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Abstract

In this article, we study the optimality of the aggregate with exponential
weights (AEW) in the regression model with random design, and in the low
temperature regime. We prove three properties of AEW. First, that AEW is a
suboptimal aggregation procedure in expectation with respect to the quadratic
risk when T ≤ c1 where c1 is an absolute positive constant (the low temperature
regime), and that it is suboptimal in probability even for high temperatures.
Second, we show that as the cardinality of the dictionary grows, the behavior
of AEW might deteriorate, namely, that in the low temperature regime it might
concentrate with high probability around elements in the dictionary whose risk
is larger than the risk of the best function in the dictionary by at least order of
1/
√
n. On the other hand, we prove that if one assumes a geometric condition on

the dictionary (the so-called Bernstein condition), then AEW is indeed optimal
both in high probability and in expectation in the low temperature regime. More-
over, under that assumption the complexity term is essentially the logarithm of
the cardinality of the set of “almost minimizers” rather than the logarithm of
the cardinality of the entire dictionary. This result holds for small values of the
temperature parameter, thus completing an analogous result for high tempera-
tures.

1 Introduction and main results

In this note we study the problem concerning the optimality of the AEW in the
regression model with random design. To formulate the problem we need to introduce
several definitions.

Let Z and X be two measure spaces and set Z and Z1, . . . , Zn to be n+1 i.i.d. ran-
dom variables with values in Z. From the statistical point of view, D = (Z1, . . . , Zn)
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is the set of given data at our disposal. The risk of a real-valued function f defined
on X is given by

R(f) = EQ(Z, f),

where Q : Z × X 7→ R is a nonnegative function, called the loss function. If f̂ is a
random function constructed using the data D, the risk of f̂ is the random variable

R(f̂) = E
[
Q(Z, f̂)|D

]
.

Throughout this article we will restrict ourselves to functions f , loss functions Q and
random variables Z for which |Q(Z, f)| ≤ b almost surely (note that some results
have been obtained in the same setup for unbounded loss functions in [7], [29], [13] or
[4]). The loss function we will focus on through most of this article is the quadratic
loss function, defined by Q((X,Y ), f) = (Y − f(X))2.

In the aggregation framework, one is given a finite set F of real-valued functions
defined on X , usually called a dictionary. The problem of aggregation (see, for ex-
ample, [10], [7] and [28]) is to construct a procedure that produces a function whose
risk is as close as possible to the risk of the best element in F . Having this in mind,
one can define the optimal rate of aggregation [24, 15], which is the smallest price, as
a function of the cardinality of the dictionary M and the sample size n, that one has
to pay to construct a function whose risk is as close as possible to that of the best
element in the dictionary. We recall here the definition for the “expectation case”. A
similar definition for the “probability case” can also be formulated (see, for example,
[15]).

Definition 1.1 ([24]) Let b > 0. We say that (ψn(M))n,M∈N∗ is the optimal rate of
aggregation in expectation when there exist two positive constants c0 and c1 depending
only on b for which the following holds for any n ∈ N∗ and M ∈ N∗:

1. there exists an aggregation procedure f̃n such that for any dictionary F of car-
dinality M and any random variable Z satisfying |Q(Z, f)| ≤ b almost surely
for all f ∈ F , one has

ER(f̃n) ≤ min
f∈F

R(f) + c0ψn(M); (1.1)

2. for any aggregation procedure f̄n there exists a dictionary F of size M and a
random variable Z such that |Q(Z, f)| ≤ b a.s. for all f ∈ F and

ER(f̄n) ≥ min
f∈F

R(f) + c1ψn(M).
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In our setup, one can show (cf. [24]) that, in general, the optimal rate of aggregation
(in the sense of [24] – optimality in expectation and of [15] – optimality in proba-
bility) is lower bounded by (logM)/n. Hence, procedures satisfying an exact oracle
inequality like (1.1) with the residual term ψn(M) = (logM)/n are said to be opti-
mal. There are only a few aggregation procedures that have been proved to achieve
this optimal rate. The first results dealing with optimal aggregation procedures can
be found in [7] and [27] (and for a survey on optimal aggregation procedures we refer
the reader to the HDR dissertation of J.-Y. Audibert).

Our main focus here is the problem of the optimality of the aggregation procedure
with exponential weights (AEW). The origin of this procedure comes from the ther-
modynamical point of view of learning theory (see [8] for the state of the art in this
direction). AEW can be seen as a relaxed version of the trivial aggregation scheme,
which is to minimize the empirical risk

Rn(f) =
1
n

n∑
i=1

Q(Zi, f) (1.2)

in the dictionary F .
A procedure that minimizes (1.2) is called empirical risk minimization (ERM),

and it is well known that ERM cannot, in general, achieve the optimal rate of
(logM)/n, unless one assumes that the given class F has certain geometric prop-
erties which will be discussed below (see also [16, 19, 13]). To have any chance of
obtaining better rates, one has to consider aggregation procedures that are taking
values in larger subsets than F , and the most natural set is the convex hull of F .
AEW has been a very popular candidate for an optimal procedure, and it was one
of the first procedures to be studied in the context of the aggregation framework
[13, 4, 14, 18, 7, 2, 28, 9]. It is defined by the following convex sum

f̃AEW =
M∑
j=1

θ̂jfj where θ̂j =
exp

(
− n
TRn(fj)

)∑M
k=1 exp

(
− n
TRn(fk)

) (1.3)

for the dictionary F = {f1, . . . , fM}. The parameter T > 0 is called the temperature1.
Despite its long history, the optimality of AEW remained open. In this work, we

study the following question:

Question 1.2 Is the AEW an optimal aggregation procedure in expectation or in
probability in the regression model with random design?

We will show that the answer to Question 1.2 is:
1This terminology comes from Thermodynamics, since the weights (bθ1, . . . , bθM ) can be seen as a

Gibbs measure with temperature T on the dictionary F .
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- negative for low temperatures T ≤ c1 (where c1 is an absolute positive constant),
both in expectation and in probability, for the quadratic loss function and a
dictionary of cardinality 2 (Theorem A);

- negative in probability for some large dictionaries and small temperatures T ≤
c1 (Theorem B);

- positive for low temperatures under a geometric condition on the dictionary
(Theorem C); Together with the high temperature result of [1], [2] and [8], this
proves that the temperature parameter has almost no impact on the perfor-
mance of the AEW under this condition, with a residual term of the order of
((T + 1) logM)/n for every T .

Theorem A. There exists absolute positive constants c0, ..., c5 for which the following
holds. For any integer n ≥ c0, there are random variables (X,Y ) and a dictionary
F = {f1, f2} such that (Y − fi(X))2 ≤ 1 almost surely for i = 1, 2, for which the
quadratic risk of the AEW satisfies

1. if T ≤ c1 and n is odd then

ER(f̃AEW ) ≥ min
f∈F

R(f) +
c2√
n

;

2. if T ≤ c3
√
n/ log n, then with probability greater than c4,

R(f̃AEW ) ≥ min
f∈F

R(f) +
c5√
n
.

Theorem A proves that AEW is suboptimal in expectation in the low temperature
regime, and suboptimal in probability in both low and high temperature regimes.

It should be mentioned that suboptimality in probability does not imply subop-
timality in expectation for the aggregation problem, nor vice-versa. This property
of the aggregation problem was first noticed in [3] where an aggregation procedure
called the progressive mixture rule was proved to be suboptimal in probability for
dictionaries of cardinality two, whereas it was known to be optimal in expectation
(cf. [7], [27], [29] or [13]).

The proof of Theorem A shows that a dictionary consisting of two functions is
enough to give the lower bound in expectation in the low temperature regime and in
probability in both regimes. And, although the second part is to be expected, the
first one is surprising, as we will explain below.
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In Theorem B we study the behavior of AEW for larger dictionaries. To our
knowledge, negative results on the behavior of exponential weights based aggregation
procedures are not known for dictionaries with more than two functions, and what we
show is that the behavior of the AEW deteriorates, in some sense, as the cardinality
of the dictionary grows.

Theorem B. There exists an integer n0 and absolute constants c1 and c2 for which the
following holds. For every n ≥ n0 there are random variables (X,Y ) and a dictionary
F = {f1, ..., fM} of cardinality M = c1

√
n log n for which the quadratic loss function

of any element in F is bounded by 2 almost surely, and for every 0 < α ≤ 1/2, if
T ≤ c2α, then with probability at least 1− c3(α)nα−1/2,

R(f̃AEW ) ≥ min
f∈F

R(f) + c4(α)

√
logM
n

.

