1 on

A, i.e., with νn-probability greater than 1 − 2 exp(−x).
Next, let d = diam(F̂1, L2(µ)). By the first part, f F ∈ F̂1 on A, and hence, on

that event, d f ≤ d for every f ∈ F̂1. Note that for every f ∈ F and any sample
(Xi ,Yi )

n
i=1,

R( f ) = R( f F )+ (P − Pn)(L f )+ (Pn� f − Pn� f F )

≤ R( f F )+ (P − Pn)(L f )+ (Rn( f )− Rn( f̂ )).

Thus, by the definition of F̂1 and the uniform estimates on |(Pn − P)(L f )| in (4.4), it
is evident that with νn-probability greater than 1 − 2 exp(−x),

R( f ) ≤ R( f F )+ c4‖�‖lip max
{

d f α, bα2
}

+ C1 max
{
‖ f̂ − f ‖Ln

2
α, α2

}
,

for every f ∈ F̂1.
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To complete the proof observe that since f̂ ∈ F̂1 then

‖ f̂ − f ‖2
Ln

2
≤ c3 max

{
α2b2, ‖ f̂ − f ‖2

L2(µ)

}
≤ c3

{
α2b2, d2

}
.

��
Now we may turn to the second part of the algorithm—empirical minimization with

respect to D2 on the convex hull of F̂1 (which is, of course, independent of D2).

Proof of Theorem 4.2. Fix x > 0 and let Ĉ1 denote the convex hull conv F̂1. By
Lemma 4.4, we may assume that f F ∈ F̂1 and set d = diam(F̂1, L2(µ)). Since
f F ∈ F̂1 then

max
f ∈F̂1

‖ f − f F‖L2(µ) ≤ d ≤ 2 max
f ∈F̂1

‖ f − f F‖L2(µ), (4.5)

and let f1 be a function in F̂1 that maximizes f 
−→ ‖ f − f F‖L2(µ) in F̂1.
Consider the second half of the sample D2 = (Xi ,Yi )

2n
i=n+1. On one hand, by

Corollary 3.3, with probability at least 1 − exp(−x) (relative to D2), for every v ∈ Ĉ1

∣∣∣∣∣
1

n

2n∑
i=1+n

LĈ1
(v)(Xi ,Yi )− E

(
LĈ1

(v)(X,Y )|D1

)∣∣∣∣∣ ≤ c1‖�‖lip max
{

dα, bα2
}
,

where LĈ1
(v)(X,Y ) = �(v(X),Y )−�( f Ĉ1(X),Y ) is the excess loss function relative

to Ĉ1. Since f̃ minimizes the empirical risk in Ĉ1 on D2 then 1
n

∑2n
i=n+1 LĈ1

( f̃ )
(Xi ,Yi ) ≤ 0. Therefore,

R( f̃ ) ≤ R( f Ĉ1)+ E

(
LĈ1

( f̃ )|D1

)
− 1

n

2n∑
i=n+1

LĈ1
( f̃ )(Xi ,Yi )

≤ R( f Ĉ1)+ c1‖�‖lip max
{

dα, bα2
}

= R( f F )+
(

c1‖�‖lip max
{

dα, bα2
}

−
(

R( f F )− R( f Ĉ1)
))

≡ R( f F )+ β, (4.6)

and it remains to show that β ≤ c(x) log M
n .

To that end, we shall bound R( f F ) − R( f Ĉ1) using the convexity properties of
� (Assumption 4.1). Indeed, recall that f F ∈ F̂1 (with high probability with respect
to D1) and that f1 ∈ F̂1 maximizes the L2(µ) distance to f F in F̂1. Consider the
mid-point f2 ≡ ( f1 + f F )/2 ∈ Ĉ1. By our convexity assumption on the loss, all
functions u and v in L2(ν) satisfy

Eνφ

(
u + v

2

)
≤ 1

2
Eνφ(u)+ 1

2
Eνφ(v)− δφ(‖u − v‖L2(ν)),
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(where for every h ∈ L2(ν), Eνh =Eh(X,Y )). In particular, for u(X,Y ) = f F (X)− Y
and v(X,Y ) = f1(X) − Y , the mid-point is (u(X,Y ) + v(X,Y ))/2 = f2(X) − Y .
Hence, using the assumption on δφ ,

