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Abstract

New robust estimators are introduced, derived from median-of-means principle
and Le Cam’s aggregation of tests. Minimax sparse rates of convergence are
obtained with exponential probability, under weak moment’s assumptions and
possible contamination of the dataset. These derive from general risk bounds
of the following informal structure

max

(
minimax rate in the i.i.d. setup,

number of outliers

number of observations

)
.

In this result, the number of outliers may be as large as (number of data)
×(minimax rate) without affecting the rates. As an example, minimax rates
s log(ed/s)/N of recovery of s-sparse vectors in Rd holding with exponentially
large probability, are deduced for median-of-means versions of the LASSO when
the noise has q0 moments for some q0 > 2, the entries of the design matrix have
C0 log(ed) moments and the dataset is corrupted by up to C1s log(ed/s) outliers.
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1. Introduction

Consider the problem of estimating minimizers of the integrated square-loss
over a convex class of functions : f∗ ∈ argminf∈F P (Y − f(X))2 based on a
data set (Xi, Yi)i=1,...,N , where the outputs Y are real-valued and the inputs X
take values in any measurable space X .

Let PN denote the empirical distribution based on the sample (Xi, Yi)i=1,...,N

and let reg : F → R+ denote a regularizing function, regularized versions
(RERM) of Empirical Risk Minimizers (ERM) Vapnik (1998); Vapnik and Cher-
vonenkis (1974) are defined by

f̂RERM
N ∈ argmin

f∈F
{PN (Y − f(X))2 + reg(f)} .
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These estimators are optimal in i.i.d. subgaussian setups but suffer several
drawbacks when data are heavy-tailed or corrupted by “outliers”, see Catoni
(2012); Huber and Ronchetti (2009), a situation that occurs with declarative
data on internet, for storage/transfer issues or when one applies some compres-
sion algorithm. They may also be observations met in biology as in the classical
eQTL (Expression Quantitative Trait Loci and The Phenogen Database) from
Saba et al. (2008).

To overcome the problem, the most common strategy is to replace the square-
loss in the definition of RERM. Huber (1964) proposed a loss that interpolates
between square and absolute loss to produce an estimator between the unbiased
(but non robust) empirical mean and the (more robust but biased) empirical
median. Huber’s estimators have been intensively studied asymptotically by
Huber (1964); Huber and Ronchetti (2009), non-asymptotic results have also
been obtained more recently by Chichignoud and Lederer (2014); Mendelson
(2015b); Fan et al. (2017) for example. An alternative approach has been pro-
posed by Catoni (2012) and used in learning frameworks such as least-squares
regression by Audibert and Catoni (2011) and for more general loss functions
by Brownlees et al. (2015).

Another line of research to build robust estimators and robust selection
procedures was initiated by Le Cam (1973, 1986) and further developed by
Birgé (1984); Birgé (2006), Baraud (2011) and Baraud et al. (2017). It is based
on comparisons or tests between elements of F . More precisely, the approach
builds on tests statistics TN (g, f) comparing f and g. These tests define the

sets BTN
(f) of all g’s that have been preferred to f and the final estimator f̂

is a minimizer of the diameter of BTN (f). The measure of diameter is directly
related to statistical performance one seeks for the estimator. These methods
mostly focus on Hellinger loss and are generally considered difficult to compute,
see however Baraud et al. (2014); Sart (2014).

In a related but different approach, Lugosi and Mendelson (2017) have re-
cently introduced “median-of-means tournaments” where Median-of-means es-
timators of Alon et al. (1999); Jerrum et al. (1986); Nemirovsky and Yudin

(1983) are used to compare elements of F . A “champion” is an element f̂ that
is better than all g sufficiently far from it. As L2-distances cannot be computed,
these diameters are evaluated using an estimator of distances that only provides
a reliable estimate when one of the functions is f∗, which is sufficient to bound
the risk of champions.

This paper studies estimators derived from Le Cam’s procedure based on reg-
ularized median-of-means (MOM) tests (see Section 4.1). The main advantage
of MOM’s tests over Le Cam’s original ones is that they allow for more classical
loss functions than Hellinger loss. This idea is illustrated on the square-loss.
Compared to Huber or Catoni’s losses, this approach allows to control easily
the risk of our estimators by using classical tools from empirical process theory
and to tackle the problem of “aggressive” outliers.

The radii of the sets BTN (f) are computed for regularization and L2
P norms.

The regularization norm is chosen in advance by the statistician to promote
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sparsity or smoothness and can be used to build estimators. However, it is not
sufficient to derive estimators with small L2

P risk and this is why it is necessary
to evaluate L2

P -diameters. The L2
P -norm is unknown in general since it depends

on the distribution of X and cannot be properly estimated by the L2
PN

-empirical
metric without subgaussian properties of the design vector X. Fortunately, the
L2
P -norm can be estimated by median-of-means estimators. The estimators used

in this paper differ from those of Lugosi and Mendelson (2017) but also provide
reliable estimators only to distances to oracle. To handle simultaneously both
regularization and L2

P norms, an extension of Le Cam’s original idea is also
required. Our first result shows that our new estimators are well localized w.r.t.
both regularization and L2

P norms.
The closest work is certainly that of Lugosi and Mendelson (2017) even if

some important differences can be noticed. Here, the approach does not re-
quire a partition of the dataset into three parts and the robustness to corrupted
datasets is stressed. This is an important feature in practice even if this robust-
ness follows from a simple argument. In addition, MOM estimators rely on a
data splitting into K blocks and this parameter drives the resulting statistical
performance of the estimator (cf. Devroye et al. (2016)). Our main results show
that optimal rates can be achieved when K is chosen using parameters that de-
pend on both the number of outliers and the oracle f∗, such as its sparsity,
which are unknown quantities. To bypass this problem, the strategy of Lepski
(1991) is used as in Devroye et al. (2016) to select K adaptively and get a fully
data-driven procedure with optimal performance. We also refer to Birgé (1984)
where a closely related construction is also proposed in the proof of Theorem 1.
This latter adaptive step is not performed in Lugosi and Mendelson (2017) and
the problem of regularization is also not studied.

There are four important features in our approach. First, all results are
proved under weak L2+ϵ moment assumptions on the noise, which is an almost
minimal condition for the problem to make sense and the class F is only assumed
to satisfy a weak “L2/L1” comparison. Second, performance of the estimators
are not affected by the presence of complete outliers, as long as their number
remains comparable to (number of observations)×(rates of convergence). Third,
all results are non-asymptotic and the regression function x 7→ E[Y |X = x] is
never assumed to belong to the class F . In particular, the noise Y − f∗(X)
can be correlated with X. Finally, even “informative data”, those that are not
“outliers”, are not requested to be i.i.d. ∼ P , but only to have close first and
second moments for all f ∈ F − {f∗}. Nevertheless, the estimators are shown
to behave as the ERM when data are i.i.d. ∼ P , E[Y |X = ·] ∈ F , the noise
ζ = Y − f∗(X) and the class F are Gaussian and the noise is independent from
the design.

From a mathematical point of view, our results are based on a slight exten-
sion of the Small Ball Method (SBM) of Koltchinskii and Mendelson (2015);
Mendelson (2014a). Indeed, the SBM was initially introduced to prove lower
bounds on nonnegative empirical processes. The method is extended here to
control centered empirical processes. All other arguments are standard and the
approach is thus easily reproducible in other statistical learning frameworks.
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The paper is organized as follows. Section 2 briefly presents the general set-
ting. Section 3 presents Le Cam’s construction of estimators based on tests. The
construction of estimators and the main assumptions are gathered in Section 4.
Our main theorems are stated in Section 5 and proved in Section 6.

Notation. For any real number x, let ⌊x⌋ denote the largest integer smaller
than x and let [x] = {1, . . . , ⌊x⌋} if x ≥ 1. For any finite set A, let |A| denote
its cardinality. All along the paper, (ci)i∈N denote absolute constants which
may vary from line to line and θ·, with various subscripts, denote real valued
parameters introduced in the assumptions. Finally, for any set G for which it
makes sense, for any g ∈ G, c ≥ 0 and C ⊂ G,

g + cC = cC + g = {h : ∃g′ ∈ C such that h = g + cg′} .

Let also g + G = g + 1G. We also denote by I(g ∈ C) the indicator function of
the set C which equals to 1 when g ∈ C and 0 otherwise.

2. Setting

Let X denote a measurable space and let (X,Y ), (Xi, Yi)i∈[N ] denote random
variables taking values in X×R, with respective distributions P, (Pi)i∈[N ]. Given
a probability distribution Q, let L2

Q denote the space of all functions f from X
to R such that ∥f∥L2

Q
< ∞ where ∥f∥L2

Q
=
(
Qf2

)1/2
. Let F ⊂ L2

P denote a

convex class of functions f : X → R. Assume that PY 2 < ∞ and let, for all
f ∈ F ,

R(f) = P
[
(Y − f(X))2

]
, f∗ ∈ argmin

f∈F
R(f) and ζ = Y − f∗(X) .

Let ∥·∥ denote a norm defined onto a linear subspace E of L2
P containing F .

3. Learning from tests

3.1. General Principle

This section details a construction of Le Cam’s to build estimators from
increment estimators. By definition of the oracle f∗, one has

f∗ = argmin
f∈F

R(f) = argmin
f∈F

sup
g∈F

{R(f)−R(g)} .

As Tid(g, f) = R(f)−R(g) depends on P , it has to be estimated by test statistics
T (g, f, (Xi, Yi)i∈[N ]) ≡ TN (g, f) which are real random variables such that

TN (f, g) + TN (g, f) = 0 . (1)

These statistics are used to compare f to g, simply by saying that g TN -beats
f iff TN (g, f) ≥ 0. In this paper, the statistics TN (g, f) are median-of-means
estimators of R(f)−R(g) (cf. (9) in Section 4.1).
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Le Cam’s construction. Let (TN (g, f))f,g∈F denote a collection of test statistics
and let d(·, ·) denote a pseudo-distance on F , that may be data-dependent,
measuring (or related to) the risk. For all f ∈ F , let

BTN (f) = {g ∈ F : TN (g, f) ≥ 0}

be the set of all functions g ∈ F that beat f . By (1), either f ∈ BTN (g) or
g ∈ BTN

(f) (both happen if TN (f, g) = 0), hence d(f, g) ≤ CTN
(f) ∨ CTN

(g).
In particular, for all f ∈ F ,

d(f, f∗) ≤ CTN (f) ∨ CTN (f∗) . (2)

Eq (2) suggests to define the estimator

f̂TN
∈ argmin

f∈F
CTN

(f) = argmin
f∈F

sup
g∈BTN

(f)

d(f, g) . (3)

This estimator satisfies, from Eq (2),

d(f̂TN , f
∗) ≤ CTN (f∗) . (4)

Risk bounds for f̂TN
follow from (4), isometry properties of d as a distance to

oracle and upper bounds on the radii of BTN (f∗).