Moreover, if f∗F ∈ F denotes the optimal function in F with respect to the quadratic
loss (the oracle), then there exists fj 6= f∗F whose excess risk larger than c5(α)n−1/2

and for which the weight of fj in the AEW procedure satisfies

θ̂j ≥ 1− 1
nc6(α)/T

.

Theorem B implies that the AEW procedure might cause the weights to concen-
trate around a “bad” element in the dictionary (that is, an element whose risk is
larger than the best in the class by at least ∼ n−1/2) with high probability. In par-
ticular, Theorem B gives additional evidence that the AEW procedure is suboptimal
for low temperatures.

The analysis of the behavior of AEW for dictionary of cardinality larger than
two is considerably harder than the two-function case, and it requires some results
on rearrangement of independent random variables which are almost Gaussian (see
Proposition 5.2 below).

Fortunately, not all is lost as far as optimality results for AEW go. Indeed, we
will show that under some geometric condition, AEW can be optimal; in fact, it can
even adapt to the “real complexity” of the dictionary.

Intuitively, a good aggregation scheme should be able to ignore the elements in
the dictionary whose risk is far from the optimal risk in F , or at least the impact
of such elements on the function produced by the aggregation procedure should be
small. Hence, a good procedure is one whose residual term is of the order of ψ/n,
where ψ is a complexity measure that is determined only by the complexity of the
set of “almost minimizers” in the dictionary.
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Question 1.3 Is it possible to construct an aggregation procedure that adapts to the
real complexity of the dictionary?

This question was first answered by the PAC-Bayesian approach. It was shown in
[1], [2] and [8] that in the high temperature regime, AEW satisfies the requirements of
Question 1.3, assuming that the class has a geometric property, called the Bernstein
condition.

Definition 1.4 ([5]) We say that a function class F is a (β,B)-Bernstein class
(0 < β ≤ 1 and B ≥ 1) with respect to Z, if every f ∈ F satisfies

E
(
f2(Z)

)
≤ B (Ef(Z))β . (1.4)

There are many natural situations in which the Bernstein condition is satisfied. For
instance, when Q is the quadratic loss function and the regression function is assumed
to belong to F then the excess loss functions class LF = {Q(·, f)−Q(·, f∗F ) : f ∈ F}
satisfies the Bernstein condition with β = 1 (where f∗F ∈ F is the minimizer of the
risk in the class F ). Another generic example is when the target function Y is far
from the set targets with “multiple minimizers” in F , and, in which case as well, LF
satisfies the Bernstein condition with β = 1 (see [19, 20] for an exact formulation of
this statement and related results).

The Bernstein condition is very natural in the context of ERM because it has two
consequences. Firstly, the empirical excess risk has better concentration properties
around the excess risk, and secondly, the complexity of the subset of F consisting of
almost minimizers is smaller under this assumption. As a consequence, if the class LF
is a (β,B)-Bernstein class for 0 < β ≤ 1, then the ERM algorithm can achieve fast
rates (see, for example [5], and references therein). As the results below show, the
same is true for AEW. Indeed, under a Bernstein assumption it was proved in ([1], [2]
or [8]) that if R(·) is a convex risk function and if F is such that |Q(Z, f)| ≤ b almost
surely for any f ∈ F then for every T ≥ c1 max{b, B} and x > 0, with probability
greater than 1− 2 exp(−x),

R(f̃AEW ) ≤ min
f∈F

R(f) +
Tc2

n

(
x+ log

(∑
f∈F

exp
(
− (n/2T )(R(f)−R(f∗F ))

)))
. (1.5)

Although the PAC-Bayesian approach can not be used to obtain (1.5) in the low
temperature regime ( T ≤ c1 max{b, B}), such a result is not surprising. Indeed,
since fast error rates for the ERM are to be expected when the underlying excess
loss functions class satisfies the Bernstein condition and since AEW converges to the
ERM when the temperature T tends to zero, it is likely that for “small values” of
T , AEW inherits some of the properties of ERM, for example, fast rates under a
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Bernstein condition. This is what we show in Theorem C, proving that AEW does
answer Question 1.3 for low temperatures under the Bernstein condition.

Before formulating Theorem C, let us introduce the following measure of com-
plexity. For every r > 0, let

ψ(r) = log(|{f ∈ F : R(f)−R(f∗F ) ≤ r}|+ 1)

+
∞∑
j=1

2−j log(|{f ∈ F : 2j−1r < R(f)−R(f∗F ) ≤ 2jr}|+ 1),

where |A| denotes the cardinality of the set A.
Observe that ψ(r) is a weighted sum of the elements in F that assigns smaller

and smaller weights to functions whose excess risk is relatively large.

Theorem C. There exists absolute constants c0, c1, c2 and c3 for which the following
holds. Let F be a class of functions bounded by b such that the excess loss class LF
is a (1, B)-Bernstein class with respect to Z. If the risk function R(·) is convex and
if T ≤ c0 max{b, B}, then for every x > 0, with probability at least 1− 2 exp(−x), the
function f̃AEW produced by the AEW algorithm satisfies

R(f̃AEW ) ≤ R(f∗F ) + c1(b+B)
x+ ψ(θ)

n
,

where θ = c2(b+B)(log |F |)/n.
In particular,

ER(f̃AEW ) ≤ R(f∗F ) + c3(b+B)
ψ(θ)
n

.

In other words, the scaling factor θ we use is proportional to (b + B)(log |F |)/n,
and if the class is reasonably regular, ψ(θ) is roughly the cardinality of the elements
in F whose risk is at most ∼ (b+B)(log |F |)/n.

Observe that for every r > 0, ψ(r) ≤ c log |F | for a suitable absolute constant
c. Therefore, if T is reasonably small – below a level proportional to max{B, b}, the
resulting aggregation rate is the optimal one, proportional to (b+B) (x+ logM) /n
with probability of 1− 2 exp(−x), and proportional to (b+B) (logM) /n in expecta-
tion. Therefore, Theorem C gives a positive answer to Question 1.3 in the presence
of a Bernstein condition and for a low temperature.

Although the residual terms in Theorem C and in (1.5) are not the same, they
are comparable. Indeed, the contribution of each element in F in the residual term
depends exponentially on its excess risk.
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Theorem C together with the result for high temperatures from [1], [2] and [8]
shows that the AEW is an optimal aggregation procedure under the Bernstein con-
dition as long as T = O(1) when M and n tend to infinity. In general, the residual
term one obtains is of the order of ((T + 1) logM)/n.

Finally, a word about the organization of the article. In the next section we
provide some comments about our results. The proofs of the three theorems follow
in the other sections. Throughout, we denote absolute constants or constants that
depend on other parameters by c1, c2, etc., (and, of course, we will specify when
a constant is absolute and when it depends on other parameters). The values of
constants may change from line to line. We write a ∼ b if there are absolute constants
c and C such that bc ≤ a ≤ Cb, and a . b if a ≤ Cb.
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This article was written while G. Lecué was visiting the Department of Mathematics,
Technion, and the Centre for Mathematics and its Applications, The Australian Na-
tional University. The authors would like to thank both these institutions for their
hospitality. We also would like to thank Pierre Alquier and Olivier Catoni for useful
discussions.

The research leading to these results has received funding from the European
Research Council under the European Community’s Seventh Framework Programme
(FP7/2007-2013) / ERC grant agreement no [203134] and from the Australian Re-
search Council Discovery Project DP0986563.

2 Comments

The suboptimality in expectation of the AEW, obtained in Theorem A, is rather
surprising for two reasons. First of all, it is known that the progressive mixture rule
is optimal in expectation for T larger than some parameters of the model (see [7],
[27], [29], [13] or [4]). This procedure is defined by

f̄ =
1
n

n∑
k=1

f̃AEWk , (2.1)

where f̃AEWk is the function generated by AEW associated with the dictionary F
and constructed using the first k observations Z1, . . . , Zk. Thus, this aggregate is the
mean of f̃AEWk for 1 ≤ k ≤ n, where, for every k < n, f̃AEWk is constructed using
only the first k observations. In particular, f̄ is the mean of aggregates that are (or
should be) less “efficient” than f̃AEWn , since the latter is constructed using all the
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observations Z1, . . . , Zn, rather than a subset of the given observations. That is why
one expects the AEW to be an optimal aggregation procedure in expectation – at
least in the high temperature regime. Theorem A shows that, even for temperature
of the order of a constant, f̃AEWn might have a very bad behavior, of the order of
(1/
√
n).