R( f2) = E�( f2(X),Y ) = Eφ

(
f1(X)+ f F (X)

2
− Y

)

≤ 1

2
Eφ( f1(X)− Y )+ 1

2
Eφ
(

f F (X)− Y
)

− δφ

(
‖ f1 − f F‖L2(µ)

)

≤ 1

2
R( f F )+ 1

2
R( f1)− cφ

d2

4
,

where the expectations are taken conditioned on D1. By Lemma 4.4, the function
f1 ∈ F̂1 satisfies

R( f1) ≤ R( f F )+ c2 max
{
αd, (1 + b)α2

}
,

and thus,

R( f Ĉ1) ≤ R( f2) ≤ R( f F )+ c3 max
{
αd, (1 + b)α2

}
− c4d2.

Therefore,

β = c1‖�‖lip max
{

dα, bα2
}

−
(

R( f F )− R( f Ĉ1)
)

≤ c5‖�‖lip max
{
αd, (1 + b)α2

}
− c4d2.

Finally, if d ≥ (c6‖�‖lip + b)α then β ≤ 0, otherwise β ≤ c7(‖�‖lip + b)α2. ��
Remark 4.5 Although we presented our results when both the functions in F and Y
are uniformly bounded, those may be extended to the unbounded case, assuming that
a reasonable tail estimate is satisfied by the functions in F and by Y . One example
of such a situation which was studied in [3], is a weighted �1 regularized method f̌
in the Gaussian framework; that is, Y = g(X)+ W for a centered Gaussian variable
W , where g is the regression function of Y given X , and assuming that F and g are
uniformly bounded.

If we denote the Ln
2 metric by ‖ ‖n , then it was proved that

E‖ f̌ − g‖2
n ≤ (1 + ε)min

f ∈F
‖ f − g‖2

n + C(ε)
log(M ∨ n)

n
. (4.7)

Since Y has a nice tail decay (gaussian) one can show that our results apply to this case
as well (with a slightly different probability estimate and constants). The fact that we
have been able to obtain an oracle inequality with the exact constant 1 instead of 1+ ε
allows us to obtain a similar result to (4.7) by replacing each R( f ) with the empirical
version of it - but, of course, our f̃ is different from f̌ . Since minimization over the
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convex hull of F and �1-penalization are in a one-to-one correspondence, one may
view our result as an improvement to the inequality from [3], and the likely reason for
the improved result is that we minimize over the “correct” subset of the convex hull
rather than the entire convex hull.

5 The lower bound

Here, we will present an example that shows that empirical minimization performed
in the convex hull is very far from being an optimal aggregation method. For every
integer n, we will construct a function class F = Fn with M = c1

√
n functions, for

which, with probability greater than 1 − exp(−c2
√

n), the empirical minimizer f̂ in
C = conv(F) satisfies

R( f̂ ) ≥ R( f F )+ c3√
n
,

where c1, c2 and c3 are absolute constants.
Let � = [0, 1] endowed with the Lebesgue measure µ and set L2 to be the

corresponding L2 space. Let (φi )
∞
i=1 be a realization of independent, symmetric,

{−1, 1}-valued random variables as functions on [0, 1] (for example, (φi )
∞
i=1 are the

Rademacher functions). In particular, (φi )
∞
i=1 is an orthonormal family in L2 consis-

ting of functions bounded by 1. Moreover, the functions (φi )
∞
i=1 are independent and

have mean zero.
Let M be an integer to be specified later and put �(x, y) = (x − y)2. Consider

F = {0,±φ1, . . . ,±φM }
and let Y = φM+1 which is a noiseless target function. A sample is (Xi ,Yi )

n
i=1 =

(Xi , φM+1(Xi ))
n
i=1 where the Xi ’s are selected independently according to µ. It is

clear that

C = conv(F) =
⎧⎨
⎩

M∑
j=1

λ jφ j ,

M∑
j=1

|λ j | ≤ 1

⎫⎬
⎭,

and that the true minimizers f F = f C = 0; in particular, R( f F ) = R( f C) and there
is no gain in the approximation error by considering functions in the convex hull C.
Also, the excess loss function of a function f , relative to F and to C, satisfies

L f = ( f − φM+1)
2 − (0 − φM+1)

2 = f 2 − 2 f φM+1.

