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Abstract

We study the performance of empirical risk minimization (ERM), with re-
spect to the quadratic risk, in the context of convex aggregation, in which one
wants to construct a procedure whose risk is as close as possible to the best
function in the convex hull of an arbitrary finite class F . We show that ERM
performed in the convex hull of F is an optimal aggregation procedure for the
convex aggregation problem. We also show that if this procedure is used for
the problem of model selection aggregation, in which one wants to mimic the
performance of the best function in F itself, then its rate is the same as the
one achieved for the convex aggregation problem, and thus is far from optimal.
These results are obtained in deviation and are sharp up to logarithmic factors.

(Résumé en Français: Nous étudions les performances de la procédure de
minimisation du risque empirique, par rapport au risque quadratique, pour le
problème d’agrégation convexe. Dans ce problème, on souhaite construire des
procédures dont le risque est aussi proche que possible du risque du meilleur
élément dans l’enveloppe convexe d’une classe finie F de fonctions. Nous prou-
vons que la procédure obtenue par minimisation du risque empirique sur la coque
convexe de F est une procédure optimale pour le problème d’aggrégation con-
vexe. Nous prouvons aussi que si cette procédure est utilisée pour le problème
d’agrégation en sélection de modèle, pour lequel on souhaite imiter le meilleur
dans F , alors le résidue d’agrégation est le même que celui obtenue pour le
problème d’agrégation convexe. Cette procédure est donc loin d’être optimale
pour le problème d’agrégation en sélection de modèle. Ces résultats sont obtenus
en déviation et sont optimaux à des facteurs logarithmiques prés.)
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1 Introduction and main results

In this note, we study the optimality of the empirical risk minimization procedure in
the aggregation framework.

Let X be a probability space and let (X,Y ) and (X1, Y1), . . . , (Xn, Yn) be n + 1
i.i.d. random variables with values in X × R. From the statistical point of view,
D = ((X1, Y1), . . . , (Xn, Yn)) is the family of given data.

The quadratic risk of a real-valued function f defined on X is given by

R(f) = E(Y − f(X))2.

If f̂ is a function constructed using the data D, the quadratic risk of f̂ is the random
variable

R(f̂) = E
[
(Y − f̂(X))2|D

]
.

For the sake of simplicity, throughout this article we will restrict ourselves to functions
f and random variables (X,Y ) for which |Y |, |f(X)| ≤ b almost surely, for some fixed
b ≥ 1. One should note, though, that it is possible to extend the results beyond this
case, to functions with well behaved tail – though at a high technical price (cf. the
chaining arguments in [21] and [20]).

In the aggregation framework, one is given a finite set F of real-valued functions
defined on X (usually called a dictionary) of cardinality M . There are three main
types of aggregation problems:

1. In the Model Selection (MS) aggregation problem, one has to construct a pro-
cedure that produces a function whose risk is as close as possible to the risk of
the best element in the given class F (cf. [2, 3, 9, 10, 11, 12, 16, 24, 25, 27])

2. In the Convex (C) aggregation problem (cf. [1, 7, 8, 9, 12, 24, 28]) one wants to
construct a procedure whose risk is as close as possible to the risk of the best
function in the convex hull of F (later denoted by conv(F )).

3. In the linear (L) aggregation problem (cf. [9, 11, 15, 24]), one wants to construct
a procedure whose risk is as close as possible to the risk of the best function in
the linear span of F (later denoted by span(F )).

The aim in the aggregation framework is to construct a procedure f̃ for which,
with high probability

R(f̃) ≤ C min
f∈∆(F )

R(f) + ψ∆(F )
n (M) (1.1)

with C = 1 and ∆(F ) is either F , or conv(F ) or span(F ). It is worth mentioning that
it is desirable for the constant C in (1.1) to be one in the aggregation setup for at least
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two reasons. First, there are some obvious mathematical differences in the analysis
leading to exact oracle inequalities (C = 1) and non-exact oracle inequalities (C > 1).
In particular, the geometry of the set ∆(F ) has a key role in an attempt to obtain
exact oracle inequalities, whereas non-exact oracle inequalities are mainly based on
complexity and concentration argument (cf. [17]). Second, an exact oracle inequality
for the prediction risk R(·) leads to an exact oracle inequality for the estimation risk;
namely, with high probability

E
[
(f̃(X)− f∗(X))2|D

]
≤ min

f∈∆(F )
E
[
(f(X)− f∗(X))2

]
+ ψ∆(F )

n (M),

where f∗ denotes the regression function of Y given X. Such an estimate on the
regression function cannot follow from a non-exact oracle inequality, and thus, exact
oracle inequalities can provide prediction and estimation results whereas non-exact
oracle inequalities only lead to prediction results.

One can define the optimal rates of the (MS), (C) and (L) aggregation problems,
respectively denoted by ψ

(MS)
n (M), ψ(C)

n (M) and ψ
(L)
n (M) (see, for example, [24]).

The optimal rates are the smallest prices in the minimax sense that one has to pay
to solve the (MS), (C) or (L) aggregation problems in expectation, as a function of
the cardinality M of the dictionary and of the sample size n. It has been proved in
[24] (see also [12] and [28] for the (C) aggregation problem) that

ψ(MS)
n (M) ∼ logM

n
,ψ(C)

n (M) ∼


M
n if M ≤

√
n√

1
n log

(
eM√
n

)
if M >

√
n

and ψ(L)
n (M) ∼ M

n

where we denote a ∼ b if there are absolute positive constants c and C such that cb ≤
a ≤ Cb. Note that the rates obtained in [24] hold in expectation and in particular, the
rate ψ(C)

n (M) was achieved in the gaussian regression model with a known variance
and a known marginal distribution of the design. In [8], the authors were able to
remove these assumptions at a price of an extra log n factor for 1 ≤M ≤

√
n (results

are still in expectation). We also refer the reader to [6, 28] for non-exact oracle
inequalities in the (C) aggregation context.

Lower bounds in deviation follow from the arguments of [24] for the three ag-
gregation problems with the same rates ψ(MS)

n (M), ψ(C)
n (M) and ψ

(L)
n (M). In other

words, there exist two absolute constants c0, c1 > 0 such that for any sample cardi-
nality n ≥ 1, any cardinality of a dictionary M ≥ 1 and any aggregation procedure
f̄n, there exists a dictionary F of size M such that with probability larger than c0,

R(f̄n) ≥ min
f∈∆(F )

R(f) + c1ψ
∆(F )
n (M), (1.2)

where the residual term ψ
∆(F )
n (M) is ψ(MS)

n (M) (resp. ψ(C)
n (M) or ψ(L)

n (M) ) when
∆(F ) = F (resp. ∆(F ) = conv(F ) or ∆(F ) = span(F )). Procedures achieving
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these rates in deviation have been constructed for the (MS) aggregation problem ([2]
and [16]) and the (L) aggregation problem ([15]). So far, there was no example of a
procedure that achieves the rate of aggregation ψ(C)

n (M) with high probability for the
(C) aggregation problem and the aim of this note is to prove that the most natural
procedure, empirical risk minimization over the convex hull of F , achieves the rate of
ψ

(C)
n (M) in deviation (up to a log n factor for values of M close to

√
n).