Second, the optimality in expectation of AEW was obtained in [9] for the regres-
sion model Yi = f(xi) + εi with a deterministic design x1, . . . , xn ∈ X with respect
to the risk ‖g − f‖2n = n−1

∑n
i=1(g(xi) − f(xi))2 (with its empirical version being

Rn(g) = n−1
∑n

i=1(Yi − g(xi))2); that is, it was shown that for T ≥ cmax(b, σ2)
(where σ2 is the variance of the noise ε),

E
∥∥∥f̃AEW − f∥∥∥2

n
≤ min

g∈F
‖g − f‖2n +

T logM
n+ 1

. (2.2)

Theorem A shows that the behavior of the AEW is very different, at least in the low
temperature regime. The fact that the same procedure (although in different models)
can exhibit such two extreme behaviors - and for roughly the same temperature pa-
rameter is rather striking. The 1/

√
n lower bound of Theorem A vs. the 1/n upper

bound derived from the oracle inequality (2.2) can have one of the two following ex-
planations. Either that the two seemingly similar scenarios are, in fact very different,
or that AEW exhibits a sharp phase transition at T ∼ c. And, if the latter is true,
then an important outcome of Theorem A is that the temperature parameter is of
the highest importance with regard to the optimality of the AEW in expectation.

An indication that a phase transition is the likely explanation to the phenomenon
observed in Theorem A, is that most of the optimal upper bounds on AEW or on the
progressive mixture need T to be larger than some unknown parameters of the model
(the variance of the noise for instance). This means that in practice, AEW is likely to
be a very “risky” aggregation procedure because of its sensitivity to the temperature
parameter. Moreover, and to make things even worse, even for large values of T , AEW
is suboptimal with a constant probability for small dictionaries (Part 2 of Theorem
A) and with probability that tends to 1 for larger dictionaries (Theorem B). Hence,
given a set of data and a dictionary, AEW is likely to behave very poorly regardless
of what T is. In contrast, Theorem C shows that the choice of the temperature
parameter has no significant effect on the performance of the AEW (residual term
of the order of T (logM)/n) under the Bernstein condition. To conclude, although
from a theoretical point of view it remains to be seen whether AEW displays a phase
transition at constant temperature, and is indeed an optimal procedure in expectation
for high temperatures T ≥ c2 max(b, σ2) as one may conjecture based on the results
from [7], [27], [29], [13] [4] and [9], from a practical point of view, we believe that
exponential aggregating schemes simply should not be used in the setup of this article.
The choice of T is simply too “risky”, as indicated by the lower bounds in probability
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of [3], Part 1 of Theorem A and Theorem B.
Another consequence of the lower bounds stated in Theorem A is that AEW

cannot be an optimal aggregation procedure both in expectation and probability
for low temperatures for two other aggregation problems: the problem of convex
aggregation, in which one wants to mimic the best element in the convex hull of F ,
and the problem of linear aggregation, where one wishes to mimic the best linear
combination of elements in F . Indeed, clearly

min
f∈F

R(f) ≥ min
f∈conv(F )

R(f) ≥ min
f∈span(F )

R(f).

Also, the optimal rates of aggregation for the convex and linear aggregation problems
for dictionaries of cardinality two are of the order of n−1 (see [24]), while the residual
terms obtained in Theorem A are of the order of n−1/2 for such a dictionary. Hence,
AEW is suboptimal for these two other aggregation problems for low temperatures.

We end this section by comparing two seemingly related assumptions: the margin
assumption of [25] and the Bernstein condition of [5]. Let us mention that in the
proof of Theorem C we have restricted ourselves to the case β = 1 simply to make
the presentation as simple as possible. A very similar result holds if one assumes a
Bernstein condition for any 0 < β < 1, and the proof is identical to the one in the
case β = 1. This makes the discussion about β-Bernstein classes relevant here.

Recall the definition of the margin assumption:

Definition 2.1 ([25]) We say that F has margin with parameters (β,B) (0 < β ≤ 1
and B ≥ 1) if for every f ∈ F ,

E
(

(Q(Z, f)−Q(Z, f∗))2
)
≤ B (R(f)−R(f∗))β ,

where f∗ is defined such that R(f∗) = minf R(f), and the minimum is taken with
respect to all measurable functions f on the given probability space.

Although the margin condition appears similar to the Bernstein condition, they
are, in fact, very different, and have been introduced in the context of different types
of problems.

In the first, “classical” statistical setup, one is given a function class F (the
model) with an upper bound on its complexity and an unknown target function
f∗, which is the minimizer of the risk over all measurable functions. One usually
assumes that f∗ belongs to F and the aim is to construct an estimator f̂ = f̂(·,D)
for which the risk R(f̂) tends to zero quickly as the sample size tends to infinity. In
this setup, the margin assumption can improve this rate of convergence thanks to a
better concentration of empirical means of Q(·, f) − Q(·, f∗) around its mean [25].
The margin assumption (MA for short) for β = 1 compares the performance of each
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f ∈ F to the best possible measurable function, but it has nothing to do with the
geometric structure of F . The margin is determined for every f separately, because
f∗ does not depend on the choice of F at all.

In the second, “learning theory” setup, we do not assume that the target function
f∗ belongs to F . The aim is to construct a function f̂ whose risk is as close as
possible to that of the best element f∗F ∈ F . And, assuming that the excess loss class
LF satisfies the Bernstein condition (BC for short) one can improve the error rate
(see, e.g., [20, 5]).

At a first glance, MA and BC (for β = 1) share very strong similarities. Indeed,
saying that LF is a (1, B)-Bernstein class means that for every f ∈ F

E
(

(Q(Z, f)−Q(Z, f∗F ))2
)
≤ B (R(f)−R(f∗F )) ,

but nevertheless, they are different. Indeed, as we mentioned, MA is only a matter of
concentration (and classical statistics questions are mostly a question of the tradeoff
between concentration and complexity). On the other hand, BC involves a lot of
geometry of the function class F , because f∗F might change significantly by adding a
single function to F or by removing one. In fact, the difficulty of “learning theory”
problems is determined by the tradeoff between concentration and complexity, and
the geometry of the given class, since one measures the performance of the learning
algorithm relative to the best in the class. Assuming that f∗ ∈ F , as is usually done
in classical statistics, exempts one from the need to consider the geometry of F , but
we do not have that freedom in the aggregation framework. Indeed, since in the AEW
algorithm the estimator is determined by the empirical means Rn(f)−Rn(f∗F ), it is
a learning problem rather than a problem in classical statistics (despite the fact that
it has been used in statistical frameworks to construct adaptive estimators, see, for
example, [4, 11, 14, 23, 6, 18, 25, 2, 28]). Therefore, because of its nature, aggregation
procedures like the AEW are more natural under a BC assumption and not the MA
one (a by-product of Theorem A is that the MA cannot improve the performance
of AEW since in Theorem A’s setup MA is satisfied with the best possible margin
parameter β = 1).

3 Preliminary results on gaussian approximation

Our starting point is the Berry-Esséen Theorem on gaussian approximation. Let
(Wn)n∈N be a sequence of i.i.d., mean zero random variables with variance 1, set g to
be a standard Gaussian variable and put

X̄n =
1√
n

n∑
i=1

Wi.
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Theorem 3.1 ([21])There exists an absolute constant A > 0 such that for every
integer n,

sup
x∈R

∣∣P[X̄n ≤ x]− P[g ≤ x]
∣∣ ≤ AE|W1|3√

n
.

From here on we will denote by A the constant appearing in Theorem 3.1.
When the tail behavior of the Wi has a sub-exponential decay, the gaussian ap-

proximation can be improved. Indeed, recall that a real-valued random variable W
belongs to Lψα for some α ≥ 1 if there exists 0 < c <∞ such that

E exp
(
|W |α/cα

)
≤ 2. (3.1)

The infimum over all constants c for which (3.1) holds defines an Orlicz norm, which
is called the ψα norm and is denoted by ‖ · ‖ψα . For more facts on Orlicz norms see,
for instance, [26] and [22].