Remark 1. More generally, one can compare only the elements of a subset
F ⊂ F , typically a maximal ϵ-net by introducing for all f ∈ F , the set

BTN (f,F) = {g ∈ F : TN (g, f) ≥ 0} (5)

and then by minimizing the diameter of BTN (f,F) over F . This usually im-
proves the rates of convergence for constant deviation results when there is a
gap in Sudakov’s inequality of the localized sets of F , cf. (Lecué and Mendel-
son, 2013, Section 5).

Dealing with regularization : the link function. Statistical performance of esti-
mators and the radius of BTN

(f∗) can be measured by two norms: the regular-
ization norm ∥ · ∥ and ∥.∥L2

P
. As one distance only is used in (3), we extend Le

Cam’s construction to handle two metrics simultaneously.
Assume first that d(f, g) = ∥f − g∥L2

P
can be computed for all f, g ∈ F (this

is the case if the distribution of the design is known). Remark that

CTN (f) = sup
g∈BTN

(f)

∥f − g∥ = min
{
ρ ≥ 0 : sup

g∈BTN
(f)

∥g − f∥ ≤ ρ
}

can be used to get estimation results w.r.t. the regularization norm ∥·∥. But if
one also wants estimation results w.r.t. the L2

P -norm then the main point is to
design a link function r(·) between the two metrics. In a nutshell, the value r(ρ)
is the L2

P -minimax rate of convergence in a ball of radius ρ for the regularization
norm (cf. (10) in Section 4.3 for a formal definition). Then one can define

C
(2)
TN

(f) = min

{
ρ ≥ 0 : sup

g∈BTN
(f)

∥g − f∥ ≤ ρ and sup
g∈BTN

(f)

d(f, g) ≤ r(ρ)

}
.
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Theorem 1 shows that a minimizer f̂ (2) of C
(2)
TN

has both ∥f̂ (2) − f∗∥ and

d(f̂ (2), f∗) properly controlled.

Dealing with unknown norms : the isometry property. In general, L2
P -distances

cannot be directly computed and have to be estimated. It is estimated by MOM
estimators dN (f, g) of all d(f, g) (cf. Section 4.4) that are relevant as distances
to the oracle, see Lemma 3. The final estimator is any minimizer of

C ′′
TN

(f) = min

{
ρ ≥ 0 : sup

g∈BTN
(f)

∥g − f∥ ≤ ρ and sup
g∈BTN

(f)

dN (f, g) ≤ r(ρ)

}
.

4. Regularized MOM estimators

4.1. Quantile of means processes and median-of-means tests

Start with a few notations, see van der Vaart and Wellner (1996). For all
α ∈ [0, 1], ℓ ≥ 1 and z ∈ Rℓ, let Qα(z) denote the set of α-quantiles of z. For
any non-empty subset B ⊂ [N ] and a function f : X × R → R, let

PBf =
1

|B|
∑
i∈B

f(Xi, Yi) .

Let K ∈ [N ] and let (B1, . . . , BK) denote an equipartition of [N ] into bins of
size |Bk| = N/K (assuming for simplicity that K divides N). For any α ∈ [0, 1]
and any f : X ×R → R, the set of α-quantiles of empirical means is denoted by

Qα,K(f) = Qα

(
(PBk

f)k∈[K]

)
.

With a slight abuse of notations, we shall repeatedly denote by Qα,K(f) any
element inQα,K(f) and writeQα,K(f) = u if u ∈ Qα,K(f), Qα,K(f) ≥ u if there
is at least (1−α)K blocks Bk such that PBk

f ⩾ u, Qα,K(f) ≤ u if there is more
than αK blocks Bk such that PBk

f ⩽ u, and Qα,K(f) +Qα′,K(f ′) any element
in the Minkowski sum Qα,K(f) +Qα′,K(f ′). Let also MOMK(f) = Q1/2,K(f)
denote an empirical median of the empirical means on the blocks Bk. Empirical
quantiles satisfy for any c ≥ 0, f, f ′ : X × R → R and α ∈ [0, 1],

Qα,K(cf) = cQα,K(f) , (6)

Qα,K(−f) = −Q1−α,K(f) , (7)

sup
{
Q1/4,K(f) +Q1/4,K(f ′)

}
≤ infQ1/2,K(f + f ′) . (8)

With some abuse of notations, these properties will be written respectively

Qα,K(cf) = cQα,K(f), Qα,K(−f) = −Q1−α,K(f) ,

Q1/4,K(f) +Q1/4,K(f ′) ≤ MOMK [f + f ′] .
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The regularization parameter λ > 0 is introduced to balance between data
adequacy and regularization. The (quadratic) loss and regularized (quadratic)
loss are respectively defined on F ×X ×R as the real valued functions such that

ℓf (x, y) = (y − f(x))2, ℓλf = ℓf + λ ∥f∥ , ∀(f, x, y) ∈ F ×X × R .

To compare/test functions f and g in F , median-of-means tests between f and
g are now defined by

TK,λ(g, f) = MOMK

[
ℓλf − ℓλg

]
= MOMK [ℓf − ℓg] + λ(∥f∥ − ∥g∥) . (9)

From (7), TK,λ satisfies (1) and is a tests statistic in the sense of Section 3.

4.2. Main assumptions

Assume that [N ] = O ∪ I and that the “outliers” (Xi, Yi)i∈O bring no
information on f∗. Inliers, or informative data (Xi, Yi)i∈I are supposed to
satisfy the following assumptions.

Assumption 1. There exists θr ≥ 1 such that, for all i ∈ I and f ∈ F ,

∥f − f∗∥L2
Pi

≤ θr ∥f − f∗∥L2
P
.

Of course, Assumption 1 holds in the i.i.d. framework, with θr = 1 and
I = [N ]. The second assumption bounds the correlation between the noise
function ζ : (y, x) ∈ R × X → y − f∗(x) and the design on the shifted class
F − f∗ in L2

Q for all Q ∈ {P, (Pi)i∈I}.

Assumption 2. There exists θm > 0 such that, for all Q ∈ {P, (Pi)i∈I} and
f ∈ F ,

varQ(ζ(f − f∗)) = Q
[
ζ2(f − f∗)2 − [Q(ζ(f − f∗))]2

]
≤ θ2m ∥f − f∗∥2L2

P
.

Assumption 3. There exists θ0 ≥ 1 such that for all f ∈ F and all i ∈ I

∥f − f∗∥L2
P
≤ θ0 ∥f − f∗∥L1

Pi

.

Examples of functions and distributions satisfying Assumptions 2 and 3 can
be found in Appendix .1.

4.3. Complexity parameters and the link function

This section defines the link function r(·) required in the extension of Le
Cam’s approach. For any ρ ≥ 0 and any f ∈ E, let

B(f, ρ) = {g ∈ E : ∥f − g∥ ≤ ρ}, S(f, ρ) = {g ∈ E : ∥g − f∥ = ρ} .
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Definition 1. Let (ϵi)i∈I be independent Rademacher random variables, inde-
pendent from (Xi, Yi)i∈I and let J = {J ⊂ I, |J | ≥ |I|/2}. For any γQ, γM > 0
and ρ > 0 let Ff⋆,ρ,r = {f ∈ F ∩B(f⋆, ρ) : ∥f − f⋆∥L2

P
≤ r}, let

Q
γQ

f⋆,ρ =

{
r > 0 : ∀J ∈ J , E sup

f∈Ff⋆,ρ,r

∣∣∣∣∣∑
i∈J

ϵi(f − f⋆)(Xi)

∣∣∣∣∣ ≤ γQ|J |r

}
,

MγM

f⋆,ρ =

{
r > 0 : ∀J ∈ J , E sup

f∈Ff⋆,ρ,r

∣∣∣∣∣∑
i∈J

ϵi(Yi − f⋆(Xi))(f − f⋆)(Xi)

∣∣∣∣∣ ≤ γM |J |r2
}

and denote by

rQ(ρ, γQ) = sup
f⋆∈F

{infQγQ

f⋆,ρ}, rM (ρ, γM ) = sup
f⋆∈F

{infMγM

f⋆,ρ} .

The link function is any continuous and non-decreasing function r : R+ → R+

such that for all ρ > 0

r(ρ) = r(ρ, γQ, γM ) ≥ max(rQ(ρ, γQ), rM (ρ, γM )) . (10)

4.4. The estimators

Let (TK,λ(g, f))f,g∈F denote the family of tests defined in (9). For every
function f ∈ F , let BK,λ(f) = {g ∈ F : TK,λ(g, f) ≥ 0} denote the set of all
functions g ∈ F that beat f . As explained in Section 3, these sets are measured
with two metrics. First, let

Rreg
K,λ(f) = sup

g∈BK,λ(f)

{∥g − f∥} and f̂
(1)
K,λ ∈ argmin

f∈F
Rreg

K,λ(f) .

Next, let

R
(2)
K,λ(f) = sup

g∈BK,λ(f)

{MOMK [|g − f |]} .

The second criterion is given by

C
(2)
K,λ(f) = inf

{
ρ ≥ 0 : Rreg

K,λ(f) ≤ ρ and R
(2)
K,λ(f) ≤ 85θrr(ρ)

}
,

where r(·) is a link function as defined in Definition 1. The associated estimator
is then given by

f̂
(2)
K,λ ∈ argmin

f∈F
C

(2)
K,λ(f) .