Indeed, we will show that the procedure f̃ERM−C minimizing the empirical risk
functional

f 7−→ Rn(f) =
1
n

n∑
i=1

(Yi − f(Xi))2, (1.3)

in conv(F ) achieves, with high probability, the rate min
(
M
n ,
√

logM
n

)
for the (C)

aggregation problem (see the exact formulation in Theorem 4.3 in the Appendix).
Moreover, we will show that the rate ψ(C)

n (M) can be achieved by f̃ERM−C for any
orthogonal dictionary (formulated in Theorem B). On the other hand, it turns out
that the same algorithm is far from the conjectured optimal rate ψ(MS)

n (M) for the
(MS) aggregation problem (see Theorem A and [16] for the conjecture).

Our first main result is to prove a lower bound on the performance of f̃ERM−C

(ERM in the convex hull) in the context of the (MS) aggregation problem. In [16],
it was proved that this procedure is suboptimal for the problem of (MS) aggregation
when the size of the dictionary is of the order of

√
n. Here we complement the result

by providing a lower bound for almost all values of M and n.

Theorem A There exist two absolute positive constants c0 and c1 for which the
following holds. For any integer n and M such that logM ≤ c0n

1/3, there exists a
dictionary F of cardinality M such that, with probability greater than 9/12

R(f̃ERM−C) ≥ min
f∈F

R(f) + c2ψn(M),

where ψn(M) = M/n when M ≤
√
n and

(
n log(eM/

√
n
))−1/2 when M >

√
n.

Moreover, for the same class F , if M ≥
√
n, then with probability larger than 7/12,

R(f̃ERM−C) ≤ min
f∈F

R(f) + c3ψn(M).

Note that the residual term ψn(M) of Theorem A is much larger than the optimal
rate ψ(MS)

n (M) = (logM)/n for the (MS) aggregation problem. It shows that ERM in
the convex hull satisfies a much stronger lower bound than the one mentioned in (1.2)
that holds for any algorithm. This result is of particular importance since optimal
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aggregation procedures for the (MS) aggregation problem take their values in conv(F ),
and it was thus conjectured that f̃ERM−C could be an optimal aggregation procedure
for the (MS) aggregation problem (cf. [16] for more details on this problem). In [16] it
was proved that this not the case for M =

√
n; Theorem A shows that this is not the

case for all the values of M and n in the significant range (when M is sub-exponential
in n).

The proof of Theorem A requires two separate arguments (as in the proofs of the
lower bounds in [28] and [24]). The case M ≤

√
n is easier, and follows an identical

path to the one used in [16] for M =
√
n. Its proof is presented for the sake of

completeness, and to allow the reader a comparison with the situation in the other
case, when M >

√
n. In the “large M” range things are very different and we present

a more intuitive description of the idea behind the construction in Section 2.
The performance of ERM in the convex hull has been studied for an infinite

dictionary in [7], in which estimates on its performance have been obtained in terms
of the metric entropy of F . The resulting upper bounds were conjectured to be
suboptimal in the case of a finite dictionary, since they provide an upper bound of
M/n for every n and M whereas it is possible to achieve the rate

√
(logM)/n when

M ≥
√
n. Although this result is probably known to experts and relies on standard

machinery (see for instance [15, 14]), we present its proof in the Appendix.

The residual term min
(
M
n ,
√

logM
n

)
of Theorem 4.3 behaves like ψ(C)

n (M) except

for values of M for which n1/2 < M ≤ c(ε)n1/2+ε for ε > 0. And, although there
is a gap in this range in the general case, under the additional assumption that the
dictionary is orthogonal, this gap can be removed.

Theorem B For every b > 0 there is a constant c1(b) and an absolute constant c2

for which the following holds. Let n and M be integers which satisfy that logM ≤
c1(b)

√
n. Let F be a finite dictionary F of cardinality M and (X,Y ) such that

|Y |, supf∈F |f(X)| ≤ b. If F = {f1, . . . , fM} satisfies that Efi(X)fj(X) = 0 for

any i 6= j ∈ {1, . . . ,M}, then f̃ERM−C achieves the rate ψ(C)
n (M): for any u > 0,

with probability greater than 1− exp(−u)

R(f̃ERM−C) ≤ min
f∈conv(F )

R(f) + c2b
2 max

[
ψ(C)
n (M),

u

n

]
.

Removing the gap in the general case is likely to be a much harder problem, although
we believe that the orthogonal case should be the “worst” one.

Finally, a word about notation. Throughout, we denote absolute constants or
constants that depend on other parameters by c, C, c1, c2, etc., (and, of course, we
will specify when a constant is absolute and when it depends on other parameters).
The values of constants may change from line to line. The notation x ∼ y (resp.
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x . y) means that there exist absolute constants 0 < c < C such that cy ≤ x ≤ Cy
(resp. x ≤ Cy). If b > 0 is a parameter then x .b y means that x ≤ C(b)y for
some constant C(b) depending only on b. We denote by `Mp the space RM endowed
with the `p norm. The unit ball there is denoted by BM

p . We also denote the unit
Euclidean sphere in RM by SM−1.

If F is a class of functions, let f∗ be a minimizer in F of the true risk; in our case,
f∗ is the minimizer of E(f(X)− Y )2. For every f ∈ F set Lf = (Y − f(X))2 − (Y −
f∗(X))2, and let LF = {Lf : f ∈ F} be the excess loss class associated with F , the
target Y and the quadratic risk.

Acknowledgments

The authors would like to thank Vladimir Koltchinskii for a helpful discussion.

2 On the complexity of BM
1 with respect to `M2

The aim of this section is to give some of the ideas needed in the proof of Theorem A
in the case M ≥

√
n. It is also presented to explain why the seemingly unlikely fact

that the rate
1√

n log
(
eM/
√
n
) (2.1)

actually improves as the size of the dictionary M increases in our construction is true.
The example used for this result is a class FM = {0,±φ1, . . . ,±φM} where (φi)Mi=1

is a bounded orthonormal family of L2(PX) and Y = φM+1(X) is orthogonal to this
family. We also assume that Φ(X) = (φ1(X), . . . , φM (X)) is isotropic, that is, for
every λ ∈ Rn, E

〈
Φ(X), λ

〉2 = ‖λ‖22.
An element in conv(FM ) is of the form fλ =

〈
Φ, λ

〉
for some λ ∈ BM

1 , its excess
loss is Lfλ =

〈
Φ, λ

〉2 − 2
〈
Φ, λ

〉
φM+1 and the process one has to minimize is indexed

by BM
1 and given by

PnLfλ =
1
n

n∑
i=1

〈
Φ(Xi), λ

〉2 − 2
n

n∑
i=1

〈
Φ(Xi), λ

〉
φM+1(Xi). (2.2)

It follows from [21] that the oscillations of the quadratic term λ ∈ BM
1 → |(Pn −

P )(
〈
Φ, λ

〉2)| are of lower order, and that the empirical process (2.2) behaves like
λ ∈ BM

1 → ‖λ‖
2
2− 2n−1/2

〈
V, λ

〉
where V = n−1/2

∑n
i=1 φM+1Φ(Xi), while a gaussian

approximation shows that V essentially behaves like a standard gaussian vector G in
RM . Hence, the excess risk PL bf = ‖λ̂‖22 of the empirical risk minimization procedure
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f̂ = fbλ will be located around

arg min
0≤r≤1

min
λ∈BM1 ∩

√
rSM−1

(
r− 2

〈
G,λ

〉
√
n

)
= arg min

0≤r≤1

(
r− 2n−1/2 sup

λ∈BM1 ∩
√
rSM−1

〈
G,λ

〉)
.

Observe that for every radius 0 < r ≤ 1, supλ∈BM1 ∩
√
rSM−1

〈
·, λ
〉
, is an interpolation

norm, which will be denoted by ‖·‖A◦r . The problem arises because in the range
1/M ≤ r ≤ 1 (which is the range we are interested in), a proportional change in the
radius r only results in a logarithmic change in the value of E ‖G‖A◦r , which is why
one has to obtain a sharp estimate on E ‖G‖A◦r for every r.

