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M. Alexandre TSYBAKOV Université Paris–vi Directeur
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aussi à te remercier pour m’avoir emmené à Berkeley. Aussi, je t’exprime ma profonde
gratitude et je n’imagine pas mes recherches futures sans ton soutien et tes conseils avisés.
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pour avoir accepté de rapporter ma thèse. Je remercie Vladimir Koltchinski pour son
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CHAPITRE 1

Introduction et présentation des résultats

Au sein d’un problème statistique, le statisticien peut disposer d’une large batterie
d’estimateurs (estimateurs à noyaux, estimateurs par projection, estimateurs par moindres
carrés (pénalisés ou non), etc). Sous différentes hypothèses sur le modèle, l’une de ces
procédures pourra être plus performante que les autres. Ces hypothèses, faites a priori,
n’ont aucune raison d’être réellement vérifiées. Nous aimerions pouvoir profiter des qualités
propres de ces estimateurs, tout en faisant le moins d’hypothèses possible sur le modèle. Ce
genre de problèmes est connu sous le nom de problème d’adaptation. Les méthodes étudiées
dans cette thèse peuvent être utilisées pour résoudre ce genre de problèmes. Pour éviter
ces hypothèses, nous pouvons aussi changer de problématique en cherchant à construire
une procédure faisant approximativement aussi bien que la meilleure parmi un ensemble de
procédures de base donnée a priori. C’est le paradigme que nous nous proposons d’étudier
ici.

Le principal travail de cette thèse porte sur l’étude des méthodes d’agrégation
sous l’hypothèse de marge (cf. [83, 81, 80, 38]). Nous avons mis en avant que l’hypothèse
de marge améliore les vitesses d’agrégation qui peuvent s’approcher de 1/n, où n est la
taille de l’échantillon.

Un autre résultat de cette thèse montre que certaines méthodes de minimisation
du risque empirique pénalisé sont sous-optimales quand le risque est convexe, même
sous l’hypothèse de marge (cf. [85, 84]). Contrairement aux procédures d’agrégation à poids
exponentiels, ces méthodes n’arrivent pas à profiter de la marge du modèle.

Ensuite, nous avons appliqué les méthodes d’agrégation à la résolution de quelques
problèmes d’adaptation. Dans une première application, nous construisons des procédures
à la fois adaptatives au paramètre de marge et au paramètre de complexité
par agrégation d’estimateurs à vecteurs de support (cf. [82]). Nous avons ensuite appliqué
les méthodes d’agrégation dans les problèmes d’estimation de densités et de fonctions de
régression. En agrégeant seulement log n estimateurs par ondelette seuillés, nous avons
obtenu un estimateur adaptatif sur tous les espaces de Besov sans perte de vi-
tesse logarithmique (cf.[38]). Une autre application des méthodes d’agrégation a été de
répondre positivement à une conjecture de Stone dans le modèle du ”single index” (cf.
[56]). En adoptant un point de vue différent des méthodes habituellement utilisées dans ce
modèle (c’est-à-dire en s’adaptant à l’index plutôt qu’en l’estimant), nous avons construit
une procédure atteignant la vitesse conjecturée par Stone (sans perte de vitesse
logarithmique telle qu’on l’observait chez les estimateurs construits jusqu’ici).

Une dernière contribution apportée par cette thèse a été de proposer une approche du
contrôle du biais en classification par l’introduction d’espaces de règles de prédiction
parcimonieuses (cf. [79]). Des vitesses minimax ont été obtenues sur ces modèles et une
méthode d’agrégation a donné une version adaptative de ces procédures d’estimation.
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1. Problème d’agrégation

1.1. Problématique de l’agrégation. Soit (Z,A) un espace probabilisable, P l’en-
semble des mesures de probabilité sur cet espace et F : P 7−→ F une fonction sur P à
valeurs dans un espace vectoriel F . Considérons Z, une variable aléatoire à valeurs dans
(Z,A) de mesure de probabilité π. Nous souhaitons estimer F (π) à partir de n observations
Z1, . . . , Zn de la variable Z. La qualité d’estimation d’un élément f ∈ F est mesurée par
un risque de la forme :

A(f) = E[Q(Z, f)],

où Q : Z × F 7−→ R est une fonction de perte. Dans la majorité des cas, F (π) minimise
A(·) sur F . Notons A∗ le minimum minf∈F A(f). La différence A(f) − A∗ est appelée
l’excès de risque de f ∈ F . Pour un estimateur f̂n, la quantité A(f̂n) est prise égale à
E[Q(Z, f̂n)|Z1, . . . , Zn].

Plusieurs problèmes de l’estimation non-paramétrique peuvent s’écrire dans ce cadre.
Exemple 1 : le problème de régression. Soit Z = X × R, où (X , T ) est un

espace mesurable, et Z = (X,Y ) un couple de variables aléatoires sur Z, de distribution de
probabilité π, tel que X prend ses valeurs dans X et Y prend ses valeurs dans R. Supposons
que l’espérance conditionnelle de Y par rapport à X existe. Nous souhaitons estimer la
fonction de régression de Y en fonction de X :

f∗(x) = E [Y |X = x] , ∀x ∈ X .

En général, la variable Y n’est pas une fonction exacte de X. Ce problème peut être
considéré comme un problème d’estimation avec bruit. En tout point X, la sortie Y est
concentrée autour de E [Y |X] à un bruit additif près ζ de moyenne nulle. Le modèle de
régression peut alors s’écrire sous la forme :

Y = E [Y |X] + ζ.

Soit F l’ensemble de toutes les fonctions mesurables de X dans R. La norme d’une
fonction f dans L2(X , T , PX), où PX est la distribution de la marginale X, est définie par
||f ||2

L2(PX)
=
∫
X f

2(x)dPX(x). Considérons la fonction de perte :

Q((x, y), f) = (y − f(x))2,
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définie pour tout (x, y) ∈ X × R et f ∈ F . Le théorème de Pythagore donne

A(f) = E [Q((X,Y ), f)] = ||f∗ − f ||2L2(PX) + E
[
ζ2
]
.

La fonction de régression f∗ minimise A(·) sur F et A∗ = E[ζ2].
Exemple 2 : le problème d’estimation de densité. Notons π la mesure de proba-

bilité de Z. Supposons π absolument continue par rapport à une mesure connue µ et notons
f∗ une version de la densité de π par rapport à cette mesure. Considérons F l’ensemble de
toutes les fonctions de densité sur (Z,A, µ) et la fonction de perte

Q(z, f) = − log f(z),

définie pour tout z ∈ Z et f ∈ F . Nous avons

A(f) = E [Q(Z, f)] = K(f∗|f)−
∫
Z

log(f∗(z))dπ(z),

où K(f∗|f) =
∫
Z log(f∗(z)/f(z))dπ(z) est la divergence de Kullback-Leibler entre f∗ et f .

La fonction de densité f∗ minimise A(·) sur F et A∗ = −
∫
Z log(f∗(z))dπ(z).

Prenons la distance quadratique pour fonction de perte. Dans ce cas F est l’ensemble
de toutes les fonctions de carré intégrable L2(Z,A, µ). Pour la fonction de perte

Q(z, f) =
∫
Z
f2dµ− 2f(z),

définie pour tout z ∈ Z et f ∈ F , le risque d’un élément f ∈ F est donné par

A(f) = E [Q(Z, f)] = ||f∗ − f ||2L2(µ) −
∫
Z
(f∗(z))2dµ(z).

La fonction de densité f∗ minimise A(·) sur F et A∗ = −
∫
Z(f∗(z))2dµ(z).

Exemple 3 : le problème de classification. Soit (X , T ) un espace mesurable.
Supposons Z = X × {−1, 1} muni d’une mesure de probabilité inconnue π. Considérons
une variable aléatoire Z = (X,Y ) à valeurs dans Z de mesure de probabilité π. Notons
par F l’ensemble des fonctions mesurables de X sur R. Soit φ une fonction de R dans R.
Pour tout f ∈ F le φ−risque de f est défini par Aφ(f) = E[Q((X,Y ), f)], où la fonction
de perte est donnée par

Q((x, y), f) = φ(yf(x))

pour tout (x, y) ∈ X × {−1, 1}. La plupart du temps, un minimiseur f∗φ du φ−risque Aφ

sur F ou son signe est égal à la règle de Bayes (cf. [130]). C’est la règle de prédiction
minimisant la fonction de perte A0

def= Aφ0 où φ0(z) = 1I(z≤0) est la fonction de perte
usuelle de classification (cf. [47]). La règle de Bayes est définie par

(1.1) f∗φ0
(x) = sign(2η(x)− 1),

où η(x) = P[Y = 1|X = x],∀x ∈ X et sign(z) = 21Iz≥0 − 1,∀z ∈ R. Pour les estimateurs à
vecteurs de support (SVM), la fonction de perte est la perte chanrière

φ1(z) = max(0, 1− z),∀z ∈ R.

Le risque associé est noté A1. Certaines fonctions de perte utilisées en classification vérifient
l’hypothèse de convexité suivante (cf. [75, 84]) :

Definition 1.1. Soit β ≥ 0. Une fonction φ : R 7−→ R deux fois différentiable est dite
β−convexe sur [−1, 1] si

(1.2) |φ′(x)|2 ≤ βφ′′(x),∀x ∈ [−1, 1].
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Nous présentons maintenant la problématique de l’agrégation de type ”sélection de
modèle” dans le cadre général.

Etant donné F0 = {f1, · · · , fM} un dictionnaire de M éléments de F et
n observations i.i.d. Z1, . . . , Zn, nous souhaitons construire un estimateur
f̃n dont l’excès de risque moyen E[A(f̃n) − A∗] est aussi petit que celui de
l’oracle minf∈F0 A(f)−A∗ à un résidu près. De tels estimateurs sont appellées
agrégats ou méthodes d’agrégation.

Les éléments f1, . . . , fM de F0 sont aussi appelés ”estimateurs faibles”. Ils peuvent,
par exemple, être construits à partir d’un échantillon préliminaire (considéré gelé) ou
être les éléments d’un réseau minimal du modèle, ou le début d’une base, ou des objets
simples comme des indicateurs de demi-espace. Par exemple, pour le problème de sélection
de modèle, nous disposons de M modèles. Pour chacun d’entre eux, nous construisons
un estimateur. Au lieu de prendre toutes les observations pour la construction de ces
estimateurs, nous utilisons seulement lesm premières : Z1, . . . , Zm. Cette phase d’estimation
fournit M estimateurs f̂ (1)

m , . . . , f̂
(M)
m . Passons ensuite à la phase d’apprentissage : les

(n −m) observations restantes Zm+1, . . . , Zn sont utilisées pour agréger ces estimateurs.
Par indépendance des observations, nous pouvons supposer que l’échantillon utilisé lors de
la phase d’estimation est gelé. Les estimateurs de base sont ainsi considérés comme des
éléments non-aléatoires de F et plutôt que de travailler avec (n−m) observations, nous
supposons disposer de n observations.

Concrètement, nous souhaitons obtenir des inégalités d’oracle, c’est-à-dire des
inégalités de la forme

(1.3) E[A(f̃n)−A∗] ≤ C min
f∈F0

A(f)−A∗ + γ(n,M)

où C ≥ 1 est une constante et γ(n,M) ≥ 0 est appelé vitesse d’agrégation. Les
applications statistiques de ce type d’inégalité sont par exemple :

i) Obtenir les vitesses de convergence de certains estimateurs.

ii) Résoudre des problèmes d’adaptation.

iii) Imiter la meilleure procédure parmi les M estimateurs de base aussi bien que possible.

Pour les deux premiers problèmes i) et ii), une inégalité d’oracle où C > 1 est suffisante.
En revanche, pour le troisième problème, nous avons besoin de considérer des inégalités
d’oracle exactes (cf. Définition 1.1 ci-dessous et la discussion dans [81]), c’est-à-dire des
inégalités du type (1.3) où C = 1.

Le cadre d’estimation considéré permet d’avoir accès à un risque empirique, donné
par la quantité

An(f) =
1
n

n∑
i=1

Q(Zi, f).

C’est une mesure de l’erreur commise par l’estimateur f sur les observations Z1, . . . , Zn.
Ce critère empirique est à la base de la construction des méthodes d’agrégation. Dans le
cadre de cette thèse, nous avons principalement travaillé sur les procédures d’agrégation
ci-dessous.
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La méthode d’agrégation la plus utilisée est appelée la procédure de minimisation
du risque empirique (MRE) sur F0. Elle est définie par

(1.4) f̃ (MRE)
n ∈ Arg min

f∈F0

An(f).

La méthode d’agrégation principalement étudiée dans cette thèse est celle d’agrégation
avec poids exponentiels (APE) (cf. [87, 55, 10, 63, 119, 37]). Elle est définie par

(1.5) f̃
(APE)
n,T

def=
∑
f∈F0

w
(n)
T (f)f,

où les poids exponentiels w(n)
T (f) sont donnés par :

(1.6) w
(n)
T (f) =

exp (−nTAn(f))∑
g∈F0

exp (−nTAn(g))
, ∀f ∈ F0,

où T−1 > 0 est un paramètre appelé ”température” (en référence aux mesures de Gibbs).
Il existe une version récursive de la méthode précédente. Nous allons l’appeller procédure

d’agrégation cumulée avec poids exponentiels (ACPE) (cf. [33, 34, 35, 125, 126,
127]). Elle est définie par :

(1.7) f̃
(ACPE)
n,T =

1
n

n∑
k=1

f̃
(APE)
k,T ,

où f̃
(APE)
k,T est construit de la même manière que dans (1.5) à partir des k premières

observations Z1, . . . , Zk pour le paramètre de température T−1 c’est-à-dire :

f̃
(APE)
k,T =

∑
f∈F0

w
(k)
T (f)f, où w(k)

T (f) =
exp (−TkAk(f))∑
g∈F0

exp (−TkAk(g))
, ∀f ∈ F0.

A chacune de ces méthodes d’agrégation, nous pouvons associer associée une version
pénalisée. Pour la méthode MRE, l’idée de la pénalisation est bien connue (cf. [11],[92], [93]).
La méthode d’agrégation par minimisation du risque empirique pénalisé (MREp)
est définie par :

(1.8) f̃ (MREp)
n ∈ Arg min

f∈F0

[
An(f) + pen(f)

]
,

où pen est une pénalité indépendante de l’échantillon. Pour un aperçu exhaustif des
méthodes de ce genre, nous renvoyons le lecteur à [13, 22, 23, 90]. Des versions pénalisées
des méthodes APE et ACPE peuvent être aussi proposées (cf. [87] et référence dans cet
article).

Pour comparer ces procédures, [114] a introduit une notion d’optimalité pour les
méthodes d’agrégation. Cette définition a été donnée en régression gaussienne. Elle se
généralise de manière évidente aux autres modèles statistiques (voir [102] pour l’estimation
de densité). Dans cette thèse, nous utilisons cette notion généralisée (cf. [38]) qui a la forme
suivante.

Définition 1.1. Nous appellons vitesse optimale d’agrégation une suite à deux
indices (γ(n,M) : n,M ∈ N), s’il existe deux constantes absolues C1 et C2 telles que les
deux inégalités suivantes sont satisfaites.

(1) Pour tout sous-ensemble fini F0 de F à M éléments, il existe une statistique f̃n
telle que, quelle que soit la distribution de probabilité sous-jacente π, on a pour
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tout n ≥ 1,

(1.9) E[A(f̃n)−A∗] ≤ min
f∈F0

(A(f)−A∗) + C1γ(n,M).

(2) Il existe un ensemble fini F0 à M éléments dans F tel que, pour toute statistique
f̄n, il existe une mesure de probabilité π, telle que pour tout n ≥ 1

E
[
A(f̄n)−A∗

]
≥ min

f∈F0

(A(f)−A∗) + C2γ(n,M).

De plus, quand ces deux inégalités sont satisfaites, on dit que la procédure f̃n, apparaissant
dans (1.9), est une procédure optimale d’agrégation.

1.2. Historique des principaux résultats obtenus en agrégation. Nemirovski
(cf. [98]) a introduit le cadre général de l’étude des méthodes d’agrégation en statistique
non-paramétrique. Il a formulé les trois problèmes d’agrégation : le problème d’agrégation
de type ”sélection de modèle” (MS), le problème d’agrégation convexe (C) et le problème
d’agrégation linéaire (L). Étant donné un dictionnaire F0, l’objectif de (MS), comme
nous l’avons déjà énoncé, est de construire une méthode d’agrégation qui a un risque
proche de celui de l’oracle minf∈F0 A(f). L’objectif de (C) est de fournir une procédure
ayant le risque proche de celui de l’oracle convexe minf∈C0 A(f), où C0 est l’enveloppe
convexe de F0. Finalement, le problème (L) vise à produire des procédures atteignant le
risque de l’oracle linéaire minf∈L0 A(f), où L0 est l’espace linéaire engendré par F0. La
plus grande partie de la littérature sur les méthodes d’agrégation concerne le problème
(MS) (cf. [125, 35, 126, 59, 120, 87, 17, 127, 27, 28, 129, 26, 75]) et le problème (C) (cf.
[74, 98, 125, 126, 78, 127, 7, 102, 26, 73, 77, 101]). Quant au problème d’agrégation linéaire,
il a principalement été étudié dans [98, 102, 26, 101].

Tsybakov (cf. [114]) a formalisé la notion de vitesse optimale d’agrégation pour les trois
types d’agrégation dans l’esprit de la Définition 1.1 (qui traite seulement ici de l’agrégation
(MS)). Cette notion fournit un cadre de comparaison des méthodes d’agrégation aussi utile
que le cadre minimax pour la mise en compétition des estimateurs. Il a obtenu les vitesses
d’agrégation optimales dans le modèle de régression gaussienne. Nous les rappelons dans le
tableau suivant :

vitesse optimale (MS) (logM)/n

vitesse optimale (C)
M/n si M ≤

√
n(

1
n log[M/

√
n+ 1]

)1/2
si M >

√
n

vitesse optimale (L) M/n

La méthode d’agrégation ACPE atteint la vitesse d’agrégation (MS). Un agrégat, obtenu par
projection sur l’espace linéaire engendré par le dictionnaire F0, atteint la vitesse optimale
d’agrégation (L). Enfin, un agrégat composite des deux agrégats précédents atteint la
vitesse optimale d’agrégation (C).

Dans [7] l’auteur étudie une méthode d’agrégation pour le problème d’agrégation
convexe dans le modèle de régression. Cette étude se fait dans le cadre PAC-Bayésien (”PAC”
vient de Probablement Approximativement Correct). D’autres procédures d’agrégation,
comme la méthode MDL (”Minimum Description Length”) de Barron et Cover (cf. [12] et
[129]) ont été développées dans ce cadre.
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Dans [87], les auteurs utilisent la totalité de l’échantillon pour construire plusieurs
estimateurs par projection et des poids exponentiels qui leurs sont associés. L’agrégat ainsi
obtenu satisfait une inégalité d’oracle avec une vitesse d’agrégation en (logM)/n, où M
est le nombre d’estimateurs par projection construits. Contrairement au protocole habituel,
aucune découpe de l’échantillon n’est nécessaire pour obtenir ce résultat.

2. Vitesses rapides de classification sous l’hypothèse de marge

Dans [123, 124, 47], des résultats de borne inférieure ont fait apparâıtre la vitesse
n−1/2 comme une vitesse maximale de classification. C’est-à-dire une vitesse en dessous de
laquelle on ne peut pas construire de classifieur plus rapide.

Néanmoins, Mammen et Tsybakov (cf. [91]), pour le problème d’analyse discriminante,
ont proposé une hypothèse – autre qu’une hypothèse de complexité – qui permet d’améliorer
les vitesses de convergence. Tsybakov (cf. [116]) a ensuite proposé une hypothèse similaire
dans le cadre de la classification. Elle peut s’énoncer sous deux formes équivalentes données
ici :

Hypothèse de marge en classification :
– Il existe un paramètre α > 0 et une constante c > 0 tels que

P[|2η(X)− 1| ≤ t] ≤ ctα,∀0 < t ≤ 1/2.

– Il existe un paramètre κ ≥ 1 et une constante C > 0 tels que pour toute fonction
f : X 7−→ {−1, 1}, on a

(1.10) E[|f(X)− f∗(X)|] ≤ C(A0(f)−A∗0)
1/κ. (HM)(κ)

Les paramètres α et κ vérifient la relation suivante :

κ =
α+ 1
α

(κ = 1 quand α = 0).

Sous cette hypothèse et une hypothèse de complexité, Tsybakov [116] a proposé des
estimateurs atteignant des vitesses rapides, c’est-à-dire des vitesses de convergence au
delà de n−1/2.

Massart et Nédélec [94] ont étudié le comportement d’un estimateur obtenu par mini-
misation du risque empirique sur des classes de dimension de Vapnik Chervonenkis finie et
sous l’hypothèse de marge introduite par Tsybakov. Ils ont obtenu la vitesse de classification
suivante :

(1.11)
(V (1 + log(n/V ))

n

) κ
2κ−1

,

quand la règle de Bayes f∗ appartient à une classe de VC-dimension finie V . Ils ont donné
une borne inférieure, pour κ = 1, qui correspond à la vitesse (1.11), à un logarithme près.

Les résultats de convergence des estimateurs SVM obtenus par Scovel et Steinwart
[109, 108] ont été donnés sous l’hypothèse de marge. En y ajoutant certaines hypothèses de
complexité, ils ont obtenu des vitesses de convergence rapides pour les estimateurs SVM.
Pour des classifieurs par substitution, Audibert et Tsybakov (cf. [114]) ont aussi obtenu
des vitesses rapides minimax.

D’autres vitesses rapides de convergence ont été obtenues dans [112, 77, 8]. Dans [8],
l’auteur a étudié la vitesse de convergence d’un estimateur de la forme (1.5) sous l’hypothèse
de marge classique, ainsi que pour l’hypothèse de marge suivante :

c
′
(A0(f)−A∗0)

1/κ ≤ P[f(X) 6= f∗(X)] ≤ C
′
(A0(f)−A∗0)

1/κ,∀f : X 7−→ {−1, 1}.
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L’hypothèse de marge a été introduite dans le cadre du problème de classification. Son
extension au cadre plus général décrit au paragraphe 1.1 est la suivante (cf. [38]).

Hypothèse de marge (HM) : La mesure de probabilité π vérifie l’hypothèse de marge
(HM)(κ, c,F0), pour κ ≥ 1, c > 0 et F0 un sous-ensemble de F si

(1.12) E[(Q(Z, f)−Q(Z, f∗))2] ≤ c(A(f)−A∗)1/κ,∀f ∈ F0.

Le modèle de régression pour la perte L2(PX) et le modèle d’estimation de densité pour
la perte Kullback-Leibler et la perte L2 vérifient l’inégalité (1.12) avec κ = 1. Le modèle
de classification pour des pertes non strictement convexes (comme la perte usuelle ou la
perte charnière utilisée pour les SVM), ne vérifie pas cette inégalité. L’hypothèse (HM)
doit donc être faite dans le modèle de classification si l’on souhaite pouvoir atteindre des
vitesses de convergence ou d’agrégation aussi rapides que dans les modèles de régression
ou d’estimation de densité.

3. Travaux de thèse

Un théorème classique (cf. le ”no-free-lunch Theorem” du chapitre 7 de [47]) montre que,
sans hypothèse de complexité, nous ne pouvons pas construire une règle de classification
qui converge à une vitesse donnée vers la règle de Bayes quel que soit le modèle. Il faut alors
faire recours à des mesures de la complexité d’un modèle qui sont, entre autres, la dimension
de Vapnik Chervonenkis (cf. [47]), l’entropie (cf. [123, 124]), les complexités de Rademacher
(cf. [77]). Nous pouvons aussi éviter ces hypothèses en changeant d’objectif. Pour cela, nous
nous plaçons dans le cadre des méthodes d’agrégation. Dans cette problématique, aucune
hypothèse de complexité n’est requise.

Parallèlement, les hypothèses de marge se sont développées en apprentissage statistique.
Sous ces hypothèses, des règles de classification atteignent des vitesses rapides de conver-
gence, comme on l’a déjà discuté dans le paragraphe 2. Les principaux problèmes liés à
l’hypothèse de marge sont les suivants : le premier problème est l’adaptation à ce paramètre
en simultané avec le paramètre de complexité. En effet, le paramètre de marge est aussi
inconnu (au vu des données) que le paramètre de complexité du modèle. Le deuxième
problème est d’étudier le comportement des méthodes d’agrégation sous l’hypothèse de
marge. Concrètement, nous savons qu’il est plus facile d’estimer sous l’hypothèse de marge,
la question est donc : est-il plus facile d’agréger sous l’hypothèse de marge ?

Dans cette thèse, une notion plus générale d’hypothèse de marge est proposée (cf.
(1.12)). Elle permet de comprendre pourquoi la classification est, en un sens, plus difficile
que l’estimation de densité ou la prédiction en régression. On verra plus tard que ceci est
dû à la relation entre le biais et la variance décrite par le paramètre de marge. La valeur
du paramètre κ détermine, dans certains modèles, la vitesse optimale d’agrégation, qui est
parfois (logM)/n alors que, dans d’autres modèles, elle est

√
(logM)/n. Le lien entre le

paramètre de marge et la convexité de la perte est établi dans cette thèse (cf. [84]). En
régression, les fonctions de perte sont généralement convexes, voire strictement convexes,
alors qu’en classification, la fonction de perte la plus naturelle n’est pas continue. D’autre
part, en classification pour des fonctions de perte β−convexes (cf. (1.2)), l’hypothèse de
marge est naturellement satisfaite avec un paramètre de marge égal à 1 (le cas le plus
favorable de l’hypothèse de marge), ce qui explique la vitesse d’agrégation rapide (logM)/n
et les vitesses d’estimation paramétriques en 1/n. Le paramètre de marge fait alors le
lien entre la vitesse minimax d’estimation (ou la vitesse optimale d’agrégation)
et la convexité de la fonction de perte.
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Une autre contribution de cette thèse a été de démontrer que les méthodes classiques
de sélection de modèle par minimisation du risque empirique pénalisé sont sous-optimales
alors que les méthodes d’agrégation à poids exponentiels atteignent la vitesse optimale
d’agrégation.

Nous avons ensuite utilisé les méthodes d’agrégation à poids exponentiels pour résoudre
quelques problèmes d’adaptation. Le but d’une méthode d’agrégation est de faire aussi bien
que le meilleur estimateur d’un ensemble d’estimateurs de base et cela, sans aucune hy-
pothèse de complexité sur le modèle. Ensuite, pour le problème d’estimation, une hypothèse
de complexité sur le modèle est nécessaire. Les techniques d’agrégation, étant libres de toute
hypothèse de complexité, elles peuvent s’appliquer pour résoudre des problèmes d’adapta-
tion. Pour cela, il suffit de prendre pour estimateurs faibles, des estimateurs construits en
connaissant le paramètre de complexité, pour différentes valeurs de ce paramètre.

3.1. Vitesses optimales d’agrégation sous l’hypothèse de marge. Donnons
d’abord quelques résultats principaux de cette thèse concernant les vitesses optimales
d’agrégation sous l’hypothèse de marge et un résumé des chapitres traitant de ce sujet.

Dans le cadre général introduit dans le paragraphe 1.1, nous obtenons une inégalité
d’oracle exacte de la forme (1.9), dont la vitesse d’agrégation est donnée par la quantité
suivante :

(1.13)

γ(n,M) =


(

minf∈F0
(A(f)−A∗)

1
κ logM

n

)1/2

si minf∈F0 (A(f)−A∗) ≥
(

logM
n

) κ
2κ−1(

logM
n

) κ
2κ−1 sinon,

où κ ≥ 1 est le paramètre de marge (cf. [38]).

Théorème 1.1. Soit F0 = {f1, . . . , fM} un sous-ensemble de F . Supposons que la
probabilité sous-jacente π satisfait l’hypothèse (HM)(κ, c,F0) pour un κ ≥ 1, c > 0 et que la
perte vérifie |Q(Z, f)−Q(Z, f∗)| ≤ K p.s., pour tout f ∈ F0, où K ≥ 1 est une constante.
la procédure de minimisation du risque empirique f̃n = f̃

(MRE)
n satisfait

(1.14) E[A(f̃n)−A∗] ≤ min
j=1,...,M

(A(fj)−A∗) + Cγ(n,M),

où γ(n,M) est donné dans (1.13) et C > 0 est une constante.
De plus, si Q(z, ·) est convexe pour π-presque tout z ∈ Z, alors la procédure avec poids

exponentiels f̃n = f̃
(APE)
n satisfait l’inégalité d’oracle (1.14).

De cette inégalité d’oracle exacte, des inégalités d’oracle, dans les cadres usuels de l’es-
timation non-paramétriqueon, peuvent être déduites. En régression bornée, nous obtenons
le corollaire suivant :

Corollaire 1.1. Soit f1, . . . , fM des fonctions de X dans [0, 1]. Les procédures f̃n =
f̃

(MRE)
n et f̃n = f̃

(APE)
n vérifient, pour tout ε > 0,

E[||f∗ − f̃n||2L2(PX)] ≤ (1 + ε) min
j=1,...,M

(||f∗ − fj ||2L2(PX)) + C
logM
εn

.

Dans le modèle d’estimation de densité, nous obtenons le corollaire suivant :

Corollaire 1.2. Supposons que la fonction de densité à estimer f∗ est bornée par
B ≥ 1. Soient f1, . . . , fM des fonctions bornées par B. Considérons f̃n qui correspond
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indépendamment à la procédure MRE ou à la procédure APE. Pour tout ε > 0, nous avons

E[||f∗ − f̃n||2L2(µ)] ≤ (1 + ε) min
j=1,...,M

(||f∗ − fj ||2L2(µ)) + C
logM
εn

.

En classification, pour la perte charnière φ1 et la perte usuelle φ0, le corollaire suivant
est déduit du Théorème 9.1.

Corollaire 1.3. Soient κ ≥ 1 et F = {f1, . . . , fM} une famille de fonctions à valeurs
dans [−1, 1]. Notons C l’enveloppe convexe de F . Supposons que π satisfait l’hypothèse de
marge (HM)(κ) (cf. (1.10)). Les agrégats f̃n = f̃

(APE)
n ou f̃n = f̃

(MRE)
n satisfont pour tous

entiers n,M et tout a > 0 les inégalités suivantes

E
[
A1(f̃n)−A∗1

]
≤ (1 + a) min

f∈C
(A1(f)−A∗1) + C(a)

(
logM
n

) κ
2κ−1

,

où A1 est le risque correspondant à la perte charnière et C(a) > 0 est une constante.
Pour le risque de Bayes de classification A0, la procédure MRE vérifie

E
[
A0(f̃ (MRE)

n )−A∗0

]
≤ (1 + a) min

f∈C
(A0(f)−A∗0) + C(a)

(
logM
n

) κ
2κ−1

.

Nous n’avons pas besoin d’hypothèse de marge dans le cas de l’estimation de densité
et de régression (cf. corollaires 9.1 et 9.2), car pour ces deux modèles le paramètre de
marge vaut naturellement κ = 1. En revanche, pour la classification, le vitesse d’agrégation
dépend du paramètre de marge et varie entre√

logM
n

(pour κ = +∞) et
logM
n

(pour κ = 1).

Le problème de classification permet de considérer plusieurs types de convexité pour
la fonction de perte. Nous avons introduit une échelle continue de fonctions de perte
pour étudier le comportement de la vitesse optimale d’agrégation en fonction de la perte.
Considérons l’ensemble {φh : h ≥ 0} de fonctions de perte données par

(1.15) φh(x) =
{
hφ1(x) + (1− h)φ0(x) if 0 ≤ h ≤ 1
(h− 1)x2 − x+ 1 if h > 1,

pour tout x ∈ R, où φ0 est la fonction de perte 0− 1 et φ1 est la perte charnière.

Fig. 1. Exemples de fonctions de perte de la famille {φh : h ≥ 0} pour
h = 0 (perte 0− 1), h = 2/3, h = 1 (perte charnière) et h = 2.

Nous avons choisi cet ensemble de fonctions de perte pour sa représentativité des
différents types de convexité. Pour tout h > 1, φh est βh−convexe sur [−1, 1] pour un
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βh
def= (2h− 1)2/(2(h− 1)) ≥ 2, pour h = 1 la fonction de perte est linéaire (c’est la perte

charnière) et pour h < 1, φh n’est pas convexe.
Pour le cas h > 1, l’hypothèse de marge est naturellement satisfaite avec le paramètre de

marge κ = 1. Nous obtenons alors comme vitesse optimale d’agrégation pour les fonctions
de perte φh :

logM
n

( vitesse rapide d’agrégation).

Pour le cas h ≤ 1, l’hypothèse de marge n’est pas satisfaite, ce qui explique la faible vitesse
d’agrégation √

logM
n

( vitesse lente d’agrégation).

Néanmoins, sous l’hypothèse de marge de paramètre de marge κ, nous obtenons la vitesse
d’agrégation (1.13). Pour l’optimalité de cette vitesse d’agrégation, nous avons donné des
théorèmes de borne inférieure (cf. [81, 84]). Cependant il reste toujours possible que la
vitesse optimal d’agrégation sous l’hypothèse de marge soit( logM

n

) κ
2κ−1

.

Si tel était le cas, la procédure MRE ne serait pas une procédure optimale d’agrégation (cf.
[84]). Ce problème reste encore ouvert.

Donnons maintenant le descriptif des résultats sur ce sujet par chapitre.
Chapitre 2 : Dans ce chapitre (cf. [80]), nous montrons que la vitesse optimale

d’agrégation dans le modèle de densité pour la divergence de Kullback-Leibler est
logM
n

.

La procédure d’agrégation atteignant cette vitesse est l’agrégat ACPE introduit en (1.7).
Des inégalités de borne inférieure sont données pour la perte en variation totale et la perte
Hellinger (elles sont probablement optimales).

Chapitre 3 : Ce travail [81] porte sur l’optimalité des procédures d’agrégation introduites
en (1.4), (1.5) et (1.7) dans le modèle de classification, sous l’hypothèse de marge, pour la
perte usuelle et la perte charnière.

Premièrement, sans hypothèse de marge, les trois procédures sont optimales et atteignent
la vitesse optimale d’agrégation √

logM
n

,

pour la perte charnière. Pour la perte usuelle, la vitesse optimale d’agrégation est aussi√
(logM)/n, et la procédure MRE (1.4) est une procédure optimale d’agrégation.
Sous l’hypothèse de marge, la vitesse d’agrégation est donnée en 1.13. Un résultat de

type borne inférieure concernant l’optimalité de cette vitesse d’agrégation est donné.
Chapitre 5 : Ce travail porte sur le problème d’agrégation convexe en régression. Etant

donné un dictionnaire de M fonctions, la vitesse optimale d’agrégation convexe est (cf.
paragraphe 1.2)

M/n si M ≤
√
n et

( 1
n

log[M/
√
n+ 1]

)1/2
si M >

√
n.

Dans ce chapitre, nous montrons que, sous une hypothèse géométrique (disant que les
estimateurs faibles sont dans un demi-cône), nous pouvons construire une procédure qui
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imite la meilleure combinaison convexe à la vitesse
logM
n

.

Cette vitesse est habituellement la vitesse optimale d’agrégation pour le problème de (MS)
agrégation (cf. paragraphe 1.2). Nous obtenons donc une amélioration de la vitesse due à
la condition géométrique.

3.2. Sous-optimalité des méthodes de minimisation du risque empirique
pénalisé. Dans les modèles à forte marge (κ = 1), les procédures de minimisation du
risque empirique pénalisé n’arrivent pas à atteindre la vitesse optimale d’agrégation

logM
n

.

Concrètement, des exemples d’estimateurs faibles et de lois sous-jacentes sont exhibés pour
lesquels ces procédures ne peuvent pas imiter l’oracle à la vitesse plus rapide que√

logM
n

.

Par conséquent, en estimation de densité, en régression et en classification (pour des
fonctions de perte β−convexes), il est préférable d’utiliser des procédures d’agrégation à
poids exponentiels plutôt que les méthodes usuelles de minimisation du risque empirique
pénalisé pour construire des procédures adaptatives. Ces résultats sont donnés dans le
chapitre 4 (cf. [84]).

Chapitre 4 : Dans [75], il est prouvé que la méthode d’agrégation ACPE (cf. 1.7)
pour un paramètre de température T−1 convenablement choisi peut atteindre la vitesse
d’agrégation

logM
n

dans des modèles ayant une certaine propriété de convexité sur le risque. Dans ce chapitre
nous montrons, sous certaines hypothèses sur la pénalité, que la méthode MREp (cf. 1.8)
ne peut pas imiter l’oracle à la vitesse plus rapide que√

logM
n

.

Cette méthode n’est par conséquent pas optimale.
Nous avons fait ressortir le phénomène suivant : pour l’échelle de fonctions de perte

(1.15), la vitesse optimale d’agrégation est
√

(logM)/n pour les pertes φh où h ≤ 1. Elle
est atteinte par la procédure MRE. Pour la perte charnière (h = 1), la vitesse optimale
d’agrégation est atteinte par les trois procédures MRE, APE et ACPE. Pour les fonctions
de perte φh avec h > 1, nous obtenons la vitesse rapide d’agrégation (logM)/n, atteinte
par la procédure ACPE. Dans ce cas, la procédure MREp (et donc aussi MRE) ne peut pas
atteindre cette vitesse optimale d’agrégation, puisque nous avons exhibé un exemple pour
lequel cette méthode ne peut pas imiter l’oracle à la vitesse plus rapide que

√
(logM)/n.

Dans le chapitre 4, d’autres arguments concernant l’optimalité de la vitesse d’agrégation
définie dans (1.13) sont donnés.

Ce chapitre met en exergue le lien étroit entre la convexité de la perte et la possibilité
d’agréger à la vitesse rapide (logM)/n, par l’intermédiaire du paramètre de marge.

Le tableau suivant rappelle les principaux résultats obtenus sur l’optimalité des
méthodes d’agrégation dans le cadre de la classification sous l’hypothèse de marge. Pour
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cela, l’échelle continue de fonctions de perte {φh, h ≥ 0} (cf. (1.15)) est prise pour ensemble
de fonctions tests.

Fonction de perte φh h = 0 0 < h < 1 h = 1 h > 1

perte 0-1 perte charnière perte β − convexe

Hypothèse de marge non automatiquement satisfaite automatiquement vérifiée

(κ = +∞) (κ = 1)

Vitesse optimale (cf. 1.13) sous (HM)(κ) (log M)/n

d’agrégation (conjecture)

Procédure optimale ERM ERM ou AEW CAEW

d’agrégation (conjecture) (conjecture)

MRE ou MREp Optimale (conjecture) Sous-optimale

APE ? Optimale optimale (conjecture)

ACPE ? Optimale

3.3. Vitesses rapides de classification pour des règles de Bayes parcimo-
nieuses. Le chapitre 6 rassemble des résultats d’approximation en classification. Une
grande différence entre le modèle de classification et ceux de régression et d’estimation de
densités réside dans le fait qu’en classification, le statisticien ne cherche pas à approcher le
meilleur prédicteur possible (la règle de Bayes). Une telle approximation dans les classes
habituelles de régularité, utilisées en régression et estimation de densités, n’est pas sensé
dans le modèle de classification.

Nous avons proposé une autre approche en considérant des classes de fonctions à valeurs
dans {−1, 1} pouvant être approchées en norme L2 par des objets paramétriques dont les
valeurs appartiennent également à {−1, 1}. Sous des hypothèses sur la marge et le design
du modèle, le risque de Bayes en classification est équivalent au risque L2. Nous avons
obtenu des vitesses minimax sur ces classes, atteintes par des ”estimateurs par projection”
sur ces espaces. Ces estimateurs se sont avérés être des arbres dyadiques.

Les classes de fonctions introduites sont dans le même esprit que les ellipsöıdes de
Sobolev mis à part le fait qu’elles ne contiennent que des fonctions à valeurs dans {−1, 1} et
sont plutôt à envisager comme une classe d’arbres dyadiques possédant une représentation
parcimonieuse.

De plus, l’utilisation d’une méthode d’agrégation à poids exponentiel a donné une
version adaptative de ces estimateurs. L’estimateur ainsi obtenu peut s’interpréter comme
réalisant une procédure multi-échelle dans le même esprit que les estimateurs par projection
en régression et en estimation de densité.

3.4. Applications aux modèles concrêts. Chapitre 7 : Dans ce chapitre (cf.[82]),
nous utilisons la méthode d’agrégation introduite dans (1.5) pour construire des estimateurs
implémentables et adaptatifs à la fois au paramètre de marge et à celui de complexité. Nous
proposons une construction d’estimateurs SVM adaptatifs, en agrégeant des estimateurs
faibles SVM par la méthode d’agrégation APE.

Les paramètres de marge et de complexité sont inconnus en pratique alors, pour profiter
de grandes marges ou d’une faible complexité du modèle, nous devons être capable de
construire des estimateurs indépendants de ces paramètres, apprenant aussi vite que des
procédures ayant accès à ces paramètres. La procédure proposée dans ce chapitre est
implémentable et réalise cet objectif.
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Nous avons ensuite utilisé la méthode introduite en (1.5) pour l’agrégation d’estimateurs
proposés par [116]. Elle fournit un estimateur adaptatif, plus simple que celui utilisé dans
[116], atteignant la vitesse minimax d’estimation, (contrairement au résultat de [116], qui
souffrait d’une perte de vitesse logarithmique lors de la phase d’adaptation). Un résultat
similaire utilisant une autre méthode a été obtenu dans [77].

Chapitre 8 : Dans ce chapitre (cf. Chapter 8), nous montrons que la vitesse otpimale
d’agrégation sous hypothèse de marge pour des inégalités d’oracle non exactes (cf. 1.3 pour
C > 1) est ( logM

n

) κ
2κ−1

.

Nous avons ensuite utilisé cette inégalité d’oracle, satisfaite par la méthode APE (définie
en 1.5), pour construire des estimateurs en agrégeant des classifieurs ”par substitution”,
c’est-à-dire de la forme :

fη(x) = sign(2η(x)− 1),

où η varie dans un ε−réseau de l’espace de Hölder pour la norme infinie et pour un ε

convenablement choisi. L’estimateur ainsi construit est minimax. Nous avons utilisé une
deuxième fois l’inégalité d’oracle de ce chapitre pour rendre adaptatif, en la complexité et
la marge, ces estimateurs. Le désavantage de la méthode de construction de cet estimateur
est qu’elle nécessite de connâıtre un réseau optimal des classes de Hölder pour la norme
L∞ et d’agréger un grand nombre d’estimateurs faibles (il y en a un nombre exponentiel
en n). Cette méthode est donc difficilement implémentable dans la pratique. Pour résoudre
ce problème, nous avons utilisé une troisième fois l’inégalité d’oracle démontrée dans ce
chapitre pour agréger des classifieurs par substitution, où l’estimateur de la fonction de
régression est un estimateur par polynômes locaux donc implémentable. Finalement, cette
dernière procédure fournit un estimateur implémentable minimax et adaptatif en la marge
et la régularité.

Chapitre 9 : Dans ce chapitre réalisé en collaboration avec Christophe Chesneau
(cf.[38]), l’inégalité d’oracle du Théorème 9.1 et ses deux Corollaires (cf. Corollaires 9.1 et
9.2) sont prouvés. Ces résultats, en densité et régression, ont permis d’obtenir la vitesse de
convergence d’un estimateur obtenu par agrégation d’estimateurs par ondelettes seuillés.
Cet estimateur est minimax adaptatif en la régularité sur tous les espaces de Besov. De plus,
cette procédure est implémentable car ne requiert que l’agrégation de log n estimateurs.

Chapitre 10 : Dans ce chapitre, nous répondons positivement à une conjecture de Stone,
posée en 1982 dans [110]. C’est un travail commun avec Stéphane Gäıffas.

La problématique est la suivante. Plaçons nous dans le modèle de régression gaussienne

Y = f∗(X) + σ(X)ζ,

où ζ est un bruit gaussien centré, réduit et indépendant de X, f∗ : Rd 7−→ R est la fonction
de régression introduite dans le paragraphe 1.1 et σ : Rd 7−→ R est une fonction vérifiant
0 < σ0 ≤ σ(X) ≤ σ a.s.. La variable aléatoire Y est à valeurs réelles et X est une variable
aléatoire à valeurs dans Rd. L’hypothèse principale de ce chapitre est de supposer qu’il
existe une direction θ ∈ Sd−1, où Sd−1 est la sphère unité de Rd, telle que

f∗(x) = g(θtx),∀x ∈ Rd,

où la fonction g : R 7−→ R, généralement appelée fonction de lien, est inconnue ainsi que le
vecteur θ. Ceci est une hypothèse de réduction de dimension appelée hypothèse du ”single
index”. Supposons ensuite, que g est α−Höldérienne (ceci est l’hypothèse de complexité
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du chapitre). La vitesse minimax dans ce modèle (sans l’hypothèse du ”single-index”) est
n−2α/(2α+d) si f est α−Höldérienne. Elle est donc d’autant moins rapide que la dimension
d est grande. La conjecture de Stone consiste à prouver qu’il existe un estimateur f̂n de
f∗ ayant une vitesse de convergence aussi rapide que dans un modéle uni-dimensionnel
(d = 1), c’est-à-dire tel que son risque quadratique vérifie

(1.16) E[||f̂n − f∗||2L2(PX)] ≤ Cn−
2α

2α+1 .

La plupart des articles dans ce domaine proposent d’estimer le vecteur inconnu θ et
d’utiliser la valeur estimée pour construire un estimateur uni-dimensionnel de g. L’approche
que nous introduisons dans ce chapitre est de s’adapter en θ plutôt que de l’estimer. Pour cela
nous avons agrégé des estimateurs par polynômes locaux unidimensionnels dans plusieures
directions formant une grille de la sphère Sd−1. Nous montrons une inégalité d’oracle
satisfaite par une méthode d’agrégation avec poids exponentiels dépendant d’un paramètre
de température. Cette inégalité d’oracle montre que cet agrégat s’adapte automatiquement
en la direction. Parallèlement, pour une grille assez fine en la régularité α, cette procédure
s’adapte aussi à la régularité. La vitesse obtenue par cet estimateur est la vitesse minimax
prédite par Stone donnée en 1.16.

Des résultats de simulation montrent les meilleures performances des méthodes d’agrégation
à poids exponentiels par rapport aux méthodes de minimisation du risque empirique. Dans
le modèle du ”single index”, nous avons obtenu le graphique suivant, montrant l’évolution
du risque quadratique de l’agrégat (en ordonnée) en fonction du paramètre de température.
Pour une température proche de zéro, l’agrégat est une moyenne uniforme des estimateurs
de base. Pour des grandes températures, l’agrégat est la méthode d’agrégation MRE.
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Fig. 2. Risque quadratique de l’agrégat en fonction de l’inverse de la
température T ≥ 0 (écart-type en ligne pointillée). Pout T = 0, nous avons
le risque quadratique de l’agrégat à poids uniformes. Asymptotiquement,
quand T −→ +∞, on obtient le risque quadratique de l’ERM.

Le minimum atteint par cette fonction, nous permet de conjecturer l’existence d’une
température optimale pour laquelle le risque quadratique de l’agrégat APE est minimale.
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CHAPTER 2

Lower Bounds and Aggregation in Density Estimation

In this chapter we prove the optimality of an aggregation procedure. We prove lower
bounds for aggregation of model selection type of M density estimators for the Kullback-
Leibler divergence (KL), the Hellinger’s distance and the L1-distance. The lower bound,
with respect to the KL distance, can be achieved by the on-line type estimate suggested,
among others, by [125]. Combining these results, we state that logM/n is an optimal rate
of aggregation in the sense of [114], where n is the sample size.

Contents

1. Introduction 29
2. Main definition and main results 31
3. Lower bounds 32
4. Upper bounds 35

The material of this chapter has been published in the Journal of Machine Learning
Research (cf. [80]).

1. Introduction

Let (X ,A) be a measurable space and ν be a σ-finite measure on (X ,A). Let Dn =
(X1, . . . , Xn) be a sample of n i.i.d. observations drawn from an unknown probability of
density f on X with respect to ν. Consider the estimation of f from Dn.