Proposition 3.2 (Chapter 5 in [21]) For every L > 0 there exist constants B0, c1

and c2 that depend only on L for which the following holds. If ‖W‖ψ1 ≤ L then for
any x ≥ 0 such that x ≤ B0n

1/6,

P[X̄n ≥ x] = P[g ≥ x] exp
(
x3EW 3

6
√
n

)[
1 +O

(
x+ 1√
n

)]
and

P[X̄n ≤ −x] = P[g ≤ −x] exp
(
−x

3EW 3

6
√
n

)[
1 +O

(
x+ 1√
n

)]
,

where by v = O(u) we mean that −c1u ≤ v ≤ c1u.
In particular, if |x| ≤ B0n

1/6 and EW 3 = 0 then

|P[X̄n ≤ x]− P[g ≤ x]| ≤ c2(n−1/2 exp(−x2/2)).

From here on we will denote by B0 the constant appearing in Proposition 3.2.

4 Proof of Theorem A

Before presenting the proof of Theorem A, let us introduce the following notation.
Given a probability measure ν and (Zi)ni=1 selected independently according to ν, we
set Pn = n−1

∑n
i=1 δZi the empirical measure supported on (Zi)ni=1. We denote by P

the expectation Eν . From here on, we will assume that T ≤ 1 and recall that n is an
odd integer.

Let Y = 0 and define X by P[X = 1] = 1/2−n−1/2 and P[X = −1] = 1/2+n−1/2.
Let f1 = 1I[0,1] and f2 = 1I[−1,0], and consider the dictionary F = {f1, f2}. It is easy
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to verify that the best function in F (the oracle) with respect to the quadratic risk
is f1 and that the excess loss function of f2, L2 = f2

2 − f2
1 = f2 − f1, satisfies that

L2(X) = −X, EL2(X) = 2n−1/2 and σ2 = E
(
L2(X)− EL2(X)

)2 = 1− 4/n.

To shorten notation, we define PL2 = EL2(X) and PnL2 = n−1
∑n

i=1 L2(Xi).
An important parameter which is at the heart of this counter-example is the

Bernstein constant (which is very bad in this case):

α =
E(f1 − f2)2

PL2
=
√
n

2
(4.1)

A straightforward computation shows that AEW on F with temperature T is given
by

f̃AEW = θ̂1f1 + (1− θ̂1)f2, θ̂1 =
1

1 + exp
(
− n
T PnL2

) ,
and that, for h(θ) = θ + αθ(1− θ) defined for all θ ∈ [0, 1], we have

E[R(f̃AEW )−R(f1)] = E
[
1− θ̂1 − αθ̂1(1− θ̂1)

]
PL2 = E

[
1− h(θ̂1)

]
PL2

= E
[
1−

∫ ∞
0

h′(t)P[θ̂1 ≥ t]dt
]
PL2 =

[
1 +

∫ 1

0
(2αt− (1 + α))P[θ̂1 ≥ t]dt

]
PL2

=
[
1 +

∫ 1

0
(2αt− (1 + α))P [PnL2 ≥ γ(t)] dt

]
PL2, (4.2)

where γ(t) is an increasing function defined for any t ∈ (0, 1) by

γ(t) =
T

n
log
(

t

1− t

)
.

In particular,
E
[
R(f̃AEW )−R(f1)

]
= [I1 + I2]PL2,

for

I1 =
∫ α−1

0
(2αt− (1 + α)) P [PnL2 ≥ γ(t)] dt+ 1

and

I2 =
∫ 1

α−1

(2αt− (1 + α)) P [PnL2 ≥ γ(t)] dt.

First, let us bound I1 from below. To that end one should notice the following
facts. First, that for every 0 ≤ t ≤ α−1, 1 + α− 2αt ≥ 0 and∫ α−1

0
(2αt− (1 + α)) dt = −1.

13



Second, if we set E = exp (nPL2/T ), then for T .
√
n/ log n, 0 < (1+E)−1 ≤ α−1. In

particular, this holds under our assumption that T ≤ 1. Also, because γ is increasing
then for (1 + E)−1 ≤ t ≤ α−1, γ(t) ≥ γ

(
(1 + E)−1

)
= −PL2. Therefore,

I1 =
∫ α−1

0
(2αt− (1 + α)) P [PnL2 ≥ γ(t)] dt+ 1

=
∫ α−1

0
(2αt− (1 + α)) (P [PnL2 ≥ γ(t)]− 1) dt

≥
∫ α−1

(1+E)−1

(1 + α− 2αt) P [PnL2 < γ(t)] dt

≥
∫ α−1

(1+E)−1

(1 + α− 2αt) dt · P
[
(
√
n/σ)(PnL2 − PL2) < (

√
n/σ)(−2PL2)

]
≥
∫ α−1

(1+E)−1

(1 + α− 2αt) dt
(
P[g ≤ −8]−A/

√
n
)
≥ c0 > 0,

where in the last step we used the Berry-Esséen Theorem, that |L2| ≤ 1 and that
n ≥ 8 ∨ (2A/P[g ≤ −8])2, implying that 0 < c0 < 1/2.

Let us turn to a lower bound for I2. Applying a change of variables t 7→ 1+α−1−u
in the second term of I2, it is evident that

I2 =
∫ α+1

2α

α−1

(2αt− (1 + α)) P [PnL2 ≥ γ(t)] dt+
∫ 1

α+1
2α

(2αt− (1 + α)) P [PnL2 ≥ γ(t)] dt

=
∫ α+1

2α

α−1

(2αt− (1 + α)) P
[
γ(t) ≤ PnL2 < γ

(
1 + α−1 − t

)]
dt = I3 + I4

for

I3 =
∫ (1+c0/4)α−1

α−1

(2αt− (1 + α)) P
[
γ(t) ≤ PnL2 < γ

(
1 + α−1 − t

)]
dt

and

I4 =
∫ α+1

2α

(1+c0/4)α−1

(2αt− (1 + α)) P
[
γ(t) ≤ PnL2 < γ

(
1 + α−1 − t

)]
dt.

To estimate I3, note that 2αt− (1 + α) ≤ 0 for t ∈ [α−1, (α+ 1)/(2α)] and thus

I3 ≥
∫ (1+c0/4)α−1

α−1

(2αt− (1 + α)) dt ≥ −c0

4

(
1 +

1
α

)
≥ −c0

3
,
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for our choice of α.
The final step of the proof is to bound I4, and in particular to show that for small

values of T , I4 ≥ −c0/3.
For any 0 < t ≤ (α+1)/(2α), consider the intervals IT (t) =

[
nγ(t), nγ(1 + α−1 − t)

)
,

and set NT (t) = |{IT (t) ∩ Z}|, which is the number of integers in IT (t). Since
L2(X) = −X then

P
[
γ(t) ≤ PnL2 < γ

(
1 + α−1 − t

)]
= P

[
n∑
i=1

−Xi ∈ IT (t)

]
= PT (t).

Recall that X ∈ {−1, 1} and thus P [
∑

i−Xi ∈ IT (t)] = P [
∑

i−Xi ∈ IT (t) ∩ Z].
Since nγ(t) is increasing and nonnegative for t > 1/2 then if 1/2 < t ≤ (α+ 1)/(2α)
it follows that 0 < nγ(t) < nγ(1 + 1/α − t) < 1, provided that T ≤ 1. Thus, for
such values of t, NT (t) = 0, implying that PT (t) = 0. On the other hand, if t ≤ 1/2,
then {0} ⊂ IT (t) ∩ Z. In particular, if NT (t) = 1 then IT (t) ∩ Z = {0} and since n
is odd then PT (t) = P[

∑n
i=1−Xi = 0] = 0. Otherwise, NT (t) ≥ 2 which implies that

NT (t) ≤ 2∆T (t) where ∆T (t) is the length of IT (t), given by

∆T (t) = n(γ(1 + α−1 − t)− γ(t)) = T log
(

(1− t)(α+ 1− αt)
t(αt− 1)

)
.

Therefore, for every t in our range,

PT (t) ≤ NT (t) max
k∈IT (t)

P

[
n∑
i=1

−Xi = k

]
≤ 2∆T (t) max

k∈Z
P

[
n∑
i=1

Xi = k

]
.

Since 2αt− (1 + α) ≤ 0 for every 0 < t ≤ (α+ 1)/(2α) it is evident that

I4 ≥ 2T max
k∈Z

P

[
n∑
i=1

Xi = k

]
·
∫ α+1

2α

(1+c0/4)α−1

(2αt− (1 + α)) log
(

(1− t)(α+ 1− αt)
t(αt− 1)

)
dt.

