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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Problems

1 Problem of prediction

x ∈ X −→ y ∈ R

construction of f̂ (·, (Xi ,Yi )i ) s.t. E(f̂ (X )− Y )2 small.
E(f̂ (X )− Y )2 = E(f̂ (X )− E(Y |X ))2 + E(E(Y |X )− Y )2

⇒ E(Y |·) ∈ Class of functions (smooth, entropy,..)

2 Agnostic learning
No assumption on Y
F class of functions : X 7−→ R ⇒ best predictor of Y in F

inf
f∈F

E(f (X )− Y )2

3 Problem of aggregation
|F | = M ; F = {f1, . . . , fM} ; construction of a procedure which has a
risk as close as possible to

min
j=1,...,M

E(fj(X )− Y )2
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Examples of aggregation methods

Problem of aggregation : Construction of a procedure f̃ (·,Dn) such that

E(f̂ (X )− Y )2 ≤ min
f∈F

E(f (X )− Y )2 + rn(F )

Empirical risk :

Rn(f ) :=
1

n

n∑
i=1

(f (Xi )− Yi )
2

E[Rn(f )] = E(f (X )− Y )2 := R(f )

Empirical risk minimization algorithm :

f̂ ERM ∈ Arg min
f∈F

Rn(f )
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Examples of aggregation methods

Empirical risk minimization algorithm over the convex hull of F :

f̂ ERMconv ∈ Arg min
f∈Conv(F )

Rn(f ),

where Conv(F ) = {
∑M

j=1 λj fj : λj ≥ 0 and
∑
λj = 1}.

Aggregation with exponential weights :

f̃ :=
M∑

j=1

wj,nfj where wj,n =
exp(−nRn(fj)/T )∑M

k=1 exp(−nRn(fk)/T )

T : temperature parameter.
Cumulative Aggregation with exponential weights :

f̃ :=
M∑

j=1

w̄j fj where w̄j =
1

n

n∑
p=1

wj,p.
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Optimal rate of aggregation

Definition

ψ(n,M) : optimal rate of aggregation with confidence 0 < δ < 1/2
f̃ : optimal aggregation procedure with confidence δ

∀n,M, ∀F of cardinality M and any target Y (all bounded by b),
with νn-probability at least 1− δ,

R(f̃ ) ≤ min
f∈F

R(f ) + c1(δ)ψ(n,M),

∃c2 > 0 s.t. ∀M, n, ∀f̄ , ∃F of cardinality M and a target Y (all
bounded by b) such that, with νn-probability at least 1/2,

R(f̄ ) ≥ min
f∈F

R(f ) + c2ψ(n,M).
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Lower bound

∃c2 > 0 s.t. ∀M, n, ∀f̄ , ∃F of cardinality M and a target Y (all bounded
by b) such that, with νn-probability at least 1/2,

R(f̄ ) ≥ min
f∈F

R(f ) + c2
log M

n
.

Given n observations and a dictionary F of cardinality M, the minimum
price that one has to pay to mimic the best function in F is at least

log M

n

Is it possible to achieve this rate ?
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Suboptimality of ERM over F and Conv(F )

1 ∀n,M, ∃F of cardinality M such that, w.p.g. 1/2

R(f̂ ERM) ≥ min
f∈F

R(f ) + c

√
log M

n

2 ∀n, ∃F of cardinality c
√

n such that, w.p.g. 1/2

R(f̂ ERMconv ) ≥ min
f∈F

R(f ) +

√
c

n
.

(1/
√

n) >> (log M)/n =⇒ f̂ ERM and f̂ ERMconv cannot achieve the rate
(log M)/n.
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Suboptimality of ERM over Conv(F )

First remark :
A Selector is an aggregation procedure taking its values in the dictionary
F (for instance the ERM over F ).

∀f̄n(selector), ∀n,M, ∃F of cardinality M such that, w.p.g. 1/2

R(f̄n) ≥ min
f∈F

R(f ) + c

√
log M

n

=⇒ the ERM over F is optimal among all the selectors.
There exists some convex combinations of the elements in F which are
optimal aggregation procedures.
idea :
=⇒ the ERM over Conv(F ) is optimal among all the convex aggregates ;
=⇒ the ERM over Conv(F ) is an optimal aggregation procedure.
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Suboptimality of ERM over Conv(F )

Second remark :

f̂ ERMconv ∈ Arg min
f∈Conv(F )

Rn(f ),

where Conv(F ) = {
∑M

j=1 λj fj : λj ≥ 0 and
∑
λj = 1}.