Suppose that we have M ≥ 2 different estimators f̂1, . . . , f̂M of f . [33], [125], [98], [74],
[114] and[35] have studied the problem of model selection type aggregation. It consists in
construction of a new estimator f̃n (called aggregate) which is approximatively at least
as good as the best among f̂1, . . . , f̂M . In most of these papers, this problem is solved by
using a kind of cross-validation procedure. Namely, the aggregation is based on splitting
the sample in two independent subsamples D1

m and D2
l of sizes m and l respectively, where

m� l and m+ l = n. The size of the first subsample has to be greater than the one of
the second because it is used for the true estimation, that is for the construction of the
M estimators f̂1, . . . , f̂M . The second subsample is used for the adaptation step of the
procedure, that is for the construction of an aggregate f̃n, which has to mimic, in a certain
sense, the behavior of the best among the estimators f̂i. Thus, f̃n is measurable w.r.t.
the whole sample Dn unlike the first estimators f̂1, . . . , f̂M . Actually, [98] and [74] did
not focus on model selection type aggregation. These papers give a bigger picture about
the general topic of procedure aggregation and [125] complemented their results. [114]
improved these results and formulated the three types of aggregation problems (cf. [114]).
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One can suggest different aggregation procedures and the question is how to look for an
optimal one. A way to define optimality in aggregation in a minimax sense for a regression
problem is suggested in [114]. Based on the same principle we can define optimality
for density aggregation. In this chapter we will not consider the sample splitting and
concentrate only on the adaptation step, i.e. on the construction of aggregates (following
[98], [74], [114]). Thus, the first subsample is fixed and instead of estimators f̂1, . . . , f̂M ,
we have fixed functions f1, . . . , fM . Rather than working with a part of the initial sample
we will use, for notational simplicity, the whole sample Dn of size n instead of a subsample
D2
l .

The aim of this chapter is to prove the optimality, in the sense of [114], of the aggregation
method proposed by Yang, for the estimation of a density on (Rd, λ) where λ is the Lebesgue
measure on Rd. This procedure is a convex aggregation with weights which can be seen
in two different ways. Yang’s point of view is to express these weights in function of the
likelihood of the model, namely

(2.1) f̃n(x) =
M∑
j=1

w̃
(n)
j fj(x), ∀x ∈ X ,

where the weights are w̃(n)
j = (n+ 1)−1

∑n
k=0w

(k)
j and

(2.2) w
(k)
j =

fj(X1) . . . fj(Xk)∑M
l=1 fl(X1) . . . fl(Xk)

, ∀k = 1, . . . , n and w(0)
j =

1
M
.

And the second point of view is to write these weights as exponential ones, as used in [10],
[35], [63], [26], [72] and Chapter 7, for different statistical models. Define the empirical
Kullback-Leibler loss Kn(f) = −(1/n)

∑n
i=1 log f(Xi) (keeping only the term independent

of the underlying density to estimate) for all density f . We can rewrite these weights as
exponential weights:

w
(k)
j =

exp(−kKk(fj))∑M
l=1 exp(−kKk(fl))

, ∀k = 0, . . . , n.

Most of the results on convergence properties of aggregation methods are obtained
for the regression and the gaussian white noise models. Nevertheless, [33, 35], [48], [125],
[130] and [102] have explored the performances of aggregation procedures in the density
estimation framework. Most of them have established upper bounds for some procedure
and do not deal with the problem of optimality of their procedures. [98], [74] and [125] state
lower bounds for aggregation procedure in the regression setup. To our knowledge, lower
bounds for the performance of aggregation methods in density estimation are available
only in [102]. Their results are obtained with respect to the mean squared risk. [33] and
[125] construct procedures and give convergence rates w.r.t. the KL loss. One aim of this
chapter is to prove optimality of one of these procedures w.r.t. the KL loss. Lower bounds
w.r.t. the Hellinger’s distance and L1-distance (stated in Section 3) and some results of [17]
and [48] (recalled in Section 4) suggest that the rates of convergence obtained in Theorem
2.2 and 2.4 are optimal in the sense given in Definition 2.1. In fact, an approximate bound
can be achieved, if we allow the leading term in the RHS of the oracle inequality (i.e. in
the upper bound) to be multiplied by a constant greater than one.

The chapter is organized as follows. In Section 2 we give a Definition of optimality,
for a rate of aggregation and for an aggregation procedure, and our main results. Lower
bounds, for different loss functions, are given in Section 3. In Section 4, we recall a result
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of [125] about an exact oracle inequality satisfied by the aggregation procedure introduced
in (2.1).

2. Main definition and main results

To evaluate the accuracy of a density estimator we use the Kullback-leibler (KL)
divergence, the Hellinger’s distance and the L1-distance as loss functions. The KL divergence
is defined for all densities f , g w.r.t. a σ−finite measure ν on a space X , by

K(f |g) =

{ ∫
X log

(
f
g

)
fdν if Pf � Pg;

+∞ otherwise,

where Pf (respectively Pg) denotes the probability distribution of density f (respectively
g) w.r.t. ν. Hellinger’s distance is defined for all non-negative measurable functions f and
g by

H(f, g) =
∥∥∥√f −√g∥∥∥

2
,

where the L2-norm is defined by ‖f‖2 =
(∫
X f

2(x)dν(x)
)1/2 for all functions f ∈ L2(X , ν).

The L1-distance is defined for all measurable functions f and g by

v(f, g) =
∫
X
|f − g|dν.

The main goal of this chapter is to find optimal rate of aggregation in the sense of the
definition given below. This definition is an analog, for the density estimation problem, of
the one in [114] for the regression problem.

Definition 2.1. Take M ≥ 2 an integer, F a set of densities on (X ,A, ν) and F0 a set
of functions on X with values in R such that F ⊆ F0. Let d be a loss function on the set
F0. A sequence of positive numbers (ψn(M))n∈N∗ is called optimal rate of aggregation

of M functions in (F0,F) w.r.t. the loss d if :
(i) There exists a constant C < ∞, depending only on F0,F and d, such that for all

functions f1, . . . , fM in F0 there exists an estimator f̃n (aggregate) of f such that

(2.3) sup
f∈F

[
Ef
[
d(f, f̃n)

]
− min
i=1,...,M

d(f, fi)
]
≤ Cψn(M), ∀n ∈ N∗.

(ii) There exist some functions f1, . . . , fM in F0 and c > 0 a constant independent of M
such that for all estimators f̂n of f ,

(2.4) sup
f∈F

[
Ef
[
d(f, f̂n)

]
− min
i=1,...,M

d(f, fi)
]
≥ cψn(M), ∀n ∈ N∗.

Moreover, when the inequalities (2.3) and (2.4) are satisfied, we say that the procedure f̃n,
appearing in (2.3), is an optimal aggregation procedure w.r.t. the loss d.

Let A > 1 be a given number. In this chapter we are interested in the estimation of
densities lying in

(2.5) F(A) = {densities bounded by A}

and, depending on the used loss function, we aggregate functions in F0 which can be:
(1) FK(A) = {densities bounded by A} for KL divergence,
(2) FH(A) = {non-negative measurable functions bounded by A} for Hellinger’s dis-

tance,
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(3) Fv(A) = {measurable functions bounded by A} for the L1-distance.
The main result of this chapter, obtained by using Theorem 2.5 and assertion (2.6) of

Theorem 2.3, is the following Theorem.

Theorem 2.1. Let A > 1. Let M and n be two integers such that logM ≤ 16(min(1, A−
1))2n. The sequence

ψn(M) =
logM
n

is an optimal rate of aggregation of M functions in (FK(A),F(A)) (introduced in (2.5))
w.r.t. the KL divergence loss. Moreover, the aggregation procedure with exponential weights,
defined in (2.1), achieves this rate. So, this procedure is an optimal aggregation procedure
w.r.t. the KL-loss.

Moreover, if we allow the leading term ”mini=1,...,M d(f, fi)”, in the upper bound and
the lower bound of Definition 2.1, to be multiplied by a constant greater than one, then
the rate (ψn(M))n∈N∗ is said ”near optimal rate of aggregation”. Observing Theorem 2.6
and the result of [48] (recalled at the end of Section 4), the rates obtained in Theorems 2.2
and 2.4: (

logM
n

) q
2

are near optimal rates of aggregation for the Hellinger’s distance and the L1-distance to
the power q, where q > 0.

3. Lower bounds

To prove lower bounds of type (2.4) we use the following lemma on minimax lower
bounds which can be obtained by combining Theorems 2.2 and 2.5 in [115]. We say that d
is a semi-distance on Θ if d is symmetric, satisfies the triangle inequality and d(θ, θ) = 0.

Lemma 2.1. Let d be a semi-distance on the set of all densities on (X ,A, ν) and w

be a non-decreasing function defined on R+ which is not identically 0. Let (ψn)n∈N be
a sequence of positive numbers. Let C be a finite set of densities on (X ,A, ν) such that
card(C) = M ≥ 2,

∀f, g ∈ C, f 6= g =⇒ d(f, g) ≥ 4ψn > 0,

and the KL divergences K(P⊗nf |P⊗ng ), between the product probability measures correspond-
ing to densities f and g respectively, satisfy, for some f0 ∈ C,

∀f ∈ C, K(P⊗nf |P⊗nf0 ) ≤ (1/16) log(M).

Then,
inf
f̂n

sup
f∈C

Ef
[
w(ψ−1

n d(f̂n, f))
]
≥ c1,

where inf f̂n
denotes the infimum over all estimators based on a sample of size n from an

unknown distribution with density f and c1 > 0 is an absolute constant.

Now, we give a lower bound of the form (2.4) for the three different loss functions
introduced in the beginning of the section. Lower bounds are given in the problem of
estimation of a density on Rd, namely we have X = Rd and ν is the Lebesgue measure on
Rd.
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Theorem 2.2. Let M be an integer greater than 2, A > 1 and q > 0 be two numbers.
We have for all integers n such that logM ≤ 16(min (1, A− 1))2n,

sup
f1,...,fM∈FH(A)

inf
f̂n

sup
f∈F(A)

[
Ef
[
H(f̂n, f)q

]
− min
j=1,...,M

H(fj , f)q
]
≥ c

(
logM
n

)q/2
,

where c is a positive constant which depends only on A and q. The sets F(A) and FH(A)
are defined in (2.5) when X = Rd and the infimum is taken over all the estimators based
on a sample of size n.

Proof : For all densities f1, . . . , fM bounded by A we have,

sup
f1,...,fM∈FH(A)

inf
f̂n

sup
f∈F(A)

[
Ef
[
H(f̂n, f)q

]
− min
j=1,...,M

H(fj , f)q
]
≥ inf

f̂n

sup
f∈{f1,...,fM}

Ef
[
H(f̂n, f)q

]
.

Thus, to prove Theorem 1, it suffices to find M appropriate densities bounded by A and
to apply Lemma 1 with a suitable rate.

We consider D the smallest integer such that 2D/8 ≥ M and ∆ = {0, 1}D. We
set hj(y) = h (y − (j − 1)/D) for all y ∈ R, where h(y) = (L/D)g(Dy) and g(y) =
1I[0,1/2](y)− 1I(1/2,1](y) for all y ∈ R and L > 0 will be chosen later. We consider

fδ(x) = 1I[0,1]d(x)

1 +
D∑
j=1

δjhj(x1)

 , ∀x = (x1, . . . , xd) ∈ Rd,

for all δ = (δ1, . . . , δD) ∈ ∆. We take L such that L ≤ Dmin(1, A− 1) thus, for all δ ∈ ∆,
fδ is a density bounded by A. We choose our densities f1, . . . , fM in B = {fδ : δ ∈ ∆},
but we do not take all of the densities of B (because they are too close to each other),
but only a subset of B, indexed by a separated set (this is a set where all the points are
separated from each other by a given distance) of ∆ for the Hamming distance defined
by ρ(δ1, δ2) =

∑D
i=1 I(δ

1
i 6= δ2i ) for all δ1 = (δ11 , . . . δ

1
D), δ2 = (δ21 , . . . , δ

2
D) ∈ ∆. Since∫

R hdλ = 0, we have

H2(fδ1 , fδ2) =
D∑
j=1

∫ j
D

j−1
D

I(δ1j 6= δ2j )
(

1−
√

1 + hj(x)
)2

dx

= 2ρ(δ1, δ2)
∫ 1/D

0

(
1−

√
1 + h(x)

)
dx,

for all δ1 = (δ11 , . . . , δ
1
D), δ2 = (δ21 , . . . , δ

2
D) ∈ ∆. On the other hand the function ϕ(x) =

1−αx2−
√

1 + x, where α = 8−3/2, is convex on [−1, 1] and we have |h(x)| ≤ L/D ≤ 1 so, ac-
cording to Jensen,

∫ 1
0 ϕ(h(x))dx ≥ ϕ

(∫ 1
0 h(x)dx

)
. Therefore

∫ 1/D
0

(
1−

√
1 + h(x)

)
dx ≥

α
∫ 1/D
0 h2(x)dx = (αL2)/D3, and we have

H2(fδ1 , fδ2) ≥
2αL2

D3
ρ(δ1, δ2),

for all δ1, δ2 ∈ ∆. According to Varshamov-Gilbert, cf. [115, p. 89] or [68], there exists a
D/8-separated set, called ND/8, on ∆ for the Hamming distance such that its cardinal is
higher than 2D/8 and (0, . . . , 0) ∈ ND/8. On the separated set ND/8 we have,

∀δ1, δ2 ∈ ND/8 , H
2(fδ1 , fδ2) ≥

αL2

4D2
.
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In order to apply Lemma 2.1, we need to control the KL divergences too. Since we
have taken ND/8 such that (0, . . . , 0) ∈ ND/8, we can control the KL divergences w.r.t. P0,
the Lebesgue measure on [0, 1]d. We denote by Pδ the probability of density fδ w.r.t. the
Lebesgue’s measure on Rd, for all δ ∈ ∆. We have,

K(P⊗nδ |P⊗n0 ) = n

∫
[0,1]d

log (fδ(x)) fδ(x)dx

= n

D∑
j=1

∫ j/D

j−1
D

log (1 + δjhj(x)) (1 + δjhj(x)) dx

= n

 D∑
j=1

δj

∫ 1/D

0
log(1 + h(x))(1 + h(x))dx,

for all δ = (δ1, . . . , δD) ∈ ND/8. Since ∀u > −1, log(1 + u) ≤ u, we have,

K(P⊗nδ |P⊗n0 ) ≤ n

 D∑
j=1

δj

∫ 1/D

0
(1 + h(x))h(x)dx ≤ nD

∫ 1/D

0
h2(x)dx =

nL2

D2
.

Since logM ≤ 16(min (1, A− 1))2n, we can take L such that (nL2)/D2 = log(M)/16
and still having L ≤ Dmin(1, A − 1). Thus, for L = (D/4)

√
log(M)/n, we have for all

elements δ1, δ2 in ND/8, H2(fδ1 , fδ2) ≥ (α/64)(log(M)/n) and ∀δ ∈ ND/8 , K(P⊗nδ |P⊗n0 ) ≤
(1/16) log(M).

Applying Lemma 1 when d is H, the Hellinger’s distance, with M density functions
f1, . . . , fM in

{
fδ : δ ∈ ND/8

}
where f1 = 1I[0,1]d and the increasing function w(u) = uq, we

get the result.
�

Remark 2.1. The construction of the family of densities
{
fδ : δ ∈ ND/8

}
is in the

same spirit as the lower bound of [114], [102]. But, as compared to [102], we consider
a different problem (model selection aggregation) and as compared to [114], we study in
a different context (density estimation). Also, our risk function is different from those
considered in these papers.

Now, we give a lower bound for KL divergence. We have the same result as for square
of Hellinger’s distance.

Theorem 2.3. Let M ≥ 2 be an integer, A > 1 and q > 0. We have, for any integer n
such that logM ≤ 16(min(1, A− 1))2n,

(2.6) sup
f1,...,fM∈FK(A)

inf
f̂n

sup
f∈F(A)

[
Ef
[
(K(f |f̂n))q

]
− min
j=1,...,M

(K(f |fj))q
]
≥ c

(
logM
n

)q
,

and

(2.7) sup
f1,...,fM∈FK(A)

inf
f̂n

sup
f∈F(A)

[
Ef
[
(K(f̂n|f))q

]
− min
j=1,...,M

(K(fj |f))q
]
≥ c

(
logM
n

)q
,

where c is a positive constant which depends only on A. The sets F(A) and FK(A) are
defined in (2.5) for X = Rd.

Proof : Proof of the inequality (2.7) of Theorem 2.3 is similar to the one for (2.6). Since
we have for all densities f and g,

K(f |g) ≥ H2(f, g),
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[a proof is given in 115, p. 73], it suffices to note that, if f1, . . . , fM are densities bounded
by A then,

sup
f1,...,fM∈FK(A)

inf
f̂n

sup
f∈F(A)

[
Ef
[
(K(f |f̂n))q

]
− min
j=1,...,M

(K(f |fi))q
]

≥ inf
f̂n

sup
f∈{f1,...,fM}

[
Ef
[
(K(f |f̂n))q

]]
≥ inf

f̂n

sup
f∈{f1,...,fM}

[
Ef
[
H2q(f, f̂n)

]]
,

to get the result by applying Theorem 2.2.
�

With the same method as Theorem 1, we get the result below for the L1-distance.

Theorem 2.4. Let M ≥ 2 be an integer, A > 1 and q > 0. We have for any integers
n such that logM ≤ 16(min(1, A− 1))2n,

sup
f1,...,fM∈Fv(A)

inf
f̂n

sup
f∈F(A)

[
Ef
[
v(f, f̂n)q

]
− min
j=1,...,M

v(f, fi)q
]
≥ c

(
logM
n

)q/2
where c is a positive constant which depends only on A. The sets F(A) and Fv(A) are
defined in (2.5) for X = Rd.

Proof : The only difference with Theorem 2.2 is in the control of the distances. With the
same notations as the proof of Theorem 2.2, we have,

v(fδ1 , fδ2) =
∫

[0,1]d
|fδ1(x)− fδ2(x)|dx = ρ(δ1, δ2)

∫ 1/D

0
|h(x)|dx =

L

D2
ρ(δ1, δ2),

for all δ1, δ2 ∈ ∆. Thus, for L = (D/4)
√

log(M)/n and ND/8, the D/8-separated set of ∆
introduced in the proof of Theorem 2.2, we have,

v(fδ1 , fδ2) ≥
1
32

√
log(M)
n

, ∀δ1, δ2 ∈ ND/8 and K(P⊗nδ |P⊗n0 ) ≤ 1
16

log(M), ∀δ ∈ ∆.

Therefore, by applying Lemma 1 to the L1-distance with M densities f1, . . . , fM in{
fδ : δ ∈ ND/8

}
where f1 = 1I[0,1]d and the increasing function w(u) = uq, we get the

result.
�

4. Upper bounds

In this section we use an argument in [125] (see also [35]) to show that the rate of
the lower bound of Theorem 2.3 is an optimal rate of aggregation with respect to the KL
loss. We use an aggregate constructed by Yang (defined in (2.1)) to attain this rate. An
upper bound of the type (2.3) is stated in the following Theorem. Remark that Theorem
2.5 holds in a general framework of a measurable space (X ,A) endowed with a σ-finite
measure ν.

Theorem 2.5 (Yang). Let X1, . . . , Xn be n observations of a probability measure on
(X ,A) of density f with respect to ν. Let f1, . . . , fM be M densities on (X ,A, ν). The
aggregate f̃n, introduced in (2.1), satisfies, for any underlying density f ,

(2.8) Ef
[
K(f |f̃n)

]
≤ min

j=1,...,M
K(f |fj) +

log(M)
n+ 1

.

Proof : Proof follows the line of [125], although he does not state the result in the
form (2.3), for convenience we reproduce the argument here. We define f̂k(x;X(k)) =
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∑M
j=1w

(k)
j fj(x), ∀k = 1, . . . , n (where w(k)

j is defined in (2.2) and x(k) = (x1, . . . , xk) for
all k ∈ N and x1, . . . , xk ∈ X ) and f̂0(x;X(0)) = (1/M)

∑M
j=1 fj(x) for all x ∈ X . Thus,

we have

f̃n(x;X(n)) =
1

n+ 1

n∑
k=0

f̂k(x;X(k)).

Let f be a density on (X ,A, ν). We have
n∑
k=0

Ef
[
K(f |f̂k)

]
=

n∑
k=0

∫
Xk+1

log

(
f(xk+1)

f̂k(xk+1;x(k))

)
k+1∏
i=1

f(xi)dν⊗(k+1)(x1, . . . , xk+1)

=
∫
Xn+1

(
n∑
k=0

log

(
f(xk+1)

f̂k(xk+1;x(k))

))
n+1∏
i=1

f(xi)dν⊗(n+1)(x1, . . . , xn+1)

=
∫
Xn+1

log

(
f(x1) . . . f(xn+1)∏n
k=0 f̂k(xk+1;x(k))

)
n+1∏
i=1

f(xi)dν⊗(n+1)(x1, . . . , xn+1),

but
∏n
k=0 f̂k(xk+1;x(k)) = (1/M)

∑M
j=1 fj(x1) . . . fj(xn+1),∀x1, . . . , xn+1 ∈ X thus,

n∑
k=0

Ef
[
K(f |f̂k)

]
=
∫
Xn+1

log

(
f(x1) . . . f(xn+1)

1
M

∑M
j=1 fj(x1) . . . fj(xn+1)

)
n+1∏
i=1

f(xi)dν⊗(n+1)(x1, . . . , xn+1),

moreover x 7−→ log(1/x) is a decreasing function so,
n∑
k=0

Ef
[
K(f |f̂k)

]

≤ min
j=1,...,M

{∫
Xn+1

log

(
f(x1) . . . f(xn+1)

1
M fj(x1) . . . fj(xn+1)

)
n+1∏
i=1

f(xi)dν⊗(n+1)(x1, . . . , xn+1)

}

≤ logM + min
j=1,...,M

{∫
Xn+1

log
(
f(x1) . . . f(xn+1)
fj(x1) . . . fj(xn+1)

) n+1∏
i=1

f(xi)dν⊗(n+1)(x1, . . . , xn+1)

}
,

finally we have,

(2.9)
n∑
k=0

Ef
[
K(f |f̂k)

]
≤ logM + (n+ 1) inf

j=1,...,M
K(f |fj).

On the other hand we have,

Ef
[
K(f |f̃n)

]
=
∫
Xn+1

log

(
f(xn+1)

1
n+1

∑n
k=0 f̂k(xn+1;x(k))

)
n+1∏
i=1

f(xi)dν⊗(n+1)(x1, . . . , xn+1),

and x 7−→ log(1/x) is convex, thus,

(2.10) Ef
[
K(f |f̃n)

]
≤ 1
n+ 1

n∑
k=0

Ef
[
K(f |f̂k)

]
.

Theorem 2.5 follows by combining (2.9) and (2.10).
�

Birgé constructs estimators, called T-estimators (the ”T” is for ”test”), which are
adaptive in aggregation selection model of M estimators with a residual proportional at
(logM/n)q/2 when Hellinger and L1-distances are used to evaluate the quality of estimation
(cf. [17]). But it does not give an optimal result as Yang, because there is a constant greater
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than 1 in front of the main term mini=1,...,M dq(f, fi) where d is the Hellinger distance or
the L1 distance. Nevertheless, observing the proof of Theorem 2.2 and 2.4, we can obtain

sup
f1,...,fM∈F(A)

inf
f̂n

sup
f∈F(A)

[
Ef
[
d(f, f̂n)q

]
− C(q) min

i=1,...,M
d(f, fi)q

]
≥ c

(
logM
n

)q/2
,

where d is the Hellinger or L1-distance, q > 0 and A > 1. The constant C(q) can be chosen
equal to the one appearing in the following Theorem. The same residual appears in this
lower bound and in the upper bounds of Theorem 2.6, so we can say that(

logM
n

)q/2
is near optimal rate of aggregation w.r.t. the Hellinger distance or the L1-distance to the
power q, in the sense given at the end of Section 2. We recall Birgé’s results in the following
Theorem.

Theorem 2.6 (Birgé). If we have n observations of a probability measure of density
f w.r.t. ν and f1, . . . , fM densities on (X ,A, ν), then there exists an estimator f̃n (
T-estimator) such that for any underlying density f and q > 0, we have

Ef
[
H(f, f̃n)q

]
≤ C(q)

(
min

j=1,...,M
H(f, fj)q +

(
logM
n

)q/2)
,

and for the L1-distance we can construct an estimator f̃n which satisfies :

Ef
[
v(f, f̃n)q

]
≤ C(q)

(
min

j=1,...,M
v(f, fj)q +

(
logM
n

)q/2)
,

where C(q) > 0 is a constant depending only on q.

Another result, which can be found in [48], states that the minimum distance estimate
proposed by Yatracos (1985) (cf. [48, p. 59]) achieves the same aggregation rate as in
Theorem 2.6 for the L1-distance with q = 1. Namely, for all f, f1, . . . , fM ∈ F(A),

Ef
[
v(f, f̆n)

]
≤ 3 min

j=1,...,M
v(f, fj) +

√
logM
n

,

where f̆n is the estimator of Yatracos defined by

f̆n = arg min
f∈{f1,...,fM}

sup
A∈A

∣∣∣∣∣
∫
A
f − 1

n

n∑
i=1

1I{Xi∈A}

∣∣∣∣∣ ,
and A = {{x : fi(x) > fj(x)} : 1 ≤ i, j ≤M} .
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CHAPTER 3

Optimal Rates of Aggregation in Classification

In the same spirit as [114], we define the optimality of an aggregation procedure in
the problem of classification. Using an aggregate with exponential weights, we obtain
an optimal rate of convex aggregation for the hinge risk under the margin assumption.
Moreover we obtain an optimal rate of model selection aggregation under the margin
assumption for the excess Bayes risk.
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The material of this chapter is an article accepted for publication in the journal
Bernoulli (cf. [81]).

1. Introduction.

Let (X ,A) be a measurable space. We consider a random variable (X,Y ) on X×{−1, 1}
with probability distribution denoted by π. Denote by PX the marginal of π on X and by
η(x) def= P(Y = 1|X = x) the conditional probability function of Y = 1 knowing that X = x.
We have n i.i.d. observations of the couple (X,Y ) denoted by Dn = ((Xi, Yi))i=1,...,n. The
aim is to predict the output label Y for any input X in X from the observations Dn.

We recall some usual notation introduced for the classification framework. A pre-
diction rule is a measurable function f : X 7−→ {−1, 1}. The misclassification error
associated with f is

R(f) = P(Y 6= f(X)).

It is well known (see, e.g., [47]) that

min
f :X 7−→{−1,1}

R(f) = R(f∗) def= R∗,

where the prediction rule f∗, called the Bayes rule, is defined by

f∗(x) def= sign(2η(x)− 1),∀x ∈ X .
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CHAPTER 3. OPTIMAL RATES OF AGGREGATION IN CLASSIFICATION

The minimal risk R∗ is called the Bayes risk. A classifier is a function, f̂n = f̂n(X,Dn),
measurable with respect toDn andX with values in {−1, 1}, that assigns to the sampleDn a
prediction rule f̂n(., Dn) : X 7−→ {−1, 1}. A key characteristic of f̂n is the generalization
error E[R(f̂n)], where

R(f̂n)
def= P(Y 6= f̂n(X)|Dn).

The aim of statistical learning is to construct a classifier f̂n such that E[R(f̂n)] is as close
to R∗ as possible. Accuracy of a classifier f̂n is measured by the value E[R(f̂n)−R∗] called
excess Bayes risk of f̂n. We say that the classifier f̂n learns with the convergence rate
ψ(n), where (ψ(n))n∈N is a decreasing sequence, if there exists an absolute constant C > 0
such that for any integer n, E[R(f̂n)−R∗] ≤ Cψ(n).

Theorem 7.2 of [47] shows that no classifier can learn with a given convergence rate
for arbitrary underlying probability distribution π. To achieve rates of convergence, we
need a complexity assumption on the set which the Bayes rule f∗ belongs to. For instance
[123, 124] provide examples of classifiers learning with a given convergence rate under
complexity assumptions. These rates can not be faster than n−1/2 (cf. [47]). Nevertheless,
they can be as fast as n−1 if we add a control on the behavior of the conditional probability
function η at the level 1/2 (the distance |η(·)− 1/2| is sometimes called the margin). The
papers [91], for the problem of discriminant analysis, which is close to our classification
problem, and [116] have introduced the following assumption
(MA) Margin (or low noise) assumption. The probability distribution π on the space
X × {−1, 1} satisfies MA(κ) with 1 ≤ κ < +∞ if there exists c0 > 0 such that,

(3.1) E[|f(X)− f∗(X)|] ≤ c0 (R(f)−R∗)1/κ ,

for any measurable function f with values in {−1, 1}.
According to [116] and [22], this assumption is equivalent to a control on the margin given
by

P[|2η(X)− 1| ≤ t] ≤ ctα,∀0 ≤ t < 1.

Several example of fast rates, i.e. rates faster than n−1/2, can be found in [19, 109, 108,
92, 94, 93] and [9].

The aim of this chapter is the following:
(1) We define a concept of optimality for aggregation procedures in classification.
(2) We introduce several aggregation procedures in classification and obtain exact

oracle inequalities for their risks.
(3) We prove lower bounds and show optimality of the suggested procedures and

derive optimal rates of aggregation under the margin assumption.
The chapter is organized as follows. In Section 2 we introduce definitions and the

procedures which are used throughout the chapter. Section 3 contains oracle inequalities
for our aggregation procedures w.r.t. the excess hinge risk. Section 4 contains similar
results for the excess Bayes risk. Proofs are postponed in Section 5.

2. Definitions and Procedures.

2.1. Loss functions. The quality of a classifier is often measured by a convex sur-
rogate φ for the classification loss ([41, 54, 89, 55, 25, 14, 15]). Let us introduce some
notations. Take φ a measurable function from R to R. The risk associated with the loss
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function φ is called the φ−risk and is defined by

A(φ)(f) def= E[φ(Y f(X))],

where f : X 7−→ R is a measurable function. The empirical φ−risk is defined by

A(φ)
n (f) def=

1
n

n∑
i=1

φ(Yif(Xi))

and we denote by A(φ)∗ the infimum over all real valued functions inff :X 7−→RA
(φ)(f).

Classifiers obtained by minimization of the empirical φ−risk, for different convex losses,
have been proved to have very good statistical properties (cf. [89, 20, 130, 109, 108] and
[15]). A wide variety of classification methods in machine learning are based on this idea,
in particular, on using the convex loss φ(x) def= max(1 − x, 0), associated with support
vector machines ([41, 104]), called the hinge-loss. The corresponding risk is called the
hinge risk and is defined by

A(f) def= E[max(1− Y f(X), 0)],

for any measurable function f : X 7−→ R and the optimal hinge risk is defined by

(3.2) A∗
def= inf

f :X 7−→R
A(f).

It is easy to check that the Bayes rule f∗ attains the infimum in (3.2) and

(3.3) R(f)−R∗ ≤ A(f)−A∗,

for any measurable function f with values in R (cf. [88] and generalizations in [130]
and [15]), where we extend the definition of R to the class of real valued functions by
R(f) = R(sign(f)). Thus, minimization of the excess hinge risk, A(f)−A∗, provides a
reasonable alternative for minimization of the excess Bayes risk, R(f)−R∗.

2.2. Aggregation Procedures. Now, we introduce the problem of aggregation and
the aggregation procedures which will be studied in this chapter.

Suppose that we have M ≥ 2 different classifiers f̂1, . . . , f̂M taking values in {−1, 1}.
The problem of model selection type aggregation, as studied in [98, 125, 34, 35, 114], consists
in construction of a new classifier f̃n (called aggregate) which mimics approximatively the
best classifier among f̂1, . . . , f̂M . In most of these papers the aggregation is based on
splitting of the sample in two independent subsamples D1

m and D2
l of sizes m and l

respectively, where m+ l = n. The first subsample D1
m is used to construct the classifiers

f̂1, . . . , f̂M and the second subsample D2
l is used to aggregate them, i.e., to construct a

new classifier that mimics in a certain sense the behavior of the best among the classifiers
f̂j , j = 1, . . . ,M .

In this chapter we will not consider the sample splitting and concentrate only on the
construction of aggregates (following [74, 114, 17, 27]). Thus, the first subsample is fixed
and instead of classifiers f̂1, . . . , f̂M , we have fixed prediction rules f1, . . . , fM . Rather than
working with a part of the initial sample we will suppose, for notational simplicity, that
the whole sample Dn of size n is used for the aggregation step instead of a subsample D2

l .
Let F = {f1, . . . , fM} be a finite set of real-valued functions, where M ≥ 2. An

aggregate is a real valued statistic of the form

f̃n =
∑
f∈F

w(n)(f)f,
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where the weights (w(n)(f))f∈F satisfy

w(n)(f) ≥ 0 and
∑
f∈F

w(n)(f) = 1.

Let φ be a convex loss for classification. The Empirical Risk Minimization aggregate
(ERM) is defined by the weights

w(n)(f) =

{
1 for one f ∈ F such that A(φ)

n (f) = ming∈F A
(φ)
n (g),

0 for other f ∈ F .
, ∀f ∈ F

The ERM aggregate is denoted by f̃ (ERM)
n .

The averaged ERM aggregate is defined by the weights

w(n)(f) =

{
1/N ifA(φ)

n (f) = ming∈F A
(φ)
n (g),

0 otherwise,
, ∀f ∈ F ,

where N is the number of functions in F minimizing the empirical φ−risk. The averaged
ERM aggregate is denoted by f̃ (AERM)

n .
The Aggregation with Exponential Weights aggregate (AEW) is defined by the weights

(3.4) w(n)(f) =
exp

(
−nA(φ)

n (f)
)

∑
g∈F exp

(
−nA(φ)

n (g)
) , ∀f ∈ F .

The AEW aggregate is denoted by f̃ (AEW )
n .

The cumulative AEW aggregate is an on-line procedure defined by the weights

w(n)(f) =
1
n

n∑
k=1

exp
(
−kA(φ)

k (f)
)

∑
g∈F exp

(
−kA(φ)

k (g)
) , ∀f ∈ F .

The cumulative AEW aggregate is denoted by f̃ (CAEW )
n .

When F is a class of prediction rules, intuitively, the AEW aggregate is more robust
than the ERM aggregate w.r.t. the problem of overfitting. If the classifier with smallest
empirical risk is overfitted, i.e., it fits too much to the observations, then the ERM aggregate
will be overfitted. But, if other classifiers in F are good classifiers, the aggregate with
exponential weights will consider their ”opinions” in the final decision procedure and these
opinions can balance with the opinion of the overfitted classifier in F which can be false
because of its overfitting property. The ERM only considers the ”opinion” of the classifier
with the smallest risk, whereas the AEW takes into account all the opinions of the classifiers
in the set F . Moreover, the AEW aggregate does not need any minimization algorithm
contrarily to the ERM aggregate.

The exponential weights, defined in (3.4), can be found in several situations. First, one
can check that the solution of the following minimization problem

(3.5) min
( M∑
j=1

λjA
(φ)
n (fj) + ε

M∑
j=1

λj log λj :
M∑
j=1

λj ≤ 1, λj ≥ 0, j = 1, . . . ,M
)
,
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for all ε > 0, is

λj =
exp

(
−A

(φ)
n (fj)
ε

)
∑M

k=1 exp
(
−A

(φ)
n (fk)
ε

) ,∀j = 1, . . . ,M.

Thus, for ε = 1/n, we find the exponential weights used for the AEW aggregate. Second,
these weights can also be found in the theory of prediction of individual sequences, cf.
[119].

2.3. Optimal Rates of Aggregation. In the same spirit as in [114], where the
regression problem is treated, we introduce a concept of optimality for an aggregation
procedure and for rates of aggregation, in the classification framework. Our aim is to prove
that the aggregates introduced above are optimal in the following sense. All the results are
given under the margin assumption. We denote by Pκ the set of all probability measures
π on X × {−1, 1} satisfying MA(κ).

Definition 3.1. Let φ be a loss function. The remainder term γ(n,M, κ,F , π) is
called optimal rate of model selection type aggregation (MS-aggregation) for
the φ−risk, if the two following inequalities hold:

(i) ∀F = {f1, . . . , fM}, there exists a statistic f̃n, depending on F , such that ∀π ∈ Pκ,
∀n ≥ 1,

(3.6) E
[
A(φ)(f̃n)−A(φ)∗

]
≤ min

f∈F

(
A(φ)(f)−A(φ)∗

)
+ C1γ(n,M, κ,F , π).

(ii) ∃F = {f1, . . . , fM} such that for any statistic f̄n, ∃π ∈ Pκ, ∀n ≥ 1

(3.7) E
[
A(φ)(f̄n)−A(φ)∗

]
≥ min

f∈F

(
A(φ)(f)−A(φ)∗

)
+ C2γ(n,M, κ,F , π).

Here, C1 and C2 are positive constants which may depend on κ. Moreover, when these two
inequalities are satisfied, we say that the procedure f̃n, appearing in (3.6), is an optimal
MS-aggregate for the φ−risk. If C denotes the convex hull of F and if (3.6) and (3.7)
are satisfied with minf∈F

(
A(φ)(f)−A(φ)∗) replaced by minf∈C

(
A(φ)(f)−A(φ)∗) then, we

say that γ(n,M, κ,F , π) is an optimal rate of convex aggregation type for the
φ−risk and f̃n is an optimal convex aggregation procedure for the φ−risk.

In [114], the optimal rate of aggregation depends only on M and n. In our case the
residual term may be a function of the underlying probability measure π, of the class F
and of the margin parameter κ. Remark that, without any margin assumption, we obtain√

(logM)/n for residual, which is free from π and F . Under the margin assumption we
got a residual term dependent of π and F and it should be interpreted as a normalizing
factor in the ratio

E
[
A(φ)(f̄n)−A(φ)∗]−minf∈F

(
A(φ)(f)−A(φ)∗)

γ(n,M, κ,F , π)
,

and in that case our definition does not imply the uniqueness of the residual.

3. Optimal Rates of Convex Aggregation for the Hinge Risk.

Take M functions f1, . . . , fM with values in [−1, 1]. Consider the convex hull C =
Conv(f1, . . . , fM ). We want to mimic the best function in C using the hinge risk and
working under the margin assumption. We first introduce a margin assumption w.r.t. the
hinge loss.
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(MAH) Margin (or low noise) assumption for hinge-risk. The probability distribu-
tion π on the space X × {−1, 1} satisfies the margin assumption for hinge-risk MAH(κ)
with parameter 1 ≤ κ < +∞ if there exists c > 0 such that,

(3.8) E [|f(X)− f∗(X)|] ≤ c (A(f)−A∗)1/κ ,

for any function f on X with values in [−1, 1].

Proposition 3.1. The assumption MAH(κ) is equivalent to the margin assumption
MA(κ).

In what follows we will assume that MA(κ) holds and thus also MAH(κ) holds.
The AEW aggregate of M functions f1, . . . , fM with values in [−1, 1], introduced in

(3.4) for a general loss, has a simple form, for the case of the hinge loss, given by
(3.9)

f̃n =
M∑
j=1

w(n)(fj)fj , where w(n)(fj) =
exp (

∑n
i=1 Yifj(Xi))∑M

k=1 exp (
∑n

i=1 Yifk(Xi))
, ∀j = 1, . . . ,M.

In Theorems 3.1 and 3.2, we state the optimality of our aggregates in the sense of
Definition 3.1.

Theorem 3.1 (Oracle inequality). Let κ ≥ 1. We assume that π satisfies MA(κ).
We denote by C the convex hull of a finite set F of functions f1, . . . , fM with values in
[−1, 1]. Let f̃n be either of the four aggregates introduced in Section 2.2. Then, for any
integers M ≥ 3, n ≥ 1, f̃n satisfies the following inequality

E
[
A(f̃n)−A∗

]
≤ min

f∈C
(A(f)−A∗)+C


√

minf∈C(A(f)−A∗)
1
κ logM

n
+
(

logM
n

) κ
2κ−1

 ,

where C = 32(6∨537c∨16(2c+1/3)) for the ERM, AERM and AEW aggregates with κ ≥ 1
and c > 0 is the constant in (3.8) and C = 32(6∨ 537c∨ 16(2c+ 1/3))(2∨ (2κ− 1)/(κ− 1)
for the CAEW aggregate with κ > 1. For κ = 1 the CAEW aggregate satisfies

E
[
A(f̃ (CAEW )

n )−A∗
]
≤ min

f∈C
(A(f)−A∗)+2C

(√
minf∈C(A(f)−A∗) logM

n
+

(logM) log n
n

)
.

Remark 3.1. The hinge loss is linear on [−1, 1], thus, MS-aggregation or convex
aggregation of functions with values in [−1, 1] are identical problems. Namely, we have

(3.10) min
f∈F

A(f) = min
f∈C

A(f).

Theorem 3.2 (Lower bound). Let κ ≥ 1, M,n be two integers such that 2 log2M ≤ n.
We assume that the input space X is infinite. There exists an absolute constant C > 0,
depending only on κ and c, and a set of prediction rules F = {f1, . . . , fM} such that for
any real-valued procedure f̄n, there exists a probability measure π satisfying MA(κ) for
which

E
[
A(f̄n)−A∗

]
≥ min

f∈C
(A(f)−A∗)+C


√

(minf∈C A(f)−A∗)
1
κ logM

n
+
(

logM
n

) κ
2κ−1

 ,

where C = cκ(4e)−12−2κ(κ−1)/(2κ−1)(log 2)−κ/(2κ−1) and c > 0 is the constant in (3.8).
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Combining the exact oracle inequality of Theorem 3.1 and the lower bound of Theorem
3.2, we see that the residual

(3.11)

√
(minf∈C A(f)−A∗)

1
κ logM

n
+
(

logM
n

) κ
2κ−1

,

is an optimal rate of convex aggregation of M functions with values in [−1, 1] for the
hinge-loss. Moreover, for any real valued function f , we have max(1 − yψ(f(x)), 0) ≤
max(1− yf(x), 0) for all y ∈ {−1, 1} and x ∈ X , thus

(3.12) A(ψ(f))−A∗ ≤ A(f)−A∗, where ψ(x) = max(−1,min(x, 1)), ∀x ∈ R.

Thus, by aggregating ψ(f1), . . . , ψ(fM ), it is easy to check that√
(minf∈F A(ψ(f))−A∗)

1
κ logM

n
+
(

logM
n

) κ
2κ−1

,

is an optimal rate of model-selection aggregation of M real valued functions f1, . . . , fM
w.r.t. the hinge loss. In both cases, the aggregate with exponential weights as well as
ERM and AERM attain these optimal rates and the CAEW aggregate attains the optimal
rate if κ > 1. Applications and learning properties of the AEW procedure can be found in
Chapters 7 and 8 (in particular, adaptive SVM classifiers are constructed by aggregating
only (log n)2 SVM estimators). In Theorem 3.1, the AEW procedure satisfies an exact
oracle inequality with an optimal residual term whereas in Chapters 7 and 8 the oracle
inequalities satisfied by the AEW procedure are not exact (there is a multiplying factor
greater than 1 in front of the bias term) and in Chapter 7 the residual is not optimal. In
Chapter 8, it is proved that for any finite set F of functions f1, . . . , fM with values in
[−1, 1] and any ε > 0, there exists an absolute constant C(ε) > 0, such that, for C the
convex hull of F ,

(3.13) E
[
A(f̃ (AEW )

n )−A∗
]
≤ (1 + ε) min

f∈C
(A(f)−A∗) + C(ε)

(
logM
n

) κ
2κ−1

.

This oracle inequality is good enough for several applications (see the examples in Chapter
8). Nevertheless, (3.13) can be easily deduced from Theorem 3.1 using Lemma 3.1 and
may be inefficient to construct adaptive estimators with exact constant (because of the
factor greater than 1 in front of minf∈C(A(f)−A∗)). Moreover, oracle inequalities with a
factor greater than 1 in front of the oracle minf∈C(A(f)−A∗) do not characterize the real
behavior of the used technique of aggregation. For instance, for any strictly convex loss φ,
the ERM procedure satisfies, (cf. Chapter 9),

(3.14) E
[
A(φ)(f̃ (ERM)

n )−A(φ)∗
]
≤ (1 + ε) min

f∈F
(A(φ)(f)−A(φ)∗) + C(ε)

logM
n

.

But, it has been recently proved in [85], that the ERM procedure can not mimic the oracle
faster than

√
(logM)/n, whereas, for strictly convex losses, the CAEW procedure can

mimic the oracle at the rate (logM)/n (cf. [75]). Thus, for strictly convex losses, it is
better to use aggregation procedure with exponential weights than ERM (or even penalized
ERM procedures (cf. in Chapter 4)) to mimic the oracle. Non-exact oracle inequalities
of the form (3.14) cannot tell us which procedure is better to use, since, both ERM and
CAEW procedures satisfy this inequality.

It is interesting to note that the rate of aggregation (3.11) depends on both the class F
and π through the term minf∈C A(f)−A∗. This is different from the regression problem
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(cf. [114]), where the optimal aggregation rates depends only on M and n. Three cases
can be considered, where M(F , π) denotes minf∈C(A(f)−A∗) and M may depend on n:

(1) If M(F , π) ≤ a
(

logM
n

) κ
2κ−1 , for an absolute constant a > 0, then the hinge risk

of our aggregates attains minf∈C A(f)−A∗ with the rate
(

logM
n

) κ
2κ−1 , which can

be logM/n in the case k = 1.

(2) If a
(

logM
n

) κ
2κ−1 ≤M(F , π) ≤ b, for some constants a, b > 0, then our aggregates

mimic the best prediction rule in C with a rate slower than
(

logM
n

) κ
2κ−1 but faster

than ((logM)/n)1/2.
(3) If M(F , π) ≥ a > 0, where a > 0 is a constant, then the rate of aggregation is√

logM
n , as in the case of no margin assumption.

We can explain this behavior by the fact that not only κ but also minf∈C A(f)−A∗ measures
the difficulty of classification. For instance, in the extreme case where minf∈C A(f)−A∗ = 0,

which means that C contains the Bayes rule, we have the fastest rate
(

logM
n

) κ
2κ−1 . In the

worst cases, which are realized when κ tends to ∞ or minf∈C(A(f)−A∗) ≥ a > 0, where

a > 0 is an absolute constant, the optimal rate of aggregation is the slow rate
√

logM
n .

4. Optimal Rates of MS-Aggregation for the Excess Risk.

Now, we provide oracle inequalities and lower bounds for the excess Bayes risk. First,
we can deduce from Theorem 3.1 and 3.2, ’almost optimal rates of aggregation’ for the
excess Bayes risk achieved by the AEW aggregate. Second, using the ERM aggregate, we
obtain optimal rates of model selection aggregation for the excess Bayes risk.

Using inequality (3.3), we can derive from Theorem 3.1, an oracle inequality for the
excess Bayes risk. The lower bound is obtained using the same proof as in Theorem 3.2.

Corollary 3.1. Let F = {f1, . . . , fM} be a finite set of prediction rules for an integer
M ≥ 3 and κ ≥ 1. We assume that π satisfies MA(κ). Denote by f̃n either the ERM
or the AERM or the AEW aggregate. Then, f̃n satisfies for any number a > 0 and any
integer n
(3.15)

E
[
R(f̃n)−R∗

]
≤ 2(1 + a) min

j=1,...,M
(R(fj)−R∗) +

[
C + (C2κ/a)1/(2κ−1)

]( logM
n

) κ
2κ−1

,

where C = 32(6 ∨ 537c ∨ 16(2c+ 1/3)). The CAEW aggregate satisfies the same inequality
with C = 32(6 ∨ 537c ∨ 16(2c + 1/3))(2 ∨ (2κ − 1)/(κ − 1) when κ > 1. For κ = 1 the
CAEW aggregate satisfies (3.15) where we need to multiply the residual by log n.