It turns out that a rather accurate estimate on the complexity of BM
1 ∩
√
rSM−1

comes from vectors of “short” support. Namely, for every I ⊂ {1, ...,M}, let SI be
the set of vectors in SM−1 supported in I. Set

Ck =
⋃
|I|=k

1√
k
SI ⊂ BM

1 ∩
1√
k
SM−1.

If one replaces BM
1 ∩ 1√

k
SM−1 by Ck, it is much easier to analyze ERM over that set.

Indeed, it is straightforward to verify that ERM is likely to choose a vector in Ck,
where k minimizes the functional

k → 1√
k
− 2√

n
· E sup

v∈Ck

〈
G, v

〉
=

1√
k
− 2√

n
E

(
k∑
i=1

(g2
i )
∗

)1/2

, (2.3)

where (x∗i ) is a non-increasing ordering of the vector (|xi|).
A sharp estimate on the gaussian quantity reveals that the gap between the “level”

k and the “level” ` decrease with the dimension M . Thus, the minimum of (2.3) –
which is proportional to (2.1)– decreases as M increases.

The proof of Theorem A will be a combination of two approximation arguments
– first, of the measure n−1/2

∑n
i=1Xi by a gaussian, and second, an approximation of

BM
1 by the sets Ck, reducing the problem to the one described above.

One should comment that it is possible to approximate BM
1 ∩ 1√

k
SM−1 using a

completely combinatorial set ∪|I|=kk−1{−1, 1}I , and the way the complexities change
between the levels k and ` as M increases gives a more geometric explanation to why
the minimizer moves closer to 0.

3 Proof of the lower bound for the (MS) aggregation
problem (Theorem A)

The proof of Theorem A consists of two parts. The first, simpler part, is when
M ≤

√
n. This is due to the fact that if 0 < θ < 1 and ρ = θr ∼ M/n, the set
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BM
1 ∩

√
rSM−1 is much “larger” than the set BM

1 ∩
√
ρBM

2 . This results in much
larger “oscillations” of the appropriate empirical process on the former set than on
the latter one, leading to very negative values of the empirical excess risk functional
for functions whose excess risk larger than ρ. The case M ≥

√
n is much harder

because when considering the required values of r and ρ, the complexity of the two
sets is very close, and comparing the two oscillations accurately involves a far more
delicate analysis.

3.1 The case M ≤
√

n

We will follow the method used in [16]. Let (φi)i∈N be a sequence of functions defined
on [0, 1] and set µ to be a probability measure on [0, 1] such that (φi : i ∈ N) is a
sequence of independent Rademacher variables in L2([0, 1], µ).

Let M ≤
√
n be fixed and put (X,Y ) to be a couple of random variables; X

is distributed according to µ and Y = φM+1(X). Let F = {0,±φ1, . . . ,±φM} be
the dictionary, and note that any function in the convex hull of F can be written as
fλ =

∑M
j=1 λjφj for λ ∈ BM

1 . Since relative to conv(F ), f∗ = 0, the excess quadratic
loss function is

Lλ(X,Y ) = −2φM+1(X)
〈
λ,Φ(X)

〉
+
〈
λ,Φ(X)

〉2

where we set Φ(·) = (φ1(·), . . . , φM (·)).
The following is a reformulation of Lemma 5.4 in [16].

Lemma 3.1 There exist absolute constants c0, c1 and c2 for which the following holds.
Let (Xi, Yi)i=1,...,n be n independent copies of (X,Y ). Then, for every r > 0, with
probability greater than 1− 8 exp(−c0M), for any λ ∈ RM ,∣∣∣ ‖λ‖22 − 1

n

n∑
i=1

〈
λ,Φ(Xi)

〉2
∣∣∣ ≤ 1

2
‖λ‖22 (3.1)

and

c1

√
rM

n
≤ sup

λ∈
√
rBM2

1
n

n∑
i=1

〈
λ,Φ(Xi)

〉
φM+1(Xi) ≤ c2

√
rM

n
. (3.2)

Set r = βM/n for some 0 < β ≤ 1 to be named later, and observe that BM
1 ∩√

rSM−1 =
√
rSM−1 because r ≤ 1/M . For any λ ∈

√
rSM−1, PLλ = ‖λ‖22 = r,

and thus applying (3.1) and (3.2), it is evident that with probability greater than
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1− 8 exp(−c0M),

inf
λ∈BM1 ∩

√
rSM−1

PnLλ = r − sup
λ∈
√
rSM−1

(P − Pn)Lλ

≤ r + sup
λ∈
√
rSM−1

∣∣∣ ‖λ‖22 − 1
n

n∑
i=1

〈
λ,Φ(Xi)

〉2
∣∣∣− sup

λ∈
√
rSM−1

2
n

n∑
i=1

〈
λ,Φ(Xi)

〉
φM+1(Xi)

≤ 3r
2
− 2c1

√
rM

n
=
(3β

2
− 2c1

√
β
)M
n
≤ −c1

√
β
M

n
,

provided that β ≤
(
2c1/3

)2.
On the other hand, let ρ = αM/n for some α to be chosen later. Using (3.1)

and (3.2) again, it follows that with probability at least 1 − 8 exp(−c0M), for any
λ ∈ BM

1 ∩
√
ρBM

2

∣∣PnLλ∣∣ ≤ PLλ +
∣∣∣ ‖λ‖22 − 1

n

n∑
i=1

〈
λ,Φ(Xi)

〉2
∣∣∣+
∣∣∣ 2
n

n∑
i=1

〈
λ,Φ(Xi)

〉
φM+1(Xi)

∣∣∣
≤ 3ρ

2
+ 2c2

√
ρM

n
=
(3α

2
+ 2c2

√
α
)M
n
.

Therefore, if 0 < α < β satisfies that 3α/2+2c2
√
α < c1

√
β for some 0 < β ≤

(
2c1/3

)2
then with probability greater than 1 − 16 exp(−c0M), the empirical risk function
λ 7−→ Rn(fλ) achieves smaller values on BM

1 ∩
√
rSM−1 than on BM

1 ∩
√
ρBM

2 . Hence,
with the same probability, R(f̃ERM−C) ≥ ρ = αM/n.

3.2 The case M ≥
√

n

Let us reformulate the second part of Theorem A.

Theorem 3.2 There exist absolute constants c0, c1, c2 and n0 for which the following
holds. For every integers n ≥ n0 and M , if

√
n ≤M ≤ exp(c0n

1/3), there is a function
class FM of cardinality M consisting of functions that are bounded by 1, and a couple
(X,Y ) distributed according to a probability measure µ, such that with µ⊗n-probability
at least 9/12,

R(f̂) ≥ min
f∈FM

R(f) +
c1√

n log(eM/
√
n)
,

where f̂ is the empirical minimizer in conv(FM ). Moreover, with µ⊗n-probability
greater than 7/12,

R(f̂) ≤ min
f∈FM

R(f) +
c2√

n log(eM/
√
n)
.
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The proof will require accurate information on a monotone rearrangement of al-
most gaussian random variables.

Lemma 3.3 There exists an absolute constant C for which the following holds. Let
g be a standard gaussian random variable, set H(x) = P(|g| > x) and put W (p) =
H−1(p) (the inverse function of H). Then for every 0 < p < 1,

∣∣W 2(p)− log
(
2/(πp2)

)
+ log(log

(
2/(πp2)

)∣∣ ≤ C log log
(
2/(πp2)

)
log(2/(πp2)

) .