=⇒ the target of the ERM over Conv(F ) is minf∈Conv(F ) R(f ).

R(f̂ ERMconv ) ≤ min
f∈Conv(F )

R(f ) + cφ(M, n)

≤ min
f∈F

R(f ) +
[
cφ(M, n) + min

f∈F
R(f )− min

f∈Conv(F )
R(f )

]

=⇒ gain in the approximation error : minf∈F R(f )−minf∈Conv(F ) R(f ) ;
=⇒ the ERM over Conv(F ) is an optimal aggregation procedure.
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Suboptimality of ERM over Conv(F )

∀n, ∃F of cardinality c
√

n such that, w.p.g. 1/2

R(f̂ ERMconv ) ≥ min
f∈F

R(f ) +

√
c

n
.

(φi )i∈N sequence of i.i.d Rademacher r.v.

F := {0,±φ1, . . . ,±φM} and target :Y := φM+1

1 no gain in the approximation error

min
f∈F

R(f ) = min
f∈Conv(F )

R(f )

2 maximization of the complexity of Conv(F )
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fM−1

· · ·

f2

f1

fM

f̂ ERM ∈ Arg minf∈F Rn(f )
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fM−1

· · ·

f2

f1

fM

Y

Conv(F̂1)

f̃ ∈ Arg minf∈Conv(F̂1) Rn(f )

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

fM−1

· · ·

f2

f1

fM

Y

Conv(F̂1)

f̃ ∈ Arg minf∈Conv(F̂1) Rn(f )

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

fM−1

· · ·

f2

f1

fM

Y

Conv(F̂1)

f̃ ∈ Arg minf∈Conv(F̂1) Rn(f )

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

fM−1

· · ·

f2

f1

fM

Y

Conv(F̂1)

f̃ ∈ Arg minf∈Conv(F̂1) Rn(f )

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

fM−1

· · ·

f2

f1

fM

Y

Conv(F̂1)

f̃ ∈ Arg minf∈Conv(F̂1) Rn(f )

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Data splitting

2n observations :
D2n = ((X1,Y1), . . . , (Xn,Yn), (Xn+1,Yn+1), . . . , (X2n,Y2n)).

D1 = ((X1,Y1), . . . , (Xn,Yn)) :
construction of the set F̂1 of approximatively good elements of F .

D2 = ((Xn+1,Yn+1), . . . , (X2n,Y2n)) :
construction of the ERM over Conv(F̂1)

f̃ ∈ Arg min
f∈Conv(F̂1)

1

n

2n∑
i=n+1

(f (Xi )− Yi )
2.

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Data splitting

2n observations :
D2n = ((X1,Y1), . . . , (Xn,Yn), (Xn+1,Yn+1), . . . , (X2n,Y2n)).

D1 = ((X1,Y1), . . . , (Xn,Yn)) :
construction of the set F̂1 of approximatively good elements of F .

D2 = ((Xn+1,Yn+1), . . . , (X2n,Y2n)) :
construction of the ERM over Conv(F̂1)

f̃ ∈ Arg min
f∈Conv(F̂1)

1

n

2n∑
i=n+1

(f (Xi )− Yi )
2.

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Data splitting

2n observations :
D2n = ((X1,Y1), . . . , (Xn,Yn), (Xn+1,Yn+1), . . . , (X2n,Y2n)).

D1 = ((X1,Y1), . . . , (Xn,Yn)) :
construction of the set F̂1 of approximatively good elements of F .

D2 = ((Xn+1,Yn+1), . . . , (X2n,Y2n)) :
construction of the ERM over Conv(F̂1)

f̃ ∈ Arg min
f∈Conv(F̂1)

1

n

2n∑
i=n+1

(f (Xi )− Yi )
2.