Moreover there exists a finite set of prediction rules F = {f1, . . . , fM} such that for
any classifier f̄n, there exists a probability measure π on X × {−1, 1} satisfying MA(κ),
such that for any n ≥ 1, a > 0,

E
[
R(f̄n)−R∗

]
≥ 2(1 + a) min

f∈F
(R(f)−R∗) + C(a)

(
logM
n

) κ
2κ−1

,

where C(a) > 0 is a constant depending only on a.
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Due to Corollary 3.1, (
logM
n

) κ
2κ−1

is an almost optimal rate of MS-aggregation for the excess risk and the AEW aggregate
achieves this rate. The word ”almost” is here because minf∈F (R(f)−R∗) is multiplied
by a constant greater than 1.

Oracle inequality (3.15) is not exact since the minimal excess risk over F is multiplied
by the constant 2(1 + a) > 1. This is not the case while using the ERM aggregate as
explained in the following Theorem.

Theorem 3.3. Let κ ≥ 1. We assume that π satisfies MA(κ). We denote by F =
{f1, . . . , fM} a set of prediction rules. The ERM aggregate over F satisfies for any integer
n ≥ 1

E
[
R(f̃ (ERM)

n )−R∗
]
≤ min

f∈F
(R(f)−R∗)+C


√

minf∈F (R(f)−R∗)
1
κ logM

n
+
(

logM
n

) κ
2κ−1

 ,

where C = 32(6 ∨ 537c0 ∨ 16(2c0 + 1/3)) and c0 is the constant appearing in MA(κ).

Using Lemma 3.1, we can deduce the results of [64] from Theorem 3.3. Oracle inequal-
ities under MA(κ) have already been stated in [93] (cf. [22]), but the obtained remainder
term is worse than the one obtained in Theorem 3.3.

According to Definition 3.1, combining Theorem 3.3 and the following Theorem, the
rate √

minf∈F (R(f)−R∗)
1
κ logM

n
+
(

logM
n

) κ
2κ−1

is an optimal rate of MS-aggregation w.r.t. the excess Bayes risk. The ERM aggregate
achieves this rate.

Theorem 3.4 (Lower bound). Let M ≥ 3 and n be two integers such that 2 log2M ≤
n and κ ≥ 1. Assume that X is infinite. There exists an absolute constant C > 0 and a
set of prediction rules F = {f1, . . . , fM} such that for any procedure f̄n with values in R,
there exists a probability measure π satisfying MA(κ) for which

E
[
R(f̄n)−R∗

]
≥ min

f∈F
(R(f)−R∗)+C


√

(minf∈F R(f)−R∗)
1
κ logM

n
+
(

logM
n

) κ
2κ−1

 ,

where C = c0
κ(4e)−12−2κ(κ−1)/(2κ−1)(log 2)−κ/(2κ−1) and c0 is the constant appearing in

MA(κ).

5. Proofs.

Proof of Proposition 3.1. Since for any function f from X to {−1, 1} we have
2(R(f)−R∗) = A(f)−A∗, then, MA(κ) is implied by MAH(κ).

Assume that MA(κ) holds. We first explore the case κ > 1, then, MA(κ) implies that
there exists a constant c1 > 0 such that P (|2η(X)− 1| ≤ t) ≤ c1t

1/(κ−1) for any t > 0 (cf.
[22]). Let f from X to [−1, 1]. We have, for any t > 0,

A(f)−A∗ = E [|2η(X)− 1||f(X)− f∗(X)|] ≥ tE
[
|f(X)− f∗(X)|1I|2η(X)−1|≥t

]
≥ t (E [|f(X)− f∗(X)|]− 2P (|2η(X)− 1| ≤ t)) ≥ t

(
E [|f(X)− f∗(X)|]− 2c1t1/(κ−1)

)
.
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For t0 = ((κ− 1)/(2c1κ))κ−1E [|f(X)− f∗(X)|]κ−1, we obtain

A(f)−A∗ ≥ ((κ− 1)/(2c1κ))κ−1κ−1E [|f(X)− f∗(X)|]κ .

For the case κ = 1, MA(1) implies that there exists h > 0 such that |2η(X)− 1| ≥ h

a.s.. Indeed, if for any N ∈ N∗, there exists AN ∈ A such that PX(AN ) > 0 and
|2η(x)− 1| ≤ N−1,∀x ∈ AN , then, for

fN (x) =
{
−f∗(x) if x ∈ AN
f∗(x) otherwise,

we obtain R(fN )−R∗ ≤ 2PX(AN )/N and E [|fN (X)− f∗(X)|] = 2PX(AN ), and there is
no constant c0 > 0 such that PX(AN ) ≤ c0P

X(AN )/N for all N ∈ N∗. So, assumption
MA(1) does not hold if no h > 0 satisfies |2η(X)− 1| ≥ h a.s.. Thus, for any f from X to
[−1, 1], we have A(f)−A∗ = E [|2η(X)− 1||f(X)− f∗(X)|] ≥ hE [|f(X)− f∗(X)|] .

Proof of Theorem 3.1: Cf. proof of Theorem 9.1 in Chapter 9.
Proof of Theorem 3.2. Let a be a positive number and f1, . . . , fM be M prediction

rules. Using (3.10), we have, for any finite set F of M real valued functions,
(3.16)
inf
f̂n

sup
π∈Pκ

(
E
[
A(f̂n)−A∗

]
−(1+a) min

f∈Conv(F)
(A(f)−A∗)

)
≥ inf

f̂n

sup
π∈Pκ

f∗∈{f1,...,fM}

E
[
A(f̂n)−A∗

]
,

where Conv(F) is the set made of all the convex combinations of elements in F . Let N be
an integer such that 2N−1 ≤M , x1, . . . , xN be N distinct points of X and w be a positive
number satisfying (N − 1)w ≤ 1. Denote by PX the probability measure on X such that
PX({xj}) = w, for j = 1, . . . , N − 1 and PX({xN}) = 1− (N − 1)w. We consider the cube
Ω = {−1, 1}N−1. Let 0 < h < 1. For all σ = (σ1, . . . , σN−1) ∈ Ω we consider

ησ(x) =
{

(1 + σjh)/2 if x = x1, . . . , xN−1,

1 if x = xN .

For all σ ∈ Ω we denote by πσ the probability measure on X × {−1, 1} having PX for
marginal on X and ησ for conditional probability function.

Assume that κ > 1. We have P (|2ησ(X)− 1| ≤ t) = (N − 1)w1Ih≤t for any 0 ≤ t < 1.
Thus, if we assume that (N − 1)w ≤ h1/(κ−1) then P (|2ησ(X)− 1| ≤ t) ≤ t1/(κ−1) for all
0 ≤ t < 1. Thus, according to [116], πσ belongs to Pκ.

We denote by ρ the Hamming distance on Ω. Let σ, σ′ ∈ Ω such that ρ(σ, σ′) = 1.
Denote by H the Hellinger’s distance. Since H2

(
π⊗nσ , π⊗nσ′

)
= 2
(
1−
(
1−H2(πσ, πσ′)/2

)n)
and

H2(πσ, πσ′) = w
N−1∑
j=1

(√
ησ(xj)−

√
ησ′(xj)

)2
+
(√

1− ησ(xj)−
√

1− ησ′(xj)
)2

= 2w(1−
√

1− h2),

then, the Hellinger’s distance between the measures π⊗nσ and π⊗nσ′ satisfies

H2
(
π⊗nσ , π⊗nσ′

)
= 2

(
1− (1− w(1−

√
1− h2))n

)
.

Take w and h such that w(1−
√

1− h2) ≤ n−1. Then, H2
(
π⊗nσ , π⊗nσ′

)
≤ β = 2(1−e−1) <

2 for any integer n.
Let σ ∈ Ω and f̂n be an estimator with values in [−1, 1] (according to (3.12), we consider

only estimators in [−1, 1]). Using MA(κ), we have, conditionally to the observations Dn
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and for π = πσ,

A(f̂n)−A∗ ≥
(
cEπσ

[
|f̂n(X)− f∗(X)|

])κ
≥ (cw)κ

N−1∑
j=1

|f̂n(xj)− σj |

κ

.

Taking here the expectations, we find Eπσ

[
A(f̂n)−A∗

]
≥ (cw)κEπσ

[(∑N−1
j=1 |f̂n(xj)− σj |

)κ]
.

Using Jensen’s inequality and Lemma 3.3, we obtain

(3.17) inf
f̂n

sup
σ∈Ω

(
Eπσ

[
A(f̂n)−A∗

])
≥ (cw)κ

(
N − 1
4e2

)κ
.

Take now w = (nh2)−1, N = dlogM/ log 2e, h =
(
n−1dlogM/ log 2e

)(κ−1)/(2κ−1).
Replace w and N in (3.17) by there values, thus, from (3.16), there exist f1, . . . , fM (the
2N−1 first ones are sign(2ησ − 1) for σ ∈ Ω and any choice for the M − 2N−1 remaining
ones) such that for any procedure f̄n, there exists a probability measure π satisfying

MA(κ), such that E
[
A(f̂n)−A∗

]
− (1 + a)minj=1,...,M (A(fj) − A∗) ≥ C0

(
logM
n

) κ
2κ−1

,

where C0 = cκ(4e)−12−2κ(κ−1)/(2κ−1)(log 2)−κ/(2κ−1).
Moreover, according to Lemma 3.1, we have

amin
f∈C

(A(f)−A∗) +
C0

2

(
logM
n

) κ
2κ−1

≥
√

2−1a1/κC0

√
(minf∈C A(f)−A∗)

1
κ logM

n
.

Thus,

E
[
A(f̂n)−A∗

]
≥ min

f∈C
(A(f)−A∗)+C0

2

(
logM
n

) κ
2κ−1

+
√

2−1a1/κC0

√
(AC −A∗)

1
κ logM

n
.

For κ = 1, we take h = 1/2. Then |2ησ(X)− 1| ≥ 1/2 a.s. so πσ ∈MA(1). It suffices
then to take w = 4/n and N = dlogM/ log 2e to obtain the result.

Proof of Corollary 3.1. The result follows from Theorems 3.1 and 3.2. Using the
fact that for any prediction rule f we have A(f)−A∗ = 2(R(f)−R∗), inequality (3.3) and
Lemma 3.1, for any a > 0, with t = a(AC −A∗) and v = (C2(logM)/n)κ/(2κ−1)a−1/(2κ−1)

we obtain the result.
Proof of Theorem 3.3: Cf. proof of Theorem 9.1 in Chapter 9.
Proof of Theorem 3.4: For all prediction rules f1, . . . , fM , we have

sup
g1,...,gM

inf
f̂n

sup
π∈Pκ

(
E
[
R(f̂n)−R∗

]
− (1 + a) min

j=1,...,M
(R(gj)−R∗)

)
≥ inf

f̂n

sup
π∈Pκ

f∗∈{f1,...,fM}

E
[
R(f̂n)−R∗

]
.

Consider the set of probability measures {πσ, σ ∈ Ω} introduced in the proof of Theorem
3.2. Assume that κ > 1. Since for any σ ∈ Ω and any classifier f̂n, we have, by using
MA(κ),

Eπσ

[
R(f̂n)−R∗

]
≥ (c0w)κEπσ

N−1∑
j=1

|f̂n(xj)− σj |

κ ,
using Jensen’s inequality and Lemma 3.3, we obtain

inf
f̂n

sup
σ∈Ω

(
Eπσ

[
R(f̂n)−R∗

])
≥ (c0w)κ

(
N − 1
4e2

)κ
.
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By taking w = (nh2)−1, N = dlogM/ log 2e, h =
(
n−1dlogM/ log 2e

) κ−1
2κ−1 , there

exist f1, . . . , fM (the 2N−1 first ones are sign(2ησ − 1) for σ ∈ Ω and any choice for the
M − 2N−1 remaining ones) such that for any procedure f̄n, there exists a probability
measure π satisfying MA(κ), such that E

[
R(f̂n)−R∗

]
− (1 + a)minj=1,...,M (R(fj) −

R∗) ≥ C0

(
logM
n

) κ
2κ−1

, where C0 = c0
κ(4e)−12−2κ(κ−1)/(2κ−1)(log 2)−κ/(2κ−1). Moreover,

according to Lemma 3.1, we have

amin
f∈F

(R(f)−R∗) +
C0

2

(
logM
n

) κ
2κ−1

≥
√
a1/κC0/2

√
(minf∈F R(f)−R∗)

1
κ logM

n
.

The case κ = 1 is treated in the same way as in the proof of Theorem 3.2.

Lemma 3.1. Let v, t > 0 and κ ≥ 1. The concavity of the logarithm yields

t+ v ≥ t
1
2κ v

2κ−1
2κ .

Lemma 3.2. Let f be a function from X to [−1, 1] and π a probability measure on
X × {−1, 1} satisfying MA(κ), for a κ ≥ 1. Denote by V the symbol of variance. We have

V
(
Y (f(X)−f∗(X))

)
≤ c(A(f)−A∗)1/κ and V

(
1IY f(X)≤0−1IY f∗(X)≤0

)
≤ c(R(f)−R∗)1/κ.

Lemma 3.3. Let {Pω/ω ∈ Ω} be a set of probability measures on a measurable space
(X ,A), indexed by the cube Ω = {0, 1}m . Denote by Eω the expectation under Pω and by
ρ the Hamming distance on Ω. Assume that

∀ω, ω′ ∈ Ω/ρ(ω, ω′) = 1, H2(Pω, Pω′) ≤ α < 2,

then

inf
ŵ∈[0,1]m

max
ω∈Ω

Eω

 m∑
j=1

|ŵj − wj |

 ≥ m

4

(
1− α

2

)2
.

Proof. Obviously, we can replace infŵ∈[0,1]m by (1/2) infŵ∈{0,1}m since for all w ∈ {0, 1}
and ŵ ∈ [0, 1] there exists w̃ ∈ {0, 1} (for instance the projection of ŵ on {0, 1}) such that
|ŵ − w| ≥ (1/2)|w̃ − w|. Then, we use Theorem 2.10 p.103 of [114].
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CHAPTER 4

Suboptimality of Penalized Empirical Risk Minimization

Let f ∈ F be an object to estimate and F0 ⊂ F be a subset with cardinality M . For
instance the elements in F0 may have been constructed with preliminary observations
which are throughout the chapter assumed to be frozen. The elements in F0 are considered
as non-random. Given a loss function, we want to construct a procedure which mimics at
the best possible rate the best procedure in F0. This fastest rate is called optimal rate of
aggregation. In this chapter, we prove that, in several estimation problems (classification
under margin assumption for different losses, density estimation and regression), the
usual penalized (or structural) Empirical Risk Minimization (ERM) procedures cannot
achieve this optimal rate of aggregation. On the other hand, in those cases, aggregation
procedures with exponential weights attain the optimal rate of aggregation. Moreover, we
prove that quality of aggregation of the ERM procedure depends on both the margin and
approximation quality of the model.
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1. Introduction

1.1. Framework. Let (Z, T ) a measurable space. Denote by P the set of all proba-
bility measures on (Z, T ). Let F be a function on P with values in an algebra F . Let Z
be a random variable with values in Z and denote by π its probability measure. Let Dn

be a sample of n i.i.d. observations Z1, . . . , Zn having the common probability measure π.
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CHAPTER 4. SUBOPTIMALITY OF PENALIZED ERM

The probability measure π is unknown. Our aim is to estimate F (π) from the observations
Dn. Consider a loss function Q : Z × F 7−→ R+ and the corresponding average loss

A(f) def= E [Q(Z, f)] ,

where E denotes the expectation. If the minimum over all f in F

A∗
def= min

f∈F
A(f)

is achieved by at least one function, we denote by f∗ a minimizer in F . In this chapter we
will assume that minf∈F A(f) is achievable.

In most of the cases f∗ will be equal to our target F (π). We don’t know the risk A,
since π is not available to the statistician. Thus, we minimize the empirical version of A
constructed from the observations Dn, i.e.

(4.1) An(f) def=
1
n

n∑
i=1

Q(Zi, f).

Now, we introduce an assumption which improves the quality of estimation and of
aggregation in our framework. This assumption has been first introduced by [91], for
the problem of discriminant analysis, and [116], for the classification problem. With this
assumption, fast rates of convergence can be achieved, for instance, in classification problem
(cf. [116], [109]).

Margin Assumption(MA): The probability measure π satisfies the margin assump-
tion MA(κ, c,F0), where κ ≥ 1, c > 0 and F0 is a subset of F if

(4.2) E[(Q(Z, f)−Q(Z, f∗))2] ≤ c(A(f)−A∗)1/κ,∀f ∈ F0.

In the regression setup on X × R, where X is a measurable space, with the L2 risk
w.r.t. the probability measure of the design on X (cf. Example 1, Section 1.1 of Chapter
1), it is easy to see that any probability distribution π on X × R satisfies the margin
assumption MA(1, 1,F), where F is the set of all square integrable functions from X to R.
In density estimation with the integrated square risk (cf. Example 2, Section 1.1 of Chapter
1) with the densities a.s. bounded by a constant B ≥ 1, satisfy the margin assumption
MA(1, 16B2,FB) where FB is the set of all non-negative functions f ∈ L2(Z, T , µ) bounded
by B.

The margin assumption is linked to the convexity of the underlying loss. In density
and regression estimation it is naturally satisfied with the best margin parameter κ = 1,
but, for non-convex loss (for instance in classification) this assumption is an additional
restriction.

1.2. Aggregation Procedures and Optimality. We work with the notation intro-
duced at the beginning of the previous subsection. Our framework is the same as the one
considered, among others, in [98, 35, 75, 125, 126, 127]. We have a family F0 of M “weak
estimators” f1, . . . , fM ∈ F and the goal is to construct an estimator, based on a sample
Dn of n i.i.d. observations Z1, . . . , Zn of Z, which has a risk close to the one of the oracle,
that is minf∈F0(A(f)−A∗). Those weak estimators could have been constructed from a
preliminary set of observations or they can be the first M functions of a basis or simple
objects like decision stumps. The problem is to find a strategy which mimics as fast as
we can the best element in F0. Such a strategy can then be used to construct efficient
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adaptive estimators (cf. [98] and Chapters 7,8, 9 and 10). In this chapter we consider four
different aggregation strategies.

The most well known one is the Empirical Risk Minimization (ERM) procedure over
F0, defined by

(4.3) f̃ (ERM)
n ∈ Arg min

f∈F0

An(f),

and the penalized Empirical Risk Minimization (pERM) procedures given by

(4.4) f̃ (pERM)
n ∈ Arg min

f∈F0

(
An(f) + pen(f)

)
,

where pen(·) is some penalty function (cf.,e.g., [92],[93]).
A selector is an aggregate with values in the family F0. Penalized ERM and ERM

procedures are examples of selectors.
Aggregation with Exponential Weights (AEW) procedure over F0 is defined by

(4.5) f̃
(AEW )
n,β

def=
∑
f∈F0

w
(n)
β (f)f,

where β > 0 is a parameter called the temperature and the exponential weights w(n)
β (f) are

defined by

(4.6) w
(n)
β (f) =

exp
(
−nβ−1An(f)

)∑
g∈F0

exp (−nβ−1An(g))
, ∀f ∈ F0.

Cumulative Aggregation with Exponential Weights (CAEW) procedure is defined by

(4.7) f̃
(CAEW )
n,β =

1
n

n∑
k=1

f̃
(AEW )
k,β ,

where f̃ (AEW )
k,β is constructed as in (4.5) with the sample Z1, . . . , Zk of size k and with the

temperature parameter β > 0. Namely,

f̃
(AEW )
k,β =

∑
f∈F

w
(k)
β (f)f, where w(k)

β (f) =
exp

(
−β−1kAk(f)

)∑
g∈F exp (−β−1kAk(g))

, ∀f ∈ F .

Since there are many different ways to combine the weak estimators, we consider the
following definition, which is inspired by the one given in [114] for the regression model.
This definition provides a way to compare aggregation strategies.

Definition 4.1. The remainder term γ(n,M) is called optimal rate of aggregation,
if the two following inequalities hold.

(1) For any finite set F0 of M elements in F , there exists a statistic f̃n such that for
any underlying probability measure π and any integer n ≥ 1,

(4.8) E[A(f̃n)−A∗] ≤ min
f∈F0

(A(f)−A∗) + C1γ(n,M).

(2) There exists a finite set F0 of M elements in F such that for any statistic f̄n,
there exists a probability distribution π, such that for any n ≥ 1

(4.9) E
[
A(f̄n)−A∗

]
≥ min

f∈F0

(A(f)−A∗) + C2γ(n,M).

Here, C1 and C2 are absolute positive constants. Moreover, when these two inequalities are
satisfied, we say that the procedure f̃n, appearing in (4.8), is an optimal aggregation
procedure.
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The aim of this chapter is to obtain the optimal rate of aggregation in several situations
and to prove that the ERM and certain penalized ERM procedures cannot achieve the
optimal rate when the loss function has some convexity property.

The chapter is organized as follows. In the three following sections, we explore,
respectively, the classification under the margin assumption setup for different loss functions,
the gaussian regression and the density estimation frameworks. In Section 6, we discuss
the results. All the proofs are postponed to Section 7.

2. Classification Under Margin Assumption.

Consider the problem of binary classification. Let (X ,A) be a measurable space.
Consider a couple (X,Y ) of random variables where X takes its values in X and Y is a
random label taking values in {−1, 1}. We denote by π the probability distribution of
(X,Y ). For any function φ : R 7−→ R, define the φ−risk of a real valued classifier f on X
by

Aφ(f) = E[φ(Y f(X))].

Comparing with the notation of the previous section we have Z = X × {−1, 1} and
Q((x, y), f) = φ(yf(x)).

Many different losses have been discussed in the literature along the last decade (cf.
[41, 54, 89, 55, 25]), for instance:

φ0(x) = 1I(x≤0) classical loss or 0− 1 loss
φ1(x) = max(0, 1− x) hinge loss (SVM loss)
x 7−→ log2(1 + exp(−x)) logit-boosting loss
x 7−→ exp(−x) exponential boosting loss
x 7−→ (1− x)2 squared loss
x 7−→ max(0, 1− x)2 2-norm soft margin loss.

In particular, we are interested in losses having the following convexity property (cf. [75]
for examples).

Definition 4.2. Let φ : R 7−→ R be a function and β be a non-negative number. We
say that φ is β−convex on [−1, 1] when

[φ′(x)]2 ≤ βφ′′(x), ∀|x| ≤ 1.

For example, logit-boosting loss is (e/ log 2)−convex, exponential boosting loss is
e−convex, squared and 2−norm soft margin losses are 2−convex.

There are some links with the usual concepts of convexity. We recall the definition of
these concepts (cf. [103]). Let φ : [−1, 1] 7−→ R be a function. If

φ(αx1 + (1− α)x2) < αφ(x1) + (1− α)φ(x2),

for all x1 6= x2 in [−1, 1], then, φ is called a strictly convex function on [−1, 1]. If there is a
constant c > 0 such that for any x1, x2 ∈ [−1, 1],

φ(αx1 + (1− α)x2) < αφ(x1) + (1− α)φ(x2)−
1
2
cα(1− α)|x1 − x2|2,

then, f is called a strongly convex function on [−1, 1].

Proposition 4.1. Let φ : R 7−→ R be a twice differentiable function. If φ is strongly
convex then, there exists β > 0, such that φ is β-convex. Moreover, the constant function
is 0-convex but not strictly convex and the function x 7−→ (x+ 1)3/3− (x+ 1) is strictly
convex on [−1, 1] but not β−convex for any β ≥ 0.

Page 54



2. CLASSIFICATION UNDER MARGIN ASSUMPTION.

We denote by f∗φ a function from X to R which minimizes Aφ(·) over the set of real-

valued functions. We denote by Aφ∗ def= Aφ(f∗φ) the minimal φ−risk. In many interesting
cases studied in the literature, either f∗φ or its sign are equal to the Bayes classifier

f∗(x) = sign(2η(x)− 1),

where η is the conditional probability function x 7−→ P(Y = 1|X = x) defined on X . The
Bayes classifier f∗ is a minimizer of the φ0−risk (cf. [47]) and is the best classifier that we
want to mimic.

To understand how behaves the optimal rate of aggregation depending on the loss
function we introduce a “continuous scale” of loss functions indexed by a non-negative
number h:

(4.10) φh(x) =
{
hφ1(x) + (1− h)φ0(x) if 0 ≤ h ≤ 1,
(h− 1)x2 − x+ 1 if h > 1,

∀x ∈ R,

where φ0 is the 0− 1 loss and φ1 is the Hinge loss.

Figure 1. Examples of loss functions. The solid line is for h = 0 (the
0 − 1 loss), the dashed line is for h = 2/3, the dashed-dotted line is for
h = 1 (the hinge loss), the dotted line is for h = 2.

This set of losses is representative enough since it describes different types of convexity:
for any h > 1, φh is β−convex on [−1, 1] with β ≥ βh

def= (2h − 1)2/(2(h − 1)) ≥ 2, for
h = 1 the loss is linear and for h < 1, φh is non-convex. For h ≥ 0, we consider

Ah(f) def= Aφh(f), f∗h
def= f∗φh

and A∗h
def= Aφh

∗ = Aφh(f∗h).

We have

(4.11) f∗h(x) =

{
f∗(x) if 0 ≤ h ≤ 1
2η(x)−1
2(h−1) h > 1,

∀x ∈ R.

2.1. Optimal Rates of Aggregation Under the Margin Assumption. In the
classification setup the margin assumption (cf. (4.2)) has the following form.
(φ−MA) φ−Margin (or low noise) assumption. The probability distribution π on the
space X × {−1, 1} satisfies the φ−margin assumption (φ−MA)(κ) with margin parameter
1 ≤ κ < +∞ if there exists cφ > 0 such that,

(4.12) E
[
(φ(Y f(X))− φ(Y f∗φ(X)))2

]
≤ cφ

(
Aφ(f)−Aφ∗

)1/κ
,

for all measurable functions f with values in [−1, 1].
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We first start with a proposition dealing with the φ−margin assumption.

Proposition 4.2. For any 0 ≤ h ≤ 1 and κ ≥ 1, (φh−MA)(κ) is equivalent to
(φ0−MA)(κ). For any h > 1, (φh-MA)(1) is satisfied.

We denote by Pκ the set of all probability distributions π on X × {−1, 1} satisfying
the usual margin assumption (φ0−MA)(κ) of [116].

Theorem 4.1. Let h ≥ 0, κ ≥ 1 be two numbers and M ≥ 2 be an integer. We assume
that X is infinite.

If h ≤ 1, then there exists a family F0 of M classifiers f1, . . . , fM with values in
{−1, 1} such that for any statistic f̄n there exists a probability distribution π ∈ Pκ such
that minf∈F0 (Ah(f)−A∗h) = 0 and

E
[
Ah(f̄n)−A∗h

]
≥ min

f∈F0

(Ah(f)−A∗h) + C2

( logM
n

) κ
2κ−1

,

for any integer n ≥ 1.
If h ≤ 1 and κ > 1, then there exists a family F0 = {f1, . . . , fM} of M classifiers with

values in {−1, 1} such that for any statistic f̄n there exists a probability distribution π ∈ Pκ
such that minf∈F0 (Ah(f)−A∗h) ≥ C

(
logM
n

) κ
2κ−1 and

(4.13) E
[
Ah(f̄n)−A∗h

]
≥ min

f∈F0

(Ah(f)−A∗h) +

(
(minf∈F (Ah(f)−A∗h))

1
κ logM

n

)1/2

,

for any integer n ≥ 1.
If h > 1, there exists a family F0 = {f1, . . . , fM} of M classifiers with values in {−1, 1}

such that for any statistic f̄n there exists a probability distribution π on X × {−1, 1} such
that

E
[
Ah(f̄n)−A∗h

]
≥ min

f∈F0

(Ah(f)−A∗h) + C
logM
n

,

for any integer n ≥ 1.

For any probability measure π on X × {−1, 1}, any loss function φ, any set F0 of
functions from X to [−1, 1] with cardinality M and any margin parameter κ ≥ 1, consider
the rate of aggregation

γ(n,M, κ,F0, π, φ) =


(
B(F0,π,φ)

1
κ logM

β1n

)1/2

if B(F0, π, φ) ≥
(

logM
β1n

) κ
2κ−1(

logM
β2n

) κ
2κ−1 otherwise,

where B(F0, π, φ) denotes the bias term minf∈F0 (A(f)−A∗) and β1 and β2 are positive
constants depending only on φ. It is proved, in Chapter 9, that, if φ is a bounded function
from [−1, 1] to R and if the underlying probability measure π satisfies φ−MA(κ), then the
Empirical Risk Minimization procedure f̃n = f̃ERMn satisfies, for any family F0 of functions
f1, . . . , fM with values in [−1, 1],

(4.14) E[Aφ(f̃n)−Aφ∗] ≤ min
f∈F0

(Aφ(f)−Aφ∗) + γ(n,M, κ,F0, π, φ).

Moreover, it is proved in Chapter 9 that if φ is convex, then the CAEW procedure
f̃n = f̃CAEWn,β with temperature parameter β = 1 and the AEW procedure f̃n = f̃AEWn

satisfy (4.14). Besides, corollary 4.4 of [75] provides the following result. If φ is β−convex
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for a positive number β, then the CAEW procedure with temperature parameter β, satisfies

(4.15) E[Aφ(f̃CAEWn,β )−Aφ∗] ≤ min
f∈F0

(Aφ(f)−Aφ∗) + β
logM
n

.

Remark that the last result, does not require a margin assumption. This can be explained
by the fact that, for h > 1, assumption φh−MA(1) is automatically satisfied.

Thus, if we allow the residual term of aggregation to depend on the bias term B(F0, π, φ),
in the same spirit as in Chapter 3, we find that h 7−→ R(n,M, κ,F0, π, φh), where

(4.16) R(n,M, κ,F0, π, φ) =
{
β logM

n if φ is β−convex
γ(n,M, κ,F0, π, φ) otherwise,

is an optimal rate of aggregation for the scale of loss functions (φh)h≥0. Nevertheless, the
lower bound construction worked out in Theorem 4.1 cannot guarantee that the optimal
rate of aggregation for 0 ≤ h ≤ 1 is actually not( logM

n

) κ
2κ−1

.

Indeed, the lower bound obtained in (4.13), is constructed on the distribution π such that the
bias term B(F0, π, φ) equals to ((logM)/n)κ/(2κ−1), so, the residual term defined in (4.16) is,
up to a constant factor, equal to ((logM)/n)κ/(2κ−1). Nevertheless, if γ(n,M, κ,F0, π, φh)
is not the optimal rate of aggregation for 0 ≤ h ≤ 1, then the ERM procedure cannot be
the optimal aggregation procedure (cf. Theorem 4.2 below).

2.2. Suboptimality of Penalized ERM Procedures in Classification under
Margin Assumption. In this Section we prove a lower bound under the margin as-
sumption for any selector and we give a more precise lower bound for penalized ERM
procedures.

Theorem 4.2. Let M ≥ 2 be an integer, κ ≥ 1 be a real number, X be infinite and
φ : R 7−→ R be a loss function such that aφ

def= φ(−1)− φ(1) > 0. There exists a family F0

of M classifiers with values in {−1, 1} satisfying the following.
Let f̃n be a selector with values in F0. Assume that

√
(logM)/n ≤ 1/2. There exists

a probability measure π ∈ Pκ and an absolute constant C3 > 0 such that f̃n satisfies

(4.17) E
[
Aφ(f̃n)−Aφ∗

]
≥ min

f∈F

(
Aφ(f)−Aφ∗

)
+ C3

( logM
n

) κ
2κ−1

.

Consider the penalized ERM procedure f̃pERMn associated with F , defined by

f̃pERMn ∈ Arg min
f∈F

(Aφn(f) + pen(f))

where the penalty function pen(·) satisfies |pen(f)| ≤ C
√

(logM)/n,∀f ∈ F , with 0 ≤
C <

√
2/3. Assume that 1188πC2M9C2

logM ≤ n. If κ > 1 then, there exists a probability
measure π ∈ Pκ and an absolute constant C4 > 0 such that the penalized ERM procedure
f̃pERMn satisfies

(4.18) E
[
Aφ(f̃pERMn )−Aφ∗

]
≥ min

f∈F

(
Aφ(f)−Aφ∗

)
+ C4

√
logM
n

.

Remark 4.1. Inspection of the proof shows that Theorem 4.2 is valid for any family
F0 of classifiers f1, . . . , fM , with values in {−1, 1}, such that there exist points x1, . . . , x2M

in X satisfying
{
(f1(xj), . . . , fM (xj)) : j = 1, . . . , 2M

}
= {−1, 1}M .
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Remark 4.2. If we use a penalty function such that |pen(f)| ≤ γn−1/2,∀f ∈ F0,
where γ > 0 is an absolute constant (i.e. 0 ≤ C ≤ γ(logM)−1/2), then the condition

“(3376C)2(2πM36C2
logM) ≤ n” of Theorem 4.2 is equivalent to “n greater than a constant”.

Remark 4.3. It has been observed in [22] that several model selection methods can be
described in the following way: for each pair of functions (fk, fk′), a threshold τ(k, k′, Dn)
is built and the function fk is favored with respect to the function fk′ if

Aφn(fk)−Aφn(fk′) ≤ τ(k, k′, Dn).

In the penalization setting, the threshold τ(k, k′, Dn) is given by τ(k, k′, Dn) = pen(fk′)−
pen(fk). In the setting of Theorem 4.2, if we select f̃n = fk̂ such that for any k ∈
{1, . . . ,M},

Aφn(f̃n)−Aφn(fk) ≤ τ(k̂, k,Dn),

and if the threshold satisfies τ(k, k′, Dn) ≤ C
√

(logM)/n,∀k, k′ ∈ {1, . . . ,M}, then f̃n
satisfies (4.18) for the same class F0 and probability measure π as in Theorem 4.2.

Remark 4.4. It has been proved in chapter 14 of [47] that no selector (that is a statistic
with values in F0) can mimic the oracle with rates faster than ((logM)/n)1/2 for the 0− 1
loss function. Similar bounds in a less general form have been obtained earlier in [118, 106].
In Theorem 4.2, we show that this is still the case for the pERM procedure even if we work
under the φ0−margin assumption with margin parameter κ > 1.

Theorem 4.2 states that the ERM procedure (and even penalized ERM procedures)
cannot mimic the best classifier in F0 with rate faster than ((logM)/n)1/2 if the basis
classifiers in F0 are different enough and under a very mild assumption on the loss. If
there is no margin assumption (which corresponds to the case κ = +∞), the result of
Theorem 4.2 can be easily deduced from the lower bound in Chapter 7 of [47]. The main
message of Theorem 4.2 is that such a negative statement remains true even under the
margin assumption MA(κ). Selectors aggregates cannot mimic the oracle faster than
((logM)/n)1/2 in general. Under MA(κ), they cannot mimic the best classifier in F0 with
rates faster than ((logM)/n)κ/(2κ−1) (which is greater than (logM)/n when κ > 1).

We know, according to [75], that the CAEW procedure mimics the best classifier in F0

at the rate (logM)/n if the loss is β−convex (cf. 4.15). This and Theorem 4.2 show that
penalized ERM procedures are suboptimal aggregation procedures when the loss function
is β−convex. In particular, if one wants to construct adaptive classifiers, then it is better
in the rate to consider aggregation procedures with exponential weights.

Remark that, when h ≤ 1, even if we assume that (φh−MA)(κ) holds then, the ERM
procedure cannot achieve the rate ((logM)/n)

κ
2κ−1 in general. To achieve such a rate, we

need to assume that the bias minf∈F0(Ah(f) − A∗h) is not greater than ((logM)/n)
κ

2κ−1 .
Thus, the behavior of the ERM depends on both the margin and the approximation of the
model.

3. Gaussian Regression Framework.

Take Z = R2 and let Z = (X,Y ) be a couple of random variables on Z = R× R such
that

Y = f∗(X) + σζ,

where ζ is a standard gaussian random variable independent of X and σ > 0. We consider
the prediction of Y given X. The best prediction using the quadratic loss is the regression
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function
f∗(X) = E [Y |X] .

We want to estimate f∗ w.r.t. the L2(PX)−risk, where PX is the marginal probability
distribution of X. Recall that the norm in L2(PX) is defined by ||f ||L2(PX) = (

∫
f2dPX)1/2.

The loss function is defined by

(4.19) Q((x, y), f) = (y − f(x))2,

for any (x, y) ∈ X × R and f ∈ F . Pythagora’s theorem yields

A(f) = E [Q((X,Y ), f)] = ||f∗ − f ||2L2(PX) + E
[
ζ2
]
.

Hence, f∗ is a minimizer of A(f) and A∗ = E[ζ2].
According to [114], the optimal rate of aggregation in our gaussian regression setup is

logM
n

.

This rate is achieved by the CAEW procedure with suitably chosen temperature parameter
β (cf.[75]). This fast rate of aggregation can be explained by the fact that the intrinsic
margin parameter in the gaussian regression setup under the L2(PX)−risk is equal to 1,
which is the best case for the margin parameter.

In the following theorem we prove that selectors (like usual penalized ERM procedures)
cannot achieve this rate and thus are suboptimal aggregation procedures, as compared to
the aggregation methods with exponential weights.

Theorem 4.3. Let M ≥ 2 be an integer. In the gaussian regression model describe
above with X = [0, 1], there exists a family F0 of M functions f1, . . . , fM such that for
any selector f̃n, there exists a probability measure π of (X,Y ) on [0, 1]× R with regression
function f∗ of Y given X satisfying

E
[
||f̃n − f∗||2L2(PX)

]
≥ min

f∈F0

(
||f − f∗||2L2(PX)

)
+ C3

√
logM
n

,

for any integer n ≥ 1 and where C3 > 0 is an absolute constant.

A similar result is given in [86] for the bounded regression framework. The authors
proved that a selector cannot mimic the oracle faster than n−1/2. Here, our bound is sharp,
since there is the factor

√
logM in the bound. The same factor appears in the upper bound

for ERM.

4. Density Estimation Framework.

Let (Z, T , µ) be a measurable space. Let Z be a random variable with values in Z and
denote by π its probability distribution. We assume that π is absolutely continuous w.r.t.
to µ and denote by f∗ a version of the density of π w.r.t. µ. Consider the set F of all
density functions on (Z, T , µ) and the loss function

Q(z, f) = − log f(z),

defined for any z ∈ Z and f ∈ F . We have

A(f) = E [Q(Z, f)] = K(f∗|f)−
∫
Z

log(f∗(z))dπ(z),

whereK(f∗|f) is the Kullback-Leibler divergence between f∗ and f . Thus, f∗ is a minimizer
of A(f) and A∗ = −

∫
Z log(f∗(z))dπ(z).
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Instead of using the Kullback-Leibler loss, one can use the quadratic loss. For this
setup, consider F = L2(µ) def= L2(Z, T , µ). Define the loss function

(4.20) Q(z, f) =
∫
Z
f2dµ− 2f(z),

for any z ∈ Z and f ∈ F . We have, for any f ∈ F ,

A(f) = E [Q(Z, f)] = ||f∗ − f ||2L2(µ) −
∫
Z
(f∗(z))2dµ(z).

Thus, f∗ is a minimizer of A(f) and A∗ = −
∫
Z(f∗(z))2dµ(z).

Theorem 4.4. Let M ≥ 2 be an integer. For the setup of density estimation problem
with Z = [0, 1], there exists a family F0 of M functions f1, . . . , fM such that for any
selector f̃n there exists a probability measure π on [0, 1] with density function f∗ w.r.t. the
Lebesgue measure on [0, 1] satisfying

E
[
||f̃n − f∗||22

]
≥ min

f∈F0

(
||f − f∗||22

)
+ C3

√
logM
n

,

and

E
[
K(f̃n|f∗)

]
≥ min

f∈F0

(K(f |f∗)) + C3

√
logM
n

,

for any integer n ≥ 1 such that
√

(logM)/(2n) ≤ 2.

Combining [75] and the result of Chapter 2, the optimal rate of aggregation for this
estimation problem is

logM
n

and the CAEW procedure with suitable choice of temperature parameter β attains this
rate of aggregation. Theorem 4.4 shows that this rate cannot be achieved by the penalized
ERM procedure.

5. Direct suboptimality of pERM in regression and density estimation.

The following theorems can be deduced from Theorem 4.3 and 4.4. However, they can
be proven directly without using results from the minimax theory due to the special form
of the ERM and pERM procedures. We give the corresponding proofs in Section 7.

Theorem 4.5. Let M ≥ 2 be an integer. In the gaussian regression model described
above with X = [0, 1], there exists a family F0 of M functions f1, . . . , fM and a probability
measure π such that the penalized ERM procedure

f̃pERMn ∈ Arg min
f∈F0

(An(f) + pen(f)),

where |pen(f)| ≤ C
√

(logM)/n,∀f ∈ F0, and 0 ≤ C < σ/(4
√

2c∗) is an absolute constant,
satisfies

E
[
||f̃pERMn − f∗||2L2(PX)

]
≥ min

f∈F0

(
||f − f∗||2L2(PX)

)
+ C3

√
logM
n

,

for any integer n ≥ 1 such that 2n−1 log[(M − 1)(M − 2)] ≤ 1/4 where C3 is an absolute
constant and c∗ is the constant in Sudakov’s minoration (cf. Theorem 4.8 below).

Theorem 4.6. Let M ≥ 2 be an integer. For the setup of density estimation problem
with Z = [0, 1], there exists a family F0 of M functions f1, . . . , fM and a probability
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measure π such that the penalized ERM procedure w.r.t. the L2 loss,

f̃pERMn ∈ Arg min
f∈F0

(
∫

R
f2(x)dx− 2

n

n∑
i=1

f(Xi) + pen(f))

where |pen(f)| ≤ C
√

(logM)/n,∀f ∈ F0, and 0 < C <
√

2/3 is an absolute constant,
satisfies

E
[
||f̃pERMn − f∗||22

]
≥ min

f∈F0

(
||f − f∗||22

)
+ C3

√
logM
n

,

and for the penalized ERM procedure w.r.t. the Kullback-Leibler loss:

f̃pERMn ∈ Arg min
f∈F0

(
∫

R
− 1
n

n∑
i=1

log f(Xi) + pen(f))

we have

E
[
K(f̃pERMn |f∗)

]
≥ min

f∈F0

(K(f |f∗)) + C3

√
logM
n

,

for any integer n ≥ 1 such that C
√

(logM)/n ≤ 1/2 where C3 is an absolute constant.

6. Discussion and Open Problems.

Here we discuss the results of this chapter concerning classification.
We recall the following definition

γ(n,M, κ,F0, π, φ) =


(
B(F0,φ,π)

1
κ logM

n

)1/2

if B(F0, φ, π) ≥
(
β1

logM
n

) κ
2κ−1(

logM
n

) κ
2κ−1 otherwise,

where B(F0, φ, π) denotes the bias minf∈F0

(
Aφ(f)−Aφ∗

)
. The following table summarizes

results on optimal rates of aggregation in classification.

Loss function φh h = 0 0 < h < 1 h = 1 h > 1

0− 1loss Hinge loss β− convex losses

Margin Assumption Not automatically satisfied Automatically satisfied

(κ = +∞) with κ = 1

Optimal rate of γ(n, M, κ,F0, π, φh) (log M)/n

aggregation (conjecture)

Optimal aggregation ERM ERM or AEW CAEW

procedure (conjecture) (conjecture)

ERM or pERM Optimal (conjecture) Suboptimal

AEW ? Optimal (conjecture) Optimal (conjecture)

CAEW ? Optimal

Table 1. Optimal rate of aggregation, optimal aggregation procedures and margin assumption for the

continuous scale of loss functions of Figure 2.
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It is easy to see that CAEW is optimal when φh is the Hinge loss and when the margin
parameter κ is strictly greater than 1 and in the case where κ = 1 the CAEW procedure
achieves the optimal rate of aggregation up to a logarithmic factor (cf. Chapter 3). In the
case h > 1, the loss function is convex, so that

1
n

n∑
i=1

Ah(f̃
(AEW )
k,β ) ≤ Ah(f̃

(CAEW )
n,β )

and less observations are used for the construction of f̃ (AEW )
k,β , 1 ≤ k ≤ n− 1, than for the

construction of f̃ (AEW )
n,β . We can therefore expect the φh−risk of f̃ (AEW )

n,β to be smaller

than the φh−risk of f̃ (AEW )
k,β for all 1 ≤ k ≤ n− 1 and hence smaller than the φh−risk of

f̃
(CAEW )
n,β . Moreover, according to (4.14), AEW is optimal when h > 1 and when the bias

is smaller than (logM)/n. Next, it is easy to get from (4.14) that, we have for any convex
loss φ and all ε > 0

E[Aφ(f̃ (AEW )
n )−Aφ∗] ≤ (1 + ε) min

f∈F
(Aφ(f)−Aφ∗) +

C

ε

logM
n

.

Thus, the AEW procedure is likely to be optimal for loss functions φh, with h > 1.
We just proved that the ERM procedure is optimal only for non-convex losses (except

for the borderline case of the hinge loss). But, in those cases, the implementation of the
ERM procedure requires the minimization of a function which is not convex, thus this
procedure is computationally hard and is sometimes not efficient from a practical point
of view. Actually, convex surrogate for the 0− 1 loss have been introduced to avoid the
minimization of non-convex functionals. Thus, the ERM procedure is theoretically optimal
only for non-convex losses but in that case it is practically inefficient and it is practically
efficient only for the cases where ERM is theoretically suboptimal.

If we assume that the conjectures of Table 1 are true, the Hinge loss is really hinge for
three different reasons. For losses ”between“ the hinge loss and the 0− 1 loss, we have:

• the intrinsic margin parameter is κ = +∞,
• an optimal aggregation procedure is the ERM,
• the optimal rate of aggregation depends both on the margin parameter and on

the approximation property of the class F0 (through its bias).
For losses “ over” the Hinge loss (h > 1), we have:

• the intrinsic margin parameter is κ = 1,
• an optimal aggregation procedure is CAEW and the ERM is suboptimal
• the optimal rate of aggregation is the fast aggregation rate (logM)/n.

Moreover for the hinge loss we get, by linearity

min
f∈C

A1(f)−A∗1 = min
f∈F

A1(f)−A∗1,

where C is the convex hull of F . Thus, for the particular case of the hinge loss, “model
selection” aggregation and “convex” aggregation are identical problems (cf. Chapter 3 for
more details).

The intrinsic margin parameter is a very good characterization of the ”difficulty“ of a
model. For model with an intrinsic margin parameter κ = 1 (density estimation, regression,
classification w.r.t. β−convex losses), we can, under a complexity assumption achieve rates
of convergence as fast as approximately 1/n, and we can aggregate as fast as (logM)/n.
But, for models with an intrinsic margin parameter κ = +∞ (classification w.r.t. a non
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β−convex loss), we cannot expect convergence rates faster than n−1/2 and aggregation
rates faster than

√
(logM)/n. Nevertheless, for models with “bad” intrinsic margin, we

can assume to work under an additional margin assumption with a margin parameter
1 < κ ≤ +∞. Under this assumption we can achieve, in these models, the fast convergence
rate approaching n−1 (under an additive complexity assumption) and γ(n,M, κ,F , π, φ)
for aggregation rate. In the aggregation case we can see that a complexity assumption
is needed if we want to benefit from the margin assumption. Otherwise the bias term is
greater than an absolute constant in general and thus, the aggregation rate is

√
(logM)/n

like in the case of no margin assumption. Finally, we can see that the margin parameter is
strongly related to the convexity of the loss function of the model (cf. Proposition 4.2).
This may give an explanation why convexity is so important here.

7. Proofs.

Proof of Proposition 4.1: If φ is strongly convex then, there exists a > 0 such that
φ′′(x) ≥ a. To complete the proof, it suffices to remark that φ′ is bounded on [−1, 1].

Lemma 4.1. Let φ : R 7−→ R+ be a loss function. For any f, g from X to {−1, 1}, we
have

Aφ(f)−Aφ(g) = aφ(A0(f)−A0(g)) where aφ = φ(−1)− φ(1).

Proof: We have

E[φ(Y f(X))|X] = E[φ(Y )|X]1If(X)=1 + E[φ(−Y )|X]1If(X)=−1

= [φ(1)η(X) + φ(−1)(1− η(X))]1If(X)=1 + [φ(−1)η(X) + φ(1)(1− η(X))]1If(X)=−1.