One may show that maxk∈Z P [
∑n

i=1Xi = k] is of the order of n−1/2 either by a direct
computation or by the Berry-Esséen Theorem. Moreover, for any (1 + c0/4)α−1 ≤
t ≤ (α+ 1)/(2α), one has αt− 1 ≥ c0(4 + c0)−1αt, and thus,

log
(

(1− t)(α+ 1− αt)
t(αt− 1)

)
≤ log

(
2(4 + c0)
c0t2

)
.

Therefore, combining the two observations with a change of variables u = Ct for
C = (c0/(2(4 + c0)))1/2, it is evident that there are absolute constants c1, c2 for
which

I4 ≥
c1T√
n

∫ C(α+1)
2α

C(1+c0/4)α−1

(
1 + α− 2αu/C

)
(log u)du ≥ −c2

Tα√
n
.
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Hence, there is an absolute constant c3 such that if T ≤ c3 then I4 ≥ −c0/3, implying
that

E
[
R(f̃AEW )−R(f1)

]
≥ c0

3
√
n

and proving the first part of Theorem A.
To prove the second part of the claim, note that by the Berry-Esséen Theorem,

for every x ∈ R, with probability greater than P[g ≤ x]− 2A/
√
n

√
n

σ(L2)
(PnL2 − PL2) ≤ x.

Thus, if n is large enough to ensure that P[g ≤ −4] − 2A/
√
n ≥ P[g ≤ −4]/2 = c4

and taking x = −4, then with probability at least c4, PnL2 ≤ −n−1/2. On that event
θ̂1 ≤ exp(−

√
n/T ), which yields that

R(f̃AEW )−R(f1) =
(

1− θ̂1 − αθ̂1(1− θ̂1)
)
· PL2 ≥ PL2/4 = n−1/2/2,

provided that T .
√
n/ log n.

5 Proof of Theorem B

The first step in the proof of Theorem B is a general statement about a monotone
rearrangement of independent random variables that are close to being gaussian.

Let W be a mean zero, variance one random variable, that is absolutely continuous
with respect to the Lebesgue measure. Assume further that |W | has a finite third
moment (in fact, the random variables we will be interested in will be bounded) and
set β(W ) = AE|W |3, where A is the constant appearing in the Berry-Esséen Theorem
(Theorem 3.1). Let W1, ...,Wn be independent random variables distributed as W
and set X̄ = n−1/2

∑n
i=1Wi. Let (X̄j)`j=1 be ` independent copies of X̄, and put

γ1 = γ1(`) ∈ R to satisfy that

P
[

min
1≤j≤`

X̄j ≤ γ1(`)
]

= 1− 1
n
.

Note that such a γ1 exists because W has a density with respect to the Lebesgue
measure.

Throughout the proof of Theorem B we will require the following simple estimates
on γ1.

Lemma 5.1 There exist absolute constants c0, ..., c3 for which the following holds.
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1. If ` ≥ c0 log n then

1− c1
log n
`
≤ P[X̄ > γ1] ≤ 1− log n

`
.

2. If ` and n are such that (β(W )/
√
n+ (log n)/`) < P[g < −2], then γ1 ≤ −2.

3. If γ1 ≤ −2 and c0 log n ≤ ` ≤ c2β
−1(W )

√
n log n then

|γ1| ∼ log1/2

(
c3`

log n

)
and exp(−γ2

1/2) ∼ log n
`

log1/2

(
c3`

log n

)
.

Before presenting the proof of Lemma 5.1, recall that for every x ≥ 2,

3
4
√

2π

exp
(
− x2/2

)
x

≤ P[g ≥ x] ≤ 1√
2π

exp
(
− x2/2

)
x

. (5.1)

Proof of Lemma 5.1. To prove the first part, note that by independence and since
exp(−x) ≥ 1− x,

P[X̄ > γ1] = P[ min
1≤j≤`

X̄j > γ1]
1
` =

(
1
n

)1/`

≥ 1− log n
`

. (5.2)

The reverse inequality follows in an identical fashion, since exp(−x) ≤ 1 − x/3 if
0 ≤ x ≤ 1.

Turning to the second part, if γ1 > −2 then

1− 1
n

= P[ min
1≤j≤`

X̄j ≤ −γ1] ≥ P[ min
1≤j≤`

X̄j ≤ −2] = 1− (P[X̄ > −2])`,

implying that P[X̄ ≤ −2] ≤ (log n)/`. On the other hand, by the Berry-Esséen
Theorem, P[X̄ ≤ −2] ≥ P[g ≤ −2] − β(W )/

√
n, which is impossible under the

assumptions of (2).
Finally, to prove (3), one uses the Berry-Esséen Theorem combined with the lower

and upper estimates on the Gaussian tail (5.1) and (5.2). Thus,

3
4
√

2π
1
|γ1|

exp
(
−|γ1|2

2

)
≤ P[g < γ1] ≤ P[X̄ < γ1] +

β(W )√
n
≤ β(W )√

n
+ c1

log n
`

,

and
1√
2π

1
|γ1|

exp
(
−|γ1|2

2

)
≥ log n

`
− β(W )√

n
.

from which both parts of the third claim follow.
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Proposition 5.2 There exists constants c1, c2, c3 and c4 depending only on ‖W‖ψ2

for which the following holds. Let 2M2 exp(−c1n
1/3) < δ ≤ 1, assume that EW 3 = 0

and that γ1 = γ1(M − 1) ≤ −2. Then,

P
[
∃j ∈ {2, . . . ,M} : X̄j ≤ γ1 and for every k ∈ {2, . . . ,M}\{j}, X̄k − X̄j ≥ δ

]
≥ 1− 1

n
− c2

(
1√
n

+ δ

)
(log n)2

√
logM,

provided that c3 log n ≤M ≤ c4
√
n(log n).

Proof. For every 2 ≤ j ≤M , let

Ωj =
{
X̄j ≤ γ1 and X̄k − X̄j ≥ δ for every k ∈ {2, . . . ,M}\{j}

}
.

The events Ωj for 2 ≤ j ≤M are disjoints and thus

P
[
∃j ∈ {2, . . . ,M} : X̄j ≤ γ1 and X̄k − X̄j ≥ δ for every k ∈ {2, . . . ,M}\{j}

]
= P[∪Mj=2Ωj ] = (M − 1)P[Ω2].

Since the variables (X̄j)Mj=2 are independent, then

P[Ω2] =
∫ γ1

−∞
fX̄(z)

(∫ ∞
z+δ

fX̄(t)dµ(t)
)M−2

dµ(z),

where fX̄ is a density function of X̄ with respect to the Lebesgue measure µ.
On the other hand, for any z ≤ γ1, P[X̄ ≥ z] > 0 because of (5.2). Hence, for

every z ≤ γ1,∫ ∞
z+δ

fX̄(t)dµ(t) =

(
1−

∫ z+δ
z fX̄(t)dµ(t)∫∞
z fX̄(t)dµ(t)

)
·
∫ ∞
z

fX̄(t)dµ(t). (5.3)

Note that for every 0 ≤ x ≤ 1, (1− x)M−2 ≥ 1− (M − 2)x, and applied to (5.3),

P[Ω2] ≥
∫ γ1

−∞
fX̄(z)

(∫ ∞
z

fX̄(t)dµ(t)
)M−2

dµ(z)

− (M − 2)
∫ γ1

−∞
fX̄(z)

(∫ ∞
z

fX̄(t)dµ(t)
)M−3(∫ z+δ

z
fX̄(t)dµ(t)

)
dµ(z)

≥P
[
X̄2 ≤ γ1 and X̄k ≥ X̄2, for every k ≥ 3

]
− T2

=
1

M − 1
P
[

min
2≤j≤M

X̄j ≤ γ1

]
− T2,
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where

T2 = (M − 2)
∫ γ1

−∞
fX̄(z)

(∫ z+δ

z
fX̄(t)dµ(t)

)
dµ(z).

Recall the if (Wi) are independent, mean zero random variables then ‖
∑
aiWi‖ψ2 ≤

c(
∑
a2
i ‖Wi‖2ψ2

)1/2 where c is an absolute constant [26]. Hence, ‖X̄‖ψ2 ≤ c ‖W‖ψ2
,

and for any t < 0,∫ t

−∞
fX̄(z)

(∫ z+δ

z
fX̄(t)dµ(t)

)
dµ(z) ≤ P[X̄ ≤ t] ≤ 2 exp(−t2/c2‖W‖2ψ2

).

Let t0 < 0 be such that

2 exp(−t20/c2‖W‖2ψ2
) =

δ
√

log(M − 1)
(M − 1)(M − 2)

.