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille
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Construction of F̂1 (preselection step)

1st step : ERM over F (over D1) :

f̂ ∈ Arg min
f∈F

Rn(f )

2nd step : set of almost minimizers of the ER (over D1) :

F̂1 =
{

f ∈ F : Rn(f ) ≤ Rn(f̂ ) + C1 max(α‖f̂ − f ‖Ln
2
, α2)

}
,

where α =
√

(x + log M)/n, x > 0 is the confidence and

‖f̂ − f ‖2
Ln

2
=

1

n

n∑
i=1

(f̂ (Xi )− f (Xi ))2.
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ERM over Conv(F̂1)

Conv(F̂1) =
{∑

f∈F̂1

λf f : λf ≥ 0 and
∑
f∈F̂1

λf = 1
}
,

Construction of the ERM over Conv(F1) with ER based on D2 :

f̃ ∈ Arg min
f∈Conv(F̂1)

1

n

2n∑
i=n+1

(f (Xi )− Yi )
2.
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Exact Oracle Inequality

Theorem

∀x > 0, ∀F of M functions, any target Y (all bounded by b), with
ν2n-probability at least 1− 2 exp(−x),

R(f̃ ) ≤ min
f∈F

R(f ) + c1(1 + x)
log M

n

Conclusion : (log M)/n is the optimal rate of aggregation and f̃ is an
optimal aggregation procedure with confidence 2 exp(−x).
Remark : This aggregation procedure is sparse in the sense that
non-relevant elements in F have a zero-coefficient.
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Model : agnostic functional learning

Observations (Xi ,T (Xi ))i=1,...,n (Y = T (X )) ; T : Target function

T ∈ τ ; τ is convex ;

F (set of candidates) ⊂ τ ;

agnostic functional learning problem : Find a procedure which has a risk
as close as possible to

inf
f∈F

E(f (X )− T (X ))2

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Model : agnostic functional learning

Observations (Xi ,T (Xi ))i=1,...,n (Y = T (X )) ; T : Target function

T ∈ τ ; τ is convex ;

F (set of candidates) ⊂ τ ;

agnostic functional learning problem : Find a procedure which has a risk
as close as possible to

inf
f∈F

E(f (X )− T (X ))2

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Model : agnostic functional learning

Observations (Xi ,T (Xi ))i=1,...,n (Y = T (X )) ; T : Target function

T ∈ τ ; τ is convex ;

F (set of candidates) ⊂ τ ;

agnostic functional learning problem : Find a procedure which has a risk
as close as possible to

inf
f∈F

E(f (X )− T (X ))2

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Model : agnostic functional learning

Observations (Xi ,T (Xi ))i=1,...,n (Y = T (X )) ; T : Target function

T ∈ τ ; τ is convex ;

F (set of candidates) ⊂ τ ;

agnostic functional learning problem : Find a procedure which has a risk
as close as possible to

inf
f∈F

E(f (X )− T (X ))2

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

τ (target set)

F

T0

minf∈F E(f (X )− T (X ))2
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Empirical risk minimization algorithm

Exact Oracle Inequality : Construction of a procedure f̂ (·,D) such that

E(f̂ (X )− T (X ))2 ≤ inf
f∈F

E(f (X )− T (X ))2 + rn(F )

Empirical risk minimization algorithm :

f̂ ∈ Arg min
f∈F

1

n

n∑
i=1

(f (Xi )− T (Xi ))2
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Upper bound

Symmetrization

+majoration of Rademacher processes by Gaussian
processes+Dudley’s entropy integral :

E(f̂ (X )− T (X ))2 − inf
f∈F

E(f (X )− T (X ))2

.
1√
n

EX

∫ diam(PσF,|·|2,n)

0

√
N (PσF , | · |2,n, ε)dε

F = {(f − T )2 − (f ∗ − T )2 : f ∈ F} (excess loss class)

PσF = {(g(X1), . . . , g(Xn)) : g ∈ F} (coordinate projection)

|u|2,n =

√√√√1

n

n∑
i=1

u2
i (normalized ln2 -norm)
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Aim

Lower bound for the excess risk of the Empirical risk minimization
algorithm

∃T ∈ τ s.t.