Thus,

E[φ(Y f(X))|X]− E[φ(Y g(X))|X]

=[φ(1)η(X) + φ(−1)(1− η(X))](1If(X)=1 − 1Ig(X)=1)

+ [φ(−1)η(X) + φ(1)(1− η(X))](1If(X)=−1 − 1Ig(X)=−1)

=(φ(1)− φ(−1))(1− 2η(X))
g(X)− f(X)

2
.

�

Proof of Proposition 4.2: Let 0 ≤ h ≤ 1 and κ ≥ 1. Assume that (φ0−MA)(κ)
holds. Let f be a function defined on X with values in [−1, 1]. By convexity and (4.11),
we have

E[(φh(Y f(X))− φh(Y f∗h(X)))2] ≤ hE[(φ1(Y f(X))− φ1(Y f∗(X)))2]

+(1− h)E[(φ0(Y f(X))− φ0(Y f∗(X)))2].

According to Proposition 3.1 of Chapter 3, (φ1−MA)(κ) is satisfied. So, using (φ0−MA)(κ),
(φ1−MA)(κ) and concavity of x 7−→ x1/κ we obtain

E[(φh(Y f(X))− φh(Y f∗h(X)))2] ≤ hc1(A1(f)−A∗1)
1/κ + (1− h)c0(A0(f)−A∗0)

1/κ

≤ max(c0, c1)(Ah(f)−A∗h)
1/κ.

Thus, (φh−MA)(κ) holds.
Assume that (φh−MA)(κ) holds. Let f be a function defined on X with values

in [−1, 1]. We want to prove that (φ0−MA)(κ) holds. Taking g = sign(f) we have
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φ0(Y g(X)) = φ0(Y f(X)) thus we can assume that f takes its values in {−1, 1}. We have

Ah(f)−A∗h = (1 + h)(A0(f)−A∗0)

and

E
[
(φh(Y f(X))− φh(Y f∗h(X)))2

]
= (1 + h)2E

[
(φ0(Y f(X))− φ0(Y f∗h(X)))2

]
.

So, (φ0−MA)(κ) holds.
Let h > 1 be a real number and f be a real valued function defined on X . We have

Ah(f)−A∗h = (h− 1)E[(f(X)− f∗h(X))2]

and
|φh(x)− φh(y)| ≤ (2h+ 1)|x− y|, ∀|x|, |y| ≤ max(1, 1/(2(h− 1))).

So, we have

E
[
(φh(Y f(X))− φh(Y f∗h(X)))2

]
≤ (2h+ 1)2E

[
(f(X)− f∗h(X))2

]
≤ (2h+ 1)2

h− 1

(
Ah(f)−A∗h

)
.

Thus, (φh−MA)(1) is satisfied.
�

Proof of Theorem 4.1: Let 0 ≤ h ≤ 1 and κ ≥ 1.
For any real valued function f we have A1(f)− A∗1 ≥ A0(f)− A∗0 (cf. [130]) and for

any prediction rule f we have A1(f)−A∗1 = 2(A0(f)−A∗0). Hence, we have

sup
f1,...,fM

inf
f̂n

sup
π∈Pκ

(
E
[
Ah(f̂n)−A∗h

]
− min
j=1,...,M

(Ah(fj)−A∗h)
)

≥ sup
f1,...,fM

inf
f̂n

sup
π∈Pκ

(
E
[
Ap(f̂n)−A∗p

]
− min
j=1,...,M

(Ap(fj)−A∗p)
)
,

where supf1,...,fM
denotes the supremum over all prediction rules f1, . . . , fM and inf f̂n

is
the infimum over all statistics constructed with n observations in our model.

We consider an integer N such that 2N−1 ≤M , 2N−1 different points of X denoted by
x1, . . . , xN , y1, . . . , yN−1 and a positive number w such that 1 ≥ 2(N − 1)w. We denote by
PX the probability measure on X such that PX({xj}) = PX({yj}) = w for j = 1, . . . , N−1
and PX({xN}) = 1 − 2(N − 1)w. We consider the cube Ω = {−1, 1}N−1 and a number
0 < h < 1. For all σ ∈ Ω we consider

ησ(x) =
{

(1 + σjh)/2 if x = x1, . . . , xN−1, y1, . . . , yN−1

1 if x = xN .
.

For all σ ∈ Ω we denote by πσ the probability measure on X × {−1, 1} where PX is the
marginal on X and ησ the a conditional probability function of Y knowing X. The Bayes
rules associated to πσ is

f∗σ(x) =
{
σj if x = x1, . . . , xN−1, y1, . . . , yN−1

1 if x = xN .
.

Assume that κ > 1. We have P (|2ησ(X)− 1| ≤ t) = 2(N − 1)w1Ih≤t for any 0 ≤ t < 1.
Thus, if we assume that 2(N − 1)w ≤ θh1/(κ−1), where θ is a positive number, then
P (|2ησ(X)− 1| ≤ t) ≤ θt1/(κ−1) for all 0 ≤ t < 1. Thus, according to [116] and Chapter 3,
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πσ belongs to Pκ with

c0
def= cφ0 =

2
(κ− 1)θκ−1

( κ

κ− 1

)κ
.

We denote by ρ the Hamming distance on Ω. Let σ, σ′ ∈ Ω such that ρ(σ, σ′) = 1.
Then, the Hellinger’s distance between the measures π⊗nσ and π⊗nσ′ satisfies

H2
(
π⊗nσ , π⊗nσ′

)
= 2

(
1− (1− 2w(1−

√
1− h2))n

)
.

Take w and h such that 2w(1−
√

1− h2) ≤ n−1. Then, H2
(
π⊗nσ , π⊗nσ′

)
≤ 2(1− e−1) < 2

for any integer n.
Let f̂n be a real-valued statistic. Since only the sign of a classifier is taken into account

in the φ0−risk, w.l.o.g. we assume that f̂n takes its values in {−1, 1}.
Let σ be in Ω. Assume that the underlying probability distribution π of the i.i.d.

observations Dn is πσ. Since πσ belongs to Pκ, we have, conditionally to the observations
Dn,

A0(f̂n)−A∗0 ≥
(
c−1
0 Eπσ

[
|f̂n(X)− f∗σ(X)|

])κ
≥ (c−1

0 w)κ

N−1∑
j=1

|f̂n(xj)− σj |

κ

.

Taking here the expectation, we obtain

Eπσ

[
A0(f̂n)−A∗0

]
≥ (c−1

0 w)κEπσ

N−1∑
j=1

|f̂n(xj)− σj |

κ .
Using Jensen’s inequality and Lemma 4.2 (p. 77), we obtain:

inf
f̂n

sup
π∈{πσ :σ∈Ω}

(
Eπσ

[
A0(f̂n)−A∗0

])
≥
((N − 1)w

2c0e2
)κ
.

Take now N = dlogM/ log 2e, h = ((N − 1)/(nθ))(κ−1)/(2κ−1) and w = (2nh2)−1. We
have

inf
f̂n

sup
π∈{πσ :σ∈Ω}

(
Eπσ

[
A0(f̂n)−A∗0

])
≥ C0(κ, θ)

(N − 1
n

)κ/(2κ−1)
,

where

C0(κ, θ) =
(θ 2κ−2

2κ−1

4c0e2
)κ
.

For κ = 1, we take h = 1/2, then |2ησ(X)− 1| ≥ 1/2 a.s. so πσ ∈ P1. It suffices then to
take w = 2/n and N = dlogM/ log 2e to get

inf
f̂n

sup
π∈{πσ :σ∈Ω}

(
Eπσ

[
A0(f̂n)−A∗0

])
≥ C0(1, 1)

N − 1
n

,

for C0(1, 1) = (2e2)−1.
For the case minf∈F0(A0(f)−A∗0) = 0 we take F0 = {f∗σ : σ ∈ Ω} and θ = 1, then,

sup
F0={f1,...,fM}

inf
f̂n

sup
π∈Pκ

(
E
[
A0(f̂n)−A∗0

]
− min
f∈F0

(A0(f)−A∗0)
)

≥ inf
f̂n

sup
π∈{πσ :σ∈Ω}

E
[
A0(f̂n)−A∗0

]
≥ C0(κ, 1)

( logM
n

)κ/(2κ−1)
.
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For the case minf∈F0(A0(f) − A∗0) ≥ C
(

logM
n

) κ
2κ−1 and κ > 1, we consider for any

σ ∈ Ω,

fσ(x) =


σj if x = x1, . . . , xN−1,

−σj if x = y1, . . . , yN−1

1 if x = xN .

For any σ(1), σ(2) ∈ Ω, we have under πσ(2) ,

A0(fσ(1))−A∗0 = 2(N − 1)hw = θ
κ−1
2κ−1

(N − 1
n

)κ/(2κ−1)
.

Thus, for F0 = {fσ : σ ∈ Ω}, we have

sup
F0={f1,...,fM}

inf
f̂n

sup
π∈Pκ

(
E
[
A0(f̂n)−A∗0

]
− min
f∈F0

(A0(f)−A∗0)
)

≥ inf
f̂n

sup
π∈{πσ :σ∈Ω}

(
E
[
A0(f̂n)−A∗0

]
−min

σ∈Ω
(A0(fσ)−A∗0)

)
≥ (C0(κ, θ)− θ

κ−1
2κ−1 )

(N − 1
n

) κ
2κ−1

=
(minf∈F (A0(f)−A∗0)

1/κ(N − 1)
n

)1/2
,

where we chose

θ = θ0
def=
[
(2e2)κ

[1
κ

(κ− 1
2κ

)−1/κ]] 2κ−1

(κ−1)(κ2+(κ−1)2−1) .

We have minf∈F0(A0(f)−A∗0) = θ
κ−1
2κ−1

0

(
logM
n

) κ
2κ−1 and

sup
F0={f1,...,fM}

inf
f̂n

sup
π∈Pκ

(
E
[
A0(f̂n)−A∗0

]
− min
f∈F0

(A0(f)−A∗0)
)

≥
(minf∈F0(A0(f)−A∗0)

1/κ logM
n

)1/2

For the case h > 1, we consider an integer N such that 2N−1 ≤ M , N − 1 different
points x1, . . . , xN of X and a positive number w such that (N − 1)w ≤ 1. We denote
by PX the probability measure on X such that PX({xj}) = w for j = 1, . . . , N − 1 and
PX({xN}) = 1− (N − 1)w. Denote by Ω the cube {−1, 1}N−1. For any σ ∈ Ω and h > 1,
we consider the conditional probability function ησ in two different cases. If 2(h− 1) ≤ 1
we take

ησ(x) =
{

(1 + 2σj(h− 1))/2 if x = x1, . . . , xN−1

2(h− 1) if x = xN ,

and if 2(h− 1) > 1 we take

ησ(x) =
{

(1 + σj)/2 if x = x1, . . . , xN−1

1 if x = xN .

For all σ ∈ Ω we denote by πσ the probability measure on X × {−1, 1} with the marginal
PX on X and the conditional probability function ησ of Y knowing X.

Consider

ρ(h) =
{

1 if 2(h− 1) ≤ 1
(4(h− 1))−1 if 2(h− 1) > 1

and g∗σ(x) =
{
σj if x = x1, . . . , xN−1

1 if x = xN .
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A minimizer of the φh−risk when the underlying distribution is πσ is given by

f∗h,σ
def=

2ησ(x)− 1
2(h− 1)

= ρ(h)g∗σ(x), ∀x ∈ X ,

for any h > 1 and σ ∈ Ω.
When we choose {f∗h,σ : σ ∈ Ω} for the set F = {f1, . . . , fM} of basis functions, we

obtain

sup
{f1,...,fM}

inf
f̂n

sup
π∈P

(
E
[
Ah(f̂n)−A∗h

]
− min
j=1,...,M

(Ah(fj)−A∗h)
)

≥ inf
f̂n

sup
π∈P:

f∗h∈{f
∗
h,σ :σ∈Ω}

(
E
[
Ah(f̂n)−A∗h

])
.

Let σ be an element of Ω. Under the probability distribution πσ, we have Ah(f)−A∗h =
(h− 1)E[(f(X)− f∗h,σ(X))2], for any real-valued function f on X . Thus, for a real valued
estimator f̂n based on Dn, we have

Ah(f̂n)−A∗h ≥ (h− 1)w
N−1∑
j=1

(f̂n(xj)− ρ(h)σj)2.

We consider the projection function ψh(x) = ψ(x/ρ(h)) for any x ∈ X , where ψ(y) =
max(−1,min(1, y)),∀y ∈ R. We have

Eσ[Ah(f̂n)−A∗h] ≥ w(h− 1)
N−1∑
j=1

Eσ(ψh(f̂n(xj))− ρ(h)σj)2

≥ w(h− 1)(ρ(h))2
N−1∑
j=1

Eσ(ψ(f̂n(xj))− σj)2

≥ 4w(h− 1)(ρ(h))2 inf
σ̂∈[0,1]N−1

max
σ∈Ω

Eσ

N−1∑
j=1

|σ̂j − σj |2
 ,

where the infimum inf σ̂∈[0,1]N−1 is taken over all estimators σ̂ based on one observation
from the statistical experience {π⊗nσ |σ ∈ Ω} and with values in [0, 1]N−1.

For any σ, σ′ ∈ Ω such that ρ(σ, σ′) = 1, the Hellinger’s distance between the measures
π⊗nσ and π⊗nσ′ satisfies

H2
(
π⊗nσ , π⊗nσ′

)
=

 2
(
1− (1− 2w(1−

√
1− h2))n

)
if 2(h− 1) < 1

2
(
1− (1− 2w(1−

√
3/4))n

)
if 2(h− 1) ≥ 1

.

We take

w =
{

(2n(h− 1)2) if 2(h− 1) < 1
8n−1 if 2(h− 1) ≥ 1.

Thus, we have for any σ, σ′ ∈ Ω such that ρ(σ, σ′) = 1,

H2
(
π⊗nσ , π⊗nσ′

)
≤ 2(1− e−1).

To complete the proof we apply Lemma 4.2 (p. 77) with N = d(logM)/ne.
�
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Proof of Theorem 4.2: Consider F0 a family of classifiers f1, . . . , fM , with values in
{−1, 1}, such that there exist 2M points x1, . . . , x2M in X satisfying

{
(f1(xj), . . . , fM (xj)) :

j = 1, . . . , 2M
}

= {−1, 1}M def= SM .
Consider the lexicographic order on SM :

(−1, . . . ,−1) 4 (−1, . . . ,−1, 1) 4 (−1, . . . ,−1, 1,−1) 4 . . . 4 (1, . . . , 1).

Take j in {1, . . . , 2M} and denote by x′j the element in {x1, . . . , x2M } such that the vector
(f1(x′j), . . . , fM (x′j)) is the j−th element of SM for the lexicographic order. We denote
by ϕ the bijection between SM and {x1, . . . , x2M } such that the value of ϕ at the j−th
element of SM is x′j . By using the bijection ϕ we can work independently either on the set
SM or on {x1, . . . , x2M }. Without any assumption on the space X , we consider, in what
follows, functions and probability measures on SM . Remark that for the bijection ϕ we
have

fj(ϕ(x)) = xj , ∀x = (x1, . . . , xM ) ∈ SM ,∀j ∈ {1, . . . ,M}.
With a slight abuse of notation, we still denote by F the set of functions f1, . . . , fM defined
by fj(x) = xj , for any j = 1, . . . ,M.

First remark that for any f, g from X to {−1, 1}, using

E[φ(Y f(X))|X] = E[φ(Y )|X]1I(f(X)=1) + E[φ(−Y )|X]1I(f(X)=−1),

we have

E[φ(Y f(X))|X]− E[φ(Y g(X))|X] = aφ(1/2− η(X))(f(X)− g(X)).

Hence, we obtain Aφ(f)−Aφ(g) = aφ(A0(f)−A0(g)). So, we have for any j = 1, . . . ,M,

Aφ(fj)−Aφ(f∗) = aφ(A0(fj)−A∗0).

Moreover, for any f : SM 7−→ {−1, 1} we have Aφn(f) = φ(1) + aφA
φ0
n (f) and aφ > 0 by

assumption, hence,
f̃pERMn ∈ Arg min

f∈F
(Aφ0

n (f) + pen(f)).

Thus, it suffices to prove Theorem 4.2, when the loss function φ is the classical 0− 1 loss
function φ0.

We denote by SM+1 the set {−1, 1}M+1 and byX0, . . . , XM , M+1 independent random
variables with values in {−1, 1} such that X0 is distributed according to a Bernoulli B(w, 1)
with parameter w (that is P(X0 = 1) = w and P(X0 = −1) = 1 − w) and the M other
variables X1, . . . , XM are distributed according to a Bernoulli B(1/2, 1). The parameter
0 ≤ w ≤ 1 will be chosen wisely in what follows.

For any j ∈ {1, . . . ,M}, we consider the probability distribution πj = (PX , η(j)) of
a couple of random variables (X,Y ) with values in SM+1 × {−1, 1}, where PX is the
probability distribution on SM+1 of X = (X0, . . . , XM ) and η(j)(x) is the regression
function at the point x ∈ SM+1, of Y = 1 knowing that X = x, given by

η(j)(x) =


1 if x0 = 1
1/2 + h/2 if x0 = −1, xj = −1
1/2 + h if x0 = −1, xj = 1

, ∀x = (x0, x1, . . . , xM ) ∈ SM+1,

where h > 0 is a parameter chosen wisely in what follows. The Bayes rule f∗, associated
with the distribution πj = (PX , η(j)), is identically equal to 1 on SM+1.
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If the probability distribution of (X,Y ) is πj for a j ∈ {1, . . . ,M} then, for any
0 < t < 1, we have P[|2η(X)− 1| ≤ t] ≤ (1− w)1Ih≤t. Now, we take

1− w = h
1

κ−1 ,

then, we have P[|2η(X)− 1| ≤ t] ≤ t
1

κ−1 and so πj ∈ Pκ.
We extend the definition of the fj ’s to the set SM+1 by fj(x) = xj for any x =

(x0, . . . , xM ) ∈ SM+1 and j = 1, . . . ,M . Consider F = {f1, . . . , fM}. Assume that (X,Y )
is distributed according to πj for a j ∈ {1, . . . ,M}. For any k ∈ {1, . . . ,M} and k 6= j, we
have

A0(fk)−A∗0 =
∑

x∈SM+1

|η(x)− 1/2||fk(x)− 1|P[X = x] =
3h(1− w)

8
+
w

2

and the excess risk of fj is given by A0(fj)−A∗0 = (1− w)h/4 + w/2. Thus, we have

min
f∈F

A0(f)−A∗0 = A0(fj)−A∗0 = (1− w)h/4 + w/2.

First, we prove the lower bound for any selector. Let f̃n be a selector with values in F .
If the underlying probability measure is πj for a j ∈ {1, . . . ,M} then,

E(j)
n [A0(f̃n)−A∗0] =

M∑
k=1

(A0(fk)−A∗0)π
⊗n
j [f̃n = fk]

= min
f∈F

(A0(f)−A∗0) +
h(1− w)

8
π⊗nj [f̃n 6= fj ],

where E(j)
n denotes the expectation w.r.t. the observations Dn when (X,Y ) is distributed

according to πj . Hence, we have

max
1≤j≤M

{E(j)
n [A0(f̃n)−A∗0]−min

f∈F
(A0(f)−A∗0)} ≥

h(1− w)
8

inf
φ̂n

max
1≤j≤M

π⊗nj [φ̂n 6= j],

where the infimum inf φ̂n
is taken over all tests valued in {1, . . . ,M} constructed from one

observation in the model (SM+1×{−1, 1},A×T , {π1, . . . , πM})⊗n, where T is the natural
σ−algebra on {−1, 1}. Moreover, for any j ∈ {1, . . . ,M}, we have

K(π⊗nj |π⊗n1 ) ≤ nh2

4(1− h− 2h2)
,

whereK(P |Q) is the Kullback-Leibler divergence between P andQ (that is
∫

log(dP/dQ)dP
if P << Q and +∞ otherwise). Thus, if we apply Lemma 4.3 (p. 78) with h =
((logM)/n)(κ−1)/(2κ−1), we obtain the result.

Second, we prove the lower bound for the pERM procedure f̂n = f̃pERMn . Now, we
assume that the probability distribution of (X,Y ) is πM and we take

(4.21) h =
(
C2 logM

n

)κ−1
2κ
.

We have E[A0(f̂n)−A∗0] = min
f∈F

(A0(f)−A∗0) +
h(1− w)

8
P[f̂n 6= fM ]. Now, we upper bound

P[f̂n = fM ], conditionally to Y = (Y1, . . . , Yn). We have

P[f̂n = fM |Y]

= P[∀j = 1, . . . ,M − 1, Aφ0
n (fM ) + pen(fM ) ≤ Aφ0

n (fj) + pen(fj)|Y]

= P[∀j = 1, . . . ,M − 1, νM ≤ νj + n(pen(fj)− pen(fM ))|Y],
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where νj =
∑n

i=1 1I
(YiX

j
i≤0)

,∀j = 1, . . . ,M and Xi = (Xj
i )j=0,...,M ∈ SM+1,∀i = 1, . . . , n.

Moreover, the coordinates Xj
i , i = 1, . . . , n; j = 0, . . . ,M are independent, Y1, . . . , Yn are

independent of Xj
i , i = 1, . . . , n; j = 1, . . . ,M − 1 and |pen(fj)| ≤ hκ/(κ−1),∀j = 1, . . . ,M .

So, we have

P[f̂n = fM |Y] =
n∑
k=0

P[νM = k|Y]
M−1∏
j=1

P[k ≤ νj + n(pen(fj)− pen(fM ))|Y]

≤
n∑
k=0

P[νM = k|Y]
(
P[k ≤ ν1 + 2nhκ/(κ−1)|Y]

)M−1

≤ P[νM ≤ k̄|Y] +
(
P[k̄ ≤ ν1 + 2nhκ/(κ−1)|Y]

)M−1
,

where

k̄ = E[νM |Y]− 2nhκ/(κ−1)

=
1
2

n∑
i=1

(2− 4h
2− 3h

1I(Yi=−1) +
1 + h1/(κ−1)(h/2− 1/2)
1 + h1/(κ−1)(3h/4− 1/2)

1I(Yi=1)

)
− 2nhκ/(κ−1).

Using Einmahl and Masson’s concentration inequality (cf. [53]), we obtain

P[νM ≤ k̄|Y] ≤ exp(−2nh2κ/(κ−1)).

Using Berry-Esséen’s theorem (cf. p.471 in [16]), the fact that Y is independent of
(Xj

i ; 1 ≤ i ≤ n, 1 ≤ j ≤M − 1) and k̄ ≥ n/2− 9nhκ/(κ−1)/4, we get

P[k̄ ≤ ν1 + 2nh
κ

κ−1 |Y] ≤ P
[
n/2− ν1√

n/2
≤ 6h

κ
κ−1

√
n

]
≤ Φ(6h

κ
κ−1

√
n) +

66√
n
,

where Φ stands for the standard normal distribution function. Thus, we have

E[A0(f̂n)−A∗0] ≥ min
f∈F

(A0(f)−A∗0)(4.22)

+
(1− w)h

8

(
1− exp(−2nh2κ/(κ−1))−

(
Φ(6hκ/(κ−1)√n) + 66/

√
n
)M−1)

.

Next, for any a > 0, by the elementary properties of the tails of normal distribution,
we have

(4.23) 1− Φ(a) =
1√
2π

∫ +∞

a
exp(−t2/2)dt ≥ a√

2π(a2 + 1)
e−a

2/2.

Besides, we have for 0 < C <
√

2/6 (a modification for C = 0 is obvious) and the condition
(3376C)2(2πM36C2

logM) ≤ n, thus, if we replace h by its value given in (4.21) and if we
apply (4.23) with a = 16C

√
logM , then we obtain

(4.24)
(
Φ(6hκ/(κ−1)√n) + 66/

√
n
)M−1

≤ exp
[
− M1−18C2

18C
√

2π logM
+

66(M − 1)√
n

]
.

Combining (4.22) and (4.24), we obtain the result with C4 = (C/4)
(
1 − exp(−8C2) −

exp(−1/(36C
√

2π log 2))
)
> 0.

�
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Proof of Theorem 4.3: We consider a random variable X uniformly distributed on
[0, 1] and its dyadic representation:

(4.25) X =
+∞∑
k=1

X(k)2−k,

where (X(k) : k ≥ 1) is a sequence of i.i.d. random variables following a Bernoulli B(1/2, 1)
with parameter 1/2. The random variable X is the design of the regression model worked
out here.

We consider h > 0, which will be chosen wisely in what follows, and the following
regression functions

f∗(j)(x) =
{

2h if x(j) = 1
h if x(j) = 0,

for any j = 1, . . . ,M and where x has
∑+∞

k=1 x
(j)2−j , with x(j) ∈ {0, 1}, for dyadic decom-

position.
We consider the following dictionary F0 = {f1, . . . , fM} where

fj(x) = 2x(j) − 1,∀j = 1, . . . ,M.

We denote by Pj the probability measure of (X,Y ) taking values in [0, 1]×R, such that
X is uniformly distributed on [0, 1] and Y = f∗(j)(X) + ε, where ε is a standard gaussian
random variable independent of X.

For any k, j = 1, . . . ,M, we have

||fk − f∗(j)||
2
L2(PX) =

{
1
2 [5h2 + 2] k 6= j

1
2 [5h2 − 2h+ 2] k = j.

Let f̃n be a selector with values in the dictionary F0 constructed from the sample
Dn made of n i.i.d. observations (X1, Y1), . . . , (Xn, Yn) of (X,Y ). We denote by E(j)

n

the expectation w.r.t. the sample Dn when (X,Y ) is distributed according to Pj . Let
j ∈ {1, . . . ,M}, we have

E(j)
n [||f̃n−f∗(j)||

2
L2(PX)]− min

1≤k≤M
||fk − f∗(j)||

2
L2(PX)

=
M∑
k=1

||fk − f∗(j)||
2
L2(PX)P

⊗n
j [f̃n = fk]− (1/2)[5h2 − 2h+ 2]

= (1/2)[5h2 − 2h+ 2][1− P⊗nj [f̃n = fj ]] + (1/2)[5h2 + 2]P⊗nj [f̃n 6= fj ]

=
h

2
P⊗nj [f̃n 6= fj ]

On the other side, the Kullback-Leibler divergence between P⊗nj , for a j ∈ {2, . . . ,M},
and P⊗n1 satisfies

K(P⊗nj |P⊗n1 ) =
n

2
||f∗(j) − f∗(1)||

2
L2(PX) =

nh2

2
.

Thus, if we take

h =

√
logM

8n
,

according to Lemma 4.3 (p. 78), we have

inf
f̃n

max
1≤j≤M

P⊗nj [f̃n 6= fj ] ≥ 1/8,
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where inf f̃n
denotes the infimum over all selectors with values in F0. Then, for a selector

f̃n there exists j ∈ {1, . . . ,M} such that

E(j)
n [||f̃n − f∗(j)||

2
L2(PX)]− min

1≤k≤M
||fk − f∗(j)||

2
L2(PX) ≥

1
16

√
logM

8n
.

Proof of Theorem 4.4: We consider M density functions on [0, 1] given by

f∗(j)(x) =
{

3/2 if x(j) = 1
1/2 if x(j) = 0

for any x ∈ [0, 1] having
∑+∞

k=1 x
(j)2−j , with x(j) ∈ {0, 1}, for dyadic decomposition, and

we denote by Pj the probability measure on [0, 1] with density function f∗(j) w.r.t. the
Lebesgue measure on [0, 1]. We consider the dictionary F0 = {f1, . . . , fM} such that

fk(x) =
{

1 + h if x(j) = 1
1− h if x(j) = 0,

∀k ∈ {1, . . . ,M}

for any x =
∑+∞

k=1 x
(j)2−j ∈ [0, 1] and for a h > 0 chosen wisely in what follows.

For any k, j ∈ {1, . . . ,M}, we have

||fk − f∗(j)||
2
2 =

{
1
2

[
(1/2− h)2 + (1/2 + h)2

]
if k 6= j

(1/2− h)2 if k = j.

We denote by inf f̃n
the infimum over all selector with values in F0. We have

(4.26) inf
f̃n

max
1≤j≤M

[
E(j)
n [||f̃n − f∗(j)||

2
2]− min

1≤k≤M
||fk − f∗(j)||

2
2

]
= h inf

f̃n

max
1≤j≤M

P⊗nj [f̃n 6= fj ]

Moreover, the Kullback-Leibler divergence between P⊗nj and P⊗n1 , for a j ∈ {2, . . . ,M},
satisfies

K(P⊗nj |P⊗n1 ) = nK(P⊗nj |P⊗n1 ) ≤ nh2

1− h2
.

Thus, taking h = (1/4)
√

(logM)/(2n) ≤ 1/2 and applying Lemma 4.3 (p. 78) in (4.26) for
the set {P⊗nj : j = 1, . . . ,M}, we complete the proof for the case of the L2 loss.

For the case of the Kullback-Leibler loss, we have for any k, j ∈ {1, . . . ,M},

K(fk|f∗(j)) =
{

(1/2)[log(4/3) + 3h2] if k 6= j

(1/2)[log(4/3)− h log 3 + 2h2] if k = j.

Then, using the same arguments than previously, we complete the proof for this case.
Proof of Theorem 4.5: We consider a random variable X uniformly distributed on

[0, 1] and its dyadic representation:

(4.27) X =
+∞∑
k=1

X(k)2−k,

where (X(k) : k ≥ 1) is a sequence of i.i.d. random variables following a Bernoulli B(1/2, 1)
with parameter 1/2. The random variable X is the design of the regression model worked
out here. For the regression function we take

(4.28) f∗(x) =
{

2h if x(M) = 1
h if x(M) = 0,
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where x has the dyadic decomposition x =
∑+∞

k=1 x
(k)2−k and

h =
C

4

√
logM
n

.

We consider the set F0 = {f1, . . . , fM} of basis functions

(4.29) fj(x) = 2x(j) − 1, ∀j ∈ {1, . . . ,M},

where we consider the dyadic decomposition of x ∈ [0, 1] given by x =
∑+∞

k=1 x
(k)2−k, where

x(k) ∈ {0, 1},∀k ≥ 1.
For any j = 1, . . . ,M − 1,

A(fj)−A∗ = ||fj − f∗||2L2([0,1]) =
1
2
[5h2 + 2]

and
A(fM )−A∗ = ||fM − f∗||2L2([0,1]) =

1
2
[5h2 − 2h+ 2].

Thus we have

min
j=1,...,M

A(fj)−A∗ = A(fM )−A∗ = (1/2)[5h2 − 2h+ 2].

For

f̃pERMn ∈ Arg min
f∈F0

( 1
n

n∑
i=1

(Yi − f(Xi))2 + pen(f)
)
,

we have

(4.30) E[||f̂n − f∗||L2([0,1])] = min
j=1,...,M

||fj − f∗||L2([0,1]) + 2hP[f̂n 6= fM ]

Now, we upper bound P[f̂n = fM ]. We have

P[f̂n = fM ] = P[∀j = 1, . . . ,M − 1, An(fM ) + pen(fM ) ≤ An(fj) + pen(fj)]

= P[∀j = 1, . . . ,M − 1,
1√
n

n∑
i=1

(Yi − fM (Xi))2 ≤
1√
n

n∑
i=1

(Yi − fj(Xi))2

+
√
n(pen(fj)− pen(fM ))]

≤ P[∀j = 1, . . . ,M − 1, NM ≥ Nj

+
1

σ
√
n

n∑
i=1

h

2
(ε(M)
i ε

(j)
i − 1) +

3h
2

(εji − 1)− C

σ

√
logM ],

where for any j = 1, . . . ,M ,

Nj =
1√
n

n∑
i=1

ζiε
(j)
i and ε(j)i = 2X(j)

i − 1.

It is easy to check that N1, . . . , NM are M normalized standard gaussian random variables
uncorrelated (but non independent).

Next, denote by ε the family of Rademacher variables (ε(j)i : i = 1, . . . , n, j = 1, . . . ,M).
We have for any 2C/σ < γ < (2

√
2c∗) (c∗ is given in Theorem 4.8),

P[f̂n = fM ] ≤ E
[
P[NM ≥ max

j=1,...,M−1
Nj − 2C/σ

√
logM |ε]

]
≤ P[NM ≥ −γ

√
logM + E[ max

j=1,...,M−1
Nj |ε]](4.31)

+E
[
P[E[ max

j=1,...,M−1
Nj |ε]− max

j=1,...,M−1
Nj ≥ (γ − 2C/σ)

√
logM |ε]

]
.
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Remark that, conditionally to ε, the vector (N1, . . . , NM−1) is a linear transform of the
gaussian vector (ζ1, . . . , ζn). Hence, (N1, . . . , NM−1) is a gaussian vector (conditionally to
ε). Then, we can use the gaussian concentration Theorem (cf. [93]), to obtain the following
inequality for the second term of the RHS in (4.31):
(4.32)
P[E[ max

j=1,...,M−1
Nj |ε]− max

j=1,...,M−1
Nj ≥ (γ − 2C/σ)

√
logM |ε] ≤ exp(−(C/σ− γ/2)2 logM).

Remark that we used E[N2
j |ε] = 1 for any j = 1, . . . ,M − 1.

For the first term in the RHS of (4.31), we have

P
[
NM ≥ −γ

√
logM + E[ max

j=1,...,M−1
Nj |ε]

]
≤ P

[
NM ≥ −2γ

√
logM + E[ max

j=1,...,M−1
Nj ]
]

(4.33)

+P
[
− γ
√

logM + E[ max
j=1,...,M−1

Nj ] ≥ E[ max
j=1,...,M−1

Nj |ε]
]

Next, we lower bound E[maxj=1,...,M−1Nj ]. Since (N1, . . . , NM−1) is a gaussian vector
(conditionally to ε) and for any k 6= j ∈ {1, . . . ,M}, we have

E[(Nk −Nj)2|ε] =
1
n

n∑
i=1

(ε(k)i − ε
(j)
i )2

then, according to Sudakov’s lower bound Theorem (cf. Theorem 4.8 in Section 8), there
exits an absolute constant c∗ > 0, such that

(4.34) c∗E[ max
j=1,...,M−1

Nj |ε] ≥ min
k 6=j∈{1,...,M−1}

( 1
n

n∑
i=1

(ε(k)i − ε
(j)
i )2

)1/2√
logM.

Thus, we have

(4.35) c∗E[ max
j=1,...,M−1

Nj ] ≥ E
[

min
k 6=j∈{1,...,M−1}

( 1
n

n∑
i=1

(ε(k)i − ε
(j)
i )2

)1/2]√
logM.

Moreover, using that
√
x ≥ x/

√
2,∀x ∈ [0, 2], we have

(4.36) E
[

min
k 6=j∈{1,...,M−1}

( 1
n

n∑
i=1

(ε(k)i − ε
(j)
i )2

)1/2]
≥
√

2
(
1− E

[
max
j 6=k

1
n

n∑
i=1

ε
(k)
i ε

(j)
i

])
.

Besides, using a maximal inequality (cf. Theorem 4.9 in Section 8) and 2n−1 log[(M −
1)(M − 2)] ≤ 1/4, we have

(4.37) E
[
max
j 6=k

1
n

n∑
i=1

ε
(k)
i ε

(j)
i

]
≤
( 2
n

log[(M − 1)(M − 2)]
)1/2

≤ 1
2
.

Remark that we used Hoeffding’s inequality to obtain E[exp(sξ(j,k))] ≤ exp(s2/(4n)),∀s > 0,
where ξ(j,k) = 1

n

∑n
i=1 ε

(k)
i ε

(j)
i . Then, combining equations (4.35), (4.36) and (4.37), we

obtain
c∗E[ max

j=1,...,M−1
Nj ] ≥ ((logM)/2)1/2.

Then, using this inequality in the first RHS of (4.33) and the usual inequality on the tail of
a gaussian random variable (remark that NM is a standard gaussian variable), we obtain:

P
[
NM ≥ −2γ

√
logM + E[ max

j=1,...,M−1
Nj ]
]
≤ P

[
NM ≥ ((c∗

√
2)−1 − 2γ)

√
logM

]
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≤ P
[
NM ≥ ((c∗

√
2)−1 − 2γ)

√
logM

]
(4.38)

≤ exp
(
− ((c∗

√
2)−1 − 2γ)2(logM)/2

)
.

Remark that, we used 2
√

2c∗γ ≤ 1. For the second term in (4.33), we use the concentration
inequality of Theorem 4.7 of Section 8, to obtain

(4.39) E
[
P
[
− γ
√

logM + E[ max
j=1,...,M−1

Nj ] ≥ E[ max
j=1,...,M−1

Nj |ε]|ε
]]
≤ exp(−γ2/4),

where we used the concentration inequality of Theorem 4.9 and inequality (4.34) to obtain
0 ≤ E[maxj=1,...,M−1Nj |ε] ≤

√
2 logM .

Finally, combining (4.31), (4.38), (4.33), (4.32) in the initial inequality (4.31), we obtain

P[f̂n = fM ] ≤ exp(−2(2C − γ)2 logM)

+ exp
(
− ((c∗

√
2)−1 − 2γ)2(logM)/2

)
+ exp(−γ2/4)

We complete the proof by using this inequality in (4.30).
�

Proof of Theorem 4.6: We consider a random variable X uniformly distributed on
[0, 1] and its dyadic representation:

(4.40) X =
+∞∑
k=1

X(k)2−k,

where (X(k) : k ≥ 1) is a sequence of i.i.d. random variables following a Bernoulli B(1/2, 1)
with parameter 1/2. In the density estimation setup we have n i.i.d. observations of the
random variable X. Hence, the density function to estimate is

(4.41) f∗(x) def= 1,∀x ∈ [0, 1].

We consider the set of basis density functions F0 = {f1, . . . , fM}, where, for any
j ∈ {1, . . . ,M − 1},

(4.42) fj(x) =
{

3/2 if x(j) = 1
1/2 if x(j) = 0

where we consider the dyadic decomposition of x ∈ [0, 1] given by x =
∑+∞

k=1 x
(k)2−k, where

x(k) ∈ {0, 1},∀k ≥ 1. For j = M , we consider

(4.43) fM (x) =
{

3/2− h if x(M) = 1
1/2 + h if x(M) = 0

where x has the dyadic decomposition x =
∑+∞

k=1 x
(k)2−k and

h =
1
2

√
logM
n

.

First, we explore the case when the loss is the L2−norm. For any j = 1, . . . ,M − 1,

A(fj)−A∗ = ||fj − f∗||2L2([0,1]) = 1/4

and
A(fM )−A∗ = ||fM − f∗||2L2([0,1]) = (1/2− h)2.

Thus we have
min

j=1,...,M
A(fj)−A∗ = A(fM )−A∗ = (1/2− h)2.

Page 75



CHAPTER 4. SUBOPTIMALITY OF PENALIZED ERM

For

f̃pERMn ∈ Arg min
f∈F0

(∫
R
f2(x)dx− 2

n

n∑
i=1

f(Xi) + pen(f)
)
,

we have

E[||f̂n − f∗||L2([0,1])] = min
j=1,...,M

||fj − f∗||L2([0,1]) + (h− h2)P[f̂n 6= fM ]

Now, we upper bound P[f̂n = fM ]. We have

P[f̂n = fM ] = P[∀j = 1, . . . ,M − 1, An(fM ) + pen(fM ) ≤ An(fj) + pen(fj)]

= P[∀j = 1, . . . ,M − 1, νM ≤ νj + n(pen(fj)− pen(fM ))],

where νj =
∑n

i=1X
(j)
i ,∀j = 1, . . . ,M . Moreover, (X(j)

i )j=1,...,M ;i=1,...,n are i.i.d. B(1/2, 1)
and |pen(fj)| ≤ h, ,∀j = 1, . . . ,M . So using the same arguments as in the proof of Theorem
4.2, we have

P[f̂n = fM ] = P[νM > k̄] +
(
P[ν1 ≤ (1− 2h)k̄ + 2nh]

)M−1
,

where we choose k̄ = 2nh. Using Hoeffding’s inequality for binomial variables, we have

P[νM ≥ 2nh] ≤ exp(−2nh2).

Using the normal approximation Theorem (cf. Theorem 4.10 in Section 8), we get

P[ν1 ≤ (1− 2h)k̄ + 2nh] ≤ Φ(8h
√
n) +

264
2
√
n
,

where Φ is the standard normal distribution function. We complete the proof with the
same arguments as in the proof of Theorem 4.2.

Second, with the same notation as in the L2 case, we have for the Kullback-Leibler
divergence case, for any j = 1, . . . ,M − 1,

A(fj)−A∗ = K(fj |f∗) = (1/2) log(4/3)

and
A(fM )−A∗ = K(fM |f∗) = (1/2) log(4/3) + εh,

where εh = (1/2) log
(
1− (h(4 + 4h))/[(3− 2h)(1 + 2h)]

)
. Thus we have

min
j=1,...,M

A(fj)−A∗ = A(fM )−A∗ = (1/2) log(4/3) + εh.

For

f̃pERMn ∈ Arg min
f∈F0

(∫
R
− 1
n

n∑
i=1

log f(Xi) + pen(f)
)
,

we have
E[K(f̂n|f∗)] = min

j=1,...,M
K(fj |f∗)− εhP[f̂n 6= fM ]

Now, we upper bound P[f̂n = fM ]. We have

P[f̂n = fM ] = P[∀j = 1, . . . ,M − 1, An(fM ) + pen(fM ) ≤ An(fj) + pen(fj)]

= P[∀j = 1, . . . ,M − 1, νM ≤ νj + n(pen(fj)− pen(fM ))]

≤ P
[ n∑
i=1

X
(1)
i ≤

n∑
i=1

X
(M)
i +

20nh
3 log 3

]
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where νj = −
∑n

i=1 log[(1/2− h)X(j)
i + 1],∀j = 1, . . . ,M . Moreover, (X(j)

i )j=1,...,M ;i=1,...,n

are i.i.d. B(1/2, 1) and |pen(fj)| ≤ h, ,∀j = 1, . . . ,M . So using the same arguments as in
the proof of Theorem 4.2, we have

P[f̂n = fM ] = P[νM > k̄] +
(
P[ν1 ≤ (1− 2h)k̄ + 2nh]

)M−1
,

where we take k̄ = nh. We complete the proof with the same arguments as in the previous
case.

�

8. Appendix.

The following Lemma is used to establish the lower bounds. It is a slightly different
version of the Assouad’s Lemma (cf. [115]).

Lemma 4.2. Let (X ,A) be a measurable space. Consider a set of probability {Pω/ω ∈ Ω}
indexed by the cube Ω = {0, 1}m. Denote by Eω the expectation under Pω. Let θ ≥ 1 be a
number. Assume that:

∀ω, ω′ ∈ Ω/ρ(ω, ω′) = 1, H2(Pω, Pω′) ≤ α < 2,

then we have

inf
ŵ∈[0,1]m

max
ω∈Ω

Eω

 m∑
j=1

|ŵj − wj |θ
 ≥ m2−3−θ(2− α)2

where the infimum infŵ∈[0,1]m is taken over all estimator based on an observation from the
statistical experience {Pω/ω ∈ Ω} and with values in [0, 1]m.

Proof: Let ω̂ = (ω̂1, . . . , ω̂m) be an estimator with values in [0, 1]m, we have:

max
ω∈Ω

Eω

 m∑
j=1

|ω̂j − ωj |θ
 ≥ 1

2m
∑
ω∈Ω

Eω

 m∑
j=1

|ω̂j − ωj |θ


≥ 1
2m

m∑
j=1

 ∑
ω∈Ω:ωj=1

+
∑

ω∈Ω:ωj=0

Eω
[
|ω̂j − ωj |θ

]
.

Each term of the sum over j are lower bounded in the same way. Let see the case of the
term j = m. We have( ∑

ω∈Ω:ωm=1

+
∑

ω∈Ω:ωm=0

)
Eω
[
|ω̂m − ωm|θ

]
=

∑
(ω1,...,ωm−1)∈{0,1}m−1

E(ω1,...,ωm−1,1)

[
|ω̂m − 1|θ

]
+ E(ω1,...,ωm−1,0)

[
|ω̂m|θ

]
=

∑
(ω1,...,ωm−1)∈{0,1}m−1

∫
X

(1− ω̂m(x))θdP(ω1,...,ωm−1,1)(x) +
∫
X
ω̂m(x)θdP(ω1,...,ωm−1,0)(x).

Thus, if µ is a measure on (X ,A) which dominates P(ω1,...,ωm−1,1) and P(ω1,...,ωm−1,0) then
we obtain( ∑
ω∈Ω:ωm=1

+
∑

ω∈Ω:ωm=0

)
Eω
[
|ω̂m − ωm|θ

]
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=
∑

(ω1,...,ωm−1)∈{0,1}m−1

∫
X

[
(1− ω̂m(x))θf(ω1,...,ωm−1,1)(x) + ω̂m(x)θf(ω1,...,ωm−1,0)(x)

]
dµ(x),

where f(ω1,...,ωm−1,1) and f(ω1,...,ωm−1,0) are one version of the density of the probability
measures P(ω1,...,ωm−1,1) and P(ω1,...,ωm−1,0) with respect to µ. Since for all α ∈ [0, 1], a, b ∈ R
we have (1− α)θa+ αθb ≥ 21−θ min(a, b), we get:( ∑

ω∈Ω:ωm=1

+
∑

ω∈Ω:ωm=0

)
Eω
[
|ω̂m − ωm|θ

]
≥ 21−θ2m−1

∫
X

min
(
f(ω1,...,ωm−1,1)(x) + f(ω1,...,ωm−1,0)(x)

)
dµ(x)

= 21−θ2m−1

∫
min(dP(ω1,...,ωm−1,1), dP(ω1,...,ωm−1,0))

≥ 21−θ2m−1 min
w,w′∈Ω:
ρ(ω,ω′)=1

∫
min(dPω, dPω′).

We complete the proof with Le Cam’s inequality (cf., for instance, [115] p.73) which states
that for all probabilities P and Q, we have∫

min(dP, dQ) ≥ 1
2

(
1− H2(P,Q)

2

)2

.

�

Theorem 4.7 (Einmahl and Mason (cf. [53])). Let Z1, . . . , Zn be n independent positive
random variables such that E[Z2

i ] ≤ σ2,∀i = 1, . . . , n. Then, we have, for any δ > 0,

P
[ n∑
i=1

Zi − E[Zi] ≤ −nδ
]
≤ exp(−nδ2/(2σ2)).

Theorem 4.8 (Sudakov (cf. [93])). There exists an absolute constant c∗ > 0 such that
for any integer M , any centered gaussian vector X = (X1, . . . , XM ) in RM , we have,

c∗E[ max
1≤j≤M

Xj ] ≥ ε
√

logM,

where ε = min
[
E[(Xi −Xj)2]1/2; i 6= j ∈ {1, . . . ,M}

]
.

Theorem 4.9 (Maximal inequality (cf. [93])). Let Y1, . . . , YM be M random variables
satisfying E[exp(sYj)] ≤ exp((s2σ2)/2) for any integer j and any s > 0. Then, we have

E[ max
1≤j≤M

Yj ] ≤ σ
√

logM.

Theorem 4.10 (Berry-Esséen (cf. page 471 in [16])). Suppose that (Xi)i∈N is a sequence
of i.i.d. random variables with mean µ and variance σ2 > 0. Then, for all n,

sup
t∈R

∣∣∣∣P(∑n
i=1Xi − nµ

σ
√
n

≤ t
)
− Φ(t)

∣∣∣∣ ≤ 33
4

E|X1 − µ|3

σ3
√
n

.