Moreover, for every 0 < ε < 1/2 and 0 < p < 1/(1 + ε),∣∣W 2(p)−W 2((1 + ε)p)
∣∣ ≤ Cε, ∣∣W 2(p)−W 2((1− ε)p)

∣∣ ≤ Cε.
Proof. The proof of the first part follows from the observation that for every x > 0,

√
2

x
√
π

exp(−x2/2)
(

1− 1
x2

)
≤ P(|g| > x) ≤

√
2

x
√
π

exp(−x2/2), (3.3)

where c is a suitable absolute constant (see, e.g. [22]), combined with a straightfor-
ward (yet tedious) computation. The second part of the claim follows from the first
one, and is omitted.

The next step is a gaussian approximation of a variable Y = n−1/2
∑n

i=1Xi,
where X1, . . . , Xn are i.i.d random variables, with mean zero, variance 1, under the
additional assumption that X has well behaved tails.

Definition 3.4 [18, 26] Let 1 ≤ α ≤ 2. We say that a random variable X belongs to
Lψα if there exists a constant C such that

E exp
(
|X|α/Cα

)
≤ 2. (3.4)

The infimum over all constants C for which (3.4) holds defines a norm called the ψα
norm of X, and we denote it by ‖X‖ψα.

Proposition 3.5 ([22], pg. 183) For every L there exist constants c1 and c2 that
depend only on L and for which the following holds. Let (Xn)n∈N be a sequence
of i.i.d., mean zero random variables with variance 1, and ‖X‖ψ1 ≤ L. If Y =

1√
n

∑n
i=1Xi then for any 0 < x ≤ c1n

1/6,

P[Y ≥ x] = P[g ≥ x] exp
(EX3

1x
3

6
√
n

)[
1 + c2

x+ 1√
n

]
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and

P[Y ≤ −x] = P[g ≤ −x] exp
(−EX3

1x
3

6
√
n

)[
1 + c2

x+ 1√
n

]
.

In particular, if 0 < x ≤ c1n
1/6 and EX3

1 = 0 then

|P[|Y | ≥ x]− P[|g| ≥ x]| = c2P[|g| ≥ x]
x+ 1√
n
.

Since Proposition 3.5 implies a better gaussian approximation than the standard
Berry-Esséen bounds, one may consider the following family of random variables that
will be used in the construction.

Definition 3.6 We say that a random variable Y is (L, n)-almost gaussian for L > 0
and n ∈ N, if Y = n−1/2

∑n
i=1Xi, where X1, . . . , Xn are independent copies of X,

which is a non-atomic random variable with mean 0, variance 1, and satisfies that
EX3 = 0 and ‖X‖ψ1 ≤ L.

Let X1, ..., Xn and Y be such that Y = n−1/2
∑n

i=1Xi is (L, n)-almost gaussian.
For 0 < p < 1 set

U(p) = {x > 0 : P(|Y | > x) = p}.

Since X is non-atomic then U(p) is non-empty and let

u+(p) = supU(p) and u−(p) = inf U(p).

We shall apply Lemma 3.3 and Proposition 3.5 in the following case to bound
u+(i/M) and u−(i/M) for every i, as long as M is not too large (i.e. logM ≤
c1n

1/3). To that end, set εM,n = [(logM)/n]1/2, and for fixed values of M and n, and
1 ≤ i ≤M let

u+
i = u+(i/M) and u−i = u−(i/M).

Corollary 3.7 For every L > 0 there exist a constant C0 that depends on L and an
absolute constant C1 for which the following holds. Assume that Y is (L, n)-almost
gaussian and that logM ≤ C0n

1/3. Then, for every 1 ≤ i ≤M/2,

(u+
i )2 ≤ log

(2M2

πi2

)
− log

(
log
(2M2

πi2

))
+ C1 max

{
log
(

log
(
2M2/(πi2)

))
log
(
2M2/(πi2)

) , εM,n

}
,

and

(u−i )2 ≥ log
(2M2

πi2

)
− log

(
log
(2M2

πi2

))
− C1 max

{
log
(

log
(
2M2/(πi2)

))
log
(
2M2/(πi2)

) , εM,n

}
.
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Proof. Since
√

logM ≤ C0n
1/6, one may use the gaussian approximation from

Proposition 3.5 to obtain

P[|Y | ≥
√

4 logM ] ≤ P[|g| ≥
√

4 logM ]
(

1 + c1

(√4 logM + 1√
n

))
≤
√

2
4π logM

exp(−2 logM)
(

1 + c1

(√4 logM + 1√
n

))
≤ 1
M2

.

Thus, for every 1 ≤ i ≤M , if x ∈ U(i/M) then x ≤
√

4 logM .
Let 1 ≤ i ≤ M/2 and x ∈ U(i/M). Since x ≤ 2C0n

1/6 (because x ≤
√

4 logM ≤
2C0n

1/6), it follows from Proposition 3.5 that∣∣i/M −H(x)
∣∣ ≤ c3H(x)

x+ 1√
n
≤ c4H(x)εM,n, (3.5)

where H(x) = P[|g| ≥ x]. Observe that if W (p) = H−1(p), then∣∣W 2(i/M)− x2
∣∣ ≤ c5εM,n.

Indeed, since H(x)(1− c4εM,n) ≤ i/M ≤ H(x)(1 + c4εM,n), then by the monotonicity
of W and the second part of Lemma 3.3, setting p = H(x),

W 2(i/M) ≤W 2((1 + c4εM,n)H(x)) ≤W 2(H(x)) + c6εM,n = x2 + c6εM,n.

One obtains the lower bound in a similar way. The claim follows by using the ap-
proximate value of W 2(i/M) provided in the first part of Lemma 3.3.

The parameters u+
i and u−i can be used to estimate the distribution of a non-

increasing rearrangement (Y ∗i )Mi=1 of the absolute values of M independent copies of
Y .

Lemma 3.8 There exists constants c > 0 and j0 ∈ N for which the following holds.
Let Y1, ..., YM be i.i.d. non-atomic random variables. For every 1 ≤ s ≤ M , with
probability at least 1− 2 exp(−cs),

|{i : |Yi| ≥ u−s }| ≥ s/2 and |{i : |Yi| ≥ u+
s }| ≤ 3s/2.

In particular, with probability at least 11/12, for every j0 ≤ j ≤M/2,

u−2j ≤ Y
∗
j ≤ u+

d2(j−1)/3e,

where dxe = min{n ∈ N : x ≤ n}.

12



Proof. Fix 0 < p < 1 to be named later and let (δi)Mi=1 be independent {0, 1}-
valued random variables with Eδi = p. A straightforward application of Bernstein’s
inequality [26] shows that

P

(∣∣∣∣∣ 1
M

M∑
i=1

δi − p

∣∣∣∣∣ ≥ t
)
≤ 2 exp(−cM min{t2/p, t}).

In particular, with probability at least 1− 2 exp(−c1Mp),

(1/2)Mp ≤
M∑
i=1

δi ≤ (3/2)Mp.

We will apply this observation to the independent random variables δi = 1I{|Yi|>a}, 1 ≤
i ≤ M for an appropriate choice of a. Indeed, if we take a for which P(|Y1| > a) =
s/M (such an a exists because Y1 is non-atomic), then with probability at least
1−2 exp(−c1s), at least s/2 of the |Yi| will be larger than a, and at most 3s/2 will be
larger than a. Since this result holds for any a ∈ U(s/M) the first part of the claim
follows.