E(f̂ (X )− T (X ))2 − inf
f∈F

E(f (X )− T (X ))2≥rn(F ′)

where F ′ ⊂ F .
Assumption :
∃T0 ∈ τ s.t. card(M(T0)) ≥ 2 where

M(T ) = {f ∈ F : E(f (X )− T (X ))2 = inf
f∈F

E(f (X )− T (X ))2}
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

τ (target set)

F

T0

minf∈F E(f − T0)2

{g ∈ F : E(g − T0)2 = infF E(f − T0)2}

f ∗Tλ

Tλ = (1− λ)T0 + λf ∗

fM
fM−1

· · ·

f3

f2
f1

Vm = {f1, . . . , fM}

Br

Br = {f : R(f ) ≤ R(f ∗) + r}
inf f∈Vm Rλn (f ) < inf f∈Br Rλn (f )
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Outline of the proof

The core of the proof is to find a set Q that can “compete” with
Br = {f ∈ F : ELλ(f ) ≤ r} in the sense that the empirical excess risk
function

En : f ∈ F 7−→ 1

n

n∑
i=1

Lλ(f )(Xi ) = PnLλ(f )

will be more negative on Q than on it can possibly be on Br

(Lλ(f ) := (f − Tλ)2 − (f ∗ − Tλ)2).

Thus, the ERM f̂λ /∈ Br , and thus, with a certain probability,

E
[
Lλ(f̂λ)|D

]
> r .

Proof in two parts :

En is likely to be very negative on {f ∈ F : EL(f ) = minf∈F EL(f )} ;

find some r on which the oscillations of En in Br are small.

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Outline of the proof

The core of the proof is to find a set Q that can “compete” with
Br = {f ∈ F : ELλ(f ) ≤ r} in the sense that the empirical excess risk
function

En : f ∈ F 7−→ 1

n

n∑
i=1

Lλ(f )(Xi ) = PnLλ(f )

will be more negative on Q than on it can possibly be on Br

(Lλ(f ) := (f − Tλ)2 − (f ∗ − Tλ)2).
Thus, the ERM f̂λ /∈ Br , and thus, with a certain probability,

E
[
Lλ(f̂λ)|D

]
> r .

Proof in two parts :

En is likely to be very negative on {f ∈ F : EL(f ) = minf∈F EL(f )} ;

find some r on which the oscillations of En in Br are small.

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Gaussian process end multidimensional CLT

Gaussian process : Let Q ⊂ L2(µ).

(Gq)q∈Q is a Canonical Gaussian
process associated with Q when ∀N ∈ N,∀q1, . . . , qN ∈ Q,
(Gq1 , . . . ,GqN ) ∼ NN(0, (

〈
qi , qj

〉
)1≤i,j≤N).

A common measure of the ”complexity” of Q is

H(Q) := E sup
q∈Q

Gq

Multidimensional CLT : (Vi )i∈N : sequence of d-dimensional i.i.d.r.v. with
zero mean and finite L2-norm.∣∣∣P( 1√

n

n∑
i=1

Vi ∈ A(t1, . . . , td)
)
−P(G ∈ A(t1, . . . , td))

∣∣∣ −→ 0 as n −→ +∞,

where A(t1, . . . , td) = {v = (v1, . . . , vd) ∈ Rd : xj ≤ tj ,∀j} and G is a
d-dimensional Gaussian process with zero mean and covariance matrix
(EV (i)V (j))1≤i,j≤d .
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Multivariate CLT outside Br

Fix a finite set Q ′ ⊂ Q := {L(f ) : EL(f ) = minf∈F EL(f )} for which
H(Q ′) ≥ H(Q)/2 and 0 ∈ Q ′.

Theorem

∃n0 = n0(Q ′) s.t. ∀n ≥ n0, with µn-probability at least c1,

inf
L(f )∈Q′

PnLλn (f ) ≤ −c2
H(Q)√

n

where λn = c3H(Q)/
√

n.
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Uniform Central Limit Theorem

Recall that a bounded class of functions F is µ-Donsker if and only if for
∀u > 0,∃δ > 0,∃n0 s.t. ∀n ≥ n0, oscn(F , δ) ≤ u where

oscn(F , δ) =
1√
n

E sup
{f ,h∈F :‖f−h‖≤δ}

∣∣∣∣∣
n∑

i=1

gi (f − h)(Xi )

∣∣∣∣∣ ,
where g1, . . . , gn are n i.i.d. standard Gaussian variables.