We use the following lemma to prove the weakness of selector aggregates. A proof can
be found p. 84 in [115].
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Lemma 4.3. Let P1, . . . ,PM be M probability measures on a measurable space (Z, T )

satisfying
1
M

M∑
j=1

K(Pj |P1) ≤ α logM, where 0 < α < 1/8. We have

inf
φ̂

max
1≤j≤M

Pj(φ̂ 6= j) ≥
√
M

1 +
√
M

(
1− 2α− 2

√
α

log 2

)
,

where the infimum inf φ̂ is taken over all tests φ̂ with values in {1, . . . ,M} constructed from
one observation in the statistical model (Z, T , {P1, . . . ,PM}).
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CHAPTER 5

Convex Aggregation under Positive Covariance Assumption

We prove a convex oracle inequality with a rate of aggregation equals to logM
n . This

rate is faster than the standard optimal rate of convex aggregation which is (cf. [114])
M/n if M <

√
n and

√
(log(1 +M/

√
n)/n) otherwise. Here, we obtain the optimal rate

of Model Selection aggregation logM
n . This result is obtained under a positive covariance

assumption of the estimators to aggregate. It means that, when estimators are positively
correlated, it is as easy to mimic the best convex combination of these estimators as to
mimic the best of them.

Contents

1. Introduction 81
2. Convex Aggregation Oracle Inequality. 82

1. Introduction

Let (X,Y ) be a random variable on X × R. Denote by π the probability distribution
of (X,Y ) and by PX the marginal of X. Consider the norm

||f ||L2(PX) =
(∫

X
|f(x)|2dPX(x)

)1/2

,

defined for any f ∈ L2(PX). In the regression framework, we want to estimate the
regression function

η(x) = E [Y |X = x] ,∀x ∈ X ,
from a sample of n i.i.d. observations of the couple (X,Y ). We denote these observations
by Dn = ((Xi, Yi))1≤i≤n. Usually, the variable Y is not an exact function of X. Given is
an input X ∈ X , we are not able to predict the exact value of the output Y ∈ R. This
issue can be seen in the regression framework as a noised estimation. It means that in each
spot X of the input set, the predicted label Y is concentrated around E [Y |X] up to an
additional noise with null mean. Denote this noise by ζ. It is equal to the real random
variable Y − E [Y |X]. The regression model can be written as

Y = E [Y |X] + ζ.

In this chapter we study a convex aggregation procedure under an geometric assumption.
For this problem, we consider M measurable functions η1, . . . , ηM from X to R, usually
called weak estimators. Our aim is to mimic the best combination of them where coefficients
of this combination are taken in a bounded subset HM of RM . For instance, if HM = ΛM ,
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where

ΛM =

(λ1, . . . , λM )/λj ≥ 0,
M∑
j=1

λj = 1

 ,

we speak about convex aggregation problem.

2. Convex Aggregation Oracle Inequality.

We introduce the following notation

ηλ =
M∑
j=1

λjηj , ∀λ ∈ RM .

We consider the following aggregation procedure ηλ̂n
defined by the weights

(5.1) λ̂n ∈ Arg min
λ∈HM

Rn(ηλ)

where

Rn(η0) =
1
n

n∑
i=1

(Yi − η0(Xi))2

is the empirical risk of η0, for any measurable function η0 from X to R.
We give an oracle inequality satisfied by the procedure ηλ̂n

Theorem 5.1. In the regression framework Y = η(X) + σ(X)ζ , where X ∈ X and
ζ are independent variables. Let F = {η1, . . . , ηM} be a set of functions from X to R.
Assume that

• There exists B > 0 such that ||η||∞, ||ηj ||∞ ≤ B for all 1 ≤ j ≤M .
Then the aggregation procedure defined in (5.1) satisfies for any a > 0 and for any bounded
subset HM of RM :

E[||ηλ̂n
−η||2L2(PX)] ≤ (1+a) min

λ∈HM
||ηλ−η||2L2(PX)+

2(1 + a)2

na
E
[

max
i=1,...,n

|σ(Xi)ζi|2
]
+C0

√
logM
n

.

Moreover, if we have the positive covariance assumption
• For any j, k = 1, . . . ,M, E[(ηj(X)− η(X))(ηk(X)− η(X))] ≥ 0.

and if we only consider subsets HM of (R+)M (that is for positive coefficients), then the
aggregation procedure defined in (5.1) satisfies for any a > 0 and for any bounded subset
HM of (R+)M :

E[||ηλ̂n
−η||2L2(PX)] ≤ (1+a) min

λ∈HM
||ηλ−η||2L2(PX)+

2(1 + a)2

na
E
[

max
i=1,...,n

|σ(Xi)ζi|2
]
+C0

logM
n

.

If ζ is gaussian centered with square deviation equals to 1 and if there exists σ2 such
that σ(X)2 ≤ σ2 a.s. then E

[
maxi=1...,n |σ(Xi)ζi|2

]
≤ 2σ2 log n.

If ζ is bounded by L > 0 (cf. this is called the bounded regression) and if there exists
σ2 such that σ(X)2 ≤ σ2 a.s., we have E

[
maxi=1...,n |σ(Xi)ζi|2

]
≤ (σL)2.

Remark 5.1. Assumption on the covariance of estimators can be replace by

EPX [(ηj − η)(ηk − η)]EPX [(ηj′ − η)(ηk′ − η)] ≥ 0,∀j, k, j′, k′ = 1, . . . ,M

which means that η1, . . . , ηM are on the same ”side” w.r.t. η. Rudely speaking, ηj’s belong
to half a cone with vertex η in L2(PX).
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Proof of Theorem 5.1: For any measurable real-valued functions f, g from X ,
consider

||f ||2n =
1
n

n∑
i=1

f2(Xi) and < f, g >n=
1
n

n∑
i=1

f(Xi)g(Xi)

and for any real vector ε = (ε1, . . . , εn) ∈ Rn, consider

< ε, f >n=
1
n

n∑
i=1

εif(Xi).

For any measurable real-valued function f from X we have

||f − η||2n = Rn(f)−Rn(η) + 2 < N, f − η >n,

where N denote the random vector (σ(X1)ζ1, . . . , σ(Xn)ζn) of the noises.
Denote by C the set of all ηλ where λ ∈ HM . Let η̄ be in C. We have for any a > 0,

||ηλ̂n
− η||2L2(PX)

=||ηλ̂n
− η||2L2(PX) + (1 + a)

[
2 < N, ηλ̂n

− η >n +Rn(ηλ̂n
)−Rn(η)− ||ηλ̂n

− η||2n
]

≤(1 + a)(Rn(η̄)−Rn(η))

+ sup
η0∈C

[
||η0 − η||2L2(PX) + 2(1 + a) < N, η0 − η >n −(1 + a)||η0 − η||2n

]
.

Moreover, for any measurable real valued function η̄ on X , we have E [Rn(η̄)−Rn(η)] =
||η̄ − η||2

L2(PX)
. Thus,

E||ηλ̂n
− η||2L2(PX) ≤ (1 + a) min

λ∈HM
||ηλ − η||2L2(PX)

+ E

[
sup
η0∈C

[
||η0 − η||2L2(PX) + 2(1 + a) < N, η0 − η >n −(1 + a)||η0 − η||2n

]]
.

Lemma 5.1. Under the positive covariance assumption we have

E

[
sup
η0∈C

[
||η0 − η||2L2(PX) + 2(1 + a) < N, η0 − η >n −(1 + a)||η0 − η||2n

]]

≤ 2(1 + a)2

na
E
[

max
i=1,...,n

|σ(Xi)ζi|
]

+ C1
logM
n

Proof: We have

E
[

sup
η0∈C

[
||η0 − η||2L2(PX) + 2(1 + a) < N, η0 − η >n −(1 + a)||η0 − η||2n

]]
≤E

[
sup
η0∈C

2(1 + a) < N, η0 − η >n −
a

2
||η0 − η||2n

]

+ E

[
sup
η0∈C

||η0 − η||2L2(PX) −
2 + a

2
||η0 − η||2n

]
Moreover for any η0 ∈ C,

2(1+a) < N, η0−η >n −
a

2
||η0−η||2n ≤ 2(1+a)2||η0−η||n| < N, hn(η0) >n |−

a

2
||η0−η||2n,
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where

hn(η0) =

{
η0−η

||η0−η||n if ||η0 − η||n 6= 0
0 otherwise

.

Using inequality 2|xy| ≤ (a/2)x2 + (2/a)y2 which holds for any scalar x, y, we get:

2(1 + a)||η0 − η||n| < N, hn(η0) >n | −
a

2
||η0 − η||2n ≤

2(1 + a)2

a
< N, hn(η0) >2

n .

Since ||(hn(η0)(X1), . . . , hn(η0)(Xn))||22 = n, we have

E

[
sup
η0∈C

< N, hn(η0) >2
n

]
≤ 1
n

E

[
sup
θ∈S2

n

< N, θ >2

]
=

1
n

E
[

max
i=1,...,n

|σ(Xi)ζi|2
]
,

where S2
n is the set of all unit vectors of (Rn, ||.||2) and < ., . > is the usual inner product

of (Rn, ||.||2).
LetW0 = (w1, . . . , wM ) be a vector inHM and denote by η0 the combination

∑M
j=1wjηj .

Since wj ≥ 0,∀j = 1, . . . ,M , we have

||η0 − η||2L2(PX) −
2 + a

2
||η0 − η||2n = W t

0ZW0 ≤ sup
1≤k,j≤M

Zk,j ||W0||2 ≤ C0 sup
1≤k,j≤M

Zk,j ,

where C0 is a bound for HM and (Zk,j)1≤k,j≤M is given by

Zk,j =
∫

R
gk(x)gj(x)PX(dx)− 2 + a

2n

n∑
i=1

gk(Xi)gj(Xi)

and gk = ηk − η for any k = 1, . . . ,M . Hence,

E

[
sup
η0∈C

||η0 − η||2L2(PX) −
2 + a

2
||η0 − η||2n

]
≤ C0E[ sup

1≤k,j≤M
Zk,j ].

Denote by PX the distribution of X. For any real-valued function g defined on X , denote by
PXg the expectation E(g(X)) and PXn g its empirical version. Since for all j, k = 1, . . . ,M ,
PXgkgj ≥ 0 we have for any δ > 0

P
[
PXgkgj −

2 + a

2
PXn gkgj ≥ δ

]
≤ P

[
PXgkgj − PXn gkgj ≥

2δ + aPXgkgj
2 + a

]
.

We apply Bernstein’s concentration inequality to obtain

P
[
PXgkgj − PXn gkgj ≥

2δ + aPXgkgj
2 + a

]
≤ exp

(
− 3n(2δ + aPXgkgj)2

6(2 + a)2PXg2
kg

2
j + 8(2 + a)B2(2δ + aPXgkgj)

)
.

There exists a constant C1 > 0 depending only on a,B such that for all 0 < δ ≤ 2(4+a)B2

and all 0 ≤ j, k ≤M , we have

3n(2δ + aPXgkgj)2

6(2 + a)2PXg2
kg

2
j + 8(2 + a)B2(2δ + aPXgkgj)

≥ C1δ.

Using the union bound, for all positive number u, we have

E

[
sup

1≤k,j≤M
Zk,j

]
≤ E

[
sup

1≤k,j≤M
Zk,j(1Isup1≤k,j≤M Zk,j≤u + 1Isup1≤k,j≤M Zk,j≥u)

]
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≤ 2u+
∫ +∞

u
P

[
sup

1≤k,j≤M
Zk,j ≥ δ

]
dδ ≤ 2u+

M2

C1
exp(−C1u)

Denote by µ(M) the unique solution of X = (M2/2) exp(−X), we get logM ≤ µ(M) ≤
2 logM . Take u such that nC1u = µ(M) then we obtain

E

[
sup
f∈F

||f − η||2 − 2 + a

2
||f − η||2n

]
≤ 4
C1

logM
n

.

�

Lemma 5.2. Without any covariance assumption we have

E

[
sup
η0∈C

[
||η0 − η||2L2(PX) + 2(1 + a) < N, η0 − η >n −(1 + a)||η0 − η||2n

]]

≤ (1 + a)2

na
E
[

max
i=1,...,n

|σ(Xi)ζi|
]

+ C2

√
logM
n

Proof: We have

E

[
sup
η0∈C

[
||η0 − η||2L2(PX) + 2(1 + a) < N, η0 − η >n −(1 + a)||η0 − η||2n

]]

≤E

[
sup
η0∈C

2(1 + a) < N, η0 − η >n −a||η0 − η||2n

]

+ E

[
sup
η0∈C

||η0 − η||2L2(PX) − ||η0 − η||2n

]
Like in Lemma 5.1, we have

2(1 + a) < N, η0 − η >n −a||η0 − η||2n ≤
(1 + a)2

a
< N, hn(η0) >2

n,

thus,

E

[
sup
η0∈C

2(1 + a) < N, η0 − η >n −a||η0 − η||2n

]
≤ (1 + a)2

an
E
[

max
i=1,...,n

|σ(Xi)ζi|2
]
.

LetW0 = (w1, . . . , wM ) be a vector inHM and denote by η0 the combination
∑M

j=1wjηj .
We have

||η0 − η||2L2(PX) − ||η0 − η||2n = W t
0ZW0 ≤ ||Z||∞||W0||2 ≤ C0||Z||∞,

where C0 is a bound for HM , Z is the random matrix (Zk,j)1≤k,j≤M with

Zk,j =
∫

R
gk(x)gj(x)PX(dx)− 1

n

n∑
i=1

gk(Xi)gj(Xi)

and gk = ηk − η for any k = 1, . . . ,M . Hence,

E

[
sup
η0∈C

||η0 − η||2L2(PX) − ||η0 − η||2n

]
≤ C0E[||Z||∞].

Denote by PX the distribution of X. For any real-valued function g defined on X ,
denote by PXg the expectation E(g(X)) and PXn g its empirical version. Using Bernstein’s
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concentration inequality, we have for any 0 < δ < 32B2

P
[
|PXgkgj − PXn gkgj | ≥ δ

]
≤ 2 exp

(
− nδ2

2PXg2
kg

2
j + 2B2δ/3

)
≤ 2 exp

(
− nδ2

54B4

)
.

Using the union bound, for all positive number u, we have

E [||Z||∞] ≤ E
[
||Z||∞(1I||Z||∞≤u + 1I||Z||∞≥u)

]
≤ 2u+

∫ +∞

u
P [||Z||∞ ≥ δ] dδ ≤ 2u+

108B2M2

nu
exp

(
− nu2

54B2

)
Denote by µ(M) the unique solution of X = M2 exp(−X), we get logM ≤ µ(M) ≤ 2 logM .
Take u such that nu2 = 54B2µ(M) then we obtain

E

[
sup
η0∈C

||η0 − η||2L2(PX) − ||η0 − η||2n

]
≤ 8B

√
54

√
logM
n

.

�

In the gaussian case, we have for any δ > 0

P
[

max
i=1...,n

|ζi| ≥ δ

]
≤ nP[|ζ1| ≥ δ] ≤ n

√
2
π

exp(−δ2/2)
δ

.

Thus, for any u > 0,

E
[

max
i=1,...,n

|ζi|2
]

≤ E
[

max
i=1,...,n

|ζi|2(1Imaxi=1,...,n |ζi|2≤u + 1Imaxi=1,...,n |ζi|2≥u)
]

≤ 2u+
2n
π

∫ +∞

u

exp(−δ/2)√
δ

≤ 2u+
4n
π

exp(−u/2)√
u

Denote by µ(M) the unique solution of X3 = n
2
√
π

exp(−X2), we get
√

(log n)/2 ≤ µ(M) ≤
√

log n. Take u such that (u/2)1/2 = µ(M) then we obtain

E
[

max
i=1,...,n

|σ(Xi)ζi|2
]
≤ 2σ2 log n.

�
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CHAPTER 6

Classification with Minimax Fast Rates for Classes of Bayes

Rules with Sparse Representation

We study the behavior of an adaptive estimator for classification problem on [0, 1]d,
considering piecewise constant classifiers on a dyadic, regular grid. We consider classes
of classifier functions that satisfy certain conditions regarding their coefficients when
developed over the (overcomplete) basis of indicator functions of dyadic cubes of [0, 1]d

and these coefficients are restricted to values in {−1, 0, 1}. Lower bounds on the minimax
rates of convergence over these classes are established when the underlying marginal of the
design is comparable to the Lebesgue measure. An upper bound for the performance of
the estimator is derived, which is shown to match the lower bound (up to a logarithmic
factor).
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The material of this chapter is an article accepted for publication in the journal
Electronic Journal of Statistics (cf. [79]).

1. Introduction

Denote by Dn = (Xi, Yi)1≤i≤n n i.i.d. observations of a couple (X,Y ) of random
variables with values in [0, 1]d×{−1, 1}. Denote by π the probability distribution of (X,Y ).
We want to construct measurable functions which associate a label y ∈ {−1, 1} to each
point x of [0, 1]d. Such functions are called prediction rules. The quality of a prediction
rule f is given by the value

R(f) = P(f(X) 6= Y )
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CHAPTER 6. CLASSES OF BAYES RULES WITH SPARSE REPRESENTATION

called misclassification error of f . It is well known (e.g. [47]) that there exists an optimal
prediction rule which attains the minimum of R over all measurable functions with values
in {−1, 1}. It is called the Bayes rule and it is defined by

f∗(x) = sign(2η(x)− 1),

where η is the conditional probability function of Y = 1 knowing X defined by

η(x) = P(Y = 1|X = x).

The value
R∗ = R(f∗) = min

f
R(f)

is known as the Bayes risk. The aim of classification is to construct a prediction rule, using
the observations Dn, with a risk as close to R∗ as possible. Such a construction is called a
classifier . Performance of a classifier f̂n is measured by the value

Eπ(f̂n) = Eπ[R(f̂n)−R∗]

called excess risk of f̂n. In this case R(f̂n) = P(f̂n(X) 6= Y |Dn) and Eπ denotes the
expectation w.r.t. Dn when the probability distribution of (Xi, Yi) is π for any i = 1, . . . , n.
Consider (φ(n))n∈N a decreasing sequence of positive numbers. We say that a classifier f̂n
learns at the convergence rate φ(n), if there exists an absolute constant C > 0 such that
for any integer n,

Eπ[R(f̂n)−R∗] ≤ Cφ(n).

We introduce a loss function on the set of all prediction rules:

dπ(f, g) = |R(f)−R(g)|.

This loss function is a semi-distance (it is symmetric, satisfies the triangle inequality and
dπ(f, f) = 0). For all classifiers f̂n, it is linked to the excess risk by

Eπ(f̂n) = Eπ[dπ(f̂n, f∗)],

where the RHS is the risk of f̂n associated with the loss dπ.
Theorem 7.2 of [47] shows that no classifier can learn with a given convergence rate

for arbitrary underlying probability distribution π. To achieve rates of convergence, we
need a complexity assumption on the set which the Bayes rule f∗ belongs to. For instance,
[123, 124] provide examples of classifiers learning, with a given convergence rate, under
complexity assumptions on the set of conditional probability functions. Other rates of
convergence have been obtained under the assumption that the Bayes rule belongs to a
class of prediction rules with a finite dimension of Vapnik and Chervonenkis (cf.[47]). In
both cases, the problem of a direct approximation of f∗ is not treated. In the first case, the
problem of approximation of f∗ is shifted to the problem of approximation of the regression
function η. In fact, if f̄ denote the plug-in rule 1Iη̄≥1/2, where η̄ is a function with values
in [0, 1] then, we have

(6.1) dπ(f̄ , f∗) ≤ 2E[|η̄(X)− η(X)|]

Thus, under smoothness assumption on the conditional function η, we can control the
approximation term. However, global smoothness assumptions on η are somehow too
restrictive for the estimation of f∗ since the behavior of η away from the decision boundary
{x ∈ [0, 1]d : η(x) = 1/2} has no effect on the estimation of f∗. In the second case, the
approximation term equals to zero, since it is assumed that the Bayes rule belongs to a
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1. INTRODUCTION

class with a finite VC dimension and so we don’t need to approach the Bayes rule by a
simpler object.

Many authors pointed out the need for developing a suitable approximation theory for
classification. Given a model C of prediction rules, it is written in p.34 in [22]: “estimating
the model bias minf∈C(R(f)−R∗) seems to be beyond the reach of our understanding. In
fact, estimating R∗ is known to be a difficult statistical problem, see [47] and [5].” In [20],
question on the control of the approximation error for a class of models in the boosting
framework is asked. In this chapter, it is assumed that the Bayes rule belongs to the
model and form of distribution satisfying such condition is explored. Another related
work is [89], where, under general conditions, it can be guaranteed that the approximation
error converges to zero for some specific models. In [116], the author examines classes
that are indexed by a complexity exponent that reflects the smoothness of the Bayes
decision boundary. An argument of entropy is then used to upper bound the bias term. A
generalization of these classes is given in [105]. Finally, on the general topic of approximation
theory in classification we want to mention the recent work of [107].

The main difficulty of a direct approximation of f∗ is the dependence of the loss dπ
on π. Given a model P (a set of probability measures on [0, 1]d × {−1, 1}) with a known
complexity, we want to be able to construct a decreasing family (Fε)ε>0 of classes of
prediction rules, such that we have an approximation result of the form:

(6.2) ∀π = (PX , η) ∈ P,∀ε > 0,∃fε ∈ Fε : dπ(fε, f∗) ≤ ε,

where PX is the marginal distribution of π on [0, 1]d and f∗ = Sign(2η − 1) is the Bayes
rule, associated with the regression function η of π. In fact, we want the classes Fε to be
parametric, such that, for the estimation problem, we just have to estimate a parametric
object in a class Fεn , for a well chosen εn (generally obtained by a trade-off between the
bias/approximation term and the variance term, coming from the estimation of the best
parametric object in Fεn approaching f∗).

We upper bound the loss dπ, but, we still work directly with the approximation of f∗.
For a prediction rule f we have

(6.3) dπ(f, f∗) = E[|2η(X)− 1|1If(X) 6=f∗(X)] ≤ (1/2)||f − f∗||L1(PX).

In order to get a distribution-free loss function, we assume that the following assumption
holds. This assumption is close to assuming that the marginal distribution of X is the
Lebesgue measure on [0, 1]d.
(A1) The marginal PX is absolutely continuous w.r.t. the Lebesgue measure λd and there
exist two constants 0 < a < A < +∞ such that a ≤ dPX(x)/dλd ≤ A, ∀x ∈ [0, 1]d.

The behavior of the regression function η near the level 1/2 is a key characteristic of
the classification’s quality (cf. e.g. [116]). In fact, the closest is η to 1/2, the more difficult
is the classification problem. Here, we work under the following assumption introduced by
[94].
Strong Margin Assumption (SMA): There exists an absolute constant 0 < h ≤ 1 such
that:

P (|2η(X)− 1| > h) = 1.

Under assumptions (A1) and (SMA) we have, for any prediction rule f ,

ah

2
||f − f∗||L1(λd) ≤ dπ(f, f∗) ≤

A

2
||f − f∗||L1(λd).
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Thus, estimation of f∗ w.r.t. the loss dπ is the same as estimation w.r.t. the L1(λd)−norm,
where λd is the Lebesgue measure on [0, 1]d.

The chapter is organized as follows. In the next section, we introduce a class of functions,
with values in {−1, 1}, developed in a fundamental system of L2([0, 1]d). Section 3is devoted
to the approximation and the estimation of Bayes rules having a sparse representation in
this system. In Section 4, we discuss this approach. Proofs are postponed to Section 5.

2. Classes of Bayes Rules with Sparse Representation.

In this section, we introduce a class of prediction rules. For that, we consider two
different representations of prediction rules.

The first way is to represent a prediction rule as an infinite dyadic tree. An infinite
dyadic decision tree is defined as a partitioning of the hypercube [0, 1]d obtained by cutting
in half perpendicular to one of the axis coordinates, then cutting recursively the two pieces
obtained in half again, and so on. Most of the time, finite dyadic trees are considered (cf.
[21] and [105]). It means that the previous constructions stop at an arbitrary point along
every branches. For a survey on decision trees we refer to [96]. Here, we consider also
infinite dyadic trees.

The other way is more “analytic”. Namely, we consider the representation of prediction
rules in a fundamental system of L2([0, 1]d, λd) (that is a countable family of functions
such that all their finite linear combinations is dense in L2([0, 1]d, λd)), inherited from the
Haar basis, and control the number of non-zero coefficients (which can take values −1, 0, 1
in this case).

2.1. Analytic representation of decision trees. First we consider a fundamental
system of L2([0, 1]d, λd). We consider a sequence of partitions of [0, 1]d by setting for any
integer j,

I(j)
k = E

(j)
k1
× . . .× E

(j)
kd
,

where k is the multi-index

k = (k1, . . . , kd) ∈ Id(j) = {0, 1, . . . , 2j − 1}d,

and for any integer j and any k ∈ {1, . . . , 2j − 1},

E
(j)
k =

{ [
k
2j ,

k+1
2j

)
if k = 0, . . . , 2j − 2[

2j−1
2j , 1

]
if k = 2j − 1

.

We consider the family S =
(
φ

(j)
k : j ∈ N,k ∈ Id(j)

)
where

φ
(j)
k = 1II(j)

k

, ∀j ∈ N,k ∈ Id(j),

where 1IA denotes the indicator of a set A. The set S is a fundamental system of
L2([0, 1]d, λd). This is the class of indicators of the dyadic sets of [0, 1]d.

Formal definition of the classes F (d): We consider the class F (d) of functions
f : [0, 1]d 7−→ {−1, 1} defined by

f =
+∞∑
j=0

∑
k∈Id(j)

a
(j)
k φ

(j)
k , λd − a.s., where a(j)

k ∈ {−1, 0, 1}.

In what follows, we use the vocabulary appearing in the wavelet literature. The index
”j“ of a(j)

k and φ(j)
k is called “level of frequency”.
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2. CLASSES OF BAYES RULES WITH SPARSE REPRESENTATION.

Writing convention (W): Since S is not an orthogonal basis of L2([0, 1]d, λd), the
expansion of f w.r.t. this system is not unique. Therefore, to avoid any ambiguity,
we define an unique writing for any mapping f in F (d) by taking a

(j)
k ∈ {−1, 1} with

preferences for low frequencies when it is possible. Roughly speaking, for f ∈ F (d), denoted
by f =

∑+∞
j=0

∑
k∈Id(j) a

(j)
k φ

(j)
k , λd − a.s. where a(j)

k ∈ {−1, 0, 1}. This convention means

that, we construct A(j)
k ∈ {−1, 0, 1}, j ∈ N,k ∈ Id(j), such that: if there exists J ∈ N and

k ∈ Id(J) such that for all k′ ∈ Id(J + 1) satisfying φ(J)
k φ

(J+1)
k′ 6= 0 we have a(J+1)

k′ = 1,
then we take A(J)

k = 1 and the other 2d coefficients of higher frequency A(J+1)
k′ = 0, instead

of having these 2d coefficients equal to 1, and the same convention holds for −1. Moreover,
if we have A(J0)

k 6= 0 then A(J)
k′ = 0 for all J > J0 and k′ ∈ Id(J) satisfying φ(J0)

k φ
(J)
k′ 6= 0.

We can describe a mapping f ∈ F (d) satisfying this convention by using an infinite
dyadic decision tree. Each node corresponds to a coefficient A(J)

k . The root is A(0)
(0,...,0). If a

node, describing the coefficient A(J)
k , equals to 1 or −1 then, it has no branches, otherwise it

has 2d branches, corresponding to the 2d coefficients at the following frequency, describing
the coefficients A(J+1)

k′ satisfying φ
(J)
k φ

(J+1)
k′ 6= 0. At the end, all the leaves of the tree

equal to 1 or −1, and the depth of a leaf is the frequency of the associated coefficient. The
writing convention says that a node cannot have all his leaves equal to 1 together (or −1).
In this case we write this mapping by putting a 1 at the node (or −1). In what follows
we say that a function f ∈ F (d) satisfies the writing convention (W) when f is written
in S using the writing convention described in this paragraph. Remark that, this writing
convention is not an assumption on the function since we can write all f ∈ F (d) using this
convention.

We can avoid the problem of the non-uniqueness of the expansion of a function in the
overcomplete system S. For instance, by using the wavelet tensor product of the Haar
basis (cf. [95]), we obtain an orthonormal wavelet basis of L2([0, 1]d). In that case the
link with dyadic decision trees is much more complicated and the obtained results are not
easily interpretable.

It is easy to see that all measurable functions from [0, 1]d to {−1, 1} cannot be rep-
resented in this way. A simple example is given by the following construction. Consider
(qk)k≥1 an enumeration of the rational numbers of (0, 1). Denote by A the union, over
k ∈ N, of the open balls B(qk, 2−(k+1)). This is a dense open set of Lebesgue measure
bounded by 1/2. The prediction rule f = 21IA − 1 cannot be written in the fundamental
system S using coefficients with values in {−1, 0, 1} (f /∈ F (1)). Nevertheless, under a mild
assumption (cf. the following definition) a prediction rule belongs to F (d).

Definition 6.1. Let A be a Borel subset of [0, 1]d. We say that A is almost every-
where open if there exists an open subset O of [0, 1]d such that λd(A∆O) = 0, where λd
is the Lebesgue measure on [0, 1]d and A∆O is the symmetric difference.

Theorem 6.1. Let η be a function from [0, 1]d to [0, 1]. We consider

fη(x) =
{

1 if η(x) ≥ 1/2
−1 otherwise.

We assume that {η ≥ 1/2} and {η < 1/2} are almost everywhere open. Thus, there exists
g ∈ F (d) such that g = fη, λd − a.s..

For instance, if λd(∂{η = 1/2}) = 0 and, either η is λd-almost everywhere continuous
(it means that there exists an open subset of [0, 1]d with a Lebesgue measure equals to
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1 such that η is continuous on this open subset) or if η is λd−almost everywhere equal
to a continuous function, then fη ∈ F (d). Moreover, the Lebesgue measure satisfies the
property of regularity, which says that for any Borel B ∈ [0, 1]d and any ε > 0, there exists
a compact subset K and an open subset O such that K ⊆ A ⊆ O and λd(O −K) ≤ ε.
Hence, one can easily check that for any measurable function f from [0, 1]d to {−1, 1} and
any ε > 0, there exists a function g ∈ F (d) such that λd({x ∈ [0, 1]d : f(x) 6= g(x)}) ≤ ε.
Thus, F (d) is dense in L2(λd) intersected with the set of all measurable functions from
[0, 1]d to {−1, 1}.

2.2. Related works and main results. The best known decision tree algorithms
are CART (cf. [24]) and C4.5 (cf. [100]). These methods use a growing and pruning
algorithm. First, a large tree is grown by splitting recursively nodes along coordinates axes
according to an “impurity” criterion. Next, this tree is pruned using a penalty function.
Penalties are usually based on standard complexity regularization like the square root of
the size of the tree. Spatially adaptive penalties depend not only on the complexity of the
tree, but also on the spatial distribution of training samples. More recent constructions of
decision trees have been proposed in [105] and [21]. In [105], the authors consider, in the
multi-class framework, dyadic decision trees and exhibit near-minimax rates of convergence
by considering spatial adaptive penalties. They obtained rates of convergence over classes
of prediction functions having a complexity defined in the same spirit as [91] and [116]. In
[21], a general framework is worked out including classification for different loss functions.
The authors select among a set of dyadic trees having a finite depth, the best tree realizing
an optimal trade-off between the empirical risk and a penalty term. Here, the penalty
term is proportional to the number of leaves in the tree. They obtained oracle inequalities
and derived rates of convergence in the regression setup under a regularity assumption on
the underlying regression function to estimate. Rates of convergence, for the classification
problem, are not derived from these oracle inequalities, since, they do not treat the bias
term.

Our estimation procedure does not provide an algorithm in the same spirit as these
previous works. The main reason is that, we obtain results under the assumption on
the marginal distribution given by (A1). This assumption allows us to work at a given
“frequency” and we do not need a multi-scale construction of the dyadic tree as in the
previous related work. Once the optimal frequency obtained (by trade off), the estimation
procedure is a regular histogram rule as considered in Chapter 9 of [47].

The present work focuses on the control of the approximation term and the introduction
of classes of prediction rules having different complexities and approximation qualities. As
we shall see, one crucial difference of our estimator is that it is able to deal with infinite
trees. Such infinite trees can be considered since we control the bias term. Nevertheless,
when the complexity parameter α (associated with the concept of complexity that we
consider), is unknown we use a multi-scale approach to construct an adaptive procedure.
This procedure learns with the rate ( log n

n

)1−α
,

for any complexity parameter α. This multi-scale classifier is the following: we split the
sample in two subsamples D(1)

m , containing the first m observations, and D(2)
l , the l(= n−m)

last ones. We use D(1)
m to construct a family of classifiers f̂ (J)

m for different frequency levels
J ∈ [0, J (n)], for an integer J (n) chosen later. For instance f̂ (0)

m is the classifier which makes
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a majority vote in the cell I(0)
0 , f̂ (1)

m is the classifier making a majority vote in each cell
I(1)
k , for k ∈ Id(1) of the partition S(1) = {I(1)

k ,k ∈ Id(1)} of [0, 1]d, etc.. Subsample D(2)
l

is used to construct exponential weights w(l)
J (cf. Chapter 8). The weight w(l)

J is associated
with the basic classifier f̂ (J)

m , for any J ∈ [0, J (n)]. Finally, the procedure that we propose
is the sign of the convex combination

(6.4) f̃n =
J(n)∑
J=1

w
(l)
J f̂

(J)
m .

An interesting fact is that, we can consider the set S, introduced in Subsection 2.1, as
a dictionary of basic functions. Considering prediction rules as linear combinations of the
functions in this dictionary with coefficients in {−1, 0, 1} (using the convention of writing
(W)), we obtain that, the LASSO estimator (cf. [113]) is given, in this framework, by

Arg max
f∈F(d)

1
n

n∑
i=1

1If(Xi) 6=Yi
+ γ

∑
j,k

|a(j)
k |,

where f =
∑+∞

j=0

∑
k∈Id(j) a

(j)
k φ

(j)
k , λd − a.s. Since the coefficients a(j)

k take their values in

{−1, 0, 1}, the l1-type penalty
∑

j,k |a
(j)
k | is exactly the number of leaves of the dyadic tree

associated with the prediction rule f . Thus, LASSO estimator, in this framework and for
the dictionary S, is the same as the estimator considered in [21].

2.3. Class of Bayes rules. Now, we define a model for the Bayes rule by taking a
subset of F (d). For all functions w defined on N and with values in N, we consider F (d)

w ,
the class for Bayes rules, composed of all prediction rules f which can be written, using
the previous writing convention (W), by

f =
+∞∑
j=0

∑
k∈Id(j)

a
(j)
k φ

(j)
k ,

where a(j)
k ∈ {−1, 0, 1} and

card
{
k ∈ Id(j) : a(j)

k 6= 0
}
≤ w(j), ∀j ∈ N.

The class F (d)
w depends on the choice of the function w. If w is too small then the class

F (d)
w is poor. That is the subject of the following Proposition 6.1.

Proposition 6.1. Let w be a mapping from N to N such that w(0) ≥ 1. The two
following assertions are equivalent:

(i) F (d)
w 6= {1I[0,1]d}.

(ii)
∑+∞

j=1 2−djw(j) ≥ 1.

This proposition is strongly connected to the Kraft inequality from coding theory (see
e.g. [42]).

If w is too large then, the approximation of the model F (d)
w , by a parametric model will

be impossible. That is why we give a particular look on the class of functions introduced
in the following Definition 6.2.
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Definition 6.2. Let w be a mapping from N to N. If w satisfies

(6.5)
+∞∑
j=0

w(j)
2dj

< +∞

then, we say that F (d)
w is a L1−ellipsoid of prediction rules.

We say that F (d)
w is a “L1−ellipsoid” for a function w satisfying (6.5), because , the

sequence (w(j))j∈N belongs to a L1−ellipsoid of NN, with sequence of radius (2dj)j∈N.
Moreover, Definition 6.2 can be linked to the definition of a L1−ellipsoid for real valued
functions, since we have a kind of basis, given by S, and we have a control on coefficients
which increases with the frequency. Control on coefficients, given by (6.5), is close to the
one for coefficients of a real valued function in a L1−ellipsoid of Sobolev, since it deals
with the quality of approximation of the class F (d)

w by a parametric model.

Remark 6.1. A L1−ellipsoid of prediction rules is made of ”sparse” prediction rules.
In fact, for f ∈ F (d)

w with w satisfying (6.5), the number of non-zero coefficients in the
decomposition of f (using the writing convention (W)), at a given frequency, becomes
small as the frequency grows. That is the reason why F (d)

w can be called a sparse class of
prediction rules.

Next, we provide examples of functions satisfying (6.5). Classes F (d)
w associated with

these functions are used in what follows as statistical models. We first define the minimal
infinite class of prediction rules F (d)

0 which is the class F (d)
w when w = w

(d)
0 where w(d)

0 (0) = 1
and w(d)

0 (j) = 2d− 1, for all j ≥ 1. To understand why this class is important we introduce
a concept of local oscillation of a prediction rule. This concept defines a kind of “regularity”
for functions with values in {−1, 1}. For f a function from [0, 1]d to {−1, 1} in F (d), we
consider the writing of f in the fundamental system introduced in Section 3.1 with writing
convention (W):

f =
+∞∑
j=0

∑
k∈Id(j)

a
(j)
k φ

(j)
k , λd − a.s..

Let J ∈ N and k ∈ Id(J). We say that I(J)
k is a low oscillating block of f when f

has exactly 2d − 1 non-zero coefficients, in this block, at each level of frequencies greater
than J + 1. In this case we say that f has a low oscillating block of frequency J .
Remark that, if f has an oscillating block of frequency J , then f has an oscillating block of
frequency J ′, for all J ′ ≥ J . The function class F (d)

0 is made of all prediction rules with one
oscillating block at level 1 and of the indicator function 1I[0,1]d . If we have w(j0) < w

(d)
0 (j0)

for one j0 ≥ 1 and w(j) = w
(d)
0 (j) for j 6= j0 then the associated class F (d)

w contains only
the indicator function 1I[0,1]d , that is the reason why we say that F (d)

0 is ”minimal”.

Nevertheless, the following proposition shows that F (d)
0 is a rich class of prediction

rules from a combinatorial point of view. We recall some quantities which measure a
combinatorial richness of a class of prediction rules (cf. [47]). For any class F of prediction
rules from [0, 1]d to {−1, 1}, we consider

N(F , (x1, . . . , xm)) = card ({(f(x1), . . . , f(xm)) : f ∈ F})

where x1, . . . , xm ∈ [0, 1]d and m ∈ N,

S(F ,m) = max
(
N(F , (x1, . . . , xm)) : x1, . . . , xm ∈ [0, 1]d

)
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and the V C-dimension of F is

V C(F) = min (m ∈ N : S(F ,m) 6= 2m) .

Consider xj =
(

2j+1
2j+1 ,

1
2j+1 , . . . ,

1
2j+1

)
, for any j ∈ N. For any integer m, we have

N(F (d)
0 , (x1, . . . , xm)) = 2m. Hence, the following proposition holds.

Proposition 6.2. The class of prediction rules F (d)
0 has an infinite V C-dimension.

Every class F (d)
w such that w ≥ w

(d)
0 has an infinite V C-dimension (since F (d)

w ⊆ F (d)
w′

when w ≤ w′), which is the case for the following classes.
We denote by F (d)

K , for a K ∈ N∗, the class F (d)
w of prediction rules where w is equal

to the function

w
(d)
K (j) =

{
2dj if j ≤ K,

2dK otherwise.
This class is called the truncated class of level K.

We consider exponential classes. These sets of prediction rules are denoted by F (d)
α ,

where 0 < α < 1, and are equal to F (d)
w when w = w

(d)
α and

w(d)
α (j) =

{
2dj if j ≤ N (d)(α)
d2dαje otherwise

,

whereN (d)(α) = inf
(
N ∈ N : d2dαNe ≥ 2d − 1

)
, that is forN (d)(α) = dlog(2d−1)/(dα log 2)e.

The classes F (d)
0 , F (d)

K and F (d)
α are examples of L1−ellipsoid of prediction rules.

Remark 6.2. Other sets of prediction rules are described by the classes F (d)
w where w

is from N to N and satisfies ∑
j≥1

aj
w(j)
2dj

≤ L,

where (aj)j≥1 is an increasing sequence of positive numbers.

3. Rates of Convergence over F (d)
w under (SMA)

3.1. Approximation Result. Let w be a function from N to N and A > 1. We
denote by Pw,A the set of all probability measures π on [0, 1]d×{−1, 1} such that the Bayes
rules f∗, associated with π, belongs to F (d)

w and the marginal of π on [0, 1]d is absolutely
continuous and a version of its Lebesgue density is upper bounded by A. The following
theorem can be seen as an approximation theorem for the Bayes rules w.r.t. the loss dπ
uniformly in π ∈ Pw,A.

Theorem 6.2 (Approximation theorem). Let F (d)
w be a L1−ellipsoid of prediction rules.

We have:
∀ε > 0,∃Jε ∈ N : ∀π ∈ Pw,A,∃fε =

∑
k∈Id(Jε)

B
(Jε)
k φ

(Jε)
k

where B(Jε)
k ∈ {−1, 1} and

dπ(f∗, fε) ≤ ε,

where f∗ is the Bayes rule associated to π. For example, Jε can be the smallest integer J
satisfying

∑+∞
j=J+1 2−djw(j) < ε/A.
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Theorem 6.2 is the first step to prove an estimation theorem using a trade-off between
a bias term and a variance term. We write

Eπ(f̂n) = Eπ[dπ(f̂n, f∗)] ≤ Eπ[dπ(f̂n, fε)] + dπ(fε, f∗).

Since fε belongs to a parametric model we expect to have a control of the variance term
Eπ[dπ(f̂n, fε)], depending on the dimension of the parametric model which is linked to the
quality of the approximation in the bias term. Remark that, no assumption on the quality
of the classification problem (like an assumption on the margin) is required to obtain
Theorem 6.2. Only assumption on the “number of oscillations” of f∗ is used. Theorem 6.2
deals with approximation of functions in the L1−ellipsoid F (d)

w by functions with values in
{−1, 1} and no estimation issues are considered.

3.2. Estimation Result. We consider the following class of estimators indexed by
the frequency rank J ∈ N:

(6.6) f̂ (J)
n =

∑
k∈Id(J)

Â
(J)
k φ

(J)
k ,

where coefficients are defined by

Â
(J)
k =

{
1 if ∃Xi ∈ I(J)

k and N (J)+
k > N

(J)−
k

−1 otherwise,

where, for any k ∈ I(J)
d , we considerN (J)+

k = Card
{
i : Xi ∈ I(J)

k and Yi = 1
}

andN (J)−
k =

Card
{
i : Xi ∈ I(J)

k and Yi = −1
}

.
To obtain a good control of the variance term, we need to assure a good quality of

the estimation problem. Therefore, estimation results are obtained in Theorem 6.3 under
(SMA) assumption. Nevertheless, (SMA) assumption is not enough to assure any rate of
convergence (cf. chapter 7 of [47] or corollary 6.1 at the end of section 3.3). We have to
define a model for η or f∗ with a finite complexity. Here we assume that the underlying
Bayes rule f∗, associated with π, belongs to a L1−ellipsoid of prediction rules.

Theorem 6.3 (Estimation theorem). Let F (d)
w be a L1−ellipsoid of prediction rules.

Let π be a probability measure on [0, 1]d×{−1, 1} satisfying assumptions (A1) and (SMA),
and such that the Bayes rule belongs to F (d)

w . The excess risk of the classifier f̂ (Jε)
n satisfies:

∀ε > 0, Eπ(f̂ (Jε)
n ) = Eπ[dπ(f̂ (Jε)

n , f∗)] ≤ (1 +A)ε+ exp
(
−na(1− exp(−h2/2))2−dJε

)
,

where Jε is the smallest integer satisfying
∑+∞

j=Jε+1 2−djw(j) < ε/A. Parameters a,A
appear in Assumption (A1) and h is used in (SMA).

3.3. Optimality. This section is devoted to the optimality, in a minimax sense, of
estimation in the classification models F (d)

w . Let 0 < h < 1, 0 < a ≤ 1 ≤ A < +∞ and
w a mapping from N to N. We denote by Pw,h,a,A the set of all probability measures
π = (PX , η) on [0, 1]d × {−1, 1} such that

(1) The marginal PX satisfies (A1).
(2) The Assumption (SMA) is satisfied.
(3) The Bayes rule f∗, associated with π, belongs to F (d)

w .
We apply a version of the Assouad Lemma to lower bound the risk over Pw,h,a,A.

Theorem 6.4. Let w be a function from N to N such that
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(i) w(0) ≥ 1 and ∀j ≥ 1, w(j) ≥ 2d − 1
(ii) ∀j ≥ 1, w(j − 1) ≥ 2−dw(j).

We have for any n ∈ N,

inf
f̂n

sup
π∈Pw,h,a,A

Eπ(f̂n) ≥ C0n
−1
(
w (blog n/(d log 2)c+ 1)− (2d − 1)

)
,

where C0 = (h/8) exp
(
−(1−

√
1− h2)

)
. Moreover, if w(j) ≥ 2d,∀j ≥ 1 then

inf
f̂n

sup
π∈Pw,h,a,A

Eπ(f̂n) ≥ C0n
−1.

Remark 6.3. For a function w satisfying assumptions of Theorem 6.4 and under
(SMA), we cannot expect a convergence rate faster than 1/n, which is the usual lower
bound for the classification problem under (SMA).

We can deduce Theorem 7.1 of [47] from our Theorem 6.4. We denote by P1 the class
of all probability measures on [0, 1]d×{−1, 1} such that the marginal distribution PX is λd
(the Lebesgue probability distribution on [0, 1]d) and (SMA) is satisfied with the margin
h = 1. The case ”h = 1” is equivalent to R∗ = 0.

Corollary 6.1. For any integer n we have

inf
f̂n

sup
π∈P1

E(f̂n) ≥
1
8e
.

It means that no classifier can achieve any rate of convergence in the classification
models P1.

3.4. Rates of Convergence for Different Classes of Prediction Rules. In this
section we apply results stated in Theorem 6.3 and Theorem 6.4 to different L1−ellipsoid
classes F (d)

w introduced at the end of Section 2. We give rates of convergence and lower
bounds for these models. Using notation introduced in Section 2 and Subsection 3.3, we
consider the following models. For w = w

(d)
K we denote by P(d)

K the set of probability
measures P

w
(d)
K ,h,a,A

and by P(d)
α for the exponential case w = w

(d)
α .

Theorem 6.5. For the truncated class F (d)
K , we have

sup
π∈P(d)

K

Eπ(f̂ (Jn(K))
n ) ≤ CK,h,a,A

log n
n

,

where CK,h,a,A > 0 is depending only on K,h, a,A. For the lower bound, there exists
C0,K,h,a,A > 0 depending only on K,h, a,A such that, for all n ∈ N,

inf
f̂n

sup
π∈P(d)

K

Eπ(f̂n) ≥ C0,K,h,a,An
−1.

For the exponential class F (d)
α where 0 < α < 1, we have for any integer n

(6.7) sup
π∈P(d)

α

Eπ(f̂ (Jn(α))
n ) ≤ C ′α,h,a,A

(
log n
n

)1−α
,

where C ′α,h,a,A > 0 . For the lower bound, there exists C ′0,α,h,a,A > 0 depending only on
α, h, a,A such that, for all n ∈ N,

inf
f̂n

sup
π∈P(d)

α

Eπ(f̂n) ≥ C ′0,α,h,a,An
−1+α.
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The order of Jn(α) and Jn(K) is dlog
(
an/(2d log n)

)
/(d log 2)e, up to a multiplying

constant.

A remarkable point is that the class F (d)
K has an infinite VC-dimension (cf. Proposition

6.2). Nevertheless, the rate log n/n is achieved in this model. Existence of classes of rules
with infinite VC dimension that are consistent when the marginal distribution of the design
X is without atoms has been remarked in [47].

3.5. Adaptation to the complexity. In this section we provide an adaptive esti-
mator for the exponential classes. The estimator f̂ (Jn(α))

n , appearing in (6.7), depends on
the complexity parameter α, since

Jn(α) =

⌈
log(A/(εn(2d(1−α) − 1)))

d(1− α) log 2

⌉
and εn = (log n/(nC))1−α, where C = a(1 − e−h

2/2)2−d(A−1(2d(1−α) − 1))1/(1−α). In
practice, we do not have access to this parameter. Thus, it is important to construct
an estimator free from this parameter and which can learn at the near-optimal rate
((log n)/n)1−α if the underlying probability distribution belongs to F (d)

α for any α. This is
the problem of adaptation to the complexity parameter α.