Let �(x) = (φi (x))M
i=1 and set 〈·, ·〉 to be the standard inner product in

�M
2 = (RM , ‖ · ‖). Observe that � is a vector with independent {−1, 1} entries,

and thus, for every λ ∈ R
M , E 〈λ,�〉2 = ‖λ‖2; moreover, if we set fλ = 〈λ,�〉, then

fλ and φM+1 are independent and since EφM+1 = 0, the excess risk of fλ satisfies

EL fλ = E f 2
λ = ‖λ‖2.
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A significant part of our analysis is based on concentration properties of sums of
random variables that belong to an Orlicz space.

Definition 5.1 For any α ≥ 1 and any random variable f , the ψα norm of f is

‖ f ‖ψα = inf{C > 0 : E exp(| f |α/Cα) ≤ 2}.

The ψα norm measures the tail behavior of a random variable. Indeed, one can show
that for every u ≥ 1,

Pr(| f | > u) ≤ 2 exp(−cuα/‖ f ‖αψα ),

where c is an absolute constant, independent of f [24].
The following lemma is a ψ1 version of Bernstein’s inequality [24].

Lemma 5.2 Let Y,Y1, . . . ,Yn be i.i.d random variables with ‖Y‖ψ1 < ∞. Then, for
any u > 0,

Pr

(∣∣∣∣∣
1

n

n∑
i=1

Yi − EY

∣∣∣∣∣ > u‖Y‖ψ1

)
≤ 2 exp

(
−C3n min

(
u2, u

))
, (5.1)

where C3 > 0 is an absolute constant.

In the next lemma, we will present simple ψ1 estimates for f 2 and the resulting
deviation inequalities using Lemma 5.2.

Lemma 5.3 There is an absolute constant C4 for which the following holds. For every
λ ∈ R

M , ‖ f 2
λ ‖ψ1 ≤ C4‖λ‖2 and for every u > 0,

Pr

(∣∣∣∣∣
1

n

n∑
i=1

f 2
λ (Xi )− E f 2

λ

∣∣∣∣∣ ≥ uC4‖λ‖2

)
≤ 2 exp

(
−C3n min{u2, u}

)
. (5.2)

Proof Fix λ ∈ R
M . Using Höffding’s inequality [24] and the fact that (φi )

M
i=1 are

independent and symmetric Bernoulli variables, it follows that for every u > 0,

Pr

⎛
⎝
∣∣∣∣∣∣

M∑
j=1

λ jφ j

∣∣∣∣∣∣
> u‖λ‖

⎞
⎠ ≤ 2 exp(−u2/2).

Hence, ‖ 〈λ,�〉 ‖ψ2 ≤ c1‖λ‖ for some absolute constant c1. The first part of the lemma
is evident because

‖ f 2
λ ‖ψ1 = ‖ 〈λ,�〉2 ‖ψ1 = ‖ 〈λ,�〉 ‖2

ψ2
≤ c2

1‖λ‖2.

The second part of the claim follows from the first one and Lemma 5.2. ��
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Lemma 5.3 allows us to control the deviation of the empirical Ln
2 norm from the

actual L2 norm for a large number of functions in a subset of { fλ : λ ∈ SM−1}. The
subset we will be interested in is a maximal ε-separated subset of SM−1 for the right
choice of ε < 1.

Lemma 5.4 There exist absolute constants C5, C6, C7 and C8 for which the following
hold. For any n ≥ C5 M, withµn-probability at least 1−2 exp(−C6n), for anyλ ∈ R

M ,

1

2
‖λ‖2 ≤ 1

n

n∑
i=1

f 2
λ (Xi ) ≤ 3

2
‖λ‖2.

Also, for every r > 0, with µn-probability at least 1 − 6 exp(−C6 M),

C7

√
r M

n
≤ sup

{λ:‖λ‖≤√
r}

1

n

n∑
i=1

fλ(Xi )φM+1(Xi ) ≤ C8

√
r M

n
.