Now take s0 to be the smallest integer such that 1−2
∑M

s=s0
exp(−cs) ≥ 11/12 (in

particular c−1 log 24 ≤ s0 ≤ c−1(log 48+1)). Applying the union bound and a change
of variables, it is evident that with probability at least 5/6, for every b(3s0)/2c+ 1 ≤
j ≤M/2,

|{i : |Yi| ≥ u−2j}| ≥ j and |{i : |Yi| ≥ u+
d(2(j−1))/3e}| ≤ j − 1,

and thus u−2j ≤ Y ∗j ≤ u
+
d(2(j−1))/3e.

With Lemma 3.8 and Corollary 3.7 in hand, one can bound the following functional
of the random variables (Y ∗i )Mi=1.

Lemma 3.9 For every L > 0 there exist constants c1, ..., c4, j0 and α < 1 that
depend only on L for which the following holds. Let Y be (L, n)-almost gaussian and
let Y1, ..., YM be independent copies of Y . Then, with probability at least 11/12, for
every j0 ≤ ` ≤ k ≤ αM ,

c1

(
log(ek/`)− εM,n√

log(eM/`)

)
≤ Y ∗` − Y ∗k ≤ c2

(
log(ek/`) + εM,n√

log(eM/`)

)
.

Moreover, with probability at least 10/12, for every j0 ≤ ` ≤ k ≤ αM

Y ∗` − Y ∗k −

(
1
k

k∑
i=1

(Y ∗i − Y ∗k )2

)1/2

≥ c3
log(ek/`)√
log(eM/`)

− c4√
log(eM/k)

,
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and if j0 ≤ k ≤ αM , then u−2k ≤ Y
∗
k ≤ u

+
d2(k−1)/3e and

(
1
k

k∑
i=1

(Y ∗i − Y ∗k )2

)1/2

≤ c4√
log(eM/k)

,

provided that log2M .L k and that εM,n =
√

(logM)/n ≤ 1.

Proof. The first part of the claim follows from Lemma 3.8 and Corollary 3.7,
combined with a straightforward computation. For the second part, observe that, for
some well chosen constant c1(L) depending only on L, with probability at least 11/12,
Y ∗1 ≤ c1(L)

√
logM . Hence, applying the first part of the claim, with probability at

least 10/12,

1
k

k∑
i=1

(Y ∗i − Y ∗k )2 ≤ c1(L)
j0 logM

k
+

1
k

k∑
i=j0

(Y ∗i − Y ∗k )2

≤ c1(L)
j0 logM

k
+
c2

k

k∑
i=j0

(
log2(ek/i)
log(eM/i)

+
ε2M,n

log(eM/i)

)

≤ c1(L)
j0 logM

k
+ c3

1 + ε2M,n

log (eM/k)
≤ c4

log(eM/k)
,

provided that log2M .L k and that εM,n ≤ 1. Note that to estimate the sum we
have used that

1
k

k∑
i=j0

log2(ek/i)
log(eM/i)

≤ 1
log(eM/k)

1
k

k∑
i=j0

log2(ek/i) ≤ c3

log
(
eM/k

) .
Now the second and the third parts follow from the first one.

The next preliminary step we need is a simple bound on the dual norm to the
one whose unit ball is Ar = BM

1 ∩
√
rBM

2 . Recall that for a convex body C ⊂ RM ,
the polar body of C is C◦ = {x ∈ RM : supy∈C

〈
x, y
〉
≤ 1}, and in our case, A◦r =

conv(BM
∞ ∪ r−1/2BM

2 ) (see, for example, [23]). From here on, given v ∈ RM , set

‖v‖A◦r = sup
w∈Ar

〈
v, w

〉
,

and, as always, (v∗i )
M
i=1 is the monotone rearrangement of (|vi|)Mi=1.
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Lemma 3.10 For every v ∈ RM and any 0 < ρ < r ≤ 1 such that 1/r and 1/ρ are
integers,

‖v‖A◦r − ‖v‖A◦ρ ≥ v
∗
1/r − v

∗
1/ρ −

ρ 1/ρ∑
i=1

(v∗i − v∗1/ρ)
2

1/2

and in general for any 0 < r ≤ 1,

v∗b1/rc ≤ ‖v‖A◦r ≤ v
∗
d1/re +

√
d1/re

d1/re∑
i=1

(v∗i − v∗d1/re)
2

1/2

.

Proof. First, observe that for every v ∈ RM ,

‖v‖A◦r = min
1≤j≤M

√r( j∑
i=1

(v∗i − v∗j )2

)1/2

+ v∗j

 . (3.6)

Indeed, since A◦r = conv
(
BM
∞ ∪(1/

√
r)BM

2

)
, it is evident that ‖v‖A◦r = inf{‖u‖∞+√

r‖w‖2, v = u+w}. One may verify that if v = u+w is an optimal decomposition
then supp(w) ⊂ {i : |ui| = ‖u‖∞}. Hence, if ‖u‖∞ = K then for every 1 ≤ i ≤
M , ui = Ksgn(vi)1I{|vi|≥K} + vi1I{|vi|<K}, and thus, wi = 1I{|vi|≥K}(vi − sgn(vi)K).
Therefore,

‖v‖A◦r = inf
K>0

{
K +

√
r
( ∑
{i:|vi|≥K}

(|vi| −K)2
)1/2}

.

Moreover, since it is enough to consider only values of K in {v∗j : 1 ≤ j ≤ M}, (3.6)
is verified. In particular, if 1/r is an integer then

‖v‖A◦r ≤
√
r
( 1/r∑
i=1

(v∗i − v∗1/r)
2
)1/2

+ v∗1/r.

On the other hand, if Tr = {u ∈ RM : ‖u‖2 ≤
√
r, |supp(u)| ≤ 1/r} then Tr ⊂

BM
1 ∩

√
rBM

2 . Hence,

‖v‖A◦r ≥ sup
w∈Tr

〈
v, w

〉
=
√
r

 1/r∑
i=1

(v∗i )
2

1/2

.
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Therefore, if 1/r and 1/ρ are integers, it follows that

‖v‖A◦r − ‖v‖A◦ρ ≥
√
r
( 1/r∑
i=1

(v∗i )
2
)1/2

−

√ρ( 1/ρ∑
i=1

(v∗i − v∗1/ρ)
2
)1/2

+ v∗1/ρ


≥ v∗1/r − v

∗
1/ρ −

√
ρ
( 1/ρ∑
i=1

(v∗i − v∗1/ρ)
2
)1/2

,

because (r
∑1/r

i=1(v∗i )
2)1/2 ≥ v∗1/r.

The second part follows in a similar fashion and it omitted.

Proof of the lower bound of Theorem 3.2. Let φ1, ..., φM , X and a > 0 be such
that φ1(X), . . . , φM (X) are uniformly distributed on [−a, a] and have variance 1 (in
particular a =

√
3). Set T (X) = φM+1(X) = Y to be a Rademacher variable. Assume

further that (φi)M+1
i=1 are independent in L2(PX) and let FM = {0,±φ1, ...,±φM}.

Note that the functions in conv(FM ) are given by fλ =
〈
Φ, λ

〉
where Φ = (φ1, ..., φM )

and λ ∈ BM
1 .