For the definition of f̂
(1)
K,λ and f̂

(2)
K,λ, if the argmin does not exist, one can choose

an approximate 1/n-minimizer without altering statistical performance of these
estimators.
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4.5. The sparsity equation

From the quadratic / multiplier decomposition of the excess quadratic loss:

TK,λ(f
∗, f) = MOMK [(f − f∗)2 − 2ζ(f − f∗)] + λ(∥f∥ − ∥f∗∥) . (11)

Let f ∈ F and ρ = ∥f − f∗∥. When ρ is large and ∥f − f∗∥L2
P
is small, one can

prove TK,λ(f
∗, f) > 0 only thanks to the regularization term λ(∥f∥ − ∥f∗∥) in

(11). This is why a lower bound on the regularization term is usefull.
Recall that the subdifferential of ∥·∥ in f ∈ F is the set

(∂ ∥·∥)f = {z∗ ∈ E∗ : ∥f + h∥ ≥ ∥f∥+ z∗(h) for every h ∈ E} ,

where (E∗, ∥·∥∗) is the dual normed space of (E, ∥·∥) (and E is the linear space
containing F onto which ∥·∥ is defined). For all ρ > 0, let Hρ denote the set

Hρ = {f ∈ F : ∥f − f∗∥ = ρ, ∥f − f∗∥L2
P
≤ r(ρ)}

where r(·) is the link function from Definition 1. Let Γf∗(ρ) denote the union
of all subdifferentials of ∥·∥ at functions “close” to f∗

Γf∗(ρ) =
∪

f∈B(f∗,ρ/20)

(∂ ∥·∥)f .

Intuitively, every norm promotes the “sparsity” defined by large (in the dual
sphere) subdifferentials of this norm. Sparse functions f∗∗ are useful in our
context because a large lower bound on ∥f∥ − ∥f∗∗∥ (and so for ∥f∥ − ∥f∗∥
when ∥f∗∗ − f∗∥ is small enough) can be derived when the vector f − f∗∗ is in
the right direction. This intuition is formalized in the sparsity equation. Let

∀ρ > 0, ∆(ρ) = inf
f∈Hρ

sup
z∗∈Γf∗ (ρ)

z∗(f − f∗) .

By definition, ∆(ρ) − ρ/20 is a uniform lower bound on ∥f∥ − ∥f∗∥ if f ∈
Hρ. Thus, ∥f∥ − ∥f∗∥ ≳ ρ, when ∆(ρ) ≳ ρ which is the sparsity equation as
introduced in Lecué and Mendelson (2016a).

Definition 2. A radius ρ > 0 satisfies the sparsity equation if ∆(ρ) ≥ 4ρ/5.

If ρ∗ satisfies the sparsity equation, so do all ρ ≥ ρ∗. Therefore, one can define

ρ∗ = inf

(
ρ > 0 : ∆(ρ) ≥ 4ρ

5

)
. (12)

5. Main results

5.1. Basic risk bounds

Theorem 1 gathers estimation error bounds satisfied by the estimators f̂
(j)
K,λ for

j = 1, 2 defined in Section 4.4.
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Theorem 1. Grant Assumptions 1, 2 and 3 and let rQ, rM anr r denote the
functions introduced in Definition 1 for

γQ = min

(
1

661θ0
,

1

1764θr

)
, γM =

ϵ

168
and ϵ =

3

331θ20
.

Let ρ∗ be defined in (12) and let K∗ denote the smallest integer such that

K∗ ≥ max

(
8|O|
7

,
Nϵ2r2(ρ∗)

336θ2m

)
.

For all K ≥ 1, let ρK be a solution of r2(ρK) = [336θ2m/ϵ
2]
√
K/N . Assume

that for every i ∈ I, K ∈ [K∗, N ] and f ∈ F ∩B(f∗, ρK),

2(Pi − P )ζ(f − f∗) ≤ ϵmax

(
336θ2m
ϵ2

K

N
, r2M (ρK , γM ), ∥f − f∗∥2L2

P

)
. (13)

For all K ∈ [K∗, N/(84θ2rθ
2
0)], with probability larger than 1− 4 exp(−K/1008),

one has ∥∥∥f̂ (1)K,λ − f∗
∥∥∥ ≤ ρK ,

and ∥∥∥f̂ (2)K,λ − f∗
∥∥∥ ≤ ρK ,

∥∥∥f̂ (2)K,λ − f∗
∥∥∥
L2

P

≤ 340θ0θrr(ρK)

when the regularization parameter satisfies

20ϵ

7

r2(ρK)

ρK
< λ <

10

331θ20

r2(ρK)

ρK
.

To the best of our knowledge, Theorem 1 provides the first theoretical guar-
antees for any estimator in this setting. Recall that the dataset may be corrupted
by adversarial outliers, that informative data may be heavy-tailed and that their
distribution Pi for i ∈ I only induce L2 and L1 geometries over F − f∗ equiv-
alent to that of P . In particular, the distributions Pi may be different from P .
When K = K∗, the rates in Theorem 1, for L2 estimation (to the square) of f∗

is r2(ρK∗) which is ∼ max(|O|/N, r2(ρ∗)), as announced in the abstract. When
the number of outliers |O| is less than Nr2(ρ∗), this rate is the minimax rate of
the RERM in i.i.d. subgaussian frameworks with independent noise Lecué and
Mendelson (2013).

In Theorem 1, K can be as small as the infimum between the number of
outliers and N times the minimax rate of convergence. Hence, if the optimal
rate is known, as in Lugosi and Mendelson (2017), Theorem 1 shows that Le
Cam’s estimators with K = K∗ achieve the same performance as the champions
in this paper.

Assumption 1 and (13) are automatically satisfied when for all i ∈ I, Pi = P .
Theorem 1 goes beyond the i.i.d. setup, relaxing the i.d. assumptions into
proximity assumptions between L2

Pi
and L2

P geometries.

10



5.2. Adaptive choice of K by Lepski’s method

The main drawback of Theorem 1 is that optimal rates are only achieved
when K ≈ K∗. Since K∗ is unknown, it cannot be used in general.

Let K1 = K∗ and K2 = N/(84θ20θ
2
r) be defined as in Theorem 1. For any

integer K ∈ [K1,K2], let ρK and λ be defined as in Theorem 1 and for j = 1, 2

denote by f̂
(j)
K = f̂

(j)
K,λ for this choice of λ. For all f ∈ F , let

B̂
(2)
K (f) =

{
g ∈ F : MOMK [|g − f |] ≤ 28900θ2rθ0r(ρK)

}
.

Now, let

R
(1)
K = B(f̂

(1)
K , ρK), R

(2)
K = B(f̂

(2)
K , ρK) ∩ B̂(2)

K (f̂
(2)
K )

and for every j = 1, 2, let

K̂(j) = inf

{
K ∈ [K2] :

K2∩
J=K

R
(j)
J ̸= ∅

}
.

Finally, define adaptive (to K) estimators via Lepski’s method: for j = 1, 2,

f̂
(j)
LE ∈

∩K2

J=K̂(j) R
(j)
J .

Theorem 2. Grant assumptions and notations of Theorem 1. There exist ab-

solute constants (ci)1≤i≤2 such that the estimators f̂
(j)
LE for j = 1, 2 satisfy for

every K ∈ [K∗, N/(84θ20θ
2
r)], with probability at least 1− c1 exp (−c2K),∥∥∥f̂ (1)LE − f∗

∥∥∥ ≤ 2ρK ,

and ∥∥∥f̂ (2)LE − f∗
∥∥∥ ≤ 2ρK ,

∥∥∥f̂ (2)LE − f∗
∥∥∥
L2

P

≤ 680θrθ0r(2ρK) .

In particular, for K = K∗, if the following regularity assumption holds: there
exists an absolute constant c3 such that for all ρ > 0, r(2ρ) ≤ c3r(ρ), with
probability at least

1− c1 exp

(
−c4N max

(
|O|
N
,
r2(ρ∗)

θ40θ
2
m

))
then, ∥∥∥f̂ (2)LE − f∗

∥∥∥
L2

P

≤ c5 max

(
θ40θ

2
m

|O|
N
, r2(ρ∗)

)
.

Assume that all (Xi, Yi), i ∈ [N ] are distributed according to (X,Y f∗
), where

f∗ ∈ F , Y f∗
= f∗(X) + ζ and ζ is a centered Gaussian variable with variance

σ, independent of X. Assume that F is L-subgaussian: for every f ∈ F and
p ≥ 2, ∥f∥Lp ≤ L

√
p ∥f∥L2 . Then, (Lecué and Mendelson, 2013, Theorem A′)

proves that if f̃N is an estimator such that for every f∗ ∈ F and every r > 0,

11



with probability at least 1 − c0 exp(−σ−1r2N/c0),
∥∥∥f̃N − f∗

∥∥∥
L2

P

≤ ζN , then

necessarily
ζN ≳ min

(
r,diam(F,L2

P )
)
. (14)

When Y f∗
= f∗(X) + ζ, c ∼ 1/θm ∼ 1/σ. Applying this result to r = r(ρK)

for some given K ≥ K∗ shows no procedure can estimate f∗ in L2
P uniformly

over F with confidence at least 1− c0 exp(−K/c0) at a rate better than r(ρK)
(we implicitly assumed that r(ρK) ≤ diam(F,L2

P ) since r(ρK) can obviously be
replaced by r(ρK) ∧ diam(F,L2

P ) in all results). Moreover, this rate is mini-
max since (Lecué and Mendelson, 2013, Theorem A) also shows that the ERM

over ρKB, f̂ERM
N ∈ argminf∈ρKB PNℓf , satisfies

∥∥∥f̂ERM
N − f∗

∥∥∥
L2

≲ r(ρK) with

probability at least 1− c0 exp(−σ−1r2(ρK)N/c0) when σ ≳ rQ(ρK).

Theorem 2 shows that f̂LE achieves similar rates of convergence with the
same exponentially high confidence in the relaxed setting of this paper. Com-
pared to Lugosi and Mendelson (2017), the Lepski method chooses automat-
ically the tuning parameter K, which yields to exact minimax rates without
knowledge of this rate for the construction of the estimators and for a possibly
corrupted database.

5.3. Application to MOM Lasso

As a proof of concept, theoretical properties are illustrated in the exam-
ple of sparse-recovery in high-dimensional spaces using ℓ1-regularization, cf.
Bühlmann and van de Geer (2011); Giraud (2015). The interested reader can
check that it also applies to other procedures like Slope (cf. Bogdan et al. (2015);
Su and Candès (2015)) and trace-norm regularization as well as kernel methods,
for instance, by using the results in Lecué and Mendelson (2016a,b).