To construct an adaptive estimator, we use an aggregation procedure. We split the
sample in two parts. Denote by D(1)

m the subsample containing the first m observations
and D(2)

l the one containing the l(= n−m) last ones. Subsample D(1)
m is used to construct

classifiers f̂ (J)
m for different frequency levels J ∈ [0, J (n)], for an integer J (n) chosen later.

Subsample D(2)
l is used to construct the exponential weights of our aggregation procedure

(cf. Chapter 8). We aggregate the basis classifiers f̂ (J)
m , J ∈ [1, J (n)], by the procedure

(6.8) f̃n =
J(n)∑
J=1

w
(l)
J f̂

(J)
m ,

where

(6.9) w
(l)
J =

exp
(∑n

i=m+1 Yif̂
(J)
m (Xi)

)
∑J(n)

J ′=1 exp
(∑n

i=m+1 Yif̂
(J ′)
m (Xi)

) , ∀J = 1, . . . , J (n).

The classifier that we propose is

(6.10) f̂n = Sign(f̃n).

Theorem 6.6. Assume that J (n) is greater than (log n)2 and choose l = dn/ log nd for
the learning sample size. For any α ∈ (0, 1), we have, for n large enough,

(6.11) sup
π∈P(d)

α

Eπ(f̂n) ≤ 6C ′α,h,a,A

(
log n
n

)1−α
,

where C ′α,h,a,A > 0 has been introduced in Theorem 6.5.

The classifier f̂n does not assume the knowledge of the parameter α neither of a,A, h.
Thus, it is also adaptive to the parameters a,A and h.

Remark 6.4. We may compare our method with the ERM type aggregate defined by

f̄n ∈ Arg min
f∈{f̂ (0)

m ,...,f̂
(J(n))
m }

n∑
i=m+1

1I(f(Xi) 6=Yi).
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This aggregate also satisfies (6.11), if we replace f̂n by f̄n (cf. Chapter 8). The difference
is that the aggregate (6.8) uses a multi-scale approach (it associates a weight to each
frequency), whereas the adaptive classifier f̄n selects the best “empirical frequency”.

The other way to extend our approach deals with the problem of choice of the geometry
by taking S as fundamental system. One possible solution is to consider classifiers ”adaptive
to the geometry”. Using an adaptive procedure, for instance the same as in (6.8), we can
construct classifiers adaptive to the ”rotation” and ”translation”. Consider, for example,
the dyadic partition of [0, 1]2 at the frequency level Jn. We can construct classifiers using
the same procedure as (6.6) but for partitions obtained by translation of the dyadic partition
by the vector (n1/(2Jn log n), n2/(2Jn log n)), where n1, n2 = 0, . . . , dlog ne. We can do the
same thing by aggregating classifiers obtained by the procedure (6.6) for partitions obtained
by rotation of center (1/2, 1/2) with angle n3π/(2 log n), where n3 = 0, . . . , dlog ne, of the
initial dyadic partition. In this heuristic we don’t discuss about the way to solve problems
near the boundary of [0, 1]2.

4. Discussion

In this chapter we start by considering a model of prediction rules. Then, we provide an
approximation theorem for these models. The form of object approaching the Bayes rule
in these models leads to a particular form of estimators (here the histogram estimators).
Finally, the way the estimator depends on the complexity of the underlying model (here
the level of frequency) impose a way to construct adaptive estimators. As we can see
everything depends on the starting model we consider. In this section we discuss the
representation and the estimation of prediction rules lying in these models in simple cases.

For the one-dimensional case, another point of view is to consider f∗ ∈ L2([0, 1]) and
to develop f∗ in an orthonormal wavelet basis of L2([0, 1]). Namely,

f∗ =
∑
j∈N

2j−1∑
k=0

a
(j)
k ψ

(j)
k ,

where a(j)
k =

∫ 1
0 f

∗(x)ψ(j)
k (x)dx for any j ∈ N and k = 0, . . . , 2j − 1. For the control of the

bias term we assume that the family of coefficients (a(j)
k , j ∈ N, k = 0, . . . , 2j − 1) belongs

to our L1−ellipsoid. But this point of view leads to functional analysis and estimation
issues. First problem: which functions with values in {−1, 1} have wavelet coefficients
in our L1−ellipsoid and which wavelet basis is more adapted to our problem (maybe the
Haar basis)? Second problem: which kind of estimators could be used for the estimation
of these coefficients? As we can see, the main problem is that there is no approximation
theory for functions with values in {−1, 1}. We do not know how to approach, in L2([0, 1]),
measurable functions with values in {−1, 1} by ”parametric” functions with values in
{−1, 1}. Methods developed in this chapter may be seen as a first step in this direction.
We can generalize this approach to functions with values in Z. When functions take values
in R, for instance in the regression problem, usual approximation theory is used to obtain
a control on the bias term. Finally, remark that functions with values in {−1, 1} can be
approximated by real-valued (possibly smooth) functions; this is for example what is used
for SVM or boosting. In those cases, control of the approximation term is still an open
question (cf. [109] and [89]).

In considering the classification problem over the square [0, 1]2, a classifier has to be
able to approach, for instance, the ”simple” Bayes rule f∗C which is equal to 1 inside C,
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where C is a disc inside [0, 1]2, and −1 outside C. In our framework, two questions need to
be considered:

• What is the representation of a simple function f∗C in our fundamental system,
using only coefficients with values in {−1, 0, 1} and with the writing convention
(W)?

• Is the estimate f̂ (Jn)
n , where Jn = dlog

(
an/(2d log n)

)
/(d log 2)e is the frequency

rank appearing in Theorem 6.5, a good classifier when the underlying probability
measure yields f∗C as Bayes rule?

At a first glance, our point of view is not the right way to estimate f∗C . In this regular
case (the boundary is an infinite differentiable curve), the direct estimation of the boundary
is a better approach. The main reason is that a 2-dimensional estimation problem becomes
a 1-dimensional problem. Such reduction of dimension makes the estimation easier (in
passing, our approach is specifically good in the 1-dimensional case, since the notion of
boundary does not exist in this case). Nevertheless, our approach is applicable for the
estimation of such functions (cf. Theorem 6.7). Actually, a direct estimation of the
boundary reduces the dimension but there is a loss of observations since observations far
from the boundary are not used by this estimation point of view. This may explain why
our approach is applicable. Denote by

N (A, ε, ||.||∞) = min
(
N : ∃x1, . . . , xN ∈ R2 : A ⊆ ∪Nj=1B∞(xj , ε)

)
the ε−covering number of a subset A of [0, 1]2, w.r.t. the infinity norm of R2. For example,
the circle C = {(x, y) ∈ R2 : (x − 1/2)2 + (y − 1/2)2 = (1/4)2} satisfies N (C, ε, ||.||∞) ≤
(π/4)ε−1. For any set A of [0, 1]2, denote by ∂A the boundary of A.

Theorem 6.7. Let A be a subset of [0, 1]2 such that N (∂A, ε, ||.||∞) ≤ δ(ε), for any
ε > 0, where δ is a decreasing function on R∗

+ with values in R+ satisfying ε2δ(ε) −→ 0
when ε −→ 0. Consider the prediction rule fA = 21IA − 1. For any ε > 0, denote by ε0 the
greatest positive number satisfying δ(ε0)ε20 ≤ ε. There exists a prediction rule constructed
in the fundamental system S at the frequency rank Jε0 with coefficients in {−1, 1} denoted
by

fε0 =
∑

k∈I2(Jε0 )

a
(Jε0 )

k φ
(Jε0 )

k ,

with Jε0 = blog(1/ε0)/ log 2c such that

||fε0 − fA||L1(λ2) ≤ 36ε.

For instance, there exists a function fn, written in the fundamental system S at the
frequency level Jn = blog(4n/(π log n))/ log 2c, which approaches the prediction rule f∗C
with a L1(λ2) error upper bounded by 36(log n)/n. This frequency level is, up to a constant
factor, the same as the one appearing in Theorem 6.5. In a more general way, any prediction
rule with a boundary having a finite perimeter (for instance polygons) is approached by a
function written in the fundamental system at the same frequency rank Jn and the same
order of L1(λ2) error (log n)/n. Remark that for this frequency level Jn, we have to estimate
n/ log n coefficients. Estimations of one coefficient a(Jn)

k , for k ∈ I2(Jn), depends on the
number of observation in the square I(Jn)

k . The probability that no observation ”falls”
in I(Jn)

k is smaller than n−1. Thus, number of coefficient estimated with no observations
is small compared to the order of approximation (log n)/n and is taken into account in
the variance term. Now, the problem is about finding an L1−ellipsoid of prediction rules
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such that for any integer n the approximation function fn belongs to such a ball. This
problem depends on the geometry of the boundary set ∂A. It arises naturally since we
chose a particular geometry for our partition: dyadic partitions of the space [0, 1]d, and
we have to pay a price for this choice which has been made independently of the type of
functions to estimate. But, this choice of geometry is, in our case, the same as the choice
of a wavelet basis, for instance, in the density estimation problem. Depending on the type
of Bayes rules we have to estimate, a special partition can be considered. For example
our ”dyadic approach” is very well adapted for the estimation of Bayes rules associated
with chessboard (with the value 1 for black square and −1 for white square). This kind of
Bayes rules are very badly estimated by classification procedures estimating the boundary
since most of these procedures require regularity assumptions which are not fulfilled in the
case of chessboards. In the general case, the ideal choice of the geometry is adapted to the
particular geometry induced by the measure µ on [0, 1]d, defined by

µ(A) =
∫
A
|2η(x)− 1|PX(dx),

for any measurable set A ⊆ [0, 1]d. Namely, we do not need a good resolution of the
partition for the regions of [0, 1]d with a low µ−probability. However, we need a sharper
resolution for regions with a high µ−probability. In our case (under assumptions (A1)
and (SMA)), the measure µ is equivalent to the Lebesgue measure. Thus, we do not need
different resolution for different areas of the square [0, 1]d.

We can extend our approach in several ways. Consider the dyadic partition of [0, 1]d

with frequency Jn. Instead of choosing 1 or −1 for each square of this partition (like in
our approach), we can do a least square regression in each cell of the partition. Inside a
cell I(Jn)

k , where k ∈ Id(Jn), we can compute the line minimizing
n∑
i=1

(f(Xi)− Yi)21I(Xi∈I
(Jn)
k )

,

where f is taken in the set of all indicators of half spaces of [0, 1]d intersecting I(Jn)
k . Of

course, depending on the number of observations inside the cell I(Jn)
k we can consider

bigger classes of indicators than the one made of the indicators of half spaces. Our classifier
is close to the histogram estimator in density or regression framework, which has been
extended to smoother procedures.

5. Proofs

In all the proofs, we use the analytical representation of the predictions rules to underly
the similarity with the techniques used in the wavelet literature. Nevertheless, these proofs
can be obtained by using the dyadic decision tree representation.

Proof of Theorem 6.1: Since {η ≥ 1/2} is almost everywhere open there exists an
open subset O of [0, 1]d such that λd({η ≥ 1/2}∆O) = 0. If O is the empty set then take
g = −1, otherwise, for all x ∈ O denote by Ix the biggest subset I(j)

k for j ∈ N and k ∈ Id(j)
such that x ∈ I(j)

k and I(j)
k ⊆ O. Remark that Ix exists because O is open. We can see that

for any y ∈ Ix we have Iy = Ix, thus, (Ix : x ∈ O) is a partition of O. We denote by IO a
subset of index (j,k), where j ∈ N,k ∈ Id(j) such that {Ox : x ∈ O} = {I(j)

k : (j,k) ∈ IO}.
For any (j,k) ∈ IO we take a(j)

k = 1.
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Take O1 an open subset λd-almost everywhere equal to {η < 1/2}. If O1 is the empty
set then take g = 1. Otherwise, consider the set of index IO1 built in the same way as
previously. For any (j,k) ∈ IO1 we take a(j)

k = −1.
For any (j,k) /∈ IO ∪ IO1 , we take a(j)

k = 0. Consider

g =
+∞∑
j=0

∑
k∈Id(j)

a
(j)
k φ

(j)
k .

It is easy to check that the function g belongs to F (d), satisfies the writing convention (W)
and, for λd−almost x ∈ [0, 1]d, g(x) = fη(x).

Proof of Proposition 6.1: Assume that F (d)
w 6= {1I[0,1]d}. Take f ∈ F (d)

w − {1I[0,1]d}.
Consider the writing of f in the system S using the convention (W),

f =
∑
j∈N

∑
k∈Id(j)

a
(j)
k φ

(j)
k ,

where a(j)
k ∈ {−1, 0, 1} for any j ∈ N,k ∈ Id(j). Consider b(j)k = |a(j)

k | for any j ∈ N,k ∈
Id(j). Consider f2 =

∑
j∈N

∑
k∈Id(j) b

(j)
k φ

(j)
k . Remark that the function f2 ∈ F (d) but does

not satisfy the writing convention (W). We have f2 = 1I[0,1]d a.s.. For any j ∈ N we have

(6.12) card
{
k ∈ Id(j) : b(j)k 6= 0

}
= card

{
k ∈ Id(j) : a(j)

k 6= 0
}
.

Moreover, one coefficient b(j)k 6= 0 contributes to fill a cell of Lebesgue measure 2−dj among
the hypercube [0, 1]d. Since the mass total of [0, 1]d is 1, we have

(6.13) 1 =
∑
j∈N

2−djcard
{
k ∈ Id(j) : b(j)k 6= 0

}
.

Moreover, f ∈ F (d) thus, for any j ∈ N,

w(j) ≥ card
{
k ∈ Id(j) : a(j)

k 6= 0
}
.

We obtain the second assertion of Proposition 6.1 by using the last inequality and both of
the assertions (6.12) and (6.13).

Assume that
∑+∞

j=1 2−djw(j) ≥ 1. For any integer j 6= 0, denote by Ind(j) the set
of indexes {(j,k) : k ∈ Id(j)}. We use the lexicographic order of Nd+1 to order sets of
indexes. Take Indw(1) the family of the first w(1) elements of Ind(1). Denote by Indw(2)
the family made of the first w(1) elements of Ind(1) and add, at the end of this family
in the correct order, the first w(2) elements (2,k) of Ind(2) such that φ(1)

k′ φ
(2)
k = 0 for

any (1,k′) ∈ Indw(1),..., for the step j, construct the family Indw(j) made of all the
elements of Indw(j − 1) in the same order and add at the end of this family the indexes
(j,k) of Ind(j) among the first w(j) elements of Ind(j) such that φ(J)

k′ φ
(j)
k = 0 for any

(J,k′) ∈ Indw(j − 1). If there is no more indexes satisfying this condition then, we stop
the construction, otherwise, we go on. Denote by Ind the final family obtained by this
construction (Ind can be finite or infinite). Then, we enumerate the indexes of Ind by
(j1,k1) ≺ (j2,k2) ≺ · · · . For the first (j1,k1) ∈ Ind take a(j1)

k1
= 1, for the second element

(j2,k2) ∈ I take a(j2)
k2

= −1,etc. . Consider the function

f =
∑
j∈N

∑
k∈Id(j)

a
(j)
k φ

(j)
k .
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If the construction stops at a given iteration N then f takes its values in {−1, 1} and the
writing convention (W) is fulfilled since every cells I(j)

k such that a(j)
k 6= 0 has a neighboring

cell associated to a coefficient non equals to 0 with an opposite value. Otherwise, for any
integer j 6= 0, the number of coefficient a(j)

k , for k ∈ Id(j), non equals to 0 is w(j) and the

total mass of cells I(j)
k such that a(j)

k 6= 0 is
∑

j∈N 2−djcard
{
k ∈ Id(j) : a(j)

k 6= 0
}

which is
greater or equal to 1 by assumption. Thus, all the hypercube is filled by cells associated
with coefficients non equal to 0. So f takes its values in {−1, 1} and the writing convention
(W) is fulfilled since every cells I(j)

k such that a(j)
k 6= 0 has a neighboring cell associated

with a coefficient non equals to 0 with an opposite value. Moreover f is not 1I[0,1]d .
Proof of Theorem 6.2. Let π = (PX , η) be a probability measure on [0, 1]d×{−1, 1}

in Pw,A. Denote by f∗ a Bayes rule associated with π (for example f∗ = sign(2η − 1)) .
We have

dπ(f, f∗) = (1/2)E[|2η(X)− 1||f(X)− f∗(X)|] ≤ (A/2)||f − f∗||L1(λd).

Let ε > 0. Define by Jε the smallest integer satisfying
+∞∑

j=Jε+1

2−djw(j) <
ε

A
.

We write f∗ in the fundamental system (φ(j)
k , j ≥ Jε) using the convention of writing of

section 3.1. Remark that, we start the expansion of f∗ at the level of frequency Jε and
then, we use the writing convention (W) on the coefficients of this expansion. Namely, we
consider

f∗ =
∑

k∈Id(Jε)

A
(Jε)
k φ

(Jε)
k +

+∞∑
j=Jε+1

∑
k∈Id(j)

a
(j)
k φ

(j)
k .

Next, we define the best approximation of f∗ at the frequency level Jε by

(6.14) fε =
∑

k∈Id(Jε)

B
(Jε)
k φ

(Jε)
k ,

where

(6.15) B
(Jε)
k =

{
1 if p(Jε)

k > 1/2
−1 otherwise

and

(6.16) p
(Jε)
k = P(Y = 1|X ∈ I(Jε)

k ) =
∫
I(Jε)
k

η(x)
dPX(x)

PX(I(Jε)
k )

,

for all k ∈ Id(Jε). Note that, if A(Jε)
k 6= 0 then A(Jε)

k = B
(Jε)
k , moreover f∗ takes its values

in {−1, 1}, thus ,we have

||fε − f∗||L1(λd) =
∑

k∈Id(Jε)

A
(Jε)
k 6=0

∫
I(Jε)
k

|f∗(x)− fε(x)|dx+
∑

k∈Id(Jε)

A
(Jε)
k =0

∫
I(Jε)
k

|f∗(x)− fε(x)|dx

≤ 2−dJε+1card
{
k ∈ Id(Jε) : A(Jε)

k = 0
}

≤ 2
+∞∑

j=Jε+1

2−djw(j) < 2ε/A.
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�

Proof of Theorem 6.3. Let π = (PX , η) be a probability measure on [0, 1]d×{−1, 1}
satisfying (A1), (SMA) and such that f∗ = sign(2η − 1), a Bayes classifier associated with
π, belongs to F (d)

w (an L1−ellipsoid of Bayes rules).
Let ε > 0 and Jε the smallest integer satisfying

∑+∞
j=Jε+1 2−djw(j) < ε/A. We decompose

the risk in the bias term and variance term:

E(f̂ (Jε)
n ) = E

[
dπ(f̂ (Jε)

n , f∗)
]
≤ E

[
dπ(f̂ (Jε)

n , fε)
]

+ dπ(fε, f∗),

where f̂ (Jε)
n is introduced in (6.6) and fε in (6.14).

Using the definition of Jε and according to the approximation Theorem (Theorem 6.2),
the bias term satisfies:

dπ(fε, f∗) ≤ ε.

For the variance term we have (using the notations introduced in (6.6) and (6.15)):

E
[
dπ(f̂ (Jε)

n , fε)
]

=
1
2

∣∣∣E [Y (fε(X)− f̂ (Jε)
n (X))

]∣∣∣ ≤ 1
2

E

[∫
[0,1]d

|fε(x)− f̂ (Jε)
n (x)|dPX(x)

]

=
1
2

∑
k∈Id(Jε)

E

[∫
I(Jε)
k

|B(Jε)
k − Â

(Jε)
k |dPX

]

≤ A

2dJε+1

∑
k∈Id(Jε)

E[|B(Jε)
k − Â

(Jε)
k |]

≤ A

2dJε

∑
k∈Id(Jε)

P
(
|B(Jε)

k − Â
(Jε)
k | = 2

)
.

Now, we apply a concentration inequality in each cell of the dyadic partition (I(Jε)
k : k ∈

Id(Jε)). Let k ∈ Id(Jε). We introduce the following events:

Ω(m)
k =

{
Card{i ∈ {1, . . . , n} : Xi ∈ I(Jε)

k } = m
}
,∀m ∈ {0, . . . , n}

and
Ωk = {N (Jε)+

k ≤ N
(Jε)−
k },

where N (Jε)+
k and N (Jε)−

k have been defined in subsection 3.2. We have

P(Â(Jε)
k = −1) = P(Ω(0)c

k ∩ Ωk) + P(Ω(0)
k )

and

P(Ω(0)c
k ∩ Ωk) =

n∑
m=1

P(Ω(m)
k ∩ Ωk)

=
n∑

m=1

P(Ωk|Ω
(m)
k )P(Ω(m)

k ).

Moreover, if we denote by Z1, . . . , Zn n i.i.d. random variables with a Bernoulli with
parameter p(Jε)

k for common probability distribution (we recall that p(Jε)
k is introduced in

(6.16) and is equal to P(Y = 1|X ∈ I(Jε)
k )), we have for any m = 1, . . . , n,

P(Ωk|Ω
(m)
k ) = P

(
1
m

m∑
i=1

Zi ≤
1
2

)
.
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The concentration inequality of Hoeffding leads to
(6.17)

P

(
1
m

m∑
i=1

Zi ≥ p
(Jε)
k + t

)
≤ exp(−2mt2) and P

(
1
m

m∑
i=1

Zi ≤ p
(Jε)
k − t

)
≤ exp(−2mt2),

for all t > 0 and m = 1, . . . , n.
Denote by b(Jε)

k the probability P(X ∈ I(Jε)
k ). If p(Jε)

k > 1/2, applying second inequality
of (6.17) leads to

P
(
|B(Jε)

k − Â
(Jε)
k | = 2

)
= P(Â(Jε)

k = −1)

≤
n∑

m=1

P

 1
m

m∑
j=1

Zj ≤ p
(Jε)
k − (p(Jε)

k − 1/2)

( n

m

)
(b(Jε)

k )m(1− b
(Jε)
k )n−m

+ P(Ω(0)
k )

≤
n∑

m=0

exp
(
−2m(p(Jε)

k − 1/2)2
)( n

m

)
(b(Jε)

k )m(1− b
(Jε)
k )n−m

=
(
1− b

(Jε)
k (1− exp(−2(p(Jε)

k − 1/2)2))
)n

≤ exp
(
−na(1− exp(−2(p(Jε)

k − 1/2)2))2−dJε

)
.

If p(Jε)
k < 1/2 then, similar arguments used in the previous case and first inequality of

(6.17) lead to

P
(
|B(Jε)

k − Â
(Jε)
k | = 2

)
= P(Â(Jε)

k = 1)

≤ exp
(
−na(1− exp(−2(p(Jε)

k − 1/2)2))2−dJε

)
.

If p(Jε)
k = 1/2, we use P

(
|B(Jε)

k − Â
(Jε)
k | = 2

)
≤ 1. Like in the proof of Theorem 6.2, we

use the writing

f∗ =
∑

k∈Id(Jε)

A
(Jε)
k φ

(Jε)
k +

+∞∑
j=Jε+1

∑
k∈Id(j)

a
(j)
k φ

(j)
k .

Since PX(η = 1/2) = 0, if A(Jε)
k 6= 0 then p(Jε)

k 6= 1/2. Thus, the variance term satisfies:

E
[
dπ(f̂n, f∗ε )

]
≤ A

2dJε

( ∑
k∈Id(Jε)

A
(Jε)
k 6=0

P
(
|B(Jε)

k − Â
(Jε)
k | = 2

)
+

∑
k∈Id(Jε)

A
(Jε)
k =0

P
(
|B(Jε)

k − Â
(Jε)
k | = 2

))

≤ A

2dJε

∑
k∈Id(Jε)

A
(Jε)
k 6=0

exp
(
−na(1− exp(−2(p(Jε)

k − 1/2)2))2−dJε

)
+Aε.

If A(Jε)
k 6= 0 then η > 1/2 or η < 1/2 over the whole set I(Jε)

k , so∣∣∣∣12 − p
(Jε)
k

∣∣∣∣ = ∫
I(Jε)
k

∣∣∣∣η(x)− 1
2

∣∣∣∣ dPX(x)

PX(I(Jε)
k )

.
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Moreover π satisfies P (|2η(X)− 1| ≥ h) = 1, so∣∣∣∣12 − p
(Jε)
k

∣∣∣∣ ≥ h

2
.

We have shown that for all ε > 0,

E(f̂n) = E[dπ(f̂n, f∗)] ≤ (1 +A)ε+ exp
(
−na(1− exp(−2(h/2)2))2−dJε

)
,

where Jε is the smallest integer satisfying
∑+∞

j=Jε+1 2−djw(j) < ε/A.
�

Proof of Theorem 6.4. For all q ∈ N we consider Gq a net of [0, 1]d defined by:

Gq =
{(

2k1 + 1
2q+1

, . . . ,
2kd + 1
2q+1

)
: (k1, . . . , kd) ∈ {0, . . . , 2q − 1}

}
and the function ηq from [0, 1]d to Gq such that ηq(x) is the closest point of Gq from x (in
the case of ex aequo, we choose the smallest point for the usual order on Rd). Associated to
this grid, the partition X ′(q)

1 , . . . ,X ′(q)
2dq of [0, 1]d is defined by x, y ∈ X ′(q)

i iff ηq(x) = ηq(y)

and we use a special indexation for this partition. Denote by x′(q)k1,...,kd
=
(

2k1+1
2q+1 , . . . ,

2kd+1
2q+1

)
.

We say that x′(q)k1,...,kd
≺ x′

(q)
k′1,...,k′d

if

ηq−1(x′
(q)
k1,...,kd

) ≺ ηq−1(x′
(q)
k′1,...,k′d

)

or
ηq−1(x′

(q)
k1,...,kd

) = ηq−1(x′
(q)
k′1,...,k′d

) and (k1, . . . , kd) < (k′1, . . . , k′d),

for the lexicographical order on Nd. Thus, the partition (X ′(q)
j : j = 1, . . . , 2dq) has an

increasing indexation according to the order of (x′(q)k1,...,kd
) for the order defined above.

This order take care of the previous partition by splitting blocks in the given right order
and, inside a block of a partition, we take the lexicographic order of Nd. We introduce
an other parameter m ∈ {1, . . . , 2qd} and we define for all i = 1, . . . ,m, X (q)

i = X ′(q)
i

and X (q)
0 = [0, 1]d − ∪mi=1X

(q)
i . Parameters q and m will be chosen later. We consider

W ∈ [0,m−1], chosen later, and define the function fX from [0, 1]d to R by fX = W/λd(X1)
(where λd is the Lebesgue measure on [0, 1]d) on X1, . . . ,Xm and (1−mW )/λd(X0) on X0.
We denote by PX the probability distribution on [0, 1]d with the density fX w.r.t. the
Lebesgue measure. For all σ = (σ1, . . . , σm) ∈ Ω = {−1, 1}m we consider ησ defined, for
any x ∈ [0, 1]d, by

ησ(x) =

{
1+σjh

2 if x ∈ Xj , j = 1, . . . ,m,
1 if x ∈ X0.

We have a set of probability measures {πσ : σ ∈ Ω} on [0, 1]d × {−1, 1} indexed by the
hypercube Ω where PX is the marginal on [0, 1]d of πσ and ησ its conditional probability
function of Y = 1 given X. We denote by f∗σ the Bayes rule associated to πσ, we have
f∗σ(x) = σj if x ∈ Xj for j = 1, . . . ,m and 1 if x ∈ X0, for any σ ∈ Ω.

Now we give conditions on q,m and W such that for all σ in Ω, πσ belongs to Pw,h,a,A.
If we choose

(6.18) W = 2−dq,
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then, fX = 1I[0,1]d (so PX << λ and ∀x ∈ [0, 1]d, a ≤ dPX/dλ(x) ≤ A). We have clearly

|2η(x)− 1| ≥ h for any x ∈ [0, 1]d. We can see that f∗σ ∈ F
(d)
w for all σ ∈ {−1, 1}m iff

w(q + 1) ≥ inf(x ∈ 2dN : x ≥ m)

w(q) ≥
{

2d − 1 if m < 2d

inf(x ∈ 2dN : x ≥ 2−dm) otherwise
. . .

w(1) ≥
{

2d − 1 if m < 2dq

inf(x ∈ 2dN : x ≥ 2−dqm) otherwise
w(0) ≥ 1

.

Since we have w(0) = 1, w(j) ≥ 2d−1 and w(j−1) ≥ w(j)/2d for all j ≥ 1 then, f∗σ ∈ F
(d)
w

for all σ ∈ Ω iff

(6.19) w(q + 1) ≥ inf(x ∈ 2dN : x ≥ m).

Take q,m and W such that (6.18) and (6.19) are fulfilled then, {πσ : σ ∈ Ω} is a subset
of Pw,h,a,A. Let σ ∈ Ω and f̂n be a classifier, we have

Eπσ

[
R(f̂n) − R∗

]
= (1/2)Eπσ

[
|2ησ(X)− 1||f̂n(X)− f∗σ(X)|

]
≥ (h/2)Eπσ

[
|f̂n(X)− f∗σ(X)|

]
≥ (h/2)Eπσ

[
m∑
i=1

∫
Xi

|f̂n(x)− f∗σ(x)|dPX(x) +
∫
X0

|f̂n(x)− f∗σ(x)|dPX(x)

]

≥ (Wh/2)
m∑
i=1

Eπσ

[∫
Xi

|f̂n(x)− σi|
dx

λ(X1)

]

≥ (Wh/2)Eπσ

[
m∑
i=1

∣∣∣∣σi − ∫
Xi

f̂n(x)
dx

λ(X1)

∣∣∣∣
]
.

We deduce that

inf
f̂n

sup
π∈Pw,h,a,A

Eπ(f̂n) ≥ (Wh/2) inf
σ̂n∈[−1,1]m

sup
σ∈{−1,1}m

Eπσ

[
m∑
i=1

|σi − σ̂i|

]
.

Now, we control the Hellinger distance between two neighboring probability measures.
Let ρ be the Hamming distance on Ω. Let σ, σ′ in Ω such that ρ(σ, σ′) = 1. We have

H2(π⊗nσ , π⊗nσ′ ) = 2
(

1−
(

1− H2(πσ, πσ′)
2

)n)
,

and a straightforward calculus leads to H2(πσ, πσ′) = 2W
(
1−

√
1− h2

)
. If we have

W ≤ 1/n then, H2(π⊗nσ , π⊗nσ′ ) ≤ β < 2 where β = 2
(
1− exp(1−

√
1− h2)

)
. One version

of the Assouad Lemma (cf. [6] or Chapter 3) yields

inf
σ̂n∈[−1,1]m

sup
σ∈{−1,1}m

Eπσ

[
m∑
i=1

|σi − σ̂i|

]
≥ (m/4) (1− (β/2))2 .

We conclude that

(6.20) inf
f̂n

sup
π∈Pw,h,a,A

Eπ(f̂n) ≥Wh
m

8

(
1− β

2

)2

.
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Finally, we take q = blog n/(d log 2)c , W = 2−dq ≤ 1/n andm = w (blog n/(d log 2)c+ 1)−
(2d − 1). Next, replacing these values in (6.20), we obtain

inf
f̂n

sup
π∈Pw,h,a,A

Eπ(f̂n) ≥ C0n
−1
(
w (blog n/(d log 2)c+ 1)− (2d − 1)

)
.

where C0 = (h/8) exp
(
−(1−

√
1− h2)

)
.

�

Proof of Corollary 6.1: It suffices to apply Theorem 6.4 to the function w defined
by w(j) = 2dj for any integer j and a = A = 1 for PX = λd.

�

Proof of Theorem 6.5:

(1) If we assume that Jε ≥ K then
∑+∞

j=Jε+1 2−djw(d)
K (j) = (2dK)/(2dJε(2d − 1)). We

take

Jε =

⌈
log
(
(A2dK)/(ε(2d − 1))

)
d log 2

⌉
and εn the unique solution of (1 + A)εn = exp(−nCεn), where C = a(1 −
e−h

2/2)(2d − 1)[A2d(K+1)]−1. Thus, εn ≤ (log n)/(Cn). For Jn(K) = Jεn , we
have

E
(
f̂ (Jn(K))
n

)
≤ CK,d,h,a,A

log n
n

,

for any integer n such that log n ≥ 2d(K+1)(2d − 1)−1 and Jn(K) ≥ K, where
CK,d,h,a,A = 2(1 +A)/C.

If we have blog n/(d log 2)c ≥ 2 then w (blog n/(d log 2)c+ 1)−(2d−1) ≥ 2d, so
we obtain the lower bound with the constant C0,K = 2dC0 and if blog n/(d log 2)c ≥
K the constant can be C0,K = C0(2dK − (2d − 1)).

(2) If we have Jε ≥ N (d)(α), then
∑+∞

j=Jε+1 2−djw(d)
α (j) ≤ (2d(1−α)Jε(2d(1−α) − 1))−1.

We take

Jε =

⌈
log(A/(ε(2d(1−α) − 1)))

d(1− α) log 2

⌉
.

Denote by εn the unique solution of (1 + A)εn = exp(−nCε1/(1−α)
n ) where C =

a(1 − e−h
2/2)2−d(A−1(2d(1−α) − 1))1/(1−α). We have εn ≤ (log n/(nC))1−α. For

Jn(α) = Jεn , we have

E
(
f̂ (Jn(α))
n

)
≤ 2(1 +A)A

2d(1−α) − 1

[
2d

a(1− e−h2/2)

]1−α( log n
n

)1−α
.

For the lower bound we have for any integer n,

inf
f̂n

sup
π∈P(d)

α

Eπ(f̂n) ≥ C0 max
(
1, n−1

(
2dnα − (2d − 1)

))
.

�

Proof of Theorem 6.6: Let α ∈ (0, 1). For n large enough, we have J (n) ≥ Jm(α).
Since the (SMA) assumption is equivalent to the margin assumption introduced by [91]
and [116] with margin parameter equal to 1 (cf. proof of Proposition 3.1 of Chapter 3) we
have, according to Corollary 8.1 of Chapter 8,

(6.21) E[R(f̂n)−R∗] ≤ 3 min
J=0,...,J(n)

E[R(f̂ (J)
m )−R∗] + C

(log n) log(J (n) + 1)
n

.
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According to Theorem 6.5, we have

E[R(f̂ (J)
m )−R∗] ≤ C ′α,h,a,A

( logm
m

)1−α
.

Then, combining the last inequality, the fact that m ≤ n/2 and (6.21), we complete the
proof.

�

Proof of Theorem 6.7: Let ε > 0. Denote by ε0 the greatest positive number
satisfying δ(ε0)ε20 ≤ ε. Consider N(ε0) = N (∂A, ε0, ||.||∞) and x1, . . . , xN(ε0) ∈ R2 such

that ∂A ⊂ ∪N(ε0)
j=1 B∞(xj , ε0). Since 2−Jε0 ≥ ε0, only nine dyadic sets of frequency Jε0 can

be used to cover a ball of radius ε0 for the infinity norm of R2. Thus, we only need 9N(ε0)
dyadic sets of frequency Jε0 to cover ∂A. Consider the partition of [0, 1]2 by dyadic sets
of frequency Jε0 . Except on the 9N(ε0) dyadic sets used to cover the boundary ∂A, the
prediction rule fA is constant, equal to 1 or −1, on the other dyadic sets. Thus, by taking
fε0 =

∑2Jε0−1
k1,k2=0 a

(Jε0 )

k1,k2
φ

(Jε0 )

k1,k2
, where a(Jε0 )

k1,k2
is equal to one value of fA in the dyadic set I(Jε0 )

k1,k2
,

we have
||fε0 − fA||L1(λ2) ≤ 9N(ε0)2−2Jε0 ≤ 36δ(ε0)ε20 ≤ 36ε.

�
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CHAPTER 7

Simultaneous Adaptation to the Margin and to Complexity

in Classification

We consider the problem of adaptation to the margin and to complexity in binary classi-
fication. We suggest an exponential weighting aggregation scheme. We use this aggregation
procedure to construct classifiers which adapt automatically to margin and complexity.
Two main examples are worked out in which adaptivity is achieved in frameworks proposed
by Scovel and Steinwart (2004, 2005) and Tsybakov (2004). Adaptive schemes, like ERM
or penalized ERM, usually involve a minimization step. It is not the case of our procedure.

Contents

1. Introduction 115
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3. Adaptation to the margin and to complexity 121
3.1. Adaptation in the framework of Tsybakov 121
3.2. Adaptation in the framework of Scovel and Steinwart 122
4. Proofs 126

The material of this chapter is an article accepted for publication in the Annals of
Statistics (cf. [82]).

1. Introduction

Let (X ,A) be a measurable space. Denote by Dn a sample ((Xi, Yi))i=1,...,n of i.i.d.
random pairs of observations where Xi ∈ X and Yi ∈ {−1, 1}. Denote by π the joint
distribution of (Xi, Yi) on X ×{−1, 1}, and PX the marginal distribution of Xi. Let (X,Y )
be a random pair distributed according to π and independent of the data, and let the
component X of the pair be observed. The problem of statistical learning in classification
(pattern recognition) consists in predicting the corresponding value Y ∈ {−1, 1}.

A prediction rule is a measurable function f : X 7−→ {−1, 1}. The misclassification
error associated to f is

R(f) = P(Y 6= f(X)).

It is well known (see, e.g., Devroye, Györfi and Lugosi (1996)) that

min
f
R(f) = R(f∗) = R∗, where f∗(x) = sign(2η(x)− 1)

and η is the a posteriori probability defined by

η(x) = P(Y = 1|X = x),
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for all x ∈ X (where sign(y) denotes the sign of y ∈ R with the convention sign(0) = 1).
The prediction rule f∗ is called the Bayes rule and R∗ is called the Bayes risk. A classifier
is a function, f̂n = f̂n(X,Dn), measurable with respect to Dn and X with values in
{−1, 1}, that assigns to every sample Dn a prediction rule f̂n(., Dn) : X 7−→ {−1, 1}. A
key characteristic of f̂n is the generalization error E[R(f̂n)], where

R(f̂n) = P(Y 6= f̂n(X)|Dn).

The aim of statistical learning is to construct a classifier f̂n such that E[R(f̂n)] is as close
to R∗ as possible. Accuracy of a classifier f̂n is measured by the value E[R(f̂n)]−R∗ called
excess risk of f̂n.

Classical approach due to Vapnik and Chervonenkis (see, e.g. Devroye, Györfi and
Lugosi (1996)) consists in searching for a classifier that minimizes the empirical risk

(7.1) Rn(f) =
1
n

n∑
i=1

1I(Yif(Xi)≤0),

over all prediction rules f in a source class F , where 1IA denotes the indicator of the
set A. Minimizing the empirical risk (7.1) is computationally intractable for many sets
F of classifiers, because this functional is neither convex nor continuous. Nevertheless,
we might base a tractable estimation procedure on minimization of a convex surrogate
φ for the loss (Cortes and Vapnik (1995), Freund and Schapire (1997), Lugosi and Vay-
atis (2004), Friedman, Hastie and Tibshirani (2000), Bühlmann and Yu (2002)). It has
been recently shown that these classification methods often give classifiers with small
Bayes risk (Blanchard, Lugosi and Vayatis (2004), Scovel and Steinwart (2004, 2005)).
The main idea is that the sign of the minimizer of A(φ)(f) = E[φ(Y f(X))] the φ-risk,
where φ is a convex loss function and f a real valued function, is in many cases equal to
the Bayes classifier f∗. Therefore minimizing A(φ)

n (f) = 1
n

∑n
i=1 φ(Yif(Xi)) the empirical

φ-risk and taking f̂n = sign(F̂n) where F̂n ∈ Arg minf∈F A
(φ)
n (f) leads to an approximation

for f∗. Here, Arg minf∈F P (f), for a functional P , denotes the set of all f ∈ F such that
P (f) = minf∈F P (f). Lugosi and Vayatis (2004), Blanchard, Lugosi and Vayatis (2004),
Zhang (2004), Scovel and Steinwart (2004, 2005) and Bartlett, Jordan and McAuliffe (2003)
give results on statistical properties of classifiers obtained by minimization of such a convex
risk. A wide variety of classification methods in machine learning are based on this idea,
in particular, on using the convex loss associated to support vector machines (Cortes and
Vapnik (1995), Schölkopf and Smola (2002)),

φ(x) = (1− x)+,

called the hinge-loss, where z+ = max(0, z) denotes the positive part of z ∈ R. Denote by

A(f) = E[(1− Y f(X))+]

the hinge risk of f : X 7−→ R and set

(7.2) A∗ = inf
f
A(f),

where the infimum is taken over all measurable functions f . We will call A∗ the optimal
hinge risk. One may verify that the Bayes rule f∗ attains the infimum in (7.2) and
Lin (1999) and Zhang (2004) have shown that,

(7.3) R(f)−R∗ ≤ A(f)−A∗,
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for all measurable functions f with values in R. Thus minimization of A(f) − A∗, the
excess hinge risk, provides a reasonable alternative for minimization of excess risk.

The difficulty of classification is closely related to the behavior of the a posteriori
probability η. Mammen and Tsybakov (1999), for the problem of discriminant analysis
which is close to our classification problem, and Tsybakov (2004) have introduced an
assumption on the closeness of η to 1/2, called margin assumption (or low noise assumption).
Under this assumption, the risk of a minimizer of the empirical risk over some fixed class F
converges to the minimum risk over the class with fast rates, namely faster than n−1/2. In
fact, with no assumption on the joint distribution π, the convergence rate of the excess risk
is not faster than n−1/2 (cf. Devroye et al. (1996)). However, under the margin assumption,
it can be as fast as n−1. Minimizing penalized empirical hinge risk, under this assumption,
also leads to fast convergence rates (Blanchard, Bousquet and Massart (2004), Scovel and
Steinwart (2004, 2005)). Massart (2000), Massart and Nédélec (2003) and Massart (2004)
also obtain results that can lead to fast rates in classification using penalized empirical risk
in a special case of low noise assumption. Audibert and Tsybakov (2005) show that fast
rates can be achieved for plug-in classifiers.

In this chapter we consider the problem of adaptive classification. Mammen and
Tsybakov (1999) have shown that fast rates depend on both the margin parameter κ and
complexity ρ of the class of candidate sets for {x ∈ X : η(x) ≥ 1/2}. Their results were
non-adaptive supposing that κ and ρ were known. Tsybakov (2004) suggested an adaptive
classifier that attains fast optimal rates, up to a logarithmic factor, without knowing κ
and ρ. Tsybakov and van de Geer (2005) suggest a penalized empirical risk minimization
classifier that adaptively attain, up to a logarithmic factor, the same fast optimal rates of
convergence. Tarigan and van de Geer (2004) extend this result to l1-penalized empirical
hinge risk minimization. Koltchinskii (2005) uses Rademacher averages to get similar result
without the logarithmic factor. Related works are those of Koltchinskii (2001), Koltchinskii
and Panchenko (2002), Lugosi and Wegkamp (2004).

Note that the existing papers on fast rates either suggest classifiers that can be easily
implementable but are non-adaptive, or adaptive schemes that are hard to apply in practice
and/or do not achieve the minimax rates (they pay a price for adaptivity). The aim of
the present chapter is to suggest and to analyze an exponential weighting aggregation
scheme which does not require any minimization step unlike others adaptation schemes
like ERM (Empirical Risk Minimization) or penalized ERM, and does not pay a price
for adaptivity. This scheme is used a first time to construct minimax adaptive classifiers
(cf. Theorem 7.3) and a second time to construct easily implementable classifiers that are
adaptive simultaneously to complexity and to the margin parameters and that achieves
the fast rates.

The chapter is organized as follows. In Section 2 we prove an oracle inequality which
corresponds to the adaptation step of the procedure that we suggest. In Section 3 we apply
the oracle inequality to two types of classifiers one of which is constructed by minimization
on sieves (as in Tsybakov (2004)), and gives an adaptive classifier which attains fast
optimal rates without logarithmic factor, and the other one is based on the support vector
machines (SVM), following Scovel and Steinwart (2004, 2005). The later is realized as a
computationally feasible procedure and it adaptively attains fast rates of convergence. In
particular, we suggest a method of adaptive choice of the parameter of L1-SVM classifiers
with gaussian RBF kernels. Proofs are given in Section 4.
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2. Oracle inequalities

In this section we give an oracle inequality showing that a specifically defined convex
combination of classifiers mimics the best classifier in a given finite set.

Suppose that we have M ≥ 2 different classifiers f̂1, . . . , f̂M taking values in {−1, 1}.
The problem of model selection type aggregation, as studied in Nemirovski (2000), Yang (1999),
Catoni (1997), Tsybakov (2003), consists in construction of a new classifier f̃n (called ag-
gregate) which is approximatively at least as good, with respect to the excess risk, as
the best among f̂1, . . . , f̂M . In most of these papers the aggregation is based on splitting
of the sample in two independent subsamples D1

m and D2
l of sizes m and l respectively,

where m� l and m+ l = n. The first subsample D1
m is used to construct the classifiers

f̂1, . . . , f̂M and the second subsample D2
l is used to aggregate them, i.e., to construct a

new classifier that mimics in a certain sense the behavior of the best among the classifiers
f̂i.

In this section we will not consider the sample splitting and concentrate only on the
construction of aggregates (following Nemirovski (2000), Juditsky and Nemirovski (2000),
Tsybakov (2003), Birgé (2004), Bunea, Tsybakov and Wegkamp (2004)). Thus, the first
subsample is fixed and instead of classifiers f̂1, . . . , f̂M , we have fixed prediction rules
f1, . . . , fM . Rather than working with a part of the initial sample we will suppose, for
notational simplicity, that the whole sample Dn of size n is used for the aggregation step
instead of a subsample D2

l .
Our procedure is using exponential weights. The idea of exponential weights is well

known, see, e.g., Augustin, Buckland and Burnham (1997), Yang (2000), Catoni (2001),
Hartigan (2002) and Barron and Leung (2004). This procedure has been widely used in
on-line prediction, see, e.g., Vovk (1990) and Lugosi and Cesa-Bianchi (2006). We consider
the following aggregate which is a convex combination with exponential weights of M
classifiers,

(7.4) f̃n =
M∑
j=1

w
(n)
j fj ,

where

(7.5) w
(n)
j =

exp (
∑n

i=1 Yifj(Xi))∑M
k=1 exp (

∑n
i=1 Yifk(Xi))

, ∀j = 1, . . . ,M.

Since f1, . . . , fM take their values in {−1, 1}, we have,

(7.6) w
(n)
j =

exp (−nAn(fj))∑M
k=1 exp (−nAn(fk))

,

for all j ∈ {1, . . . ,M}, where

(7.7) An(f) =
1
n

n∑
i=1

(1− Yif(Xi))+

is the empirical analog of the hinge risk. Since An(fj) = 2Rn(fj) for all j = 1, . . . ,M ,
these weights can be written in terms of the empirical risks of fj ’s,

w
(n)
j =

exp (−2nRn(fj))∑M
k=1 exp (−2nRn(fk))

, ∀j = 1, . . . ,M.
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The aggregation procedure defined by (7.4) with weights (7.6) does not need any mini-
mization algorithm contrarily to the ERM procedure. Moreover, the following proposition
shows that this exponential weighting aggregation scheme has similar theoretical property
as the ERM procedure up to the residual (logM)/n. In what follows the aggregation
procedure defined by (7.4) with exponential weights (7.6) is called Aggregation procedure
with Exponential Weights and is denoted by AEW.

Proposition 7.1. Let M ≥ 2 be an integer, f1, . . . , fM be M prediction rules on X .
For any integers n, the AEW procedure f̃n satisfies

(7.8) An(f̃n) ≤ min
i=1,...,M

An(fi) +
log(M)
n

.

Obviously, inequality (7.8) is satisfied when f̃n is the ERM aggregate defined by

f̃n ∈ Arg min
f∈{f1,...,fM}

Rn(f).