It is straightforward to verify that the excess loss function of fλ relative to
conv(FM ) is

Lfλ = (fλ − φM+1)2 − (0− φM+1)2 =
〈
Φ, λ

〉2 − 2
〈
Φ, λ

〉
φM+1

(since f∗ = 0), implying that ELfλ = ‖λ‖22.
Let us consider the problem of empirical minimization in conv(FM ) = {

〈
λ,Φ

〉
:

λ ∈ BM
1 }. Recall thatAr = BM

1 ∩
√
rBM

2 and, for an independent sample (Φ(Xi), φM+1(Xi))ni=1,
define the functional

ψ(r, ρ) =n
(

inf
λ∈Ar

Rn(fλ)− inf
µ∈Aρ

Rn(fµ)
)
.

If we show that for some r ≥ ρ, ψ(r, ρ) < 0, then for that sample, EL bf ≥ ρ.
Note that, for any r, ρ > 0,

ψ(r, ρ) ≤ sup
λ∈Ar

n∑
i=1

〈
Φ(Xi), λ

〉2 − 2 sup
λ∈Ar

n∑
i=1

〈
Φ(Xi), λ

〉
φM+1(Xi)

+ 2 sup
µ∈Aρ

n∑
i=1

〈
Φ(Xi), λ

〉
φM+1(Xi),

and let us estimate the supremum of the process

λ ∈ Ar →
n∑
i=1

〈
Φ(Xi), λ

〉2 = n
(

(Pn − P )(
〈
Φ, λ

〉2) + ‖λ‖22
)
.
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Observe that Φ(X) is isotropic (that is, for every λ ∈ RM , E
〈
λ,Φ(X)

〉2 = ‖λ‖22),
and subgaussian – since

∥∥〈λ,Φ(X)
〉∥∥

ψ2
≤ 4a ‖λ‖2. Hence, applying the results from

[21], it is evident that with probability at least 11/12,

sup
λ∈Ar

∣∣∣(Pn − P )(
〈
λ,Φ

〉2)
∣∣∣ ≤ c(a) max

{
diam(Ar, ‖·‖2)

γ2(Ar, ‖·‖2)√
n

,
γ2

2(Ar, ‖·‖2)
n

}
.

(3.7)
Recall that for r ≥ 1/M , γ2(Ar, ‖·‖2) ∼

√
log(eMr) (see, for instance, [21]), and

thus, if r ≥ max(1/M, 1/n), then with probability at least 11/12,

n sup
λ∈Ar

(
(Pn − P )(

〈
Φ, λ

〉2) + ‖λ‖22
)
≤ nr + c1

√
nr log(eMr),

where c1 is a constant that depends only on a.
Next, to estimate the first two terms, let

Yj = n−1/2
n∑
i=1

φM+1(Xi)
〈
Φ(Xi), ej

〉
and observe that (Yj)Mj=1 are independent copies of a (2, n)-almost gaussian variable.
If we set V = (Yi)Mi=1 then

sup
λ∈Ar

n∑
i=1

〈
λ,Φ(Xi)

〉
φM+1(Xi)− sup

θ∈Aρ

n∑
i=1

〈
θ,Φ(Xi)

〉
φM+1(Xi)

=
√
n
(

sup
λ∈Ar

〈
λ, V

〉
− sup
θ∈Aρ

〈
θ, V

〉)
=
√
n(‖V ‖A◦r − ‖V ‖A◦ρ) = (∗).

By Lemma 3.10, if 1/r = ` and 1/ρ = k are integers, then

(∗) ≥
√
n
[
Y ∗` − Y ∗k −

(1
k

k∑
i=1

(Y ∗i − Y ∗k )2
)1/2]

and thus, if `, k,M and n are as in Lemma 3.9, then with probability at least 9/12,

(∗) ≥
√
n

(
c2 log(ek/`)√

log(eM/`)
− c3√

log(eM/k)

)

≥ c4

√
n

log(ek/`)√
log(eM/`)

,

provided that k ≥ c5` for c5 large enough.
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Hence, with probability at least 9/12,

ψ(r, ρ) ≤ −2c4

√
n

log(ek/`)√
log(eM/`)

+ nr + c1

√
rn log(eMr).

It follows that if we select r ∼ 1/
√
n log(eM/

√
n) and ρ ∼ r with ρ < r so that the

conditions of Lemma 3.9 are satisfied, then with probability at least 9/12, ψ(r, ρ) < 0.
Hence, with the same probability,

R(f̂)− min
f∈FM

R(f) = EL bf ≥ c6√
n log(eM/

√
n)
.

Proof of the upper bound in Theorem 3.2. We will show that with constant
probability,

inf
0≤r≤r0

inf
λ∈BM1 ∩

√
rSM−1

Rn(fλ) < inf
r0≤r≤1

inf
λ∈BM1 ∩

√
rSM−1

Rn(fλ) (3.8)

for r0 ∼ 1/
√
n log(eM/

√
n), and thus, on that event, R(f̂) ≤ r0. To that end, one

has to show that

inf
0≤r≤r0

inf
λ∈BM1 ∩

√
rSM−1

PnLfλ < inf
r0≤r≤1

inf
λ∈BM1 ∩

√
rSM−1

PnLfλ .

Let
Q(r) = sup

λ∈BM1 ∩
√
rBM2

∣∣(Pn − P )(
〈
Φ, λ

〉2)
∣∣

and set r∗ = inf
{
r > 0 : EQ(r) ≤ r/2

}
. Applying (3.7) and since γ2(Ar, ‖·‖2) ∼√

log(eMr), then r∗ ≤ c0

√
log
(
eM/
√
n
)
/n. Hence, by a standard fixed point ar-

gument (see for instance, [4]), it follows that with probability greater than 11/12, if
λ ∈ BM

1 and ‖λ‖22 ≥ r∗, then

‖λ‖22
2
≤ 1
n

n∑
i=1

〈
Φ(Xi), λ

〉2 ≤
3 ‖λ‖22

2
.
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In particular, by Lemma 3.9, Lemma 3.10 and Corollary 3.7, with probability larger
than 9/12, for every r ≥ r∗,

inf
λ∈BM1 ∩

√
rSM−1

PnLfλ = inf
λ∈BM1 ∩

√
rSM−1

( 1
n

n∑
i=1

〈
Φ(Xi), λ

〉2 − 2
n

n∑
i=1

〈
Φ(Xi), λ

〉
φM+1(Xi)

)
≥ r

2
− 2√

n
sup

λ∈BM1 ∩
√
rSM−1

〈
λ, V

〉
≥ r

2
− 2√

n
sup

λ∈BM1 ∩
√
rBM2

〈
λ, V

〉
=
r

2
−

2 ‖V ‖A◦r√
n

≥ r

2
− 2√

n

(
Y ∗d1/re +

√
d1/re

( d1/re∑
i=1

(Y ∗i − Y ∗d1/re)
2
)1/2)

≥ r

2
− 2√

n

(
u+
d2(d1/re−1)/3e +

c1√
log(c2Mr)

)
≥ r

2
− 2√

n

(
c3

√
log
(
c4Mr

)
+

c1√
log(c5Mr)

)
> 0 (3.9)

provided that r ≥ c6

√
log
(
eM/
√
n
)
/n for some constant c6 large enough. Therefore,

on that event, if ‖λ‖22 ≥ c7

√
log
(
eM/
√
n
)
/n then PnLfλ > 0. On the other hand,

PnLf0 = 0, and thus
∥∥∥λ̂∥∥∥2

2
≤ c7

√
log
(
eM/
√
n
)
/n (where f̂ = fbλ) with probability at

most 9/12.
It remains to show that with sufficiently high constant probability

inf
0≤r≤r0

inf
λ∈BM1 ∩

√
rSM−1

PnLfλ < inf
r0≤r≤r1

inf
λ∈BM1 ∩

√
rSM−1

PnLfλ

for r0 ∼ 1/
√
n log(eM/

√
n) and r1 = c7

√
log
(
eM/
√
n
)
/n.