Recall this classical setup. For every t = (tj)
d
1 ∈ Rd and 1 ≤ p ≤ +∞, let

F = {
⟨
·, t
⟩
: t ∈ Rd} and

∥∥⟨·, t⟩∥∥ = ∥t∥1 , where ∥t∥p =

( d∑
j=1

|tj |p
)1/p

.

Let t∗ be defined by f∗ =
⟨
·, t∗
⟩
. Let (e1, . . . , ed) be the canonical basis of Rd

and let Bd
p (resp. Sd−1

p ) denote the unit ball (resp. sphere) associated to ∥·∥p.
To simplify presentation of this example, assume that P = Pi for all i ∈ I and
write Lq for Lq

P , that is (Xi, Yi)i∈I are i.i.d. ∼ P . The following result is then
a corollary of Theorem 2.

Theorem 3. Assume that E
⟨
X, t

⟩2
= ∥t∥22 for all t ∈ Rd and

o) there exist s ∈ [N ] such that N ≥ c1s log(ed/s) and v ∈ Rd such that
∥t∗ − v∥1 ≤ σs

√
log (ed/s) /N/20 and |supp(v)| ≤ s.

i’) |I| ≥ N/2 and |O| ≤ c1s log(ed/s),

ii) ζ = Y −
⟨
X, t∗

⟩
∈ Lq0 for some q0 > 2

iii’) for every 1 ≤ p ≤ c0 log(ed),
∥∥⟨X, ej⟩∥∥Lp

≤ L
√
p,

12



iv’) there exists θ0 such that
∥∥⟨X, t⟩∥∥

L1 ≤ θ0 ∥t∥2, for all t ∈ Rd,

v) there exists θm such that var(ζ
⟨
X, t

⟩
) ≤ θ2m ∥t∥22, for all t ∈ Rd.

The MOM-LASSO estimator t̂LE defined by f̂LE =
⟨
t̂LE , ·

⟩
satisfies, with prob-

ability at least 1− c2 exp(−c3s log(ed/s)), for every 1 ≤ p ≤ 2,

∥∥t̂LE − t∗
∥∥
p
≤ c4(L, θm) ∥ζ∥Lq0

s1/p

√
1

N
log

(
ed

s

)
.

Theoretical properties of MOM LASSO outperform those of LASSO, cf. for
example [Theorem 1.4 in Lecué and Mendelson (2016a)], in several ways.

• Estimation rates achieved by MOM-LASSO are the actual minimax rates
s log(ed/s)/N , see Bellec et al. (2016), while classical LASSO estimators
achieve the rate s log(ed)/N . This improvement is possible thanks to the
adaptation step in MOM-LASSO.

• the probability deviation for LASSO is polynomial – 1/N (q0/2−1) – it is
exponentially small for MOM LASSO. Exponential rates for LASSO hold
only if the noise ζ is subgaussian (∥ζ∥Lp

≤ C
√
p ∥ζ∥L2

for all p ≥ 2).

• MOM LASSO is insensitive to data corruption by up to s times log(ed/s)
outliers while only one outlier can break performance of LASSO.

• All assumptions on X are weaker for MOM LASSO than for LASSO.

6. Proofs

In all the proof section, P denotes the distribution of (X1, . . . , XN ) and E
the corresponding expectation. For any non-empty subset B ⊂ [N ] and any
f : X → R for which it makes sense, let PBf = 1

|B|
∑

i∈B Pif . For any f ∈ L2
P

and r ≥ 0, let

B2(f, r) = {g ∈ L2
P : ∥f − g∥L2

P
≤ r}, S2(f, r) = {g ∈ L2

P : ∥f − g∥L2
P
= r} .

Let K denote the set of indices of blocks Bk containing only informative data:

K = {k ∈ [K] : Bk ⊂ I} .

The are mainly three stochastic results necessary to analyze regularized Le
Cam’s test estimators. The first and the second bound the quadratic and multi-
plier “MOM processes” and the third one is an isometric result. Similar ingredi-
ent were used to analyze ERM in Lecué and Mendelson (2013), see Lemma 2.6
and its following remark and Equation (2.4). Proofs of these stochastic ingredi-
ents are based on the small ball method of Koltchinskii and Mendelson (2015).
In parallel to our work, similar results appeared in Lemmas 5.1 and 5.5 in Lugosi
and Mendelson (2017) in the i.i.d. setup for the study of tournament estimators,
see also Mendelson (2017).
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6.1. Lower Bound on the quadratic MOM process

Lemma 1. Grant Assumptions 1 and 3. Fix η ∈ (0, 1), ρ > 0 and let α, γQ, γ, x ∈
(0, 1) be such that γ (1− α− x− 32θ0γQ) ≥ 1−η. Let K ∈ [|O|/(1−γ), Nα/(2θ0θr)2].

There exists an event ΩQ(K, ρ) such that P (ΩQ(K, ρ)) ≥ 1−exp(−Kγx2/2)
on which for all f ∈ B(f∗, ρ) if ∥f − f∗∥L2

P
≥ rQ(ρ, γQ) then

Qη,K(|f − f∗|) ≥ 1

4θ0
∥f − f∗∥L2

P
and Qη,K((f − f∗)2) ≥ 1

(4θ0)2
∥f − f∗∥2L2

P
.

Proof. For all f ∈ F − {f∗}, let nf = (f − f∗)/ ∥f − f∗∥L2
P
. For i ∈ I,

Pi|nf | ≥ θ−1
0 by Assumption 3 and Pin

2
f ≤ θ2r by Assumption 1. By Markov’s

inequality, for all k ∈ K,

P

(
|PBk

|nf | − PBk
|nf || >

θr√
α|Bk|

)
≤ α

and so

P

(
PBk

|nf | ≥
1

θ0
− θr√

α|Bk|

)
≥ 1− α .

Since K ≤ Nα/(2θ0θr)
2 then |Bk| = N/K ≥ α/(2θ0θr)

2 and thus

P
(
PBk

|nf | ≥
1

2θ0

)
≥ 1− α . (15)

Let ϕ denote the function defined by ϕ(t) = (t − 1)I(1 ≤ t ≤ 2) + I(t ≥ 2)
for all t ∈ R+ and, for all f ∈ F − {f∗}, let Z(f) =

∑
k∈[K] I(4θ0PBk

|nf | ≥ 1).

Since I(t ≥ 1) ≥ ϕ(t) for any t ≥ 0 then Z(f) ≥
∑

k∈K ϕ (4θ0PBk
|nf |). Since

ϕ(t) ≥ I(t ≥ 2) for all t ≥ 0, it follows from (15) that

E

[∑
k∈K

ϕ (4θ0PBk
|nf |)

]
≥
∑
k∈K

P (4θ0PBk
|nf | ≥ 2) ≥ |K|(1− α) .

Therefore, for all f ∈ F ,

Z(f) ≥ |K|(1− α) +
∑
k∈K

(ϕ (4θ0PBk
|nf |)− E [ϕ (4θ0PBk

|nf |)]) .

Let F = {f ∈ B(f∗, ρ) : ∥f − f∗∥L2
P
≥ rQ(ρ, γQ)}. By the bounded difference

inequality (cf. (McDiarmid, 1989, Lemma 1.2) or (Boucheron et al., 2013, The-
orem 6.2), there exists an event Ω(x) such that P(Ω(x)) ≥ 1 − exp(−x2|K|/2),
on which

sup
f∈F

∣∣∣∣∣∑
k∈K

(ϕ (4θ0PBk
|nf |)− E [ϕ (4θ0PBk

|nf |)])

∣∣∣∣∣
≤ E sup

f∈F

∣∣∣∣∣∑
k∈K

(ϕ (4θ0PBk
|nf |)− E [ϕ (4θ0PBk

|nf |)])

∣∣∣∣∣+ |K|x .
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By the Giné-Zynn symmetrization argument (Boucheron et al., 2013, Lemma 11.4),

E sup
f∈F

∣∣∣∣∣∑
k∈K

(ϕ (4θ0PBk
|nf |)− E [ϕ (4θ0PBk

|nf |)])

∣∣∣∣∣ ≤ 2E sup
f∈F

∣∣∣∣∣∑
k∈K

ϵkϕ (4θ0PBk
|nf |)

∣∣∣∣∣
where (ϵk)k∈K are independent Rademacher variables independent of the data.
Moreover, ϕ is 1-Lipschitz and ϕ(0) = 0. By the contraction principle (cf.
Equation (4.20) in (Ledoux and Talagrand, 1991, Theorem 4.12))

E sup
f∈F

∣∣∣∣∣∑
k∈K

ϵkϕ (4θ0PBk
|nf |)

∣∣∣∣∣ ≤ 8θ0E sup
f∈F

∣∣∣∣∣∑
k∈K

ϵkPBk
|nf |

∣∣∣∣∣ .
The family (ϵ[i]|nf (Xi)| : i ∈ ∪k∈KBk), where [i] = ⌈i/K⌉ for all i ∈ I, is

a collection of centered random variables. Therefore, if (ϵ′k)k∈K and (X ′
i)i∈I

denote independent copies of (ϵk)k∈K and (Xi)i∈I then

E sup
f∈F

∣∣∣∣∣∑
k∈K

ϵkPBk
|nf |

∣∣∣∣∣ ⩽ E sup
f∈F

∣∣∣∣∣∑
k∈K

1

|Bk|
∑
i∈Bk

ϵk|nf (Xi)| − ϵ′k|nf (X ′
i)|

∣∣∣∣∣ .
Then, as (Xi)i∈I and (X ′

i)i∈I are two independent families of independent
variables therefore, if (ϵ′′i )i∈I denote a family of i.i.d. Rademacher variables
independent of (ϵi), (ϵ

′
i), (Xi)i∈I , (X

′
i)i∈I then (ϵk|nf (Xi)| − ϵ′k|nf (X ′

i)|) and
(ϵ′′i (ϵk|nf (Xi)| − ϵ′k|nf (X ′

i)|)) have the same distribution. Therefore,

E sup
f∈F

∣∣∣∣∣∑
k∈K

1

|Bk|
∑
i∈Bk

ϵk|nf (Xi)| − ϵ′k|nf (X ′
i)|

∣∣∣∣∣
⩽ E sup

f∈F

∣∣∣∣∣∑
k∈K

1

|Bk|
∑
i∈Bk

ϵ′′i (ϵk|nf (Xi)| − ϵ′k|nf (X ′
i)|)

∣∣∣∣∣
= E sup

f∈F

∣∣∣∣∣∑
k∈K

1

|Bk|
∑
i∈Bk

ϵ′′i (|nf (Xi)| − |nf (X ′
i)|)

∣∣∣∣∣
⩽ 2K

N
E sup

f∈F

∣∣∣∣∣∣
∑

i∈∪k∈KBk

ϵinf (Xi)

∣∣∣∣∣∣ .
Therefore

E sup
f∈F

∣∣∣∣∣∑
k∈K

ϵkPBk
|nf |

∣∣∣∣∣ ≤ 4K

N
E sup

f∈F

∣∣∣∣∣∣
∑

i∈∪k∈KBk

ϵinf (Xi)

∣∣∣∣∣∣ .
It follows from the convexity of F that for all f ∈ F , rQ(ρ, γQ)nf ∈ F − f∗ and
it also belongs to the L2

P sphere of radius rQ(ρ, γQ). Therefore, by definition of
rQ := rQ(ρ, γQ) and for J = ∪k∈KBk,

E sup
f∈F

∣∣∣∣∣∑
i∈J

ϵinf (Xi)

∣∣∣∣∣ = 1

rQ
E sup

f∈F∩S2(f∗,rQ)

∣∣∣∣∣∑
i∈J

ϵi(f − f∗)(Xi)

∣∣∣∣∣ ≤ γQ
|K|N
K

.
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In conclusion, on Ω(x), all f ∈ F are such that

Z(f) ≥ |K| (1− α− x− 32θ0γQ) ≥ (1− η)K .