It is a convex combination of fj ’s with weights wj = 1 for one j ∈ Arg minj Rn(fj) and 0
otherwise.

We will use the following assumption (cf. Mammen and Tsybakov (1999), Tsy-
bakov (2004)) that will allow us to get fast learning rates for the classifiers that we
aggregate.
(MA1) Margin (or low noise) assumption. The probability distribution π on the space
X ×{−1, 1} satisfies the margin assumption (MA1)(κ) with margin parameter 1 ≤ κ < +∞
if there exists c > 0 such that,

(7.9) E {|f(X)− f∗(X)|} ≤ c (R(f)−R∗)1/κ ,

for all measurable functions f with values in {−1, 1}.
We first give the following proposition which is valid not necessarily for the particular

choice of weights given in (7.5).

Proposition 7.2. Let assumption (MA1)(κ) hold with some 1 ≤ κ < +∞. Assume
that there exist two positive numbers a ≥ 1, b such that M ≥ anb. Let w1, . . . , wM be M
statistics measurable w.r.t. the sample Dn, such that wj ≥ 0, for all j = 1, . . . ,M ,
and

∑M
j=1wj = 1, (π⊗n − a.s.). Define f̃n =

∑M
j=1wjfj, where f1, . . . , fM are pre-

diction rules. There exists a constant C0 > 0 (for instance, C0 = 10 + ca−1/(2b) +
a−1/b exp

[(
b(8c/6)2

)
∨ (((8c/3) ∨ 1)/b)2

]
) such that

(1− (logM)−1/4)E
[
A(f̃n)−A∗

]
≤ E[An(f̃n)−An(f∗)] + C0n

− κ
2κ−1 (logM)7/4,

where f∗ is the Bayes rule.

As a consequence, we obtain the following oracle inequality.

Theorem 7.1. Let assumption (MA1)(κ) hold with some 1 ≤ κ < +∞. Assume that
there exist two positive numbers a ≥ 1, b such that M ≥ anb. Let f̃n satisfying (7.8), for
instance the AEW or the ERM procedure. Then, f̃n satisfies

(7.10) E
[
R(f̃n)−R∗

]
≤

(
1 +

2
log1/4(M)

){
2 min
j=1,...,M

(R(fj)−R∗) + C0
log7/4(M)
nκ/(2κ−1)

}
,

for all integers n ≥ 1, where C0 > 0 appears in Proposition 7.2.
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Remark 7.1. The factor 2 multiplying minj=1,...,M (R(fj)−R∗) in (7.10) is due to
the relation between the hinge excess risk and the usual excess risk (cf. inequality (7.3)).
The hinge-loss is more adapted for our convex aggregate, since we have the same statement
without this factor, namely:

E
[
A(f̃n)−A∗

]
≤

(
1 +

2
log1/4(M)

){
min

j=1,...,M
(A(fj)−A∗) + C0

log7/4(M)
nκ/(2κ−1)

}
.

Moreover, linearity of the hinge-loss on [−1, 1] leads to

min
j=1,...,M

(A(fj)−A∗) = min
f∈Conv

(A(f)−A∗) ,

where Conv is the convex hull of the set {fj : j = 1, . . . ,M}. Therefore, the excess hinge
risk of f̃n is approximately the same as the one of the best convex combination of fj’s.

Remark 7.2. For a convex loss function φ, consider the empirical φ-risk A(φ)
n (f). Our

proof implies that the aggregate

f̃ (φ)
n (x) =

M∑
j=1

wφj fj(x) with wφj =
exp

(
−nA(φ)

n (fj)
)

∑M
k=1 exp

(
−nA(φ)

n (fk)
) , ∀j = 1, . . . ,M,

satisfies the inequality (7.8) with A(φ)
n in place of An.

We consider next a recursive analog of the aggregate (7.4). It is close to the one suggested
by Yang (2000) for the density aggregation under Kullback loss and by Catoni (2004) and
Bunea and Nobel (2005) for regression model with squared loss. It can be also viewed as a
particular instance of the mirror descent algorithm suggested in Juditsky, Nazin, Tsybakov
and Vayatis (2005). We consider

(7.11) f̄n =
1
n

n∑
k=1

f̃k =
M∑
j=1

w̄jfj

where

(7.12) w̄j =
1
n

n∑
k=1

w
(k)
j =

1
n

n∑
k=1

exp(−kAk(fj))∑M
l=1 exp(−kAk(fl))

,

for all j = 1, . . . ,M , where Ak(f) = (1/k)
∑k

i=1(1− Yif(Xi))+ is the empirical hinge risk
of f and w

(k)
j is the weight defined in (7.5), for the first k observations. This aggregate

is especially useful for the on-line framework. The following theorem says that it has the
same theoretical properties as the aggregate (7.4).

Theorem 7.2. Let assumption (MA1)(κ) hold with some 1 ≤ κ < +∞. Assume that
there exist two positive numbers a ≥ 1, b such that M ≥ anb. Then the convex aggregate
f̄n defined by (7.11) satisfies

E
[
R(f̄n)−R∗

]
≤

(
1 +

2
log1/4(M)

){
2 min
j=1,...,M

(R(fj)−R∗) + C0γ(n, κ) log7/4(M)
}
,

for all integers n ≥ 1, where C0 > 0 appears in Proposition 7.2 and γ(n, κ) is equal to
((2κ− 1)/(κ− 1))n−

κ
2κ−1 if κ > 1 and to (log n)/n if κ = 1.

Remark 7.3. For all k ∈ {1, . . . , n − 1}, less observations are used to construct f̃k
than for the construction of f̃n, thus, intuitively, we expect that f̃n will learn better than f̃k.
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In view of (7.11), f̄n is an average of aggregates whose performances are, a priori, worse
than those of f̃n, therefore its expected learning properties would be presumably worse than
those of f̃n. An advantage of the aggregate f̄n is in its recursive construction, but the risk
behavior of f̃n seems to be better than that of f̄n. In fact, it is easy to see that Theorem
7.2 is satisfied for any aggregate f̄n =

∑n
k=1wkf̃k where wk ≥ 0 and

∑n
k=1wk = 1 with

γ(n, κ) =
∑n

k=1wkk
−κ/(2κ−1), and the remainder term is minimized for wj = 1 when j = n

and 0 elsewhere, that is for f̄n = f̃n.

Remark 7.4. In this section, we have only dealt with the aggregation step. But the
construction of classifiers has to take place prior to this step. This needs a split of the
sample as discussed at the beginning of this section. The main drawback of this method is
that only a part of the sample is used for the initial estimation. However, by using different
splits of the sample and taking the average of the aggregates associated with each of them,
we get a more balanced classifier which does not depend on a particular split. Since the
hinge loss is linear on [−1, 1], we have the same result as Theorem 7.1 and 7.2 for an
average of aggregates of the form (7.4) and (7.11), respectively, for averaging over different
splits of the sample.

3. Adaptation to the margin and to complexity

In Scovel and Steinwart (2004, 2005) and Tsybakov (2004) two concepts of complexity
are used. In this section we show that combining classifiers used by Tsybakov (2004) or
L1-SVM classifiers of Scovel and Steinwart (2004, 2005) with our aggregation method leads
to classifiers that are adaptive both to the margin parameter and to the complexity, in the
two cases. Results are established for the first method of aggregation defined in (7.4) but
they are also valid for the recursive aggregate defined in (7.11).

We use a sample splitting to construct our aggregate. The first subsample D1
m =

((X1, Y1), . . . , (Xm, Ym)), where m = n − l and l = dan/ log ne for a constant a > 0,
is implemented to construct classifiers and the second subsample D2

l , made of the l

last observations ((Xm+1, Ym+1), . . . , (Xn, Yn)), is implemented to aggregate them by the
procedure (7.4).

3.1. Adaptation in the framework of Tsybakov. Here we take X = Rd. Intro-
duce the following pseudo-distance, and its empirical analogue, between the sets G,G′ ⊆ X :

d∆(G,G′) = PX(G∆G′) , d∆,e(G,G′) =
1
n

n∑
i=1

1I(Xi∈G∆G′),

where G∆G′ is the symmetric difference between sets G and G′. If Y is a class of subsets
of X , denote by HB(Y, δ, d∆) the δ-entropy with bracketing of Y for the pseudo-distance
d∆ (cf. van de Geer (2000) p.16). We say that Y has a complexity bound ρ > 0 if there
exists a constant A > 0 such that

HB(Y, δ, d∆) ≤ Aδ−ρ, ∀0 < δ ≤ 1.

Various examples of classes Y having this property can be found in Dudley (1974), Ko-
rostelev and Tsybakov (1993), Mammen and Tsybakov (1995, 1999).

Let (Gρ)ρmin≤ρ≤ρmax be a collection of classes of subsets of X , where Gρ has a complexity
bound ρ, for all ρmin ≤ ρ ≤ ρmax. This collection corresponds to an a priori knowledge
on π that the set G∗ = {x ∈ X : η(x) > 1/2} lies in one of these classes (typically
we have Gρ ⊂ Gρ′ if ρ ≤ ρ′). The aim of adaptation to the margin and complexity
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is to propose f̃n a classifier free from κ and ρ such that, if π satisfies (MA1)(κ) and
G∗ ∈ Gρ, then f̃n learns with the optimal rate n−

κ
2κ+ρ−1 (optimality has been established

in Mammen and Tsybakov (1999)), and this property holds for all values of κ ≥ 1 and
ρmin ≤ ρ ≤ ρmax. Following Tsybakov (2004), we introduce the following assumption on
the collection (Gρ)ρmin≤ρ≤ρmax .
(A1)(Complexity Assumption). Assume that 0 < ρmin < ρmax < 1 and Gρ’s are
classes of subsets of X such that Gρ ⊆ Gρ′ for ρmin ≤ ρ < ρ′ ≤ ρmax and the class Gρ
has complexity bound ρ. For any integer n, we define ρn,j = ρmin + j

N(n)(ρmax − ρmin),

j = 0, . . . , N(n), where N(n) satisfies A′0n
b′ ≤ N(n) ≤ A0n

b, for some finite b ≥ b′ > 0
and A0, A

′
0 > 0. Assume that for all n ∈ N,

(i) for all j = 0, . . . , N(n) there exists N j
n an ε-net on Gρn,j for the pseudo-distance

d∆ or d∆,e, where ε = ajn
− 1

1+ρn,j , aj > 0 and maxj aj < +∞,

(ii) N j
n has a complexity bound ρn,j, for j = 0, . . . , N(n).

The first subsample D1
m is used to construct the ERM classifiers f̂ jm(x) = 21I

Ĝj
m

(x)− 1,

where Ĝjm ∈ Arg min
G∈N j

m
Rm(21IG−1) for all j = 0, . . . , N(m), and the second subsample

D2
l is used to construct the exponential weights of the aggregation procedure,

w
(l)
j =

exp
(
−lA[l](f̂ jm)

)
∑N(m)

k=1 exp
(
−lA[l](f̂km)

) , ∀j = 0, . . . , N(m),

where A[l](f) = (1/l)
∑n

i=m+1 (1− Yif(Xi))+ is the empirical hinge risk of f : X 7−→ R
based on the subsample D2

l . We consider

(7.13) f̃n(x) =
N(m)∑
j=0

w
(l)
j f̂

j
m(x), ∀x ∈ X .

The construction of f̂ jm’s does not depend on the margin parameter κ.

Theorem 7.3. Let (Gρ)ρmin≤ρ≤ρmax be a collection of classes satisfying Assumption
(A1). Then, the aggregate defined in (7.13) satisfies

sup
π∈Pκ,ρ

E
[
R(f̃n)−R∗

]
≤ Cn

− κ
2κ+ρ−1 , ∀n ≥ 1,

for all 1 ≤ κ < +∞ and all ρ ∈ [ρmin, ρmax], where C > 0 is a constant depending only
on a, b, b′, A,A0, A

′
0, ρmin, ρmax and κ, and Pκ,ρ is the set of all probability measures π on

X × {−1, 1} such that Assumption (MA1)(κ) is satisfied and G∗ ∈ Gρ.

3.2. Adaptation in the framework of Scovel and Steinwart.
3.2.1. The case of a continuous kernel. Scovel and Steinwart (2005) have obtained fast

learning rates for SVM classifiers depending on three parameters, the margin parameter
0 ≤ α < +∞, the complexity exponent 0 < p ≤ 2 and the approximation exponent
0 ≤ β ≤ 1. The margin assumption was first introduced in Mammen and Tsybakov (1999)
for the problem of discriminant analysis and in Tsybakov (2004) for the classification
problem, in the following way:
(MA2) Margin (or low noise) assumption. The probability distribution π on the space
X ×{−1, 1} satisfies the margin assumption (MA2)(α) with margin parameter 0 ≤ α < +∞
if there exists c0 > 0 such that

(7.14) P (|2η(X)− 1| ≤ t) ≤ c0t
α, ∀t > 0.
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As shown in Boucheron, Bousquet and Lugosi (2006), the margin assumptions (MA1)(κ)
and (MA2)(α) are equivalent with κ = 1+α

α for α > 0.
Let X be a compact metric space. Let H be a reproducing kernel Hilbert space (RKHS)

over X (see, e.g., Cristianini and Shawe-Taylor (2000), Schölkopf and Smola (2002)), BH
its closed unit ball. Denote by N

(
BH , ε, L2(PXn )

)
the ε-covering number of BH w.r.t.

the canonical distance of L2(PXn ), the L2-space w.r.t. the empirical measure, PXn , on
X1, . . . , Xn. Introduce the following assumptions as in Scovel and Steinwart (2005):
(A2) There exists a0 > 0 and 0 < p ≤ 2 such that for any integer n,

sup
Dn∈(X×{−1,1})n

logN
(
BH , ε, L2(PXn )

)
≤ a0ε

−p, ∀ε > 0,

Note that the supremum is taken over all the samples of size n and the bound is assuming
for any n. Every RKHS satisfies (A2) with p = 2 (cf. Scovel et al. (2005)). We define the
approximation error function of the L1-SVM as a(λ) def= inff∈H

(
λ||f ||2H +A(f)

)
−A∗.

(A3) The RKHS H, approximates π with exponent 0 ≤ β ≤ 1, if there exists a constant
C0 > 0 such that a(λ) ≤ C0λ

β, ∀λ > 0.
Note that every RKHS approximates every probability measure with exponent β = 0
and the other extremal case β = 1 is equivalent to the fact that the Bayes classifier f∗

belongs to the RKHS (cf. Scovel et al. (2005)). Furthermore, β > 1 only for probability
measures such that P (η(X) = 1/2) = 1 (cf. Scovel et al. (2005)). If (A2) and (A3) hold,
the parameter (p, β) can be considered as a complexity parameter characterizing π and H.

Let H be a RKHS with a continuous kernel on X satisfying (A2) with a parameter
0 < p < 2. Define the L1-SVM classifier by

(7.15) f̂λn = sign(F̂ λn ) where F̂ λn ∈ Arg min
f∈H

(
λ||f ||2H +An(f)

)
and λ > 0 is called the regularization parameter. Assume that the probability measure
π belongs to the set Qα,β of all probability measures on X × {−1, 1} satisfying (MA2)(α)
with α ≥ 0 and (A3) with a complexity parameter (p, β) where 0 < β ≤ 1. It has been
shown in Scovel et al. (2005) that the L1-SVM classifier,f̂λ

α,β
n

n , where the regularization

parameter is λα,βn = n
− 4(α+1)

(2α+pα+4)(1+β) , satisfies the following excess risk bound: for any ε > 0,
there exists C > 0 depending only on α, p, β and ε such that

(7.16) E
[
R(f̂λ

α,β
n

n )−R∗
]
≤ Cn

− 4β(α+1)
(2α+pα+4)(1+β)

+ε
, ∀n ≥ 1.

Remark that if β = 1, that is f∗ ∈ H, then the learning rate in (7.16) is (up to an ε)
n−2(α+1)/(2α+pα+4) which is a fast rate since 2(α+ 1)/(2α+ pα+ 4) ∈ [1/2, 1).

To construct the classifier f̂λ
α,β
n

n we need to know parameters α and β that are not
available in practice. Thus, it is important to construct a classifier, free from these
parameters, which has the same behavior as f̂λ

α,β
n

n , if the underlying distribution π belongs
to Qα,β. Below we give such a construction.

Since the RKHS H is given, the implementation of the L1-SVM classifier f̂λn only
requires the knowledge of the regularization parameter λ. Thus, to provide an easily
implementable procedure, using our aggregation method, it is natural to combine L1-SVM
classifiers constructed for different values of λ in a finite grid. We now define such a
procedure.
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We consider the L1-SVM classifiers f̂λm, defined in (7.15) for the subsample D1
m, where

λ lies in the grid

G(l) = {λl,k = l−φl,k : φl,k = 1/2 + k∆−1, k = 0, . . . , b3∆/2c},

where we set ∆ = lb0 with some b0 > 0. The subsample D2
l is used to aggregate these

classifiers by the procedure (7.4), namely

(7.17) f̃n =
∑
λ∈G(l)

w
(l)
λ f̂

λ
m

where

w
(l)
λ =

exp
(∑n

i=m+1 Yif̂
λ
m(Xi)

)
∑

λ′∈G(l) exp
(∑n

i=m+1 Yif̂
λ′
m (Xi)

) =
exp

(
−lA[l](f̂λm)

)
∑

λ′∈G(l) exp
(
−lA[l](f̂λ′m )

) ,
and A[l](f) = (1/l)

∑n
i=m+1(1− Yif(Xi))+.

Theorem 7.4. Let H be a RKHS with a continuous kernel on a compact metric space X
satisfying (A2) with a parameter 0 < p < 2. Let K be a compact subset of (0,+∞)× (0, 1].
The classifier f̃n, defined in (7.17), satisfies

sup
π∈Qα,β

E
[
R(f̃n)−R∗

]
≤ Cn

− 4β(α+1)
(2α+pα+4)(1+β)

+ε

for all (α, β) ∈ K and ε > 0, where Qα,β is the set of all probability measures on X×{−1, 1}
satisfying (MA2)(α) and (A2) with a complexity parameter (p, β) and C > 0 is a constant
depending only on ε, p,K, a and b0.

3.2.2. The case of the Gaussian RBF kernel. In this subsection we apply our aggre-
gation procedure to L1-SVM classifiers using Gaussian RBF kernel. Let X be the closed

unit ball of the space Rd0 endowed with the Euclidean norm ||x|| =
(∑d0

i=1 x
2
i

)1/2
,∀x =

(x1, . . . , xd0) ∈ Rd0 . Gaussian RBF kernel is defined as Kσ(x, x′) = exp
(
−σ2||x− x′||2

)
for x, x′ ∈ X where σ is a parameter and σ−1 is called the width of the gaussian kernel.
The RKHS associated to Kσ is denoted by Hσ.

Scovel and Steinwart (2004) introduced the following assumption:
(GNA) Geometric noise assumption. There exist C1 > 0 and γ > 0 such that

E
[
|2η(X)− 1| exp

(
−τ(X)2

t

)]
≤ C1t

γd0
2 , ∀t > 0.

Here τ is a function on X with values in R which measures the distance between a given
point x and the decision boundary, namely,

τ(x) =


d(x,G0 ∪G1), if x ∈ G−1,

d(x,G0 ∪G−1), if x ∈ G1,

0 otherwise,

for all x ∈ X , where G0 = {x ∈ X : η(x) = 1/2}, G1 = {x ∈ X : η(x) > 1/2} and
G−1 = {x ∈ X : η(x) < 1/2}. Here d(x,A) denotes the Euclidean distance from a point x
to the set A. If π satisfies Assumption (GNA) for a γ > 0, we say that π has a geometric
noise exponent γ.

The L1-SVM classifier associated to the gaussian RBF kernel with width σ−1 and
regularization parameter λ is defined by f̂

(σ,λ)
n = sign(F̂ (σ,λ)

n ) where F̂ (σ,λ)
n is given by

(7.15) with H = Hσ. Using the standard development related to SVM (cf. Schölkopf and
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Smola (2002)), we may write F̂ (σ,λ)
n (x) =

∑n
i=1 ĈiKσ(Xi, x),∀x ∈ X , where Ĉ1, . . . , Ĉn are

solutions of the following maximization problem

max
0≤2λCiYi≤n−1

2
n∑
i=1

CiYi −
n∑

i,j=1

CiCjKσ(Xi, Xj)

 ,

that can be obtained using a standard quadratic programming software. According to
Scovel et al. (2004), if the probability measure π on X × {−1, 1}, satisfies the margin
assumption (MA2)(α) with margin parameter 0 ≤ α < +∞ and Assumption (GNA) with
a geometric noise exponent γ > 0, the classifier f̂ (σα,γ

n ,λα,γ
n )

n where regularization parameter
and width are defined by

λα,γn =

{
n
− γ+1

2γ+1 if γ ≤ α+2
2α ,

n
− 2(γ+1)(α+1)

2γ(α+2)+3α+4 otherwise,
and σα,γn = (λα,γn )−

1
(γ+1)d0 ,

satisfies

(7.18) E
[
R(f̂ (σα,γ

n ,λα,γ
n )

n )−R∗
]
≤ C

{
n
− γ

2γ+1
+ε if γ ≤ α+2

2α ,

n
− 2γ(α+1)

2γ(α+2)+3α+4
+ε otherwise,

for all ε > 0, where C > 0 is a constant which depends only on α, γ and ε. Remark that
fast rates are obtained only for γ > (3α+ 4)/(2α).

To construct the classifier f̂ (σα,γ
n ,λα,γ

n )
n we need to know parameters α and γ, which

are not available in practice. Like in Subsection 3.2.1 we use our procedure to obtain a
classifier which is adaptive to the margin and to the geometric noise parameters. Our aim
is to provide an easily computable adaptive classifier. We propose the following method
based on a grid for (σ, λ). We consider the finite sets

M(l) =
{

(ϕl,p1 , ψl,p2) =
(
p1

2∆
,
p2

∆
+

1
2

)
: p1 = 1, . . . , 2b∆c; p2 = 1, . . . , b∆/2c

}
,

where we let ∆ = lb0 for some b0 > 0, and

N (l) =
{

(σl,ϕ, λl,ψ) =
(
lϕ/d0 , l−ψ

)
: (ϕ,ψ) ∈M(l)

}
.

We construct the family of classifiers
(
f̂

(σ,λ)
m : (σ, λ) ∈ N (l)

)
using the observations of

the subsample D1
m and we aggregate them by the procedure (7.4) using D2

l , namely

(7.19) f̃n =
∑

(σ,λ)∈N (l)

w
(l)
σ,λf̂

(σ,λ)
m

where

(7.20) w
(l)
σ,λ =

exp
(∑n

i=m+1 Yif̂
(σ,λ)
m (Xi)

)
∑

(σ′,λ′)∈N (l) exp
(∑n

i=m+1 Yif̂
(σ′,λ′)
m (Xi)

) , ∀(σ, λ) ∈ N (l).

Denote by Rα,γ the set of all probability measures on X × {−1, 1} satisfying both the
margin assumption (MA2)(α) with a margin parameter α > 0 and Assumption (GNA)
with a geometric noise exponent γ > 0. Define U = {(α, γ) ∈ (0,+∞)2 : γ > α+2

2α } and
U ′ = {(α, γ) ∈ (0,+∞)2 : γ ≤ α+2

2α }.
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Theorem 7.5. Let K be a compact subset of U and K ′ a compact subset of U ′. The
aggregate f̃n, defined in (7.19), satisfies

sup
π∈Rα,γ

E
[
R(f̃n)−R∗

]
≤ C

{
n
− γ

2γ+1
+ε if (α, γ) ∈ K ′,

n
− 2γ(α+1)

2γ(α+2)+3α+4
+ε if (α, γ) ∈ K,

for all (α, γ) ∈ K ∪K ′ and ε > 0, where C > 0 depends only on ε,K,K ′, a and b0.

4. Proofs

Lemma 7.1. For all positive v, t and all κ ≥ 1 : t+ v ≥ v
2κ−1
2κ t

1
2κ .

Proof. Since log is concave, we have log(ab) = (1/x) log(ax) + (1/y) log(by) ≤
log (ax/x+ by/y) for all positive numbers a, b and x, y such that 1/x + 1/y = 1, thus
ab ≤ ax/x + by/y. Lemma 7.1 follows by applying this relation with a = t1/(2κ), x =
2κ and b = v(2κ−1)/(2κ).

Proof of Proposition 7.1. Observe that (1−x)+ = 1−x for x ≤ 1. Since Yif̃n(Xi) ≤ 1
and Yifj(Xi) ≤ 1 for all i = 1, . . . , n and j = 1, . . . ,M , we have An(f̃n) =

∑M
j=1w

(n)
j An(fj).

We have An(fj) = An(fj0) + 1
n

(
log(w(n)

j0
)− log(w(n)

i )
)
, for any j, j0 = 1, . . . ,M , where

weights w(n)
j are defined in (7.6) by

w
(n)
j =

exp (−nAn(fj))∑M
k=1 exp (−nAn(fk))

,

and by multiplying the last equation by w(n)
j and summing up over j, we get

(7.21) An(f̃n) ≤ min
j=1...,M

An(fj) +
logM
n

.

Since log(w(n)
j0

) ≤ 0,∀j0 = 1, . . . ,M and
∑M

j=1w
(n)
j log

(
w

(n)
j

1/M

)
= K(w|u) ≥ 0 where

K(w|u) denotes the Kullback-leibler divergence between the weights w = (w(n)
j )j=1,...,M

and uniform weights u = (1/M)j=1,...,M .
Proof of Proposition 7.2. Denote by γ = (logM)−1/4, u = 2γn−

κ
2κ−1 log2M and

Wn = (1− γ)(A(f̃n)−A∗)− (An(f̃n)−An(f∗)). We have:

E [Wn] = E
[
Wn(1I(Wn≤u) + 1I(Wn>u))

]
≤ u+ E

[
Wn1I(Wn>u)

]
= u+ uP (Wn > u) +

∫ +∞

u
P (Wn > t) dt ≤ 2u+

∫ +∞

u
P (Wn > t) dt.

On the other hand (fj)j=1,...,M are prediction rules, so we haveA(fj) = 2R(fj) and An(fj) =
2Rn(fj), (recall that A∗ = 2R∗). Moreover we work in the linear part of the hinge-loss,
thus

P (Wn > t) = P

 M∑
j=1

wj ((A(fj)−A∗) (1− γ)− (An(fj)−An(f∗))) > t


≤ P

(
max

j=1,...,M
((A(fj)−A∗) (1− γ)− (An(fj)−An(f∗))) > t

)
≤

M∑
j=1

P (Zj > γ (R(fj)−R∗) + t/2) ,
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for all t > u, where Zj = R(fj)−R∗ − (Rn(fj)−Rn(f∗)) for all j = 1, . . . ,M(recall that
Rn(f) is the empirical risk defined in (7.1)).

Let j ∈ {1, . . . ,M}. We can write Zj = (1/n)
∑n

i=1 (E[ζi,j ]− ζi,j) where ζi,j =
1I(Yifj(Xi)≤0)− 1I(Yif∗(Xi)≤0). We have |ζi,j | ≤ 1 and, under the margin assumption, we have
V(ζi,j) ≤ E(ζ2

i,j) = E [|fj(X)− f∗(X)|] ≤ c (R(fj)−R∗)1/κ where V is the symbol of the
variance. By applying Bernstein’s inequality and Lemma 1 respectively, we get

P [Zj > ε] ≤ exp

(
− nε2

2c (R(fj)−R∗)1/κ + 2ε/3

)

≤ exp

(
− nε2

4c (R(fj)−R∗)1/κ

)
+ exp

(
−3nε

4

)
,

for all ε > 0. Denote by uj = u/2 + γ(R(fj)−R∗). After a standard calculation we get∫ +∞

u
P (Zj > γ (R(fj)−R∗) + t/2) dt = 2

∫ +∞

uj

P(Zj > ε)dε ≤ B1 +B2,

where

B1 =
4c(R(fj)−R∗)1/κ

nuj
exp

(
−

nu2
j

4c(R(fj)−R∗)1/κ

)
and

B2 =
8
3n

exp
(
−3nuj

4

)
.

Since R(fj) ≥ R∗, Lemma 7.1 yields uj ≥ γ (R(fj)−R∗)
1
2κ (logM)

2κ−1
κ n−1/2. For any

a > 0, the mapping x 7→ (ax)−1 exp(−ax2) is decreasing on (0,+∞) thus, we have,

B1 ≤
4c
γ
√
n

(logM)−
2κ−1

κ exp
(
−γ

2

4c
(log(M))

4κ−2
κ

)
.

The mapping x 7−→ (2/a) exp(−ax) is decreasing on (0,+∞), for any a > 0 and uj ≥
γ(logM)2n−

κ
2κ−1 thus,

B2 ≤
8
3n

exp
(
−3γ

4
n

κ−1
2κ−1 (logM)2

)
.

Since γ = (logM)−1/4, we have E(Wn) ≤ 4n−
κ

2κ−1 (logM)7/4 + T1 + T2, where

T1 =
4Mc√
n

(logM)−
7κ−4
4κ exp

(
− 3

4c
(logM)

7κ−4
2κ

)
and

T2 =
8M
3n

exp
(
−(3/4)n

κ−1
2κ−1 (logM)7/4

)
.

We have T2 ≤ 6(logM)7/4/n for any integer M ≥ 1. Moreover κ/(2κ − 1) ≤ 1 for all
1 ≤ κ < +∞, so we get T2 ≤ 6n−

κ
2κ−1 (logM)7/4 for any integers n ≥ 1 and M ≥ 2.

Let B be a positive number. The inequality T1 ≤ Bn−
κ

2κ−1 (logM)7/4 is equivalent to

2(2κ− 1)
[

3
4c

(logM)
7κ−4
2κ − logM +

7κ− 2
2κ

log(logM)
]
≥ log

(
(4c/B)2(2κ−1) n

)
.

Since we have 7κ−4
2κ ≥ 3

2 > 1 for all 1 ≤ κ < +∞ and M ≥ anb for some positive
numbers a and b, there exists a constant B which depends only on a, b and c (for instance
B = 4ca−1/(2b) when n satisfies log(anb) ≥ (b2(8c/6)2) ∨ ((8c/3) ∨ 1)2) such that T1 ≤
Bn−

κ
2κ−1 (logM)7/4.
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Proof of Theorem 7.1. Let γ = (logM)−1/4. Using (7.21), we have

E
[(
A(f̃n)−A∗

)
(1− γ)

]
− (A(fj0)−A∗)

= E
[(
A(f̃n)−A∗

)
(1− γ)−

(
An(f̃n)−An(f∗)

)]
+ E

[
An(f̃n)−An(fj0)

]
≤ E

[(
A(f̃n)−A∗

)
(1− γ)−

(
An(f̃n)−An(f∗)

)]
+

logM
n

.

For Wn defined in the beginning of the proof of Proposition 7.2 and f∗ the Bayes rule, we
have

(7.22) (1− γ)
(
E
[
A(f̃n)

]
−A∗

)
≤ min

j=1,...,M
(A(fj)−A∗) + E [Wn] +

logM
n

.

According to Proposition 7.2, E [Wn] ≤ C0n
− κ

2κ−1 (logM)7/4 where C0 > 0 is given in
Proposition 7.2. Using (7.22) and (1− γ)−1 ≤ 1 + 2γ for any 0 < γ < 1/2, we get

E
[
A(f̃n)−A∗

]
≤

(
1 +

2
log1/4(M)

){
min

j=1,...,M
(A(fj)−A∗) + C

log7/4(M)
nκ/(2κ−1)

}
.

We complete the proof by using inequality (7.3) and equality 2(R(f)−R∗) = A(f)−A∗,
which holds for any prediction rule f .

Proof of Theorem 7.2. Since f̃k’s take there values in [−1, 1] and x 7→ (1− x)+ is
linear on [−1, 1], we obtain A(f̄n)−A∗ = 1

n

∑n
k=1

(
A(f̃k)−A∗

)
. Applying Theorem 7.1

to every f̃k for k = 1, . . . , n, then taking the average of the n oracle inequalities satisfied
by the f̃k for k = 1, . . . , n and seeing that (1/n)

∑n
k=1 k

−κ/(2κ−1) ≤ γ(n, κ) we obtain

E
[
A(f̄n)−A∗

]
≤

(
1 +

2
log1/4(M)

){
min

j=1,...,M
(A(fj)−A∗) + Cγ(n, κ) log7/4(M)

}
.

We complete the proof by the same argument as at the end of the previous proof.
Proof of Theorem 7.3. Let ρmin ≤ ρ ≤ ρmax and κ ≥ 1. Let ρm,j0 = min(ρm,j :

ρm,j ≥ ρ). Since N(m) ≥ A′0m
b′ ≥ Clb

′
, where C > 0, using the oracle inequality, stated

in Theorem 7.1, we have, for π satisfying (MA1)(κ),

E
[
R(f̃n)−R∗|D1

m

]
≤

(
1 +

2
log1/4N(m)

){
2 min
j=1,...,N(m)

(
R(f̂ jm)−R∗

)
+ C

log7/4N(m)
lκ/(2κ−1)

}
,

where C is a positive number depending only on b′, a, A′0 and c. Taking the expectation
with respect to the subsample D1

m we have

E
[
R(f̃n)−R∗

]
≤

(
1 +

2
log−1/4N(m)

){
2E
[
R(f̂ j0m )−R∗

]
+ C

log7/4N(m)
lκ/(2κ−1)

}
.

It follows from Tsybakov (2004) that, the excess risk of f̂ j0m satisfies

sup
π∈Pκ,ρj0

E
[
R(f̂ j0m )−R∗

]
≤ Cm

− κ
2κ+ρj0

−1 ,

where C is a positive number depending only on A, c, κ, ρmin and ρmax (note that C does
not depend on ρj0).

Moreover we have m ≥ n (1− a/ log 3− 1/3), N(m) ≤ A0m
b ≤ A0n

b and l ≥ an/ log n,
so that there exists a constant C depending only on a,A0, A

′
0, b, b

′, κ, ρmin and ρmax such
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that

(7.23) sup
π∈Pκ,ρj0

E
[
R(f̃n)−R∗

]
≤ C

{
n
− κ

2κ+ρj0
−1 + n−

κ
2κ−1 (log n)11/4

}
.

Since ρj0 ≤ ρ + N(m)−1 ≤ ρ + (A′0)
−1 [n (1− a/ log 3− 1/3)]−b

′
there exists a constant

C depending only on a,A′0, b
′, κ, ρmin and ρmax such that for all integers n, n

− κ
2κ+ρj0

−1 ≤
Cn

− κ
2κ+ρ−1 . Theorem 7.2 follows directly from (7.23) seeing that ρ ≥ ρmin > 0 and

Pκ,ρ ⊆ Pκ,ρj0
since ρj0 ≥ ρ.

Proof of Theorem 7.4. Define 0 < αmin < αmax < +∞ and 0 < βmin < 1
such that K ⊂ [αmin, αmax] × [βmin, 1]. Let (α0, β0) ∈ K. We consider the function on
(0,+∞)× (0, 1] with values in (1/2, 2), φ(α, β) = 4(α+ 1)/((2α+ pα+ 4)(1 + β)). We take
k0 ∈ {0, . . . , b3∆/2c − 1} such that

φl,k0 = 1/2 + k0∆−1 ≤ φ(α0, β0) < 1/2 + (k0 + 1)∆−1.

For n greater than a constant depending only onK, p, b0 and a there exists ᾱ0 ∈ [αmin/2, αmax]
such that φ(ᾱ0, β0) = φl,k0 . Since α 7→ φ(α, β0) increases on R+, we have ᾱ0 ≤ α0. More-
over, we have |φ(α1, β0)− φ(α2, β0)| ≥ A|α1 − α2|, ∀α1, α2 ∈ [αmin/2, αmax], where A > 0
depends only on p and αmax. Thus |ᾱ0 − α0| ≤ (A∆)−1. Since ᾱ0 ≤ α0 we have
Qα0,β0 ⊆ Qᾱ0,β0 , so

sup
π∈Qα0,β0

E[R(f̃n)−R∗] ≤ sup
π∈Qᾱ0,β0

E[R(f̃n)−R∗].

Since d3∆/2e ≥ (3/2)lb0 , for π satisfying the margin assumption (MA2)(ᾱ0), Theorem
7.1 leads to

E
[
R(f̃n)−R∗|D1

m

]
≤

(
1 +

2
log1/4(d3∆/2e)

){
2 min
λ∈G(l)

(
R(f̂λm)−R∗

)
+ C0

log7/4(d3∆/2e)
l(ᾱ0+1)/(ᾱ0+2)

}
,

for all integers n ≥ 1, where C0 > 0 depends only on K, a and b0. Therefore, taking the
expectation w.r.t. the subsample D1

m we get

E
[
R(f̃n)−R∗

]
≤ C1

(
E
[
R(f̂

λl,k0
m )−R∗

]
+ l

− ᾱ0+1
ᾱ0+2 log7/4(n)

)
,

where λl,k0 = l−φl,k0 and C1 > 0 depends only on K, a and b0.
Set Γ : (0,+∞)×(0, 1] 7−→ R+ defined by Γ(α, β) = βφ(α, β),∀(α, β) ∈ (0,+∞)×(0, 1].

According to Scovel et al. (2005), if π ∈ Qᾱ0,β0 then for all ε > 0, there exists C > 0 a
constant depending only on K, p and ε such that,

E
[
R(f̂

λl,k0
m )−R∗

]
≤ Cm−Γ(ᾱ0,β0)+ε.

Remark that C does not depend on ᾱ0 and β0 since (ᾱ0, β0) ∈ [αmin/2, αmax]× [βmin, 1]
and that the constant multiplying the rate of convergence, stated in Scovel et al. (2005), is
uniformly bounded over (α, β) belonging to a compact subset of (0,+∞)× (0, 1].

Let ε > 0. Assume that π ∈ Qα0,β0 . We have n (1− a/ log 3− 1/3) ≤ m ≤ n,
l ≥ an/ log n and Γ(ᾱ0, β0) ≤ (ᾱ0 + 1)/(ᾱ0 + 2) ≤ 1, therefore, there exist C2, C

′
2 > 0

depending only on a, b0,K, p and ε such that for any n greater than a constant depending
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only on βmin, a and b0

E
[
R(f̃n)−R∗

]
≤ C2

(
n−Γ(ᾱ0,β0)+ε + n

− ᾱ0+1
ᾱ0+2 (log n)11/4

)
≤ C ′2n

−Γ(ᾱ0,β0)+ε.

Moreover, Γ satisfies |Γ(ᾱ0, β0)−Γ(α0, β0)| ≤ B∆−1, where B depends only on p and αmin,
and

(
nB∆−1

)
n∈N

is upper bounded. This completes the proof.

Proof of Theorem 7.5. Let (α0, γ0) ∈ K ∪K ′. First assume that (α0, γ0) belongs
to K ⊂ U . We consider the set

S = {(ϕ,ψ) ∈ (0, 1/2)× (1/2, 1) : 2− 2ψ − ϕ > 0} .

Each point of S is associated to a margin parameter (7.14) and to a geometric noise
exponent by the following functions on S with values in (0,+∞),

ᾱ(ϕ,ψ) =
4ψ − 2

2− 2ψ − ϕ
and γ̄(ϕ,ψ) =

ψ

ϕ
− 1.

We take (ϕ,ψ) ∈ S ∩ M(l) such that ᾱ(ϕ,ψ) ≤ α0, γ̄(ϕ,ψ) ≤ γ0, ᾱ(ϕ,ψ) is close
enough to α0, γ̄(ϕ,ψ) is close enough to γ0 and γ̄(ϕ,ψ) > (ᾱ(ϕ,ψ) + 2)/(2ᾱ(ϕ,ψ)). Since
γ0 > (α0 + 2)/(2α0) there exists a solution (ϕ0, ψ0) ∈ S of the system of equations

(7.24)
{
ᾱ(ϕ,ψ) = α0

γ̄(ϕ,ψ) = γ0.

For all integers n greater than a constant depending only on K, a and b0, there exists
(p1,0, p2,0) ∈ {1, . . . , 2b∆c} × {2, . . . , b∆/2c} defined by

ϕl,p1,0 = min(ϕl,p : ϕl,p ≥ ϕ0) and ψl,p2,0 = max(ψl,p2 : ψl,p2 ≤ ψ0)−∆−1.

We have 2 − 2ψl,p2,0 − ϕl,p1,0 > 0. Therefore (ϕl,p1,0 , ψl,p2,0) ∈ S ∩ M(l). Define ᾱ0 =
ᾱ(ϕl,p1,0 , ψl,p2,0) and γ̄0 = γ̄(ϕl,p1,0 , ψl,p2,0). Since (ϕ0, ψ0) satisfies (7.24), we have

ψl,p2,0 +
1
∆
≤ ψ0 =

−α0

2α0 + 4
ϕ0 +

1 + α0

2 + α0
≤ −α0

2α0 + 4

(
ϕl,p1,0 −

1
2∆

)
+

1 + α0

2 + α0

and (α0/(2α0 + 4))(2∆)−1 ≤ ∆−1, thus

ψl,p2,0 ≤ − α0

2α0 + 4
ϕl,p1,0 +

1 + α0

2 + α0
so ᾱ0 ≤ α0.

With a similar argument, we have ψl,p2,0 ≤ (α0 + 1)ϕl,p1,0 , that is γ̄0 ≤ γ0. Now we show
that γ̄0 > (ᾱ0 + 2)/(2ᾱ0). Since (α0, γ0) belongs to a compact, (ϕ0, ψ0) and (ϕl,p1,0 , ψl,p2,0)
belong to a compact subset of (0, 1/2)× (1/2, 1) for n greater than a constant depending
only on K, a, b0. Thus, there exists A > 0, depending only on K, such that for n large
enough, we have

|α0 − ᾱ0| ≤ A∆−1 and |γ0 − γ̄0| ≤ A∆−1.

Denote by dK = d(∂U ,K), where ∂U is the boundary of U and d(A,B) denotes the
Euclidean distance between sets A and B. We have dK > 0 since K is a compact, ∂U is
closed and K ∩ ∂U = ∅. Set 0 < αmin < αmax < +∞ and 0 < γmin < γmax < +∞ such
that K ⊂ [αmin, αmax]× [γmin, γmax]. Define

Uµ =
{
(α, γ) ∈ (0,+∞)2 : α ≥ 2µ and γ > (α− µ+ 2)/(2(α− µ))

}
for µ = min(αmin/2, dK). We have K ⊂ Uµ so γ0 > (α0 − µ + 2)/(2(α0 − µ)). Since
α 7→ (α + 2)/(2α) is decreasing, γ̄0 > γ0 − A∆−1 and α0 ≤ ᾱ0 + A∆−1, we have γ̄0 >

β̄(ᾱ0)− A∆−1 where β̄ is a positive function on (0, 2αmax] defined by β̄(α) = (α − (µ−
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A∆−1) + 2)/(2(α− (µ−A∆−1))). We have |β̄(α1)− β̄(α2)| ≥ (2αmax)−2|α1 − α2| for all
α1, α2 ∈ (0, 2αmax]. Therefore β̄(ᾱ0)−A∆−1 ≥ β̄

(
ᾱ0 + 4Aα2

max∆
−1
)
. Thus, for n greater

than a constant depending only on K, a and b0 we have γ̄0 > (ᾱ0 + 2)/(2ᾱ0).
Since ᾱ0 ≤ α0 and γ̄0 ≤ γ0, we have Rα0,γ0 ⊂ Rᾱ0,γ̄0 and

sup
π∈Rα0,γ0

E
[
R(f̃n)−R∗

]
≤ sup

π∈Rᾱ0,γ̄0

E
[
R(f̃n)−R∗

]
.

If π satisfies (MA2)(ᾱ0) then we get from Theorem 7.1

E
[
R(f̃n)−R∗|D1

m

]
≤(7.25) (

1 +
2

log1/4M(l)

){
2 min

(σ,λ)∈N (l)

(
R(f̂ (σ,λ)

m )−R∗
)

+ C2
log7/4(M(l))
l(ᾱ0+1)/(ᾱ0+2)

}
,

for all integers n ≥ 1, where C2 > 0 depends only on K, a and b0 and M(l) is the cardinality
of N (m). Remark that M(l) ≥ l2b0/2, so we can apply Theorem 7.1.

Let ε > 0. Since M(l) ≤ n2b0 and γ̄0 > (ᾱ0 + 2)/(2ᾱ0), taking expectations in (7.25)
and using the result (7.18) of Scovel et al. (2004), for σ = σl,ϕl,p1,0

and λ = λl,ψl,p2,0
, we

obtain

sup
π∈Rᾱ0,γ̄0

E
[
R(f̃n)−R∗

]
≤ C

(
m−Θ(ᾱ0,γ̄0)+ε + l

− ᾱ0+1
ᾱ0+2 log7/4(n)

)
,

where Θ : U 7→ R is defined, for all (α, γ) ∈ U , by Θ(α, γ) = (2γ(α+1))/(2γ(α+2)+3α+4)
and C > 0 depends only on a, b0,K and ε. Remark that the constant before the rate of
convergence in (7.18) is uniformly bounded on every compact of U . We have Θ(ᾱ0, γ̄0) ≤
Θ(α0, γ0) ≤ Θ(ᾱ0, γ̄0) + 2A∆−1, m ≥ n (1− a/ log 3− 1/3) and

(
m2A∆−1

)
n∈N

is upper

bounded, so there exists C1 > 0 depending only on K, a, b0 such that m−Θ(ᾱ0,γ̄0) ≤
C1n

−Θ(α0,γ0), ∀n ≥ 1.
Similar argument as at the end of the proof of Theorem 7.4 and the fact that Θ(α, γ) <

(α+ 1)/(α+ 2) for all (α, γ) ∈ U , leads to the result of the first part of Theorem 7.5.
Let now (α0, γ0) ∈ K ′. Let α′max > 0 be such that ∀(α, γ) ∈ K ′, α ≤ α′max. Take

p1,0 ∈ {1, . . . , 2b∆c} such that ϕl,p1,0 = min(ϕl,p : ϕl,p ≥ (2γ0 + 1)−1 and p ∈ 4N), where
4N is the set of all integers multiple of 4. For large values of n, p1,0 exists and p1,0 ∈ 4N.
We denote by γ̄0 ∈ (0,+∞) such that ϕl,p1,0 = (2γ̄0 + 1)−1, we have γ̄0 ≤ γ0 thus
Rα0,γ0 ⊆ Rα0,γ̄0 and

sup
π∈Rα0,γ0

E
[
R(f̃n)−R∗

]
≤ sup

π∈Rα0,γ̄0

E
[
R(f̃n)−R∗

]
.

If π satisfies the margin assumption (7.14) with the margin parameter α0 then, using
Theorem 7.1, we obtain, for any integer n ≥ 1,

(7.26) E
[
R(f̃n)−R∗|D1

m

]
≤(

1 +
2

log1/4(M(l))

){
2 min

(σ,λ)∈N (l)

(
R(f̂ (σ,λ)

m )−R∗
)

+ C0
log7/4M(l)
l(α0+1)/(α0+2)

}
where C > 0 appears in Proposition 7.2 and M(l) is the cardinality of N (l).