Hence,

(M − 2)
∫ t0

−∞
fX̄(z)

(∫ z+δ

z
fX̄(t)dµ(t)

)
dµ(z) ≤

δ
√

log(M − 1)
M − 1

.

Note that if t0 ≥ γ1 then our claim follows. Indeed, since P
[
min2≤j≤M X̄j ≤ γ1

]
≤

1− n−1, then

P[Ω0] ≥ 1
M − 1

(
1− 1

n

)
− δ

√
log(M − 1)
M − 1

.

Otherwise, we split the interval (−∞, γ1] = (−∞, t0) ∪ [t0, γ1], and to upper bound
T2 it remains to control the integral on the second interval [t0, γ1].

Recall that W ∈ Lψ1 and that EW 3 = 0. Therefore, by Proposition 3.2, it is
evident that if z and δ satisfy that z ≤ z + δ ≤ 0 and |z|, |z + δ| ≤ B0n

1/6, then∫ z+δ

z
fX̄(t)dµ(t) = P[z ≤ X̄ ≤ z + δ]

≤ P[z ≤ g ≤ z + δ] +
B1√
n

exp
(
−z2/2

)
, (5.4)

where B0 and B1 are constants that depend only on ‖W‖ψ1 . Also, for every z ≤ 0,

P[z ≤ g ≤ z + δ] ≤ 1√
2π

exp
(
−z2/2

) ∫ δ

0
exp(−zt)dt ≤ δ√

2π
exp

(
−z2/2

)
. (5.5)
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If 2M2 exp(−B2
0n

1/3/‖W‖2ψ2
) < δ ≤ 1 then |t0| ≤ B0n

1/6. Combining (5.4) and
(5.5) with the definition of T2,

(M − 2)
∫ γ1

t0

fX̄(z)
(∫ z+δ

z
fX̄(t)dµ(t)

)
dµ(z)

≤ (M − 2)
(
B1√
n

+
δ√
2π

)∫ γ1

t0

fX̄(z) exp
(
−z2/2

)
dµ(z)

≤ (M − 2)
(
B1√
n

+
δ√
2π

)
exp(−γ2

1/2)P[X̄ ≤ γ1]

≤ (M − 2)
(
B1√
n

+
δ√
2π

)
exp(−γ2

1/2)
log n
M − 1

,

where the last inequality follows from (5.2). By Lemma 5.1 and since M .
√
n log n,

(M − 2)
∫ γ1

t0

fX̄(z)
(∫ z+δ

z
fX̄(t)dµ(t)

)
dµ(z)

≤ c
(

1√
n

+ δ

)(
log n
M

)
(log n)

√
logM

for some constant c = c(β), from which our claim follows.

Next, let us describe the construction we need for the proof of Theorem B. Let
(X,Y ) and F = {f1, . . . , fM} be defined by

Y = 0,

f1(X) = (12)1/4U1,

fj(X) = (12)1/4 (Uj + λ) for every 2 ≤ j ≤M,

where U1, . . . ,UM are M independent random variables with the density u 7−→ 2(u+
λ)1I[−λ,1−λ](u) for 0 < λ < 1/2 to be fixed later. Note that for this choice of density
function, (U1 + λ)2 is uniformly distributed on [0, 1] and that the best element in F
with respect to the quadratic risk is f1.

Let (U (i)
j : j = 1, . . . ,M, i = 1, . . . , n) be a family of independent random variables

distributed as U1. Thus, for every 1 ≤ i ≤ n, fj(Xi) = (12)1/4(U (i)
j + λ) for every

2 ≤ j ≤M and f1(Xi) = (12)1/4U (i)
1 . For every 1 ≤ j ≤M set

R̄j =

√
12
n

(
n∑
i=1

(U (i)
j + λ)2 − E(U (i)

j + λ)2

)
,

and observe that if W =
√

12
(
(U + λ)2 − E(U + λ)2

)
then W is a mean zero, variance

1 random variable that is absolutely continuous with respect to the Lebesgue measure;
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also, W ∈ Lψ2 and satisfies that EW 3 = 0. These properties allow us to apply
Proposition 5.2 to the random variables R̄1, . . . , R̄M .

Let 0 < ρ < 1 to be named later and set

ξ(R̄1) = R̄1 +
T√
n

log
[

ρ

2(1− ρ)

]
−
√

12λ(2− λ)
√
n,

and

δ =
−T√
n

log
[

ρ

2(M − 2)(1− ρ)

]
.

Consider the system of inequalities

(Cj)
{
R̄j ≤ ξ(R̄1)
R̄k − R̄j ≥ δ, for every k 6= 1, j,

and recall that for each j = 1, . . . ,M we denote by θ̂j the weight of fj in the AEW
procedure.

Proposition 5.3 There exist absolute constants c1 and c2 for which the following
holds. Let 0 < ρ < 1/2 and 2 ≤ j ≤M . If the system (Cj) is satisfied then

θ̂j ≥ 1− ρ.

Moreover, if ρ ≤ c1λ then the quadratic risk of the function produced by the AEW
procedure satisfies

R(f̃AEW ) ≥ min
f∈F

R(f) + c2λ.

Proof. Let 2 ≤ j ≤ M and assume that (Cj) is satisfied. Recall that Rn(f) is the
empirical risk of f and note that for any k ∈ {2, . . . ,M}\{j},

Rn(fk)−Rn(fj) =
1
n

n∑
i=1

[
fk(Xi)2 − fj(Xi)2

]
=
R̄k − R̄j√

n

≥ δ√
n

=
−T
n

log
[

ρ

2(M − 2)(1− ρ)

]
. (5.6)

Also, since U (i)
1 ≤ 1− λ almost surely for any 1 ≤ i ≤ n,

Rn(f1)−Rn(fj) =
1
n

n∑
i=1

[
f1(Xi)2 − fj(Xi)2

]
=
R̄1 − R̄j√

n
−
√

12

(
λ2 +

2λ
n

n∑
i=1

U (i)
1

)

≥ R̄1 − ξ(R̄1)√
n

−
√

12λ(2− λ) ≥ −T
n

log
[

ρ

2(1− ρ)

]
. (5.7)
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Combining (5.6) and (5.7), it is evident that

θ̂j =
1∑M

k=1 exp
[−n
T (Rn(fk)−Rn(fj))

] ≥ 1
1 + (M − 2) ρ

2(M−2)(1−ρ) + ρ
2(1−ρ)

= 1− ρ.

Since the functions f1, . . . , fM are independent in L2(X) and Efj ≥ 0, then

R(f̃AEW ) = E

 M∑
j=1

θ̂jfj(X)

2

= (θ̂j)2Ef2
j +

∑
6̀=j

(θ̂`)2Ef2
` + 2

∑
`6=j

θ̂j θ̂`Efjf` ≥ (θ̂j)2Ef2
j ,

and there is an absolute constant c0 for which Ef2
j ≥ Ef2

1 + c0λ. Hence,

(θ̂j)2Ef2
j − Ef2

1 ≥ (1− ρ)(Ef2
1 + c0λ)− Ef2

1 ≥ c2λ,

provided that ρ ≤ c1λ, giving

R(f̃AEW ) ≥ Ef2
1 + c2λ = min

f∈F
R(f) + c2λ,

as claimed.

Let us formulate a general statement from which Theorem B follows immediately.

Theorem 5.4 There exists absolute constants ci, i = 0, . . . , 5 and an integer n0 for
which the following holds. For any n ≥ n0, 1 ≤ κ ≤ c0

√
n log n, 0 < T ≤ 1 and

c1T/
√
n log n < ε < 1/8, let M = c2

√
n log n, λ = c3ε

√
(log n)/n and ρ = n−εκ/T .

Set F to be the class of functions defined above with those parameters. Then, with
probability at least

1− c4(εκ+ T + 1)
(
(log3 n)/n

)(1−2ε)2/2
,

there exists j ≥ 2 such that

θ̂j ≥ 1− 1
nεκ/T

.

In particular, with the same probability and if 0 ≤ T < min{1, 2εκ},

R(f̃AEW ) ≥ min
f∈F

R(f) + c5ε

√
logM
n

.
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Proof. Set
P0 = P

[
∃j ∈ {2, . . . ,M} such that θ̂j ≥ 1− ρ

]
,

and by Proposition 5.3,

P0 ≥ P [∃j ∈ {2, ...,M} for which (Cj) is satisfied] = P1.