In other words, on Ω(x), for all f ∈ F , there exist at least (1− η)K blocks Bk

such that PBk
|nf | ≥ (4θ0)

−1. For any of these blocks Bk, PBk
n2f ≥ (PBk

|nf |)2,
hence, on Ω(x), Qη,K [|nf |] ≥ (4θ0)

−1 and Qη,K [n2f ] ≥ (4θ0)
−2.

6.2. Upper Bound on the multiplier MOM process

Lemma 2. Grant Assumption 2. Fix η ∈ (0, 1), ρ ∈ (0,+∞], and let α, γM , γ, x
and ϵ be positive absolute constants such that γ (1− α− x− 8γM/ϵ) ≥ 1−η. Let
K ∈ [|O|/(1−γ), N ]. There exists an event ΩM (K, ρ) such that P(ΩM (K, ρ)) ≥
1 − exp(−γKx2/2) and on ΩM (K, ρ), for all f ∈ B(f∗, ρ) there is at least
(1− η)K blocks Bk with k ∈ K such that∣∣2(PBk

− PBk
)(ζ(f − f∗))

∣∣ ≤ ϵmax

(
16θ2m
ϵ2α

K

N
, r2M (ρ, γM ), ∥f − f∗∥2L2

P

)
.

Proof. For all k ∈ [K] and f ∈ F , define Wk(f) = 2(PBk
− PBk

) (ζ(f − f∗))
and

γk(f) = ϵmax

(
16θ2m
ϵ2α

K

N
, r2M (ρ, γM ), ∥f − f∗∥2L2

P

)
.

Let f ∈ F and k ∈ K. It follows from Markov’s inequality and Assumption 2
that

P
[
2
∣∣∣Wk(f)

∣∣∣ ≥ γk(f)
]
≤

4E
[(

2(PBk
− PBk

)(ζ(f − f∗))
)2]

16θ2
m

α ∥f − f∗∥2L2
P

K
N

≤
α
∑

i∈Bk
varPi(ζ(f − f∗))

|Bk|2θ2m ∥f − f∗∥2L2
P

K
N

≤
αθ2m ∥f − f∗∥2L2

P

|Bk|θ2m ∥f − f∗∥2L2
P

K
N

= α . (16)

Denote J = ∪k∈KBk and remark that J ∈ J as defined in Definition 1. Let
rM := rM (ρ, γM ) for simplicity. We have

E sup
f∈B(f∗,ρ)

∑
k∈K

ϵk
Wk(f)

γk(f)
≤ 2E sup

f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

ϵk(PBk
− PBk

)(ζ(f − f∗))

ϵmax(r2M , ∥f − f∗∥2L2
P
)

∣∣∣∣∣
≤ 2

ϵr2M
E

[
sup

f∈B(f∗,ρ)\B2(f∗,rM )

∣∣∣∣∣∑
k∈K

ϵk(PBk
− PBk

)

(
ζrM

f − f∗

∥f − f∗∥L2
P

)∣∣∣∣∣
∨ sup

f∈B(f∗,ρ)∩B2(f∗,rM )

∣∣∣∣∣∑
k∈K

ϵk(PBk
− PBk

) (ζ(f − f∗))

∣∣∣∣∣
]

≤ 2

ϵr2M
E sup

f∈B(f∗,ρ)∩B2(f∗,rM )

∣∣∣∣∣∑
k∈K

ϵk(PBk
− PBk

) (ζ(f − f∗))

∣∣∣∣∣ ,
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where in the last but one inequality we used that F is convex and the same
argument as in the proof of Lemma 1. Moreover, since the random variables
((ζi(f − f∗)(Xi) − Piζ(f − f∗)) : i ∈ I) are centered and independent, the
symmetrization argument applies and, by definition of rM ,

E sup
f∈B(f∗,ρ)

∑
k∈K

ϵk
Wk(f)

γk(f)
≤ 4K

ϵr2MN
E sup

f∈B(f∗,ρ)∩B2(f∗,rM )

∣∣∣∣∣∑
i∈J

ϵiζi(f − f∗)(Xi)

∣∣∣∣∣
≤ 4K

ϵN
γM |K|N

K
=

4γM
ϵ

|K| . (17)

Now, let ψ(t) = (2t− 1)I(1/2 ≤ t ≤ 1) + I(t ≥ 1) for all t ≥ 0 and note that ψ
is 2-Lipschitz, ψ(0) = 0 and satisfies I(t ≥ 1) ≤ ψ(t) ≤ I(t ≥ 1/2) for all t ≥ 0.
Therefore, all f ∈ B(f∗, ρ) satisfies∑
k∈K

I (|Wk(f)| < γk(f))

= |K| −
∑
k∈K

I

(
|Wk(f)|
γk(f)

≥ 1

)
≥ |K| −

∑
k∈K

ψ

(
|Wk(f)|
γk(f)

)
= |K| −

∑
k∈K

Eψ
(
|Wk(f)|
γk(f)

)
−
∑
k∈K

[
ψ

(
|Wk(f)|
γk(f)

)
− Eψ

(
|Wk(f)|
γk(f)

)]
≥ |K| −

∑
k∈K

P
(
|Wk(f)|
γk(f)

≥ 1

2

)
−
∑
k∈K

[
ψ

(
|Wk(f)|
γk(f)

)
− Pψ

(
|Wk(f)|
γk(f)

)]

≥ (1− α)|K| − sup
f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

[
ψ

(
|Wk(f)|
γk(f)

)
− Eψ

(
|Wk(f)|
γk(f)

)]∣∣∣∣∣
where we used (16) in the last inequality. The bounded difference inequality
ensures that, for all x > 0, there exists an event Ω(x) satisfying P(Ω(x)) ≥
1− exp(−x2|K|/2) on which

sup
f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

[
ψ

(
|Wk(f)|
γk(f)

)
− Eψ

(
|Wk(f)|
γk(f)

)]∣∣∣∣∣
≤ E sup

f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

[
ψ

(
|Wk(f)|
γk(f)

)
− Eψ

(
|Wk(f)|
γk(f)

)]∣∣∣∣∣+ |K|x .

Furthermore, it follows from the symmetrization argument that

E sup
f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

[
ψ

(
|Wk(f)|
γk(f)

)
− Eψ

(
|Wk(f)|
γk(f)

)]∣∣∣∣∣
≤ 2E sup

f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

ϵkψ

(
|Wk(f)|
γk(f)

)∣∣∣∣∣
17



and, from the contraction principle and (17), that

E sup
f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

ϵkψ

(
|Wk(f)|
γk(f)

)∣∣∣∣∣ ≤ 2E sup
f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

ϵk
|Wk(f)|
γk(f)

∣∣∣∣∣ ≤ 8γM
ϵ

|K| .

In conclusion, on Ω(x), for all f ∈ B(f∗, ρ),∑
k∈K

I (|Wk(f)| < γk(f)) ≥ (1− α− x− 8γM/ϵ) |K|

≥ Kγ (1− α− x− 8γM/ϵ) ≥ (1− η)K .

6.3. An isometry property of MOMK [·] processes
Besides the controls of the quadratic and multiplier MOM processes pre-

sented in Lemmas 1 and 2 respectively, the estimation error bounds for the
MOM estimators rely on the following isometry property of the MOM proces-
sus f ∈ F → MOMK [|f − f∗|].

Lemma 3. [Isometry property of the MOMK [·] process] Grant Assumptions 1
and 3. Fix η ∈ (0, 1), ρ > 0 and let α, γQ, γ, x denote absolute constants in (0, 1)
such that γ (1− α− x− 4θrγQ/α) ≥ 1−η. Let K ∈ [|O|/(1−γ), Nα/(2θ0θr)2].
There exists an event Ωiso(K, ρ) ⊂ ΩQ(K, ρ) such that P(Ωiso(K, ρ)) ≥ 1 −
2 exp

(
−γx2K/2

)
and on the event Ωiso(K, ρ), for all f ∈ B(f∗, ρ),

Q1−η,K |f − f∗| ≤ θr ∥f − f∗∥L2
P
+

4θr
α

max
(
rQ(ρ, γQ), ∥f − f∗∥L2

P

)
and if ∥f − f∗∥L2

P
≥ rQ(ρ, γQ) then Qη,K |f − f∗| ≥ (1/(4θ0)) ∥f − f∗∥L2

P
.

In particular, for η = 1/2, on the event Ωiso(K, ρ), for all f ∈ B(f∗, ρ), if
∥f − f∗∥L2

P
≥ rQ(ρ, γQ), then

1

4θ0
∥f − f∗∥L2

P
≤ MOMK [|f − f∗|] ≤ θr

(
1 +

4

α

)
∥f − f∗∥L2

P
. (18)

Proof. It follows from Lemma 1 that on the event ΩQ(K, ρ) for all f ∈ B(f∗, ρ),
if ∥f − f∗∥L2

P
≥ rQ(ρ, γQ) then Qη,K |f − f∗| ≥ (1/(4θ0) ∥f − f∗∥L2

P
. This

yields the “lower bound” result in (18).
For the upper bound of the isomorphic result, we essentially repeat the proof

of Lemma 2. Let us just highlight the main differences. We will use the same
notation as in the proof of Lemma 2 except that for all f ∈ F , we define

Wk(f) = (PBk
− PBk

)|f − f∗| and γk(f) =
4θr
α

max
(
rQ(ρ, γQ), ∥f − f∗∥L2

P

)
.