Proof The proof of the first part is standard and we will sketch it for the sake of
completeness. Since fλ = 〈λ,�〉, what we wish to prove is that with high probability,

sup
λ∈SM−1

∣∣∣∣∣
1

n

n∑
i=1

〈λ,�(Xi )〉2 − 1

∣∣∣∣∣ ≤
1

2
,

where SM−1 is the unit sphere in �M
2 .

By a successive approximation argument [21], it is enough to prove that any point x
in a maximal ε-separated subset Nε of SM−1 (for an appropriate choice of ε), satisfies

∣∣∣∣∣
1

n

n∑
i=1

〈x,�(Xi )〉2 − 1

∣∣∣∣∣ ≤ δ

where ε and δ depend only on the constant 1/2.
A volumetric estimate [21] shows that the cardinality of Nε is at most (5/ε)M .

Hence, if we take u = δ/C4 in (5.2), then

Pr

(
∃x ∈ Nε :

∣∣∣∣∣
1

n

n∑
i=1

〈x,�(Xi )〉2 − 1

∣∣∣∣∣ ≥ δ

)
≤
(

5

ε

)M

· 2 exp
(
−C3nδ2/C2

4

)

≤ 2 exp(−c0n)

as long as n ≥ c1(ε, δ)M .
Turning to the second part, since� is a vector of independent, symmetric Bernoulli

variables and φM+1 is also a symmetric Bernoulli variable, independent of the others,
the supremum sup{λ:‖λ‖≤√

r}
∑n

i=1 fλ(Xi )φM+1(Xi ) has the same distribution as

sup
{λ:‖λ‖≤√

r}

n∑
i=1

εi 〈λ,Wi 〉 = (∗),
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where (εi )
n
i=1 are symmetric Bernoulli variables that are independent of (Wi )

n
i=1,

which are independent uniform random vertices of {−1, 1}M . Indeed, we can set
Wi := �(Xi ) and εi := φM+1(Xi ). Clearly, for every 1 ≤ i ≤ n, ‖Wi‖2 = M , and
by the Kahane–Khintchine inequality [14]

Eε(∗) = √
rEε‖

n∑
i=1

εi Wi‖ ≥ c2
√

r

(
n∑

i=1

‖Wi‖2

)1/2

= c2
√

rnM .

Also,

Eε(∗) ≤
(
Eε(∗)2

)1/2 ≤ √
rnM .

To obtain the high probability estimate, we use the concentration result for vec-
tor valued Rademacher processes [14, Chapter 4]. Consider the �M

2 -valued variables
Z = ∑n

i=1 εi�(Xi ) and let Z ′ be Z conditioned on X1, . . . , Xn . By the first part of
our claim, for any n ≥ c1 M there is a set A with probability at least 1 − 2 exp(−c0n)
on which

∑n
i=1 〈λ,�(Xi )〉2 ≤ (3/2)n‖λ‖2 for every λ ∈ R

M . Thus, on A,

σ 2(Z ′) ≡ sup
θ∈SM−1

Eε

〈
Z ′, θ

〉2 = sup
θ∈SM−1

n∑
i=1

〈θ,�(Xi )〉2 ≤ 3

2
n,

implying that for any u > 0,

Pr
(∣∣‖Z ′‖ − Eε‖Z ′‖∣∣ ≥ u

√
n
) ≤ 4 exp

(
−c3u2

)
,

where c3 is an absolute constant. Since n ≥ c1 M and Eε(∗) = √
rEε‖Z ′‖, it follows

that if one takes u = c2
√

M/2, there is an absolute constant c4 for which, with
probability at least 1 − 4 exp(−c4 M),

c2

2

√
r M

n
≤ sup

{λ:‖λ‖≤√
r}

1

n

n∑
i=1

εi 〈λ,�(Xi )〉 ≤ 2

√
r M

n
.

Therefore, combining the two high probability estimates, it is evident that with pro-
bability greater than 1 − 6 exp(−c5 M),

c2

2

√
r M

n
≤ sup

{λ:‖λ‖≤√
r}

1

n

n∑
i=1

( fλφM+1)(Xi ) ≤ 2

√
r M

n
.