δ s.t. ∀n ≥ N(F ), oscn(F , f ∗, δ) ≤ C2H(Q)/
√

n.
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

UCLT around f ∗

Now we are ready to control the oscillation of the empirical excess risk
function uniformly over the set Br = {f ∈ F : ELλ ≤ r}.

Theorem

∃c3 s.t. ∀n ≥ n1, with µn-probability at least 1− c1/2,

inf
{f∈F :ELλn (f )≤rn}

PnLλn (f ) ≥ −c2H(Q)

2
√

n

where

rn = c3
H(Q)√

n
δ2‖T − f ∗‖2
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Main Theorem

Theorem

Let F ⊂ B(L∞) which is µ-Donsker and assume that ∃T0 ∈ τ s.t.
M(T0) ≥ 2.

Set Q = {L(f ) : f ∈ F , EL(f ) = 0}.
∃C1,C2,N(F ) s.t. ∀n ≥ N(F ), with µn-probability at least C1,

ELλn (f̂λn ) ≥ C2
H(Q)√

n
δ2‖T − f ∗‖

where δ is s.t. ∀n ≥ N(F ), oscn(F , f ∗, δ) ≤ C2H(Q)/
√

n and
λn = C2H(Q)/

√
n.
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Subgaussian regression

Y = f0(X ) + σε

f0 : Rd → R ; ε : noise (noise level σ is known)

n observations :
Dn := [(Xi ,Yi ) ; 1 ≤ i ≤ n],

Notation : Pn = P[·|X1, . . . ,Xn] and En : expectation w.r.t. Pn.
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Assumptions

1 ε is centered and subgaussian
(∃b > 0; En[exp(tε)] ≤ exp(b2t2/2),∀t > 0).

2 X has a compact support, (we do not need PX << λd). Take
Supp(PX ) ⊂ [0, 1]d .

3 f0 ∈ F
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Complexity assumption

1 F is endowed with a semi-norm | · |F .

2 F ⊂ C ([0, 1]d)

3 (Cβ) ∃β ∈ (0, 2),D > 0 s.t. ∀δ,R > 0

H∞
(
δ,F(R)

)
≤ D(R/δ)β

F(R) := {f ∈ F : |f |F ≤ R}

H∞(δ,F(R)) = log min
(
N ∈ N : F(R) ⊂ ∪N

j=1B∞(fj , δ)
)
.
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

example : Anisotropic Besov space

1 s = (s1, . . . , sd) with si > 0 : vector of directional smoothness (si
smoothness in direction ei )

2 f ∈ Lp(Rd) belongs to the anisotropic Besov space Bs
p,q(Rd) if the

semi-norm

|f |Bs
p,q(Rd ) :=

d∑
i=1

(∫ 1

0

(t−si
∥∥∆ki

tei
f
∥∥

p
)q dt

t

)1/q

< +∞

∆1
hf (x) = f (x + h)− f (x) and ∆k

hf = ∆1
h(∆k−1

h f )(x) and ki > si .

3 s = (s, . . . , s) =⇒ Bs
p,q is the standard isotropic Besov space.
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

example : Anisotropic Besov space

Ω ⊂ Rd : arbitrary domain. Bs
p,q(Ω) : set of all f ∈ Lp(Ω) such that

∃g ∈ Bs
p,q(Rd) with restriction g |Ω to Ω equal to f in Lp(Ω). Moreover,

‖f ‖Bs
p,q(Ω) = inf

g :g |Ω=f
‖g‖Bs

p,q(Rd ),

where the infimum is taken over all g ∈ Bs
p,q(Rd) such that g |Ω = f .