Let γ1 = γ1(M − 1) be defined by P
[
min2≤j≤M R̄j ≤ γ1

]
= 1− n−1 and observe that

γ1 is well defined and satisfies all three parts of Lemma 5.1 for ` = M − 1. Setting
Ω0 = {ξ(R̄1) ≥ γ1},

A =
{
∃j ∈ {2, ...,M} : R̄j ≤ ξ(R̄1), and R̄k − R̄j ≥ δ for every k 6= 1, j

}
,

and

B =
{
∃j ∈ {2, ...,M} : R̄j ≤ γ1 and R̄k − R̄j ≥ δ for every k 6= 1, j

}
.

Since the functions R̄j , j = 1, . . . ,M are independent then

P1 ≥ ER̄1

[
P[A|R̄1]1IΩ0

]
≥ P[B]P[Ω0].

Applying Proposition 5.2,

P[B] ≥ 1− 1
n
− c2

(
1√
n

+ δ

)
(log n)2

√
logM

provided that c3 log n ≤M ≤ c4
√
n(log n).

To lower bound P[Ω0], note that

P[Ω0] = P
[
R̄1 ≥ γ1 −

T√
n

log
(

ρ

2(1− ρ)

)
+
√

12λ(2− λ)
√
n

]
.

Fix 0 < ε < 1/8 and assume that λ, ρ and T are such that

√
12λ(2− λ)

√
n ≤ −εγ1 and − T√

n
log
(

ρ

2(1− ρ)

)
≤ −εγ1. (5.8)

By the Berry-Esséen Theorem and (5.1),

P[Ω0] ≥ P[R̄1 ≥ (1− 2ε)γ1] = 1− P[R̄1 < (1− 2ε)γ1] ≥ 1− P[g ≤ (1− 2ε)γ1]− 2β(W )√
n

≥ 1− 1√
2π(1− 2ε)|γ1|

exp
(
−(1− 2ε)2γ2

1/2
)
− 2A√

n
,
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and by Lemma 5.1,

exp
(
−(1− 2ε)2γ2

1/2
)
≤ c5

(
log n
M − 1

log1/2

(
c5M

log n

))(1−2ε)2

.

Therefore,

P0 ≥
(

1− 1
n
− c2

(
1√
n

+ δ

)
(log n)2

√
logM

)
·

(
1− c5

(
log3 n

M

)(1−2ε)2
)

provided that c2 log n ≤M ≤ c3
√
n log n.

To complete the proof, one has to chose λ and ρ for which (5.8) holds. By Lemma
5.1,

|γ1| & log1/2

(
M

log n

)
,

and thus (5.8) holds for λ and ρ for which

λ ≤ c8ε

[
1
n

log
(

M

log n

)]1/2

and ρ ≥ 2 exp
[
−c9ε

√
n

T
log1/2

(
M

log n

)]
.

In particular, when we take M ∼
√
n log n, λ ∼ ε ((logM)/n)1/2 and ρ = n−εκ/T ,

then ρ satisfies the required condition as long as ε & T/
√
n log n and κ .

√
n/ log n,

as was assumed. Also,

δ . (εκ+ T )
log n√
n
,

implying that

P0 ≥ 1− c8(εκ+ T + 1)
(

log3 n

n

) (1−2ε)2

2

.

The lower bound on the risk of the AEW procedure now follows from Proposition
5.3.

6 Proof of Theorem C

In this section we will prove Theorem C, which is re-formulated below. From here on
we will assume that the dictionary F is finite, consisting of M functions, and that the
functions are indexed according to their risk in an increasing order. Thus, f1 = f∗F .
Also, we will denote Lf (·) = Q(·, f)−Q(·, f1), and thus R(f)−R(f1) = ELf .
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For every r > 0, recall that

ψ(r) = log(|{f ∈ F : ELf ≤ r}|+ 1)

+
∞∑
j=1

2−j log(|{f ∈ F : 2j−1r < ELf ≤ 2jr}|+ 1),

which will serve as a measure of complexity for the class F .
The first component that is needed in the proof of Theorem C is to find the level

λ(x) with the following property: with probability at least 1 − 2 exp(−x), Rn(fj) −
Rn(f1) is equivalent to R(fj) − R(f1) if R(fj) − R(f1) ≥ λ(x). This “isomorphism”
constant was introduced in [5] and to formulate the exact properties we need, recall
the following definitions and notation.

If G = LF is the excess loss functions class {Lf : f ∈ F}, let star(G, 0) = {θg : 0 ≤
θ ≤ 1, g ∈ G} be the star-shaped hull of G and 0. Set Gr = star(G, 0)∩ {g : Eg = r}
– that is, the set of functions in the star-shaped hull of LF and 0, whose expectation
is r. Let

r∗ = inf{r : E sup
g∈Gr

|Png − Pg| ≤ r/2},

where, as always, Pn denotes the empirical mean and P is the mean according to the
underlying probability measure of Z.

Theorem 6.1 [5] There exists an absolute constant c for which the following holds.
Let F be a class of functions bounded by b, such that LF is a (1, B)-Bernstein class.
For every x > 0 and an integer n, let

λ(x) = cmax
{
r∗, (b+B)

x

n

}
. (6.1)

Then, with probability at least 1 − 2 exp(−x), for every f ∈ F with R(f) − R(f∗F ) ≥
λ(x),

Rn(f)−Rn(f∗F ) ≥ 1
2

(R(f)−R(f∗F )) .

Let ρ = κ1(B + b)/n, where κ1 is an absolute constant to be named later. Recall
that functions in F are indexed according to their risk in an increasing order, let
J−(x) = {j : R(fj)−R(f1) ≤ λ(x)} and set J+(x) to be its complement. Define the
sets J+,0 = {j ∈ J+(x) : R(fj)−R(f1) ≤ ρ} and for k ≥ 1,

J+,k = {j ∈ J+(x) : 2k−1ρ < R(fj)−R(f1) ≤ 2kρ}

(observe that some of the sets J+,k may be empty). Set

k0 = sup
{
k ≥ 0 : 2k ≤ log(|J+,k|+ 1)

}
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and let I = J− ∪
⋃
k≤k0 J+,k.

From Theorem 6.1 it follows that for every k ≥ 0 and every j ∈ J+,k, Rn(fj) −
Rn(f∗F ) ≥ 1

2 (R(fj)−R(f∗F )) (because R(fj) − R(f∗F ) ≥ λ(x) by the definition of
J+(x), and since J+(x) ⊃ J+,k).

The key ingredient in the proof of Theorem C is Theorem 6.2.

Theorem 6.2 There exist absolute constants c1 and c2 for which the following holds.
Let F be a class of functions bounded by b, such that LF is a (1, B)-Bernstein class
with respect to a convex risk function R. Then, with probability at least 1−2 exp(−x),
if f̃AEW is produced by the AEW algorithm and T ≤ c1(b+B), then

R(f̃AEW )−R(f∗F ) ≤ c2

(
λ(x) + (b+B)

2k0

n

)
, (6.2)

where λ(x) has been defined in (6.1).

Proof. Let (θ̂j)Mj=1 be the weights of the AEW algorithm and set f̃AEW =∑M
j=1 θ̂jfj to be the aggregate function. Since R is a convex function then

R
( M∑
j=1

θ̂jfj

)
−R(f1) ≤

M∑
j=1

θ̂j(R(fj)−R(f1)).

Note that for every j ∈ I, R(fj)−R(f1) ≤ λ(x) + 2k0ρ = λ(x) + κ12k0(b+B)/n.
In particular, since

∑M
j=1 θ̂j = 1 then∑

j∈I
θ̂j(R(fj)−R(f1)) ≤ λ(x) + κ12k0(b+B)/n.

On the other hand, with probability at least 1 − 2 exp(−x), for every k > k0 and
every j ∈ J+,k,

Rn(fj)−Rn(f1) ≥ (R(fj)−R(f1))/2.

Applying the definition of the weights in the AEW algorithm and since θ̂1 ≤ 1,

∑
j∈Ic

θ̂j (R(fj)−R(f1)) = θ̂1

∑
j∈Ic

θ̂j

θ̂1

(R(fj)−R(f1))

≤
∑
j∈Ic

exp
(
−n
T

(Rn(fj)−Rn(f1))
)

(R(fj)−R(f1))

≤
∑
k>k0

∑
j∈J+,k

exp
(
− n

2T
(R(fj)−R(f1))

)
(R(fj)−R(f1)) = (?).
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From the definition of k0 it is evident that for every k > k0, 2k ≥ log |J+,k|, and thus,
if T ≤ c1 max{b, B} and if κ1 is large enough,

(?) ≤
∑
k>k0

exp
(

log |J+,k| −
n

2T
2k−1ρ

)
2kρ ≤

∑
k>k0

exp(−c2
n

T
2kρ)2kρ ≤ c3

T

n
.