It follows from Chebyshev’s inequality and Assumption 1 that

P [2|Wk(f)| ≥ γk(f)] ≤
4PBk

|f − f∗|
γk(f)

≤
4θr ∥f − f∗∥L2

P

γk(f)
≤ α.

18



Moreover, by convexity of F , we have, for rQ := rQ(ρ, γQ),

(⋆) := E sup
f∈B(f∗,ρ)

∑
k∈K

ϵk
Wk(f)

γk(f)

≤ 4θr
αrQ

E sup
f∈B(f∗,ρ)∩S2(f∗,rQ)

∣∣∣∣∣∑
k∈K

ϵk(PBk
− PBk

)|f − f∗|

∣∣∣∣∣
and then using a symmetrization argument, we obtain that

(⋆) ≤ 4θrK

αrQN
E sup

f∈B(f∗,ρ)∩S2(f∗,rQ)

∣∣∣∣∣∑
i∈J

ϵi(f − f∗)(Xi)

∣∣∣∣∣ ≤ 4θrγQ|K|
α

.

Finally, using the same argument as in the proof of Lemma 2, for all x > 0 there
exists an event Ω(x) such that P(Ω(x)) ≥ 1 − exp(−x2|K|/2), on which for all
f ∈ B(f∗, ρ),∑

k∈K

I(|Wk(f)| ≤ γk(f)) ≥ |K|(1− α− x− 4θrγQ/α) ≥ (1− η)|K|.

In particular, on the event Ω(x), for all f ∈ B(f∗, ρ) there are more than
(1 − η)K blocks Bk for which, PBk

|f − f∗| ≤ PBk
|f − f∗| + γk(f). Now, the

result follows from Assumption 1 since PBk
|f − f∗| ≤ θr ∥f − f∗∥L2

P
.

6.4. Conclusion to the proof of Theorem 1

The proof relies on the following proposition.

Proposition 1. Grant conditions of Theorem 1. Let γQ = 1/(661θ0), γM =
ϵ/168 for some ϵ < 7/(662θ20) and the regularization parameter be such that

20ϵr2(ρK)

7ρK
< λ <

10r2(ρK)

331θ20ρK
.

The event Ω0(K) = ΩQ(K, ρK) ∩ ΩM (K, ρK) is such that P(Ω0(K)) ≥ 1 −
2 exp (−K/1008) and on Ω0(K) for all f ∈ F if ∥f − f∗∥L2

P
≥ r(ρK) or ∥f −

f∗∥ ≥ ρK then

MOMK [ℓf − ℓf∗ ] + λ(∥f∥ − ∥f∗∥) > 0 .

Proof. Using (6), (7) and (8) together with the quadratic / multiplier decom-
position of the excess quadratic loss yields that for all f ∈ F ,

MOMK [ℓf − ℓf∗ ] = MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
≥ Q1/4,K [(f − f∗)2]− 2Q3/4,K [ζ(f − f∗)] . (19)

Note that γ(1− α− x− 32θ0γQ) ≥ 1− η when one chooses

η =
1

4
, γ =

7

8
, α =

1

21
, x =

1

21
, γQ =

1

661θ0
, γM =

ϵ

168
and ϵ ≤ 1

64θ20
. (20)

19



For this choice of constants, Lemma 1 applies and for ρ = ρK we get that there
exists an event ΩQ(K, ρK) with probability larger than 1− exp(−K/1008) and
on that event, for all f ∈ B(f∗, ρK), if ∥f − f∗∥L2

P
≥ rQ(ρK , γQ) then

Q1/4,K [(f − f∗)2] ≥ 1

(4θ0)2
∥f − f∗∥2L2

P
. (21)

Moreover, for the choice of parameters as in (20), we also have γ(1 − α − x −
8γM/ϵ) ≥ 1 − η, hence Lemma 2 applies and for ρ = ρK we get that there
exists an event ΩM (K, ρK) with probability larger than 1− exp(−K/1008) and
on that event, for all f ∈ B(f∗, ρK) there are more than 3K/4 blocks Bk with
k ∈ K such that

|2(PBk
− PBk

)ζ(f − f∗)| ≤ ϵmax

(
16θ2m
ϵ2α

K

N
, r2M (ρK , γM ), ∥f − f∗∥2L2

P

)
.

Combining the last result with Assumption (13) together with the fact that
Pζ(f − f∗) ≤ 0 for all f ∈ F (because of the convexity of F ), it follows that on
the event ΩM (K, ρK), for all f ∈ B(f∗, ρK),

2Q3/4,K [ζ(f − f∗)] ≤ 2ϵmax

(
16θ2m
ϵ2α

K

N
, r2M (ρK , γM ), ∥f − f∗∥2L2

P

)
. (22)

Let us now prove that on the event ΩM (K, ρK)∩ΩQ(K, ρK), one has for all
f ∈ B(f∗, ρK),

MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
≥ −2ϵr2(ρK) . (23)

Assume that ΩM (K, ρK)∩ΩQ(K, ρK) holds and let f ∈ B(f∗, ρK). First assume
that ∥f − f∗∥L2

P
≥ r2(ρK). Then, it follows from (19), (21) and (22), the choice

of ϵ in (20) and the definition of ρK that

MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
≥
(

1

(4θ0)2
− 2ϵ

)
∥f − f∗∥2L2

P
≥

∥f − f∗∥2L2
P

32θ20
.

(24)

Now, if ∥f − f∗∥L2
P
≤ r2(ρK) then it follows from (19), (22) and the definition

of ρK that
MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
≥ −2ϵr2(ρK)

and (23) follows.

Conclusion of the proof when the regularization distance is small (i.e. ∥f−f∗∥ ≤
ρK) and the L2

P -distance is large (i.e. ∥f − f∗∥L2
P
≥ r(ρK)). Let f ∈ F be such

that ∥f − f∗∥ ≤ ρK and ∥f − f∗∥L2
P

≥ r(ρK). It follows from the triangular

inequality that ∥f∥− ∥f∗∥ ≥ −∥f − f∗∥ ≥ −ρK . Combining this together with
(24), it follows that

MOMK [ℓf − ℓf∗ ] + λ(∥f∥ − ∥f∗∥) ≥
∥f − f∗∥2L2

P

32θ20
− λρK ≥ r2(ρK)

32θ20
− λρK > 0

when λ < r2(ρK)/(32θ20ρK).
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Conclusion of the proof when the regularization distance is large (i.e. ∥f−f∗∥ ≥
ρK): the homogeneity argument.

Lemma 4. For all f ∈ F such that ∥f − f∗∥ ≥ ρK

∥f∥ − ∥f∗∥ ≥ sup
z∗∈Γf∗ (ρK)

z∗(f − f∗)− ρK
10

.

Proof. For every f∗∗ ∈ f∗ + (ρK/20)B and every z∗ ∈ (∂ ∥·∥)f∗∗ ,

∥f∥ − ∥f∗∥ ≥ ∥f∥ − ∥f∗∗∥ − ∥f∗∗ − f∗∥ ≥ z∗(f − f∗∗)− ρK
20

= z∗(f − f∗)− z∗(f∗∗ − f∗)− ρK
20

≥ z∗(f − f∗)− ρK
10

.

Lemma 5. Assume that, for all f ∈ F ∩ S(f∗, ρK),

MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
+ λ sup

z∗∈Γf∗ (ρK)

z∗(f − f∗) > λ
ρK
10

. (25)

Then (25) holds for all f ∈ F such that ∥f − f∗∥ ≥ ρK .

Proof. Let f ∈ F be such that ∥f − f∗∥ ≥ ρK . Define g = f∗ + ρK
f−f∗

∥f−f∗∥ and

remark that ∥g − f∗∥L2
P
= ρK and that, by convexity of F , g ∈ F . It follows

from (25) that for κ = ∥f − f∗∥/ρK ≥ 1, one has

MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
+ λ sup

z∗∈Γf∗ (ρK)

z∗(f − f∗)

= MOMK

[
κ2(g − f∗)2 − 2κζ(g − f∗)

]
+ λκ sup

z∗∈Γf∗ (ρK)

z∗(g − f∗)

≥ κ

(
MOMK

[
(g − f∗)2 − 2ζ(g − f∗)

]
+ λ sup

z∗∈Γf∗ (ρK)

z∗(g − f∗)

)
> κλ

ρK
10

≥ λ
ρK
10

.

Let f ∈ F be such that ∥f − f∗∥ ≥ ρK . By Lemma 4,

MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
+ λ(∥f∥ − ∥f∗∥)

≥ MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
+ λ sup

z∗∈Γf∗ (ρK)

z∗(f − f∗)− λ
ρK
10

.

Therefore, it will follow from Lemma 5 that

MOMK

[
(f − f∗)2 − 2ζ(f − f∗)

]
+ λ(∥f∥ − ∥f∗∥) > 0

21



if we can prove that for all g ∈ F such that ∥g − f∗∥ = ρK one has

MOMK

[
(g − f∗)2 − 2ζ(g − f∗)

]
+ λ sup

z∗∈Γf∗ (ρK)

z∗(g − f∗) > λ
ρK
10

. (26)

Let us now prove that (26) holds. Let g ∈ F be such that ∥g − f∗∥ =
ρK . First assume that ∥g − f∗∥L2

P
≤ r(ρK) so that g ∈ HρK . By definition

supz∗∈Γf∗ (ρK) z
∗(g − f∗) ≥ ∆(ρK) and, since ρK ≥ ρ∗, ρK satisfies the sparsity

equation and thus, supz∗∈Γf∗ (ρK) z
∗(g − f∗) ≥ 4ρK/5. Therefore, thanks to

(23), when λ > 20ϵr2(ρK)/(7ρK), one has

MOMK

[
(g − f∗)2 − 2ζ(g − f∗)

]
+ λ sup

z∗∈Γf∗ (ρK)

z∗(g − f∗)

≥ −2ϵr2(ρK) + λ
4

5
ρK > λ

ρK
10

.