Using the same argument as in (3.9) and applying Lemma 3.9, Lemma 3.10 and
Corollary 3.7, it is evident that with probability at least 10/12,

inf
r0≤r≤r1

inf
λ∈BM1 ∩

√
rSM−1

PnLfλ (3.10)

≥ inf
r0≤r≤r1

(
r − 2√

n

(
log(C0Mr)− c8 log log(C0Mr0)

)1/2)
− c1√

n log(c5Mr0)
−Q(r1)

and for some r2 ≤ r0 to be named later,

inf
0≤r≤r0

inf
λ∈BM1 ∩

√
rSM−1

PnLfλ ≤ inf
0≤r≤r2

inf
λ∈BM1 ∩

√
rSM−1

PnLfλ

≤ inf
0≤r≤r2

(
r − 2√

n

(
log(C1Mr)− c9 log log(C1Mr2)

)1/2)
+Q(r2). (3.11)
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Moreover, thanks to (3.7), with probability greater than 10/12,

Q(r1) +Q(r2) ≤ c10

√
r1 log

(
eMr1

)
/n.

Fix 0 < β2 < β0 to be named later and set

r0 =
β0√

n log
(
eM/
√
n
) and r2 =

β2√
n log

(
eM/
√
n
) .

For β0 large enough (resp. β2 small enough), the infimum in (3.10) (resp. (3.11)) is
achieved in r0 (resp. r2). Therefore, with probability greater than 8/12

inf
0≤r≤r0

inf
λ∈BM1 ∩

√
rSM−1

PnLfλ − inf
r0≤r≤r1

inf
λ∈BM1 ∩

√
rSM−1

PnLfλ

≤
c11 log

(
(C0r0)/(C1r2)

)√
log
(
C1Mr2

) + r2 − r0 +
c1√

n log
(
c5Mr0

) + c12

√
r1 log

(eMr1√
n

)

≤
c13 log

(
(C0β0)/(C1β2)

)√
n log

(
eM/
√
n
) +

β2 − β0√
n log

(
eM/
√
n
) +

c14√
n log

(
eM/
√
n
) +

c14 log
(
eM/
√
n
)

n
.

Therefore, there exists some β0 for which the latter quantity is negative and thus
(3.8) holds for r0 = β0/

√
n log

(
C0β0M/

√
n
)
.

4 Proof of Theorem B

Our starting point is to describe the machinery developed in [4], leading to the desired
estimates on the performance of ERM in a general class of functions. Let G be a class
of functions and denote by LG = {(x, y) 7−→ (y − g(x))2 − (y − g∗G(x))2 : g ∈ G} the
associated class of quadratic excess loss functions, where g∗G is the minimizer of the
quadratic risk in G. Let V = star(LG, 0) = {θL : 0 ≤ θ ≤ 1,L ∈ LG} and for every
λ > 0 set Vλ = {h ∈ V : Eh ≤ λ}.
Theorem 4.1 ([4]) For every positive B and b there exists a constant c0 = c0(B, b)
for which the following holds. Let G be a class of functions for which LG consists of
functions that are bounded by b almost surely. Assume further that for any L ∈ LG,
EL2 ≤ BEL. If x > 0, λ∗ > 0 satisfies that E ‖P − Pn‖Vλ∗ ≤ λ

∗/8 and

λ∗(x) = c0 max
(
λ∗,

x

n

)
,

then with probability greater than 1 − exp(−x), the empirical risk minimization pro-
cedure ĝ in G satisfies

R(ĝ) ≤ inf
g∈G

R(g) + λ∗(x).
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Let F be the given dictionary and set G = conv(F ). Using the notation of
Theorem 4.1, put Lconv(F ) =

{
Lf : f ∈ conv(F )

}
, consider the star-shaped hull

V = star(Lconv(F ), 0) and its localizations Vλ = {g ∈ V : Eg ≤ λ} for any λ > 0.
Thanks to convexity, the following observation holds in our case (see [19] for the
proof).

Proposition 4.2 If f ∈ conv(F ) then ELf ≥ ‖f − f∗‖2L2(PX) where f∗ is the mini-
mizer of the quadratic risk in conv(F ). In particular,

1. EL2 ≤ 4b2EL for any L ∈ Lconv(F );

2. For µ > 0, if f ∈ conv(F ) satisfies that ELf ≤ µ, then f ∈ f∗ +Kµ, where

Kµ = 2[conv{±f1, . . . ,±fM} ∩
√
µB(L2(PX))].

The first part of Proposition 4.2 shows that Lconv(F ) satisfies the assumptions of
Theorem 4.1 with B = 4b2. To apply Theorem 4.1 one has to find λ∗ > 0 for which
E ‖P − Pn‖Vλ∗ ≤ λ∗/8, and to that end we will use the second part of Proposition
4.2. First, observe that it was shown in [5] that

E ‖P − Pn‖Vλ ≤
∑
i≥0

2−iE ‖P − Pn‖L2i+1λ
, (4.1)

where from here on we set Lµ =
{
L ∈ Lconv(F ) : EL ≤ µ

}
. Applying the second part

of Proposition 4.2 it is evident that {f ∈ conv(F ) : ELf ≤ µ} ⊂ f∗ +Kµ.

Proof of Theorem B. By the Giné-Zinn symmetrization Theorem [26],

E ‖P − Pn‖Lµ ≤ 2EEε sup
L∈Lµ

∣∣∣ 1
n

n∑
i=1

εiL(Xi, Yi)
∣∣∣. (4.2)

Note that if L ∈ Lµ and f ∈ conv(F ) satisfies that L = Lf , then for any (x, y),

|L(x, y)| = |(y − f(x))2 − (y − f∗(x))2|
= |(f∗(x)− f(x))(2y − f(x)− f∗(x))| ≤ 4b|f(x)− f∗(x)|.

Thus, by the contraction principle (see, e.g. [18]) and Proposition 4.2,

E ‖P − Pn‖Lµ ≤
8b√
n

EEε sup
f∈Kµ

∣∣∣ 1√
n

n∑
i=1

εif(Xi)
∣∣∣.

Observe that since the dictionary consists of an orthogonal family, if (e1, . . . , eM ) is
the standard basis in `M2 and F (·) = (f1(·), . . . , fM (·)), then

Kµ =
{

2
〈
λ, F

〉
: λ ∈ BM

1 ∩
√
µE
}
,
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where E is an ellipsoid with principal axes (‖fi‖L2ei)
M
i=1. From here on we will assume

that (‖fi‖L2)Mi=1 is a non-increasing sequence.
Now, we want to bound

E sup
f∈Kµ

∣∣∣∣∣ 1n
n∑
i=1

εif(Xi)

∣∣∣∣∣ = E sup
λ∈BM1 ∩

√
µE

∣∣∣∣∣ 2n
n∑
i=1

εi
〈
λ, F (Xi)

〉∣∣∣∣∣
=

2√
n

E
∥∥∥ n∑
i=1

1√
n
εiF (Xi)

∥∥∥
(BM1 ∩

√
µE)◦

,

where ‖·‖(BM1 ∩
√
µE)◦ denotes the dual norm to the one whose unit ball is BM

1 ∩
√
µE .