Theorem (Birman and Solomjak (67))

Let 1 ≤ p, q ≤ ∞ and s = (s1, . . . , sd) where si > 0, and let s be the
harmonic mean of s

1

s
=

1

d

d∑
j=1

1

sj

If s > d/p, then
Bs

p,q(Ω) ⊂ C (Ω),

H∞(δ,Bs
p,q(R)) ≤ D(R/δ)s/d ,∀δ,R > 0
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Estimation : PERM

Definition (PERM)

Let λ = (h,F) be fixed. We say that f̄λ is a penalized empirical risk
minimizer if it minimizes

Rn(f ) + pen(f )

over F , where pen(f ) := h2|f |αF for some α > 0 and where

Rn(f ) := ‖Y − f ‖2
n =

1

n

n∑
i=1

(Yi − f (Xi ))2

is the empirical risk of f over the sample Dn.
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Non-adaptive rate of convergence

Theorem

F satisfying (Cβ),

h = an−1/(2+β)

and α > 2β/(β + 2).

1

En‖f̄λ − f0‖2
n ≤ C1(1 + |f0|αF )n−2/(2+β)

2 If ‖f̄λ − f0‖∞ ≤ Q and ‖f0‖∞ ≤ Q then

E n‖f̄λ − f0‖2 ≤ C2(1 + |f0|αF )n−2/(2+β)
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Rate of convergence for anisotropic Besov space

Corollary

F = Bs
p,∞ and h = an−s/(2s+d) where s is the harmonic mean of s such

that s > d/p and ‖f̄λ − f0‖∞, ‖f0‖∞ ≤ Q. Then, we have :

E‖f̄λ − f0‖2 ≤ C3(1 + |f0|2Bs
p,∞

)n−2s/(2s+d).
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Problem of adaptation

Case F = Bs
p,∞(Ω).

h = an−s/(2s+d)

depends on s the harmonic mean of s which is unknown

⇓

Problem of adaptation

We want to construct a procedure f̃

independent of s

if f ∈ Bs
p,∞ with s the harmonic mean of s :

E‖f̃ − f0‖2 ≤ C3(1 + |f0|2Bs
p,∞

)n−2s/(2s+d).
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Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Aggregation of PERM

1 Split of the data

2 D1 = ((X1,Y1), . . . , (Xm,Ym)) : construction of f̄s the PERM with
h = an−s/(2s+d) for different s ∈ S :

S =
{
b +

k

log n
: k = 0, . . . ,B log n

}
.

3 D2 = ((Xm+1,Ym+1), . . . , (Xn,Yn)) : construction of the aggregation
method

f̃ ∈ Arg min
f∈Conv(F̂1)

R
(2)
(n−m)/2(f ),

where the dictionary is F = {f̄s1I|f̄s |≤Q , s ∈ S}.

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Aggregation of PERM

1 Split of the data

2 D1 = ((X1,Y1), . . . , (Xm,Ym)) : construction of f̄s the PERM with
h = an−s/(2s+d) for different s ∈ S :

S =
{
b +

k

log n
: k = 0, . . . ,B log n

}
.

3 D2 = ((Xm+1,Ym+1), . . . , (Xn,Yn)) : construction of the aggregation
method

f̃ ∈ Arg min
f∈Conv(F̂1)

R
(2)
(n−m)/2(f ),

where the dictionary is F = {f̄s1I|f̄s |≤Q , s ∈ S}.

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Aggregation of PERM

1 Split of the data

2 D1 = ((X1,Y1), . . . , (Xm,Ym)) : construction of f̄s the PERM with
h = an−s/(2s+d) for different s ∈ S :

S =
{
b +

k

log n
: k = 0, . . . ,B log n

}
.

3 D2 = ((Xm+1,Ym+1), . . . , (Xn,Yn)) : construction of the aggregation
method

f̃ ∈ Arg min
f∈Conv(F̂1)

R
(2)
(n−m)/2(f ),

where the dictionary is F = {f̄s1I|f̄s |≤Q , s ∈ S}.

Aggregation and Empirical Risk Minimization CNRS, LATP Marseille



Introduction Optimal aggregation via ERM Lower bound for the ERM Applications

Result

Theorem

∀s ∈ Rd s.t. the harmonic mean s is s.t. s > d/p and s ∈ [b,B], then
∀f0 ∈ Bs

p,∞ ∩ B∞(Q),

E n‖f̃ − f0‖2 ≤ C3(1 + |f0|2Bs
p,∞

)n−2s/(2s+d).

f̃ adapts automatically to the ”regularity parameter” s
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