Finally assume that ∥g − f∗∥L2
P

≥ r(ρK). Since supz∗∈Γf∗ (ρK) z
∗(f − f∗) ≥

−∥f − f∗∥ = −ρK , it follows from (24) that

MOMK

[
(g − f∗)2 − 2ζ(g − f∗)

]
+ λ sup

z∗∈Γf∗ (ρK)

z∗(g − f∗)

≥ 1

32θ20
∥g − f∗∥2L2

P
− λρK ≥ r2(ρK)

32θ20
− λρK > λ

ρK
10

when λ < 10r2(ρK)/(331θ20ρK).

End of the proof of Theorem 1. On the event Ω0(K) of Proposition 1, BK,λ(f
∗)

is included in the ball B(f∗, ρK), therefore, by definition of f̂
(1)
K,λ (cf. (4)),∥∥∥f̂ (1)K,λ − f∗

∥∥∥ ≤ C
(1)
K,λ(f

∗) ≤ ρK .

Again, by Proposition 1, on the same event Ω0(K), BK,λ(f
∗) ⊂ B(f∗, ρK)∩

B2(f
∗, r(ρK)), hence, on Ω0(K) ∩ Ωiso(K), where Ωiso(K) is an event defined

in Lemma 3, for all f ∈ BK,λ(f
∗),

MOMK [|f − f∗|] ≤ 85θr ∥f − f∗∥L2
P
≤ 85θrr(ρK)

where α = 1/21 according to (20). Therefore, C
(2)
K,λ(f

∗) ≤ ρK , which implies

that
∥∥∥f̂ (2)K,λ − f∗

∥∥∥ ≤ ρK (cf. (4)) and that C
(2)
K,λ(f̂

(2)
K,λ) ≤ ρK and therefore, by

Lemma 3, on Ω0(K) ∩ Ωiso(K), either
∥∥∥f̂ (2)K,λ − f∗

∥∥∥
L2

P

≤ rQ(ρK , γK) and so∥∥∥f̂ (2)K,λ − f∗
∥∥∥
L2

P

≤ 340θ0θrr(ρK) or
∥∥∥f̂ (2)K,λ − f∗

∥∥∥
L2

P

≥ rQ(ρK , γK) and so

∥∥∥f̂ (2)K,λ − f∗
∥∥∥
L2

P

≤ 4θ0MOMK

[
|f̂ (2)K,λ − f∗|

]
≤ 340θ0θrr(ρK) .
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6.5. Conclusion to the proof of Theorem 2

First, it follows from Theorem 1 that for all K ∈ [K1,K2], with probability

at least 1−c0 exp(−c1K), for both j = 1, 2, f∗ ∈ ∩K2

J=KR
(j)
K , so K̂(j) ≤ K, which

implies that both f∗ and f̂
(j)
LE belong to B(f̂

(j)
K,λ, ρK), therefore,

∥∥∥f∗ − f̂
(j)
LE

∥∥∥ ≤

2ρK . Second, for the L2
P -estimation error bound of f̂

(2)
LE , denote by rJ =

340θrθ0r(ρJ ) the bound on the L2
P risk of the estimator f̂

(2)
J obtained in The-

orem 1. Let K ∈ [K1,K2]. It follows from Lemma 3 for ρ = 2ρJ , J ≥ K that
there exists absolute constants c1, c2 and an event Ωiso such that P(Ωiso) ≥
1− c1 exp(−c2K) and, on the event Ωiso, for all J ≥ K, η ∈ {1/4, 1/2, 3/4} and
f ∈ B(f∗, 2ρJ),

if ∥f − f∗∥L2
P
≥ rQ(2ρJ , γQ), Qη,J(|f − f∗|)

{
≥ 1

4θ0
∥f − f∗∥L2

P

≤ 85θr ∥f − f∗∥L2
P

.

Let Ω be the event defined as the following intersection:

Ω =

K2∩
J=K

{∥∥∥f̂ (2)J − f∗
∥∥∥ ≤ ρJ and

∥∥∥f̂ (2)J − f∗
∥∥∥
L2

P

≤ rJ

}∩
Ω(K)

∩
Ωiso .

It follows from Theorem 1 that P(Ω) ≥ 1− c3 exp(−c4K). Moreover, on Ω, for
all J ≥ K,

Q3/4,J

(
|f∗ − f̂

(2)
J |
)
≤ 85θrrJ .

So, in particular, f∗ ∈ ∩K2

J=K

{
f ∈ B(f̂

(2)
J , ρJ ) : MOMJ

[
|f − f̂

(2)
J |
]
≤ 85θrrJ

}
.

By definition of K̂(2), this implies that K̂(2) ≤ K on Ω. Therefore, on Ω,

f̂
(2)
LE ∈ ∩K2

J=K

{
f ∈ B(f∗, 2ρJ) : MOMJ

[
|f − f̂

(2)
J |
]
≤ 85θrrJ

}
.

In particular,

MOMK

[
|f̂ (2)LE − f̂

(2)
K |
]
≤ 85θrrK .

Now on Ωiso, one has for all f ∈ B(f∗, 2ρK), if ∥f − f∗∥L2
P
≥ rQ(2ρK , γQ) then

Q1/4,J [|f − f∗|] ≥ 1

4θ0
∥f − f∗∥L2

P
.

Therefore on Ωiso, one has either
∥∥∥f̂ (2)LE − f∗

∥∥∥
L2

P

≤ rQ(2ρK , γQ) or
∥∥∥f̂ (2)LE − f∗

∥∥∥
L2

P

≥

rQ(2ρK , γQ) and in the latter case,∥∥∥f̂ (2)LE − f∗
∥∥∥
L2

P

≤ 4θ0Q1/4,K [|f̂ (2)LE − f∗|]

≤ 4θ0

(
MOMK

[∣∣f̂ (2)LE − f̂
(2)
K

∣∣]+Q3/4,K(|f̂ (2)K − f∗|)
)

≤ 680θ0θrrK .
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6.6. Proof of Theorem 3

Gaussian mean widths of any V ⊂ Rd are defined by

ℓ∗(V ) = E

 sup
(vj)∈V

d∑
j=1

gjvj

 , where (g1, . . . , gd) ∼ Nd(0, Id) . (27)

The dual norm of the ℓd1-norm is 1-unconditional with respect to the canonical
basis of Rd (Mendelson, 2016, Definition 1.4). Therefore, (Mendelson, 2016,
Theorem 1.6) applies, for every ρ > 0,

E sup
v∈ρBd

1∩rBd
2

∣∣∣∣∣∣
∑
i∈[N ]

ϵi
⟨
v,Xi

⟩∣∣∣∣∣∣ ≤ c2
√
Nℓ∗(ρBd

1 ∩ rBd
2 ) ,

E sup
v∈ρBd

1∩rBd
2

∣∣∣∣∣∣
∑
i∈[N ]

ϵiζi
⟨
v,Xi

⟩∣∣∣∣∣∣ ≤ c2σ
√
Nℓ∗(ρBd

1 ∩ rBd
2 ) .

Local Gaussian mean widths ℓ∗(ρBd
1 ∩ rBd

2 ) are bounded from above in (Lecué
and Mendelson, 2016a, Lemma 5.3) and computations of rM and rQ follow

r2M (ρ) ≲L,q0,γM

σ
2 d
N if ρ2N ≥ σ2d2

ρσ

√
1
N log

(
eσd
ρ
√
N

)
otherwise

,

r2Q(ρ)

{
= 0 if N ≳L,γQ

d

≲L,γQ

ρ2

N log
(

c(L,γQ)d
N

)
otherwise

.

Therefore, a link function is explicitly given by

r2(ρ) ∼L,q0,γQ,γM


max

(
ρσ

√
1
N log

(
eσd
ρ
√
N

)
, σ

2d
N

)
if N ≳L d

max

(
ρσ

√
1
N log

(
eσd
ρ
√
N

)
, ρ

2

N log
(

d
N

))
otherwise

.

(28)
The sparsity equation has been solved in this example in (Lecué and Mendel-

son, 2016a, Lemma 4.2), recall this result.

Lemma 6. If there exists v ∈ Rd such that v ∈ t∗ + (ρ/20)Bd
1 and |supp(v)| ≤

cρ2/r2(ρ) then

∆(ρ) = inf
h∈ρSd−1

1 ∩r(ρ)Bd
2

sup
g∈Γt∗ (ρ)

⟨
g, h− t∗

⟩
≥ 4ρ

5
.

Compute finally ρK and λ ∼ r2(ρK)/ρK . The equation K = cr(ρK)2N is
solved by

ρK ∼L,q0

K

σ

√
1

N
log−1

(
σ2d

K

)
(29)
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for the r(·) function defined in (28). Therefore,

λ ∼ r2(ρK)

ρK
∼L,q0 σ

√
1

N
log

(
eσd

ρK
√
N

)
∼L,q0 σ

√
1

N
log

(
eσ2d

K

)
. (30)

Conclusion of the proof. It follows from Theorem 2, the computation of r(ρK)
from (28) and ρK in (29) that with probability at least 1−c0 exp(−cr(ρK)2N/C),∥∥t̂LE − t∗

∥∥
1
≤ ρK∗ and

∥∥t̂LE − t∗
∥∥
2
≲ r(ρK). The result follows since ρK∗ ∼

ρ∗ ∼L,q0 σs
√

1
N log

(
ed
s

)
and ∥v∥p ≤ ∥v∥−1+2/p

1 ∥v∥2−2/p
2 for all v ∈ Rd and

1 ≤ p ≤ 2.
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Bellec, P., Lecué, G., Tsybakov, A., 2016. Slope meets lasso: Improved oracle
bounds and optimality. Tech. rep., CREST, CNRS, Université Paris Saclay.
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Lecué, G., Mendelson, S., 2016b. Regularization and the small-ball method ii:
complexity dependent error rates. Tech. rep., CNRS, ENSAE and Technion,
I.I.T.

Ledoux, M., Talagrand, M., 1991. Probability in Banach spaces. Vol. 23 of
Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Math-
ematics and Related Areas (3)]. Springer-Verlag, Berlin, isoperimetry and
processes.

Lepski, O. V., 1991. Asymptotically minimax adaptive estimation. I. Upper
bounds. Optimally adaptive estimates. Teor. Veroyatnost. i Primenen. 36 (4),
645–659.
URL http://dx.doi.org/10.1137/1136085

Lugosi, G., Mendelson, S., 2017. Risk minimization by median-of-means tour-
naments. Preprint available on ArXive:1608.00757.