We will use two different strategies to bound this process depending on M ≤
√
n or

M >
√
n. First start with the case M ≥

√
n. Since both BM

1 and E are unconditional
with respect to the coordinate structure given by (ei)Mi=1, it follows that

‖v‖(BM1 ∩
√
µE)◦ ∼ inf

I⊂{1,...,M}

√µ(∑
i∈I

(
vi
‖fi‖L2

)2
)1/2

+ max
i∈Ic
|vi|

 , (4.3)

and in our case, v = (vj)Mj=1 = ((1/
√
n) ·

∑n
i=1 εifj(Xi))Mj=1.

Let
J0 = {j : ‖fj‖L2 ≥ c0b

√
logM/

√
n},

where c0 is a constant to be named later. A straightforward application of Bernstein
inequality [26] shows that, for t ≥ c1,

P
(
∃j ∈ J0 : Pnf2

j ≥ (t+ 1)‖fj‖2L2

)
≤
∑
j∈J0

exp
(
− c2n(‖fj‖2L2

/b2) min(t2, t)
)

≤M exp(−c3t logM) ≤ exp(−c4t logM),

and
P(∃j ∈ Jc0 : Pnf2

j ≥ (t+ 1)b2n−1 logM) ≤ exp(−c4t logM).

For every integer ` ≥ c1, let

A` = {∀j ∈ J0 : Pnf2
j ≤ (`+ 1)‖fj‖2L2

}
⋂
{∀j ∈ Jc0 : Pnf2

j ≤ (`+ 1)b2n−1 logM}.

Set B` = A`+1 ∩Ac` and note that P(B`) ≤ P(Ac`) ≤ 2 exp(−c4` logM) for any ` ≥ c1.
For every ` ≥ c1, consider the random variables conditioned on B`,

Uj,` =
1√
n

n∑
i=1

εifj(Xi)/‖fj‖L2 |B` ∀j ∈ J0
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and

Uj,` =
1√
n

n∑
i=1

εifj(Xi)|B` ∀j ∈ Jc0 .

Hence, by Hoeffding’s inequality (cf. [26]), there exists an absolute constant c5 such
that, for any j ∈ J0,

‖Uj,`‖2ψ2(ε) ≤ c5

n−1
∑n

i=1 f
2
j (Xi)

‖fj‖2L2

≤ c5(`+ 1),

and for any j ∈ Jc0 ,
‖Uj,`‖2ψ2(ε) ≤ c5(`+ 1)b2(logM)/n.

By a result due to Klartag [13], it follows that for every such ` and any 1 ≤ j ≤ |J0|,

Eε

(
j∑
i=1

(U2
i,`)
∗

)1/2

≤ c6

√
`
√
j log(e|J0|/j),

where (U∗j,`)
|J0|
j=1 is a decreasing rearrangement of (|Uj,`|)j∈J0 . Moreover, by a standard

maximal inequality (see, e.g. [26])

Eε max
j∈Jc0

Uj,` ≤ c7

√
log |Jc0 |max

j∈Jc0
‖Uj,`‖ψ2(ε) ≤ c8

√
`b

logM√
n
.

For every 1 ≤ j ≤ |J0|, let I be the set of the j largest coordinates of (|Uj,`|)j∈J0 .
Hence, by (4.3) and since ‖fj‖L2

≤ b,

Eε

(∥∥∥ n∑
i=1

1√
n
εiF (Xi)

∥∥∥
(BM1 ∩

√
µE)◦
|(Xi)ni=1 ∈ B`

)

.Eε
√
µ

(
j∑
i=1

(U2
i,`)
∗

)1/2

+ Eε max
(
‖fj‖L2U

∗
j,`,max

j∈Jc0
|Uj,`|

)
.
√
`
(√

µ
√
j log(e|J0|/j) + b

√
log(e|J0|/j)

)
+ Eε max

j∈Jc0
|Uj,`|

≤
√
`
(√

µ
√
j log(e|J0|/j) + b

√
log(e|J0|/j)

)
+
√
`b

logM√
n
.

Therefore, if we take j = min{[1/µ], |J0|} it is evident that

Eε

(∥∥∥ n∑
i=1

1√
n
εiF (Xi)

∥∥∥
(BM1 ∩

√
µE)◦
|(Xi)ni=1 ∈ B`

)
. b
√
`

(√
log(eMµ) +

logM√
n

)
.
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Thus, integration with respect to X1, ..., Xn and applying the estimates on the mea-
sure of B`,

2√
n

E
∥∥∥ n∑
i=1

1√
n
εiF (Xi)

∥∥∥
(BM1 ∩

√
µE)◦

. b

√
log(eMµ)

n
.

Finally, by (4.1), for any λ > 1/M ,

E ‖P − Pn‖Vλ ≤
∑
i≥0

2−iE ‖P − Pn‖L2i+1λ

. b2
∑
i≥0

2−i
√

log(eM2i+1λ)
n

. b2
√

log(eMλ)
n

,

and, if

λ∗ ∼ b2
√

1
n

log
(eMb2√

n

)
,

then E ‖P − Pn‖Vλ∗ ≤ λ
∗/8, as required.

When M ≤
√
n, we use the strategy developed in [15]. Let S be the linear

subspace of L2(PX) spanned by F and take (e1, . . . , eM ′) to be an orthonormal basis
of S (where M ′ = dim(S) ≤M). Since Kµ ⊂ S ∩ 2

√
µB(L2(PX)), then

E sup
f∈Kµ

∣∣∣ 1
n

n∑
i=1

εif(Xi)
∣∣∣ ≤ 2E sup

‖λ‖
`M
′

2
≤2
√
λ

∣∣∣ 1
n

n∑
i=1

εi

( M ′∑
j=1

λjej(Xi)
)∣∣∣

.
√
µE
( M ′∑
j=1

( 1
n

n∑
i=1

εiej(Xi)
)2)1/2

.

√
M ′µ

n
.

The rate obtained in the case M ≤
√
n follows now from (4.1).

Appendix

We establish the following upper bound on the risk of f̃ERM−C as a (C)-aggregation
procedure in the general case. Its proof follows the same path as in Section 4. But,
rather than studying the empirical process indexed by the interpolation body BM

1 ∩√
µE , in the case M ≥

√
n, one simply uses the approximation BM

1 ∩
√
µE ⊂ BM

1 to
get, conditionally on X1, . . . , Xn,

Eε sup
f∈Kµ

∣∣∣ 1√
n

n∑
i=1

εif(Xi)
∣∣∣ ≤ Eε sup

λ∈BM1

∣∣∣〈λ, 1√
n

n∑
i=1

εiF (Xi)
〉∣∣∣ = Eε max

1≤j≤M
|γj |,
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where, for all j = 1, . . . ,M , γj is the subgaussian random variable n−1/2
∑n

i=1 εifj(Xi)
with ψ2-norm bounded by n−1

∑n
i=1 fj(Xi)2 ≤ c0b

2 and thus by a maximal inequality
[18],

Eg max
1≤j≤M

|γj | ≤ c1b
√

logM.

The result below follows from this upper bound and (4.1) for the case M >
√
n, and

the case M ≤
√
n follows the same path as the proof of Theorem B, and thus its

proof is omitted.

Theorem 4.3 For every b > 0 there is a constant c1(b) and an absolute constant c2

for which the following holds. Let n and M be integers which satisfy that logM ≤
c1(b)

√
n. For any couple (X,Y ) and any finite dictionary F of cardinality M such that

|Y |, supf∈F |f(X)| ≤ b, and for any u > 0, with probability greater than 1− exp(−u),

R(f̃ERM−C) ≤ min
f∈conv(F )

R(f) + c2b
2 max

[
min

(M
n
,

√
logM
n

)
,
u

n

]
.
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