Indeed, this is evident because for that choice of T , (n/T )2k0ρ ≥ c4 with c4 being an
absolute constant.

Hence, with probability at least 1− 2 exp(−x),

R(f̃)−R(f1) ≤ λ(x) + κ12k0(b+B)/n+ c3
T

n
≤ λ(x) + c52k0

b+B

n
,

as claimed.

The next step towards the proof of Theorem C requires several simple facts re-
garding the empirical process indexed by a localization of the star-shaped hull of a
Bernstein class.

First of all, it is simple to verify that the star-shaped hull of a (1, B)-Bernstein
class is a (1, B)-Bernstein class as well. Second, if G = star(LF , 0) and Gr = {h ∈
G : Eh = r} then

Gr =
⋃
j≥1

{
rLf
ELf

: f ∈ F, 2j−1r ≤ ELf ≤ 2jr
}
≡
⋃
j≥1

Hr,j ,

In particular,

E sup
h∈Gr

∣∣∣∣∣ 1n
n∑
i=1

h(Zi)− Eh

∣∣∣∣∣ ≤
∞∑
i=1

E sup
h∈Hr,j

∣∣∣∣∣ 1n
n∑
i=1

h(Zi)− Eh

∣∣∣∣∣ .
Lemma 6.3 There exist an absolute constant c for which the following holds. If LF
is a (1, B)-Bernstein class w.r.t. Z, then for every r and j ≥ 1,

E sup
h∈Hr,j

|Pnh− Ph| ≤ cmax

{
b2−j log(|Hr,j |+ 1)

n
,

√
log(|Hr,j |+ 1)

n

√
rB2−j

}
.

Proof. Fix r > 0 and j ≥ 1, and let

D = sup
h∈Hr,j

(
1
n

n∑
i=1

h2(Zi)

)1/2

.
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Note that every h ∈ Hr,j satisfies that h = rLf/ELf for some f ∈ F , and for which
ELf ≥ r2j−1. Therefore, using the Bernstein condition on LF ,

Eh2 = r2 E(Lf )2

(ELf )2
≤ rB2−j+1.

Moreover, ‖h‖∞ ≤ (r/ELf )‖Lf‖∞ ≤ b2−j+1. Thus, by the Giné-Zinn symmetrization
theorem and a contraction argument (see, for example, [12] and [17]),

ED2 ≤E sup
h∈Hr,j

∣∣∣∣∣ 1n
n∑
i=1

h2(Zi)− Eh2

∣∣∣∣∣+ rB2−j+1

≤ 2√
n

EZEε sup
h∈Hr,j

∣∣∣∣∣ 1√
n

n∑
i=1

εih
2(Zi)

∣∣∣∣∣+ rB2−j+1

≤b2
−j+2

√
n

EZEε sup
h∈Hr,j

∣∣∣∣∣ 1√
n

n∑
i=1

εih(Zi)

∣∣∣∣∣+ rB2−j+1

≤c0rb2−j+2

√
n

√
log(|Hr,j |+ 1)ED + rB2−j+1,

where the last inequality is evident by the subgaussian properties of the Rademacher
process (cf. [17]). Since ED ≤ (ED2)1/2 it follows that

ED2 ≤ c0b2−j+2

√
log(|Hr,j |+ 1)

n
(ED2)1/2 + rB2−j+1,

implying that

ED2 ≤ c1 max
{
b22−2j log(|Hr,j |+ 1)

n
, rB2−j

}
.

Hence, using a symmetrization argument and the subgaussian properties of the Rademacher
process once again,

E sup
h∈Hr,j

∣∣∣∣∣ 1n
n∑
i=1

h(Zi)− Eh

∣∣∣∣∣ ≤ c2√
n

√
log(|Hr,j |+ 1)ED

≤c3 max

{
b2−j log(|Hr,j |+ 1)

n
,

√
log(|Hr,j |+ 1)

n

√
rB2−j

}
.

Corollary 6.4 There exists absolute constants c1 and c2 for which the following
holds. Let F be a finite class consisting of M functions bounded by b, such that
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the excess loss class LF is a (1, B)-Bernstein class. If we set θ = c1(b+B)(logM)/n
then

r∗ ≤ c2

(b+B

n

)
ψ(θ).

Proof. Observe that for every r > 0,

E sup
h∈Gr

∣∣∣∣∣ 1n
n∑
i=1

h(Zi)− Eh

∣∣∣∣∣ ≤∑
j≥1

E sup
h∈Hr,j

∣∣∣∣∣ 1n
n∑
i=1

h(Zi)− Eh

∣∣∣∣∣
≤c1 max

 b

n

∑
j≥1

2−j log(|Hr,j |+ 1),

√
Br

n

∑
j≥1

2−j/2
√

log(|Hr,j |+ 1)


≤c1

b

n

log(|Hr,0|+ 1) +
∑
j≥1

2−j log(|Hr,j |+ 1)


+c1

√
Br

n

√log(|Hr,0|+ 1) +
∑
j≥1

2−j/2
√

log(|Hr,j |+ 1)


≡u(r),

where we define Hr,0 =
{

(rLf )/(ELf ) : f ∈ F, ELf ≤ r
}

. Let r̄ = inf{r : u(r) ≤
r/2}. Since |Hr,j | ≤M for every j ≥ 0, then

u(r) ≤ c2 max

{
b
logM
n

,

√
rB logM

n

}
,

and thus
r̄ ≤ c3(b+B)(logM)/n = θ.

Moreover, the functions of r

log(|Hr,0|+ 1) +
∑
j≥1

2−j log(|Hr,j |+ 1)

and √
log(|Hr,0|+ 1) +

∑
j≥1

2−j/2
√

log(|Hr,j |+ 1)
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are increasing, and thus, for any r ≤ θ,

b

n

log(|Hr,0|+ 1) +
∑
j≥1

2−j log(|Hr,j |+ 1)


≤ b
n

log(|Hθ,0|+ 1) +
∑
j≥1

2−j log(|Hθ,j |+ 1)

 ,

and √
Br

n

√log(|Hr,0|+ 1) +
∑
j≥1

2−j/2
√

log(|Hr,j |+ 1)


≤
√
Br

n

√log(|Hθ,0|+ 1) +
∑
j≥1

2−j/2
√

log(|Hθ,j |+ 1)

 .

Hence, if we consider

r =c3
b

n

log(|Hθ,0|+ 1) +
∑
j≥1

2−j log(|Hθ,j |+ 1)


+c3

B

n

√log(|Hθ,0|+ 1) +
∑
j≥1

2−j/2
√

log(|Hθ,j |+ 1)

2

≤c4

(
b+B

n

)
ψ(θ),

for appropriate constants c3 and c4, then r ≤ θ. Thus, it is evident that u(r) ≤ r/2,
and therefore,

r̄ ≤ c4

(
b+B

n

)
ψ(θ).

Finally, since
E sup
h∈Gr

|Pnh− Ph| ≤ u(r)

and since r∗ = inf{r : E supg∈Gr |Png − Pg| ≤ r/2}, then r∗ ≤ r̄.
Proof of Theorem C. The proof of Theorem C follows from estimates on λ(x) and
on 2k0 .

From Corollary 6.4 it is evident that

λ(x) ≤ c1 max
{(b+B

n

)
ψ

(
c1(b+B)

logM
n

)
, (b+B)

x

n

}
,
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where c1 is an absolute constant to be named later (note that ψ is an increasing
function).

Next, if follows from the definition of k0 that 2k0 ≤ logM . Therefore, using the
notation of Theorem 6.2,⋃

k≤k0

{fj : j ∈ J+,k} ⊂
{
fj : R(fj)−R(f1) ≤ κ1(b+B)

logM
n

}
,

and in particular

2k0 ≤ log
(∣∣∣ ⋃

k≤k0

{fj : j ∈ J+,k}
∣∣∣+ 1

)
≤ log

(∣∣∣{fj : R(fj)−R(f1) ≤ κ1(b+B)
logM
n

} ∣∣∣+ 1
)
≤ log(|Hθ,0|+ 1),

for an appropriate choice of the constant c1.
The second part of Theorem C is evident from a standard integration argument.
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