��
Now, we can formulate and prove the main result of this section, which will complete

the proof of Theorem A.
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Theorem 5.5 There exist absolute constants c1, c2 and c3 for which the following
holds. For every integer n, set M such that n = c1 M2 and put F and C as defined
above. Then, with µn-probability at least 1 − 8 exp(−c2

√
n), the empirical minimizer

f̂ in C satisfies that

EL f̂ ≥ c3√
n
.

In particular, for that choice of M and n and with that probability, empirical minimi-
zation performed in C satisfies

R( f̂ ) ≥ min
f ∈F

R( f )+ c3√
n
.

Proof Fix fλ = ∑M
j=1 λ jφ j ∈ C = conv(F) and recall that SM−1 is the unit sphere

in �M
2 . Note that EL fλ =∑M

i=1 λ
2
i and thus

Lr ≡{L f : f ∈ C,EL f = r
}=
{
L fλ : λ∈ B M

1 ∩ √
r SM−1

}
=
{
L fλ : λ∈ √

r SM−1
}
,

provided that r ≤ 1/M .
Since L f = f 2 − 2 f φM+1 then for every r ≤ 1/M ,

inf
L f ∈Lr

PnL f

= r − sup
λ∈√

r SM−1
(P − Pn)L fλ

= r − sup
λ∈√

r SM−1

((
E f 2

λ − 1

n

n∑
i=1

f 2
λ (Xi )

)
− 1

n

n∑
i=1

(−2 fλ�M+1)(Xi )

)

≤ r + sup
λ∈√

r SM−1

∣∣∣∣∣E f 2
λ − 1

n

n∑
i=1

f 2
λ (Xi )

∣∣∣∣∣− 2 sup
λ∈√

r SM−1

1

n

n∑
i=1

( fλ�M+1)(Xi ).

Fix r ≤ 1/M to be named later. Applying both parts of Lemma 5.4, it follows that if
n ≥ C5 M then with probability at least 1 − 8 exp(−C6 M),

inf
L f ∈Lr

PnL f ≤ 3

2
r − 2C7

√
r M

n
= √

r

(
3

2

√
r − 2C7

√
M

n

)
.

Let n = c1 M2 and note that the condition that n ≥ C5 M is satisfied. Hence,
√

M/n =
1/

√
c1 M and there are absolute constants c2 < 1 and c3, such that for r ≤ c2/M ,

infL f ∈Lr PnL f ≤ −c3
√

r/M .
On the other hand, combining the upper bounds from Lemma 5.4, it follows that

for every 0 < ρ ≤ 1/M , with probability at least 1 − 8 exp(−C6 M),
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sup
{λ:‖λ‖≤√

ρ}

∣∣∣∣∣
1

n

n∑
i=1

L fλ(Xi )− EL fλ

∣∣∣∣∣

≤ sup
{λ:‖λ‖≤√

ρ}

∣∣∣∣∣
1

n

n∑
i=1

f 2
λ (Xi )− E f 2

λ

∣∣∣∣∣+ 2 sup
{λ:‖λ‖≤√

ρ}

∣∣∣∣∣
1

n

n∑
i=1

( fλφM+1)(Xi )

∣∣∣∣∣

≤ ρ

2
+ 2C8

√
ρM

n
= ρ

2
+ c4

√
ρ

M
≤ c5

√
ρ

M
.

Therefore, on that set,

inf
{λ:‖λ‖≤√

ρ}
PnL fλ ≥ − sup

{λ:‖λ‖≤√
ρ}

|(Pn − P)(L fλ)| ≥ −c5

√
ρ

M
.

Hence, with probability at least 1 − 8 exp(−C6 M), if c2
5ρ ≤ c2

3r/2, argmin f ∈C PnL f

is a function fλ indexed by λ of norm larger than
√
ρ. In particular, such a function

will have an excess risk greater than ρ. Therefore, taking ρ ∼ r and noting that one
may select r ∼ 1/

√
n, there exists an absolute constant c6 > 0 such that with high

probability,

E

(
L f̂ |(Xi )

n
i=1

)
≥ ρ ≥ c6√

n
,

as claimed. ��
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