27

http://dx.doi.org/10.1016/0304-3975(86)90174-X
http://dx.doi.org/10.1093/imrn/rnv096
http://links.jstor.org/sici?sici=0090-5364(197301)1:1<38:COEUDR>2.0.CO;2-V&origin=MSN
http://links.jstor.org/sici?sici=0090-5364(197301)1:1<38:COEUDR>2.0.CO;2-V&origin=MSN
http://dx.doi.org/10.1007/978-1-4612-4946-7
http://dx.doi.org/10.1137/1136085


McDiarmid, C., 1989. On the method of bounded differences. In: Surveys in
combinatorics, 1989 (Norwich, 1989). Vol. 141 of London Math. Soc. Lecture
Note Ser. Cambridge Univ. Press, Cambridge, pp. 148–188.

Mendelson, S., 2014a. Learning without concentration. In: Proceedings of the
27th annual conference on Learning Theory COLT14. pp. pp 25–39.

Mendelson, S., 2014b. A remark on the diameter of random sections of convex
bodies. In: Geometric aspects of functional analysis. Vol. 2116 of Lecture
Notes in Math. Springer, Cham, pp. 395–404.

Mendelson, S., 2015a. Learning without concentration. J. ACM 62 (3), Art. 21,
25.
URL http://dx.doi.org/10.1145/2699439

Mendelson, S., 2015b. Learning without concentration for a general loss func-
tion. Tech. rep., Technion and ANU, Canberra.

Mendelson, S., 2016. On multiplier processes under weak moment assumptions.
Tech. rep., Technion.

Mendelson, S., 2017. On aggregation for heavy-tailed classes. Probab. Theory
Related Fields 168 (3-4), 641–674.
URL https://doi.org/10.1007/s00440-016-0720-6

Nemirovsky, A. S., Yudin, D. B., 1983. Problem complexity and method effi-
ciency in optimization. A Wiley-Interscience Publication. John Wiley & Sons,
Inc., New York, translated from the Russian and with a preface by E. R. Daw-
son, Wiley-Interscience Series in Discrete Mathematics.

Rudelson, M., Vershynin, R., 2014. Small ball probabilities for linear images of
high dimensional distributions. Tech. rep., University of Michigan, interna-
tional Mathematics Research Notices, to appear. [arXiv:1402.4492].

Saba, L., Hoffman, P. L., Hornbaker, C., Bhave, S. V., Tabakoff, B., 2008.
Expression quantitative trait loci and the phenogen database 31 (3).

Sart, M., 2014. Estimation of the transition density of a Markov chain. Ann.
Inst. Henri Poincaré Probab. Stat. 50 (3), 1028–1068.
URL http://dx.doi.org/10.1214/13-AIHP551

Su, W., Candès, E. J., 2015. Slope is adaptive to unknown sparsity and asymp-
totically minimax. Tech. rep., Stanford University, to appear in The Annals
of Statistics.

van der Vaart, A. W., Wellner, J. A., 1996. Weak convergence and empiri-
cal processes, with applications to statistics. Springer Series in Statistics.
Springer-Verlag, New York.

28

http://dx.doi.org/10.1145/2699439
https://doi.org/10.1007/s00440-016-0720-6
http://dx.doi.org/10.1214/13-AIHP551


Vapnik, V. N., 1998. Statistical learning theory. Adaptive and Learning Systems
for Signal Processing, Communications, and Control. JohnWiley & Sons, Inc.,
New York, a Wiley-Interscience Publication.

Vapnik, V. N., Chervonenkis, A. Y., 1974. Teoriya raspoznavaniya obrazov.
Statisticheskie problemy obucheniya. Izdat. “Nauka”, Moscow.

Appendix .1. Discussion of the main assumptions
Let us give some examples where Assumption 2 holds. If the noise ran-

dom variable ζ(Y,X) (resp. ζ(Yi, Xi) for i ∈ I) has a variance conditionally
to X (resp. Xi for i ∈ I) that is uniformly bounded then Assumption 2
holds. This is the case when ζ(Y,X) (resp. ζ(Yi, Xi) for i ∈ I) is inde-
pendent of X (resp. Xi for i ∈ I) and has finite L2-moment with θm =
maxQ∈P,{Pi}i∈I ∥ζ∥L2

Q
. It also holds without independence under higher mo-

ment conditions. For example, assume σ = maxQ∈P,{Pi}i∈I ∥ζ∥L4
Q
<∞ and, for

every f ∈ F , ∥f − f∗∥L4
Q
≤ θ1 ∥f − f∗∥L2

P
then by Cauchy-Schwarz inequality,√

varQ(ζ(f − f∗)) ≤ ∥ζ(f − f∗)∥L2
Q

≤ ∥ζ∥L4
Q
∥f − f∗∥L4

Q
≤ θ1σ ∥f − f∗∥L2

P

and so Assumption 2 holds for θm = θ1σ.

By Cauchy-Schwarz inequality, ∥f − f∗∥L1
Pi

≤ ∥f − f∗∥L2
Pi

for all f ∈ F

and i ∈ I. Therefore, Assumptions 1 and 3 together imply that all norms
L2
P , L

2
Pi
, L1

Pi
, i ∈ I are equivalent over F − f∗. Note also that Assumption 3

is related to the small ball property (cf. Koltchinskii and Mendelson (2015);
Mendelson (2014a)) as shown by Proposition 2 bellow. The small ball property
has been recently used in Learning theory and signal processing. We refer to
Koltchinskii and Mendelson (2015); Lecué and Mendelson (2014); Mendelson
(2015b, 2014b, 2015a); Rudelson and Vershynin (2014) for examples of distri-
butions satisfying this assumption.

Proposition 2. Let Z be a real-valued random variable.

1. If there exist κ0 and u0 such that P(|Z| ≥ κ0 ∥Z∥2) ≥ u0 then ∥Z∥2 ≤
(u0κ0)

−1 ∥Z∥1.
2. If there exists θ0 such that ∥Z∥2 ≤ θ0 ∥Z∥1, then for any κ0 < θ−1

0 ,
P(|Z| ≥ κ0 ∥Z∥2) ≥ u0 where u0 = (θ−1

0 − κ0)
2.

Proof. If P(|Z| ≥ κ0 ∥Z∥2) ≥ u0 then

∥Z∥1 ≥
∫
|z|≥κ0∥Z∥2

|z|PZ(dz) ≥ u0κ0 ∥Z∥2 ,

where PZ denotes the distribution of Z. Conversely, if ∥Z∥2 ≤ θ0 ∥Z∥1, the
Paley-Zigmund’s argument (de la Peña and Giné, 1999, Proposition 3.3.1) shows
that, if p = P (|Z| ≥ κ0 ∥Z∥2),

∥Z∥2 ≤ θ0 ∥Z∥1 = θ0 (E[|Z|I(|Z| ≤ κ0 ∥Z∥2)] + E[|Z|I(|Z| ≥ κ0 ∥Z∥2)])
≤ θ0 ∥Z∥2 (κ0 +

√
p) .

As one can assume that ∥Z∥2 ̸= 0, p ≥ (θ−1
0 − κ0)

2.
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Appendix .2. Examples of Le Cam’s tests estimators
Le Cam’s approach has been used by Birgé to define T -estimators (cf. Ba-

raud and Birgé (2009); Birgé (2006, 2013)) and by Baraud, Birgé and Sart to
define ρ-estimators (cf. Baraud and Birgé (2016); Baraud et al. (2017)). Baraud
(2011); Baraud et al. (2014) also built efficient estimator selection procedures
with this approach. It also extends many common procedures in statistical
learning theory, as shown by the following examples.

Example 1 : Empirical minimizers. Assume TN (g, f) = ℓN (f)− ℓN (g) for some

random function ℓN : F → R and denote by f̂ = argminf∈F ℓN (f) a minimizer
of the corresponding criterion (provided that it exists and is unique). Then it

is easy to check that BTN (f̂) = {f̂}, so its radius is null, while the radius of any

other point f is larger than d(f, f̂) > 0 (whatever the non-degenerate notion of

pseudo-distance used for d). It follows that f̂ is the estimator (3). In particular,
any possibly penalized empirical risk minimizer

f̂ = argmin
f∈F

{PN ℓf + reg(f)}

is obtained by Le Cam’s construction with the tests

TN (g, f) = PN (ℓf − ℓg) + reg(f)− reg(g) .

These examples encompass classical empirical risk minimizers of Vapnik (1998)
but also their robust versions from Huber (1964); Audibert and Catoni (2011).

Example 2 : median-of-means estimators. Another, perhaps less obvious exam-
ple is the median-of-means estimator Alon et al. (1999); Jerrum et al. (1986);
Nemirovsky and Yudin (1983) of the expectation PZ of a real valued random
variable Z. Let Z1, . . . , ZN denote a sample and let B1, . . . , BK denote a parti-
tion of [N ] into bins of equal size N/K. The estimator MOMK(Z) is the (empir-
ical) median of the vector of empirical means

(
PBk

Z = |Bk|−1
∑

i∈Bk
Zi

)
k∈[K]

.

Recall that

PZ = argmin
m∈R

P (Z −m)2 = argmin
m∈R

max
m′∈R

P [(Z −m)2 − (Z −m′)2] .

Define the MOM test statistic to compare any m,m′ ∈ R by

TN (m,m′) = MOMK [(Z −m′)2 − (Z −m)2] .

Basic properties of the median (recalled in Eq (6) and (7) of Section 4.1) yield

TN (m,m′) = (m′)2 −m2 +MOMK [−2Z(m′ −m)]

= (m′)2 − 2m′MOMK(Z)− [m2 − 2mMOMK(Z)]

= (m′ −MOMK(Z))2 − (m−MOMK(Z))2 .

Defining ℓN (m) = (m−MOMK(Z))2, one has

TN (m,m′) = ℓN (m′)− ℓN (m) .

As in the previous example, Le Cam’s estimator based on TN is therefore the
unique minimizer of ℓN , that is MOMK(Z).
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Example 3 : “Champions” of a Tournament. In a related but different ap-
proach, Lugosi and Mendelson (2017) introduced median-of-means tournaments,
which are also based on median-of-means tests to compare elements in F .
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