Let ε > 0 and p2,0 ∈ {1, . . . , b∆/2c} defined by p2,0 = p1,0/4 (note that p1,0 ∈ 4N). We
have

σl,ϕl,p1,0
=
(
λl,ψl,p2,0

)− 1
d0(γ̄0+1)

.
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Since γ̄0 ≤ (α0 + 2)/(2α0), using the result (7.18) of Scovel et al. (2004) we have, for
σ = σl,ϕl,p1,0

and λ = λl,ψl,p2,0
,

E
[
R(f̂ (σ0,λ0)

m )−R∗
]
≤ Cm−Γ̄(γ̄0)+ε,

where Γ̄ : (0,+∞) 7−→ R is the function defined by Γ̄(γ) = γ/(2γ + 1) for all γ ∈ (0,+∞)
and C > 0 depends only on a, b0,K ′ and ε. Remark that, as in the first part of the proof,
we can uniformly bound the constant before the rate of convergence in (7.18) on every
compact subset of U ′. Since M(l) ≤ n2b0 , taking the expectation, in (7.26), we find

sup
π∈Rα0,γ̄0

E
[
R(f̃n)−R∗

]
≤ C

(
m−Γ(γ̄0)+ε + l

−α0+1
α0+2 log7/4(n)

)
,

where C > 0 depends only on a, b0,K
′ and ε. Moreover |γ0 − γ̄0| ≤ 2(2α′max + 1)2∆−1 so

|Γ̄(γ̄0)− Γ̄(γ0)| ≤ 2(2αmax + 1)∆−1. To achieve the proof we use same argument as for the
first part of the proof.
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CHAPTER 8

Optimal Oracle Inequality for Aggregation of Classifiers

under Low Noise Condition

We consider the problem of optimality, in a minimax sense, and adaptivity to the
margin and to regularity in binary classification. We prove an oracle inequality, under the
margin assumption (low noise condition), satisfied by an aggregation procedure which uses
exponential weights. This oracle inequality has an optimal residual: (logM/n)κ/(2κ−1)

where κ is the margin parameter, M the number of classifiers to aggregate and n the
number of observations. We use this inequality first to construct minimax classifiers under
margin and regularity assumptions and second to aggregate them to obtain a classifier
which is adaptive both to the margin and regularity. Moreover, by aggregating plug-in
classifiers (only log n), we provide an easily implementable classifier adaptive both to the
margin and to regularity.

Contents

1. Introduction 133
2. Oracle Inequality 135
3. Adaptivity Both to the Margin and to Regularity. 138
4. Proofs 140

The material of this chapter has been published in COLT06 (cf. [83]).

1. Introduction

Let (X ,A) be a measurable space. We consider a random variable (X,Y ) with values
in X ×{−1, 1} and denote by π the distribution of (X,Y ). We denote by PX the marginal
of π on X and η(x) = P(Y = 1|X = x) the conditional probability function of Y = 1 given
that X = x. We denote by Dn = (Xi, Yi)i=1,...,n, n i.i.d. observations of the couple (X,Y ).

We recall some usual notions introduced for the classification framework. A prediction
rule is a measurable function f : X 7−→ {−1, 1}. The misclassification error associated to
f is

R(f) = P(Y 6= f(X)).

It is well known (see, e.g., [47]) that minf R(f) = R(f∗) def= R∗, where the prediction rule
f∗ is called Bayes rule and is defined by

f∗(x) = sign(2η(x)− 1).

The minimal risk R∗ is called the Bayes risk. A classifier is a function, f̂n = f̂n(X,Dn),
measurable with respect to Dn and X with values in {−1, 1}, that assigns to the sample
Dn a prediction rule f̂n(., Dn) : X 7−→ {−1, 1}. A key characteristic of f̂n is the value of
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generalization error E[R(f̂n)]. Here

R(f̂n) = P(Y 6= f̂n(X)|Dn).

The performance of a classifier f̂n is measured by the value E[R(f̂n)−R∗] called the excess
risk of f̂n. We say that the classifier f̂n learns with the convergence rate φ(n), where
(φ(n))n∈N is a decreasing sequence, if there exists an absolute constant C > 0 such that
for any integer n, E[R(f̂n)−R∗] ≤ Cφ(n). Theorem 7.2 of [47] shows that no classifier can
learn with a given convergence rate for arbitrary underlying probability distribution π.

In this chapter, we focus on entropy assumptions which allow us to work with finite
sieves. Hence, we first work with a finite model for f∗: it means that we take a finite class
of prediction rules F = {f1, . . . , fM}. Our aim is to construct a classifier f̂n which mimics
the best one of them w.r.t. to the excess risk and with an optimal residual. Namely, we
want to state an oracle inequality

(8.1) E
[
R(f̂n)−R∗

]
≤ a0 min

f∈F
(R(f)−R∗) + Cγ(M,n),

where a0 ≥ 1 and C > 0 are some absolute constants and γ(M,n) is the residual. The
classical procedure, due to Vapnik and Chervonenkis (see, e.g. [47]), is to look for an ERM
classifier,i.e., the one which minimizes the empirical risk

(8.2) Rn(f) =
1
n

n∑
i=1

1I{Yif(Xi)≤0},

over all prediction rules f in F , where 1IE denotes the indicator of the set E. This
procedure leads to optimal theoretical results (see, e.g. Chapter 12 of [47]), but minimizing
the empirical risk (8.2) is computationally intractable for sets F of classifiers with large
cardinality (often depending on the sample size n), because this risk is neither convex nor
continuous. Nevertheless, we might base a tractable estimation procedure on minimization
of a convex surrogate φ for the loss ( [89], [25], [22], [20], [109] and [108]). A wide variety
of classification methods in machine learning are based on this idea, in particular, on using
the convex loss associated to support vector machines ([41], [104]),

φ(x) = max(0, 1− x),

called the hinge-loss. The risk associated to this loss is called the hinge risk and is defined
by

A(f) = E[max(0, 1− Y f(X))],

for all f : X 7−→ R. The optimal hinge risk is defined by

(8.3) A∗ = inf
f
A(f),

where the infimum is taken over all measurable functions f . The Bayes rule f∗ attains the
infimum in (8.3) and, moreover, denoting by R(f) the misclassification error of sign(f) for
all measurable functions f with values in R, Zhang, cf. [130], has shown that,

(8.4) R(f)−R∗ ≤ A(f)−A∗,

for any real valued measurable function f . Thus, minimization of the excess hinge risk
A(f) − A∗ provides a reasonable alternative for minimization of the excess risk. In this
chapter, we provide a procedure which does not need any minimization step. We use a
convex combination of the given prediction rules, as explained in section 2.
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The difficulty of classification is closely related to the behavior of the conditional
probability function η near 1/2 (the random variable |η(X)− 1/2| is sometimes called the
theoretical margin). Tsybakov has introduced, in [116], an assumption on the the margin,
called margin (or low noise) assumption,
(MA) Margin (or low noise) assumption. The probability distribution π on the space
X × {−1, 1} satisfies the margin assumption MA(κ) with margin parameter 1 ≤ κ < +∞
if there exists c0 > 0 such that,

(8.5) E {|f(X)− f∗(X)|} ≤ c0 (R(f)−R∗)1/κ ,

for all measurable functions f with values in {−1, 1}.
Under this assumption, the risk of an ERM classifier over some fixed class F can converge
to the minimum risk over the class with fast rates, namely faster than n−1/2 (cf. [116]). On
the other hand, with no margin assumption on the joint distribution π (but combinatorial
or complexity assumption on the class F), the convergence rate of the excess risk is not
faster than n−1/2 (cf. [47]).
In this chapter, we suggest an easily implementable procedure of aggregation of classifiers
and prove the following results:

(1) We obtain an oracle inequality for our procedure and we use it to show that our
classifiers are adaptive both to the margin parameter (low noise exponent) and to
a complexity parameter.

(2) We generalize the lower bound inequality stated in Chapter 14 of [47], by intro-
ducing the margin assumption and deduce optimal rates of aggregation under low
noise assumption in the spirit of Tsybakov [114].

(3) We obtain classifiers with minimax fast rates of convergence on a Hölder class of
conditional probability functions η and under the margin assumption.

The chapter is organized as follows. In Section 2 we prove an oracle inequality for our
convex aggregate, with an optimal residual, which will be used in Section 3 to construct
minimax classifiers and to obtain adaptive classifiers by aggregation of them. Proofs are
given in Section 4.

2. Oracle Inequality

We have M prediction rules f1, . . . , fM . We want to mimic the best of them according
to the excess risk under the margin assumption. Our procedure is using exponential weights.
Similar constructions in other context can be found, e.g., in [10], [125], [35], [87], [119]
and Chapter 7. Consider the following aggregate which is a convex combination with
exponential weights of M classifiers,

(8.6) f̃n =
M∑
j=1

w
(n)
j fj ,

where

(8.7) w
(n)
j =

exp (
∑n

i=1 Yifj(Xi))∑M
k=1 exp (

∑n
i=1 Yifk(Xi))

, ∀j = 1, . . . ,M.

Since f1, . . . , fM take their values in {−1, 1}, we have,

(8.8) w
(n)
j =

exp (−nAn(fj))∑M
k=1 exp (−nAn(fk))

,
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for all j ∈ {1, . . . ,M}, where

(8.9) An(f) =
1
n

n∑
i=1

max(0, 1− Yif(Xi))

is the empirical analog of the hinge risk. Since An(fj) = 2Rn(fj) for all j = 1, . . . ,M ,
these weights can be written in terms of the empirical risks of fj ’s,

w
(n)
j =

exp (−2nRn(fj))∑M
k=1 exp (−2nRn(fk))

, ∀j = 1, . . . ,M.

Remark that, using the definition (8.8) for the weights, we can aggregate functions with
values in R (like in theorem 8.1) and not only functions with values in {−1, 1}.

The aggregation procedure defined by (8.6) with weights (8.8), that we can called
aggregation with exponential weights (AEW), can be compared to the ERM one. First, our
AEW method does not need any minimization algorithm contrarily to the ERM procedure.
Second, the AEW is less sensitive to the over fitting problem. Intuitively, if the classifier
with smallest empirical risk is over fitted (it means that the classifier fits too much to the
observations) then the ERM procedure will be over fitted. But, if other classifiers in F are
good classifiers, our procedure will consider their ”opinions” in the final decision procedure
and these opinions can balance with the opinion of the over fitted classifier in F which can
be false because of its over fitting property. The ERM only considers the ”opinion” of the
classifier with the smallest risk, whereas the AEW takes into account all the opinions of the
classifiers in the set F . The AEW is more temperate contrarily to the ERM. Finally, the
following proposition shows that the AEW has similar theoretical property as the ERM
procedure up to the residual (logM)/n.

Proposition 8.1. Let M ≥ 2 be an integer, f1, . . . , fM be M real valued functions on
X . For any integers n, the aggregate defined in (8.6) with weights (8.8) f̃n satisfies

An(f̃n) ≤ min
i=1,...,M

An(fi) +
log(M)
n

.

The following theorem provides first an exact oracle inequality w.r.t. the hinge risk
satisfied by the AEW procedure and second shows its optimality among all aggregation
procedures. We deduce from it that, for a margin parameter κ ≥ 1 and a set of M functions
with values in [−1, 1], F = {f1, . . . , fM},

γ(F , π, n, κ) =

√
minf∈F (A(f)−A∗)

1
κ logM

n
+
(

logM
n

) κ
2κ−1

is an optimal rate of convex aggregation of M functions with values in [−1, 1] w.r.t. the
hinge risk, in the sense of Chapter 3.

Theorem 8.1 (Oracle inequality and Lower bound). Let κ ≥ 1. We assume that
π satisfies MA(κ). We denote by C the convex hull of a finite set of functions with values
in [−1, 1], F = {f1, . . . , fM}. The AEW procedure, introduced in (8.6) with weights (8.8)
(remark that the form of the weights in (8.8) allows to take real valued functions for the
fj’s), satisfies for any integer n ≥ 1 the following inequality

E
[
A(f̃n)−A∗

]
≤ min

f∈C
(A(f)−A∗) + C0γ(F , π, n, κ),

where C0 > 0 depends only on the constants κ and c0 appearing in MA(κ).
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Moreover, there exists a set of prediction rules F = {f1, . . . , fM} such that for any
procedure f̄n with values in R, there exists a probability measure π satisfying MA(κ) such
that for any integers M,n with logM ≤ n we have

E
[
A(f̄n)−A∗

]
≥ min

f∈C
(A(f)−A∗) + C ′0γ(F , π, n, κ),

where C ′0 > 0 depends only on the constants κ and c0 appearing in MA(κ).

The hinge loss is linear on [−1, 1], thus, model selection aggregation or convex ag-
gregation are identical problems if we use the hinge risk and if we aggregate function
with values in [−1, 1]. Namely, minf∈F A(f) = minf∈C A(f). Moreover, the result of
Theorem 8.1 is obtained for the aggregation of functions with values in [−1, 1] and
not only for prediction rules. In fact, only functions with values in [−1, 1] have to be
considered when we use the hinge loss since, for any real valued function f , we have
max(0, 1− yψ(f(x))) ≤ max(0, 1− yf(x)) for all x ∈ X , y ∈ {−1, 1} where ψ is the projec-
tion on [−1, 1], thus, A(ψ(f))−A∗ ≤ A(f)−A∗. Remark that, under MA(κ), there exists
c > 0 such that,E [|f(X)− f∗(X)|] ≤ c (A(f)−A∗)1/κfor all functions f on X with values
in [−1, 1] (cf. Chapter 3) . The proof of Theorem 8.1 is not given here by the lack of space.
It can be found in Chapter 3. Instead, we prove here the following slightly less general
result that we will be further used to construct adaptive minimax classifiers.

Theorem 8.2. Let κ ≥ 1 and let F = {f1, . . . , fM} be a finite set of prediction rules
with M ≥ 3. We denote by C the convex hull of F . We assume that π satisfies MA(κ).
The aggregate defined in (8.6) with the exponential weights (8.7) (or (8.8)) satisfies for
any integers n,M and any a > 0 the following inequality

E
[
A(f̃n)−A∗

]
≤ (1 + a) min

f∈C
(A(f)−A∗) + C

(
logM
n

) κ
2κ−1

,

where C > 0 is a constant depending only on a.

Corollary 8.1. Let κ ≥ 1, M ≥ 3 and {f1, . . . , fM} be a finite set of prediction rules.
We assume that π satisfies MA(κ). The AEW procedure satisfies for any number a > 0
and any integers n,M the following inequality, with C > 0 a constant depending only on a,

E
[
R(f̃n)−R∗

]
≤ 2(1 + a) min

j=1,...,M
(R(fj)−R∗) + C

(
logM
n

) κ
2κ−1

.

We denote by Pκ the set of all probability measures on X × {−1, 1} satisfying the
margin assumption MA(κ). Combining Corollary 8.1 and the following theorem, we get
that the residual (

logM
n

) κ
2κ−1

is a near optimal rate of model selection aggregation in the sense of Chapter 3 when the
underlying probability measure π belongs to Pκ.

Theorem 8.3. For any integers M and n satisfying M ≤ exp(n), there exists M
prediction rules f1, . . . , fM such that for any classifier f̂n and any a > 0, we have

sup
π∈Pκ

[
E
[
R(f̂n)−R∗

]
− 2(1 + a) min

j=1,...,M
(R(fj)−R∗)

]
≥ C1

(
logM
n

) κ
2κ−1

,

where C1 = cκ0/(4e2
2κ(κ−1)/(2κ−1)(log 2)κ/(2κ−1)).
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3. Adaptivity Both to the Margin and to Regularity.

In this section we give two applications of the oracle inequality stated in Corollary
8.1. First, we construct classifiers with minimax rates of convergence and second, we
obtain adaptive classifiers by aggregating the minimax ones. Following [9], we focus on the
regularity model where η belongs to the Hölder class.

For any multi-index s = (s1, . . . , sd) ∈ Nd and any x = (x1, . . . , xd) ∈ Rd, we define
|s| =

∑d
j=1 si, s! = s1! . . . sd!, xs = xs11 . . . xsd

d and ||x|| = (x2
1 + . . .+ x2

d)
1/2. We denote by

Ds the differential operator ∂s1+...+sd

∂x
s1
1 ...∂x

sd
d

.

Let β > 0. We denote by bβc the maximal integer that is strictly less than β. For any
x ∈ (0, 1)d and any bβc-times continuously differentiable real valued function g on (0, 1)d,
we denote by gx its Taylor polynomial of degree bβc at point x, namely,

gx(y) =
∑

|s|≤bβc

(y − x)s

s!
Dsg(x).

For all L > 0 and β > 0. The (β, L, [0, 1]d)−Hölder class of functions, denoted
by Σ(β, L, [0, 1]d), is the set of all real valued functions g on [0, 1]d that are bβc-times
continuously differentiable on (0, 1)d and satisfy, for any x, y ∈ (0, 1)d, the inequality

|g(y)− gx(y)| ≤ L||x− y||β .

A control of the complexity of Hölder classes is given by Kolmogorov and Tikhomorov
(1961):

(8.10) N
(
Σ(β, L, [0, 1]d), ε, L∞([0, 1]d)

)
≤ A(β, d)ε−

d
β ,∀ε > 0,

where the LHS is the ε−entropy of the (β, L, [0, 1]d)−Hölder class w.r.t. to the norm in
L∞([0, 1]d)−and A(β, d) is a constant depending only on β and d.

If we want to use entropy assumptions on the set which η belongs to, we need to make
a link between PX and the Lebesgue measure, since the distance in (8.10) is the L∞−norm
w.r.t. the Lebesgue measure. Therefore, introduce the following assumption:
(A1)The marginal distribution PX on X of π is absolutely continuous w.r.t. the Lebesgue
measure λd on [0, 1]d, and there exists a version of its density which is upper bounded by
µmax <∞.

We consider the following class of models. For all κ ≥ 1 and β > 0, we denote by Pκ,β ,
the set of all probability measures π on X × {−1, 1}, such that

(1) MA(κ) is satisfied.
(2) The marginal PX satisfies (A1).
(3) The conditional probability function η belongs to Σ(β, L,Rd).

Now, we define the class of classifiers which attain the optimal rate of convergence, in
a minimax sense, over the models Pκ,β . Let κ ≥ 1 and β > 0. For any ε > 0, we denote
by Σε(β) an ε-net on Σ(β, L, [0, 1]d) for the L∞−norm, such that, its cardinal satisfies
log Card (Σε(β)) ≤ A(β, d)ε−d/β. We consider the AEW procedure defined in (8.6), over
the net Σε(β) :

(8.11) f̃ (ε,β)
n =

∑
η∈Σε(β)

w(n)(fη)fη, where fη(x) = 21I(η(x)≥1/2) − 1.

Theorem 8.4. Let κ > 1 and β > 0. Let a1 > 0 be an absolute constant and consider

εn = a1n
− β(κ−1)

β(2κ−1)+d(κ−1) . The aggregate (8.11) with ε = εn, satisfies, for any π ∈ Pκ,β and
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any integer n ≥ 1, the following inequality

Eπ
[
R(f̃ (εn,β)

n )−R∗
]
≤ C2(κ, β, d)n

− βκ
β(2κ−1)+d(κ−1) ,

where C2(κ, β, d) = 2max
(
4(2c0µmax)κ/(κ−1), CA(β, d)

κ
2κ−1

)
(a1)

κ
κ−1 ∨ (a1)

− dκ
β(κ−1) and C

is the constant appearing in Corollary 8.1.

Audibert and Tsybakov (cf. [9]) have shown the optimality, in a minimax sense, of the
rate obtained in theorem 8.4. Note that this rate is a fast rate because it can approach
1/n when κ is close to 1 and β is large.

The construction of the classifier f̃ (εn,β)
n needs the knowledge of κ and β which are not

available in practice. Thus, we need to construct classifiers independent of these parameters
and which learn with the optimal rate n−βκ/(β(2κ−1)+d(κ−1)) if the underlying probability
measure π belongs to Pκ,β, for different values of κ and β. We now show that using the
procedure (8.6) to aggregate the classifiers f̃ (ε,β)

n , for different values of (ε, β) in a grid, the
oracle inequality of Corollary 8.1 provides the result.

We use a split of the sample for the adaptation step. Denote by D(1)
m the subsample

containing the first m observations and D(2)
l the one containing the l(= n−m) last ones.

Subsample D(1)
m is used to construct classifiers f̃ (ε,β)

m for different values of (ε, β) in a finite
grid. Subsample D(2)

l is used to aggregate these classifiers by the procedure (8.6). We take

l =
⌈

n

log n

⌉
and m = n− l.

Set ∆ = log n. We consider a grid of values for (ε, β):

G(n) =
{

(εk, βp) = (m−φk ,
p

∆
) : φk =

k

∆
: k ∈ {1, . . . , b∆/2c} , p ∈ {1, . . . , d∆e2}

}
.

The classifier that we propose is the sign of

f̃adpn =
∑

(ε,β)∈G(n)

w[l](F̃ (ε,β)
m )F̃ (ε,β)

m ,

where F̃ (ε,β)
m = sign(f̃ (ε,β)

m ) is the classifier associated to the aggregate f̃ (ε,β)
m for any ε, β > 0

and weights w[l](F ) are the ones introduced in (8.7) constructed with the observations D(2)
l

for any F ∈ F(n) = {sign(f̃ (ε,β)
m ) : (ε, β) ∈ G(n)}:

w[l](F ) =
exp

(∑n
i=m+1 YiF (Xi)

)∑
G∈F(n) exp

(∑n
i=m+1 YiG(Xi)

) .
The following Theorem shows that f̃adpn is adaptive both to the low noise exponent κ and
to the complexity (or regularity) parameter β, provided that (κ, β) belongs to a compact
subset of (1,+∞)× (0,+∞).

Theorem 8.5. Let K be a compact subset of (1,+∞)×(0,+∞). There exists a constant
C3 > 0 that depends only on K and d such that for any integer n ≥ 1, any (κ, β) ∈ K and
any π ∈ Pκ,β, we have,

Eπ
[
R(f̃adpn )−R∗

]
≤ C3n

− κβ
β(2κ−1)+d(κ−1) .

Classifiers f̃ (εn,β)
n , for εn given in Theorem 8.4 and β > 0, are not easily implementable

since the cardinality of Σεn(β) is an exponential of n. An alternative procedure which
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is easily implementable is to aggregate plug-in classifiers constructed in Audibert and
Tsybakov (cf. [9]).

We introduce the class of models P ′κ,β composed of all the underlying probability
measures π such that:

(1) π satisfies the margin assumption MA(κ).
(2) The conditional probability function η ∈ Σ(β, L, [0, 1]d).
(3) The marginal distribution of X is supported on [0, 1]d and has a Lebesgue density

lower bounded and upper bounded by two constants.

Theorem 8.6 (Audibert and Tsybakov (2005)). Let κ > 1, β > 0. The excess
risk of the plug-in classifier f̂ (β)

n = 21I{η̂(β)
n ≥1/2} − 1 satisfies

sup
π∈P ′κ,β

E
[
R(f̂ (β)

n )−R∗
]
≤ C4n

− βκ
(κ−1)(2β+d) ,

where η̂(β)
n (·) is the locally polynomial estimator of η(·) of order bβc with bandwidth h =

n
− 1

2β+d and C4 a positive constant.

In [9], it is shown that the rate n−
βκ

(κ−1)(2β+d) is minimax over P ′κ,β , if β ≤ d(κ− 1). Remark
that the fast rate n−1 can be achieved.

We aggregate classifiers f̂ (β)
n for different values of β lying in a finite grid. Contrar-

ily to the previous example of adaptation, we only need to consider a grid for β since
f̂

(β)
n is already adaptive to κ the margin parameter. We use a split of the sample to

construct our adaptive classifier: l = dn/ log ne and m = n − l. The training sample
D1
m = ((X1, Y1), . . . , (Xm, Ym)) is used for the construction of the class of plug-in classifiers

F =
{
f̂ (βk)
m : βk =

kd

∆− 2k
, k ∈ {1, . . . , b∆/2c}

}
, where ∆ = log n.

The validation sample D2
l = ((Xm+1, Ym+1), . . . , (Xn, Yn)) is used for the construction of

weights

w[l](f) =
exp

(∑n
i=m+1 Yif(Xi)

)∑
f̄∈F exp

(∑n
i=m+1 Yif̄(Xi)

) , ∀f ∈ F .

The classifier that we propose is F̃ adpn = sign(f̃adpn ), where f̃adpn =
∑

f∈F w
[l](f)f.

Theorem 8.7. Let K be a compact subset of (1,+∞)×(0,+∞). There exists a constant
C5 > 0 depending only on K and d such that for any integer n ≥ 1, any (κ, β) ∈ K, such
that β < d(κ− 1), and any π ∈ P ′κ,β, we have,

Eπ
[
R(F̃ adpn )−R∗

]
≤ C5n

− βκ
(κ−1)(2β+d) .

Adaptive classifiers are obtained in Theorem (8.5) and (8.7) by aggregation of only
log n classifiers. Other construction of adaptive classifiers can be found in Chapter 7. In
particular, adaptive SVM classifiers.

4. Proofs

Proof of Proposition 8.1. Using the convexity of the hinge loss, we have An(f̃n) ≤∑M
j=1wjAn(fj). Denote by î = arg mini=1,...,M An(fi), we have

An(fi) = An(fî) +
1
n

(
log(wî)− log(wi)

)
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for all i = 1, . . . ,M and by averaging over the wi we get :

(8.12) An(f̃n) ≤ min
i=1,...,M

An(fi) +
log(M)
n

,

where we used that
∑M

j=1wj log
(

wj

1/M

)
≥ 0 since it is the Kullback-leibler divergence

between the weights w = (wj)j=1,...,M and uniform weights u = (M−1)j=1,...,M .
Proof of Theorem 8.2. Let a > 0. Using Proposition 8.1, we have for any f ∈ F

and for the Bayes rule f∗:

A(f̃n)−A∗ = (1 + a)(An(f̃n)−An(f∗)) +A(f̃n)−A∗ − (1 + a)(An(f̃n)−An(f∗))

≤ (1 + a)(An(f)−An(f∗)) + (1 + a)
logM
n

+A(f̃n)−A∗ − (1 + a)(An(f̃n)−An(f∗)).

Taking the expectations, we get

E
[
A(f̃n)−A∗

]
≤ (1 + a) min

f∈F
(A(f)−A∗) + (1 + a)(logM)/n

+E
[
A(f̃n)−A∗ − (1 + a)(An(f̃n)−An(f∗))

]
.

The following inequality follows from the linearity of the hinge loss on [−1, 1]:

A(f̃n)−A∗ − (1 + a)(An(f̃n)−An(f∗)) ≤ max
f∈F

[A(f)−A∗ − (1 + a)(An(f)−An(f∗))] .

Thus, using Bernstein’s inequality, we have for all 0 < δ < 4 + 2a :

P
[
A(f̃n)−A∗ − (1 + a)(An(f̃n)−An(f∗)) ≥ δ

]
≤

∑
f∈F

P
[
A(f)−A∗ − (An(f)−An(f∗)) ≥

δ + a(A(f)−A∗)
1 + a

]

≤
∑
f∈F

exp
(
− n(δ + a(A(f)−A∗))2

2(1 + a)2(A(f)−A∗)1/κ + 2/3(1 + a)(δ + a(A(f)−A∗))

)
.

There exists a constant c1 > 0 depending only on a such that for all 0 < δ < 4 + 2a and all
f ∈ F , we have

(δ + a(A(f)−A∗))2

2(1 + a)2(A(f)−A∗)1/κ + 2/3(1 + a)(δ + a(A(f)−A∗))
≥ c1δ

2−1/κ.

Thus, P
[
A(f̃n)−A∗ − (1 + a)(An(f̃n)−An(f∗)) ≥ δ

]
≤M exp(−nc1δ2−1/κ).

Observe that an integration by parts leads to
∫ +∞
a exp (−btα) dt ≤ exp(−baα)

αbaα−1 , for any
α ≥ 1 and a, b > 0, so for all u > 0, we get

E
[
A(f̃n)−A∗ − (1 + a)(An(f̃n)−An(f∗))

]
≤ 2u+M

exp(−nc1u2−1/κ)
nc1u1−1/κ

.

If we denote by µ(M) the unique solution of X = M exp(−X), we have logM/2 ≤ µ(M) ≤
logM . For u such that nc1u2−1/κ = µ(M), we obtain the result.

Proof of Corollary 8.1. We deduce Corollary 8.1 from Theorem 8.2, using that for
any prediction rule f we have A(f)−A∗ = 2(R(f)−R∗) and applying Zhang’s inequality
A(g)−A∗ ≥ (R(g)−R∗) fulfilled by all g from X to R.

Proof of Theorem 8.3. For all prediction rules f1, . . . , fM , we have

sup
f1,...,fM

inf
f̂n

sup
π∈Pκ

(
E
[
R(f̂n)−R∗

]
− 2(1 + a) min

j=1,...,M
(R(fj)−R∗)

)
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≥ inf
f̂n

sup
π∈Pκ:f∗∈{f1,...,fM}

(
E
[
R(f̂n)−R∗

])
.

Thus, we look for a set of cardinality not greater than M , of the worst probability
measures π ∈ Pκ from our classification problem point of view and choose f1, . . . , fM as
the corresponding Bayes rules.

Let N be an integer such that 2N−1 ≤ M . Let x1, . . . , xN be N distinct points of X .
Let 0 < w < 1/N . Denote by PX the probability measure on X such that PX({xj}) = w

for j = 1, . . . , N−1 and PX({xN}) = 1−(N−1)w. We consider the set of binary sequences
Ω = {−1, 1}N−1. Let 0 < h < 1. For all σ ∈ Ω we consider

ησ(x) =
{

(1 + σjh)/2 if x = x1, . . . , xN−1,

1 if x = xN .

For all σ ∈ Ω we denote by πσ the probability measure on X × {−1, 1} with the marginal
PX on X and with the conditional probability function ησ of Y = 1 knowing X.

Assume that κ > 1. We have P (|2ησ(X)− 1| ≤ t) = (N−1)w1I{h≤t},∀0 ≤ t < 1. Thus,
if we assume that (N − 1)w ≤ h1/(κ−1) then P (|2ησ(X)− 1| ≤ t) ≤ t1/(κ−1), for all t ≥ 0,
and according to [116], πσ belongs to MA(κ).

We denote by ρ the Hamming distance on Ω (cf. [115] p.88). Let σ, σ′ be such that
ρ(σ, σ′) = 1. We have

H2
(
π⊗nσ , π⊗nσ′

)
= 2

(
1− (1− w(1−

√
1− h2))n

)
.

We take w and h such that w(1−
√

1− h2) ≤ 1/n, thus, H2
(
π⊗nσ , π⊗nσ′

)
≤ β = 2(1−e−1) < 2

for any integer n.
Let f̂n be a classifier and σ ∈ Ω. Using MA(κ), we have

Eπσ

[
R(f̂n)−R∗

]
≥ (c0w)κEπσ

[(
N−1∑
i=1

|f̂n(xi)− σi|

)κ]
.

By Jensen’s Lemma and Assouad’s Lemma (cf. [115]) we obtain:

inf
f̂n

sup
π∈Pκ:f∗∈{fσ :σ∈Ω}

(
Eπσ

[
R(f̂n)−R∗

])
≥ (c0w)κ

(
N − 1

4
(1− β/2)2

)κ
.

We obtain the result by taking w = (nh2)−1, N = dlogM/ log 2e and

h =
(

1
n

⌈ logM
log 2

⌉) κ−1
2κ−1

.

For κ = 1, we take h = 1/2, thus |2ησ(X) − 1| ≥ 1/2 a.s. so πσ ∈MA(1) (cf.[116]).
Putting w = 4/n and N = dlogM/ log 2e, we obtain the result.

Proof of Theorem 8.4. According to Theorem 8.1, where we set a = 1, we have, for
any ε > 0:

Eπ
[
R(f̃ εn)−R∗

]
≤ 4 min

η̄∈Σε(β)
(R(fη̄)−R∗) + C

(
log CardΣε(β)

n

) κ
2κ−1

.

Let η̄ be a function with values in [0, 1] and denote by f̄ = 1Iη̄≥1/2 the plug-in classifier
associated. We have |2η − 1|1If̄ 6=f∗ ≤ 2|η̄ − η|, thus:

R(f̄)−R∗ = E
[
|2η(X)− 1|1If̄ 6=f∗

]
= E

[
|2η(X)− 1|1If̄ 6=f∗1If̄ 6=f∗

]
≤
∣∣∣∣|2η − 1|1If̄ 6=f∗

∣∣∣∣
L∞(PX)

E
[
1If̄ 6=f∗

]
≤
∣∣∣∣|2η − 1|1If̄ 6=f∗

∣∣∣∣
L∞(PX)

c0
(
R(f̄)−R∗

) 1
κ ,
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and assumption (A1) lead to

R(fη̄)−R∗ ≤ (2c0µmax)
κ

κ−1 ||η̄ − η||
κ

κ−1

L∞([0,1]d)
.

Hence, for any ε > 0, we have

Eπ
[
R(f̃ εn)−R∗

]
≤ D

ε κ
κ−1 +

(
ε−d/β

n

) κ
2κ−1

 ,

where D = max
(
4(2c0µmax)κ/(κ−1), CA(β, d)

κ
2κ−1

)
. For the value

εn = a1n
− β(κ−1)

β(2κ−1)+d(κ−1) ,

we have
Eπ
[
R(f̃ εnn )−R∗

]
≤ C1n

− βκ
β(2κ−1)+d(κ−1) ,

where C1 = 2D(a1)
κ

κ−1 ∨ (a1)
− dκ

β(κ−1)

Proof of Theorem 8.5. Consider the following function on (1,+∞)× (0,+∞) with
values in (0, 1/2):

φ(κ, β) =
β(κ− 1)

β(2κ− 1) + d(κ− 1)
.

For any n greater than n1 = n1(K), we have ∆−1 ≤ φ(κ, β) ≤ b∆/2c∆−1 and ∆−1 ≤ β ≤ ∆
for all (κ, β) ∈ K.

Let (κ0, β0) ∈ K. For any n ≥ n1, there exists k0 ∈ {1, . . . , b∆/2c − 1} such that
φk0 = k0∆−1 ≤ φ(κ0, β0) < (k0 + 1)∆−1 and p0 ∈ {1, . . . , d∆e2 − 1} such that βp0 =
p0∆−1 ≤ β0 < (p0 + 1)∆−1. Denote by fβp0

(·) the increasing function φ(·, βp0) from
(1,+∞) to (0, 1/2) and set

κ0,n =
(
fβp0

)−1
(φk0).

There exists m = m(K) such that m|κ0 − κ0,n| ≤ |fβp0
(κ0)− fβp0

(κ0,n)| ≤ ∆−1.

Let π ∈ Pκ0,β0 .According to the oracle inequality of Corollary 8.1, we have, conditionally
to the first subsample D1

m:

Eπ
[
R(f̃adpn )−R∗|D1

m

]
≤ 4 min

(ε,β)∈G(n)

(
R(f̃ (ε,β)

m )−R∗
)

+ C

(
log Card(G(n))

l

) κ0
2κ0−1

.

Using the definition of l and Card(G(n)) ≤ (log n)3, there exists C̃ > 0 independent of n
such that for ε0m = ε

−φk0
m

Eπ
[
R(f̃adpn )−R∗

]
≤ C̃

(
Eπ
[
R(f̃ (ε0m,βp0 )

m )−R∗
]

+
(

log2 n

n

) κ0
2κ0−1

)
.

Moreover βp0 ≤ β0 and there exists a constant A, depending only on K, such that
κ0 ≤ κ0,n +A∆−1 = κ′0,n, hence, Pκ0,β0 ⊆ Pκ′0,n,βp0

and ε0m is equal to m−Θ(κ′0,n,β0) up to a
multiplying constant. Thus π ∈ Pκ′0,n,βp0

and, according to Theorem 8.4, we have

Eπ
[
R(f̃ (ε0m,β0)

m )−R∗
]
≤ C1(K, d)m−ψ(κ′0,n,βp0 ),

where C1(K, d) = max (C1(κ, β, d) : (κ, β) ∈ K) and ψ(κ, β) = βκ
β(2κ−1)+d(κ−1) . By con-

struction, there exists A2 = A2(K, d) > 0 such that |ψ(κ′0,n, βp0) − ψ(κ0, β0)| ≤ A2∆−1.

Moreover for any integer n we have nA2/ logn = exp(A2), which is a constant. We conclude
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that

Eπ
[
R(f̃adpn )−R∗

]
≤ C2(K, d)

(
n−ψ(κ0,β0) +

(
log4 n

n

) κ0
2κ0−1

)
,

where C2(K, d) > 0 is independent of n. We achieve the proof by observing that ψ(κ0, β0) <
κ0

2κ0−1 .

Proof of Theorem 8.7. We consider the following function on (1,+∞) × (0,+∞)
with values in (0, 1/2):

Θ(κ, β) =
βκ

(κ− 1)(2β + d)
.

For any n greater than n1 = n1(K), we have min(κ/(κ− 1) : (κ, β) ∈ K)∆−1 ≤ Θ(κ, β) ≤
b∆/2c∆−1 max(κ/(κ− 1) : (κ, β) ∈ K), for all (κ, β) ∈ K.

Let (κ0, β0) ∈ K be such that β0 < (κ0 − 1)d. For any n ≥ n1, there exists k0 ∈
{1, . . . , b∆/2c − 1} such that

κ0

κ0 − 1
k0∆−1 ≤ Θ(κ0, β0) <

κ0

κ0 − 1
(k0 + 1)∆−1.

Let π ∈ Pκ0,β0 .According to the oracle inequality of Corollary 8.1, we have, conditionally
to the first subsample D1

m:

Eπ
[
R(F̃ adpn )−R∗|D1

m

]
≤ 4 min

f∈F
(R(f)−R∗) + C

(
log Card(F)

l

) κ0
2κ0−1

.

Using the proof of Theorem 8.5 we get that there exists C̃ > 0 independent of n such that

Eπ
[
R(f̃adpn )−R∗

]
≤ C̃

(
Eπ
[
R(f̂

(βk0
)

m )−R∗
]

+
(

log2 n

n

) κ0
2κ0−1

)
Moreover βk0 ≤ β0, hence, Pκ0,β0 ⊆ Pκ0,βk0

. Thus, according to Theorem 8.6, we have

Eπ
[
R(F̂

(βk0
)

m )−R∗
]
≤ C4(K, d)m−Θ(κ0,βk0

),

where C4(K, d) = max (C4(κ, β, d) : (κ, β) ∈ K). We have |Θ(κ0, βk0)−Θ(κ0, β0)| ≤ ∆−1

by construction. Moreover n1/ logn = e for any integer n. We conclude that

Eπ
[
R(F̃ adpn )−R∗

]
≤ C̃4(K, d)

(
n−Θ(κ0,β0) +

(
log2 n

n

) κ0
2κ0−1

)
,

where C̃4(K, d) > 0 is independent of n. We achieve the proof by observing that Θ(κ0, β0) <
κ0

2κ0−1 , if β0 < (κ0 − 1)d.
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CHAPTER 9

Adapting to unknown smoothness by aggregation of

thresholded Wavelet Estimators

We study the performances of an adaptive procedure based on a convex combination,
with data-driven weights, of term-by-term thresholded wavelet estimators. For the bounded
regression model, with random uniform design, and the nonparametric density model, we
show that the resulting estimator is optimal in the minimax sense over all Besov balls Bs

p,q

for s > 1/p under the L2 risk, without any logarithm factor.
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The material of this chapter is a joint work with Christophe Chesneau submitted for
publication (cf. [38]).

1. Introduction

Wavelet shrinkage methods have been very successful in nonparametric function es-
timation. They provide estimators that are spatially adaptive and (near) optimal over
a wide range of function classes. Standard approaches are based on the term-by-term
thresholds. A well-known example is the hard thresholded estimator introduced by [50].
If we observe n statistical data and if the unknown function f has an expansion of the
form f =

∑
j

∑
k βj,kψj,k where {ψj,k, j, k} is a wavelet basis and (βj,k)j,k is the associ-

ated wavelet coefficients, then the term-by-term wavelet thresholded method consists in
three steps. First, a linear step corresponding to the estimation of the coefficients βj,k by
some estimators β̂j,k constructed from the data. Second, a non-linear step consisting in
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a thresholded procedure Tλ(β̂j,k)1I{|β̂j,k|≥λj} where λ = (λj)j is a positive sequence and

Tλ(β̂j,k) denotes a certain transformation of the β̂j,k which may depend on λ. Third, a
reconstruction step of the form f̂λ =

∑
j∈Ωn

∑
k Tλ(β̂j,k)1I{|β̂j,k|≥λj}ψj,k where Ωn is a finite

set of integers depending on the number n of data. Naturally, the performances of f̂λ
strongly depend on the choice of the threshold λ. For the standard statistical models
(regression, density,...), the most common choice is the universal threshold introduced by
[50]. It can be expressed in the form: λ∗ = (λ∗j )j where λ∗j = c

√
(log n)/n where c > 0

denotes a large enough constant. In the literature, several techniques have been proposed
to determine the ’best’ adaptive threshold. There are, for instance, the RiskShrink and
SureShrink methods (see [49, 50]), the cross-validation methods (see [97], [121] and [69]),
the methods based on hypothesis tests (see [1] and [2]), the Lepski methods (see [71]) and
the Bayesian methods (see [40] and [3]). Most of them are described in detail in [97] and
[4].

In the present chapter, we propose to study the performances of an adaptive wavelet
estimator based on a convex combination of f̂λ’s. In the framework of nonparametric
density estimation and bounded regression estimation with random uniform design, we
prove that, in some sense, it is at least as good as the term-by-term thresholded estimator
f̂λ defined with the ’best’ threshold λ. In particular, we show that this estimator is optimal,
in the minimax sense, over all Besov balls under the L2 risk. The proof is based on a
non-adaptive minimax result proved by [46] and some powerful oracle inequality satisfied
by aggregation methods.

The exact oracle inequality of Section 2 is given in a general framework. Two ag-
gregation procedures satisfy this oracle inequality. The well known ERM (for Empirical
Risk Minimization) procedure (cf. [117], [77] and references therein) and an exponential
weighting aggregation scheme, which has been studied, among others, by [87], [26] and in
the others chapters of this part. There is a recursive version of this scheme studied by [35],
[125], [72] and [75]. In the sequential prediction problem, weighted average predictions with
exponential weights have been widely studied (cf. e.g. [119] and [37]). A result in Chapter
4 shows that the ERM procedure is suboptimal for strictly convex losses (which is the
case for density and regression estimation when the integrated squared risk is used). Thus,
in our case it is better to combine the f̂λ’s, for λ lying in a grid, using the aggregation
procedure with exponential weights than using the ERM procedure. Moreover, from a
computation point of view the aggregation scheme with exponential weights does not
require any minimization step contrarily to the ERM procedure.

The chapter is organized as follows. Section 2 presents general oracle inequalities
satisfied by two aggregation methods. Section 3 describes the main procedure of the study
and investigates its minimax performances over Besov balls for the L2 risk. All the proofs
are postponed in the last section.

2. Oracle Inequalities

2.1. Framework. Let (Z, T ) a measurable space. Denote by P the set of all proba-
bility measures on (Z, T ). Let F be a function from P with values in an algebra F . Let Z
be a random variable with values in Z and denote by π its probability measure. Let Dn be
a family of n i.i.d. observations Z1, . . . , Zn having the common probability measure π. The
probability measure π is unknown. Our aim is to estimate F (π) from the observations Dn.
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In our estimation problem, we assume that we have access to an ”empirical risk”. It
means that there exists Q : Z × F 7−→ R such that the risk of an estimate f ∈ F of F (π)
is of the form

A(f) def= E [Q(Z, f)] .

In what follows, we present several statistical problems which can be written in this way.
If the minimum over all f in F

A∗
def= min

f∈F
A(f)

is achieved by at least one function, we denote by f∗ a minimizer in F . In this chapter we
will assume that minf∈F A(f) is achievable, otherwise we replace f∗ by f∗n, an element in
F satisfying A(f∗n) ≤ inff∈F A(f) + n−1.

In most of the cases f∗ will be equal to our aim F (π) up to some known additive
terms. We don’t know the risk A, since π is not available from the statistician, thus,
instead of minimizing A over F we consider an empirical version of A constructed from
the observations Dn. The main interest of such a framework is that we have access to an
empirical version of A(f) for any f ∈ F . It is denoted by

(9.1) An(f) def=
1
n

n∑
i=1

Q(Zi, f).

We exhibit three statistical models having the previous form of estimation.
Bounded Regression: Take Z = X × [0, 1], where (X ,A) is a measurable space,

Z = (X,Y ) a couple of random variables on Z, with probability distribution π, such that
X takes its values in X and Y takes its values in [0, 1]. We assume that the conditional
expectation E[Y |X] exists. In the regression framework, we want to estimate the regression
function

f∗(x) = E [Y |X = x] , ∀x ∈ X .
Usually, the variable Y is not an exact function of X. Given an input X ∈ X , we are
not able to predict the exact value of the output Y ∈ [0, 1]. This issue can be seen in the
regression framework as a noised estimation. It means that at each spot X of the input
set, the predicted label Y is concentrated around E [Y |X] up to an additional noise with
null mean denoted by ζ. The regression model can then be written as

Y = E [Y |X] + ζ.

Take F the set of all measurable functions from X to [0, 1]. Define ||f ||2
L2(PX)

=
∫
X f

2dPX

for all functions f in L2(X ,A, PX) where PX is the probability measure of X. Consider

(9.2) Q((x, y), f) = (y − f(x))2,

for any (x, y) ∈ X × R and f ∈ F . Pythagore’s Theorem yields

A(f) = E [Q((X,Y ), f)] = ||f∗ − f ||2L2(PX) + E
[
ζ2
]
.

Thus f∗ is a minimizer of A(f) and A∗ = E[ζ2].
Density estimation: Let (Z, T , µ) be a measured space where µ is a finite measure.

Let Z be a random variable with values in Z and denote by π its probability distribution.
We assume that π is absolutely continuous w.r.t. to µ and denote by f∗ one version of the
density. Consider F the set of all density functions on (Z, T , µ). We consider

Q(z, f) = − log f(z),
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for any z ∈ Z and f ∈ F . We have

A(f) = E [Q(Z, f)] = K(f∗|f)−
∫
Z

log(f∗(z))dπ(z).

Thus, f∗ is a minimizer of A(f) and A∗ = −
∫
Z log(f∗(z))dπ(z).

Instead of using the Kullback-Leibler loss, one can use the quadratic loss. For this
setup, consider F the set L2(Z, T , µ) of all measurable functions with an integrated square.
Define

(9.3) Q(z, f) =
∫
Z
f2dµ− 2f(z),

for any z ∈ Z and f ∈ F . We have, for any f ∈ F ,

A(f) = E [Q(Z, f)] = ||f∗ − f ||2L2(µ) −
∫
Z
(f∗(z))2dµ(z).

Thus, f∗ is a minimizer of A(f) and A∗ = −
∫
Z(f∗(z))2dµ(z).

Classification framework: Let (X ,A) be a measurable space. We assume that the
space Z = X × {−1, 1} is endowed with an unknown probability measure π. We consider
a random variable Z = (X,Y ) with values in Z with probability distribution π. Denote
by F the set of all measurable functions from X to R. Let φ be a function from R to R.
For any f ∈ F consider the φ−risk, A(f) = E[Q((X,Y ), f)], where the loss is given by
Q((x, y), f) = φ(yf(x)) for any (x, y) ∈ X × {−1, 1}. Most of the time a minimizer f∗ of
the φ−risk A over F or its sign is equal to the Bayes rule f∗(x) = Sign(2η(x)− 1),∀x ∈ X ,
where η(x) = P(Y = 1|X = x) (cf. [130]).

In this chapter, we obtain an oracle inequality in the general framework described at
the beginning of this Subsection. Then, we use it in the density estimation and the bounded
regression frameworks. For applications of this oracle inequality in the classification setup,
we refer to Chapters 7 and 8.

Now, we introduce an assumption which improve the quality of estimation in our frame-
work. This assumption has been first introduced by [91], for the problem of discriminant
analysis, and [116], for the classification problem. With this assumption, parametric rates
of convergence can be achieved, for instance, in the classification problem (cf. [116], [109]).

Margin Assumption(MA): The probability measure π satisfies the margin assump-
tion MA(κ, c,F0), where κ ≥ 1, c > 0 and F0 is a subset of F if E[(Q(Z, f)−Q(Z, f∗))2] ≤
c(A(f)−A∗)1/κ,∀f ∈ F0.

In the bounded regression setup, it is easy to see that any probability distribution π on
X × [0, 1] naturally satisfies the margin assumption MA(1, 16,F1), where F1 is the set of all
measurable functions from X to [0, 1]. In density estimation with the integrated squared
risk, all probability measures π on (Z, T ) absolutely continuous w.r.t. the measure µ with
one version of its density a.s. bounded by a constant B ≥ 1, satisfies the margin assumption
MA(1, 16B2,FB) where FB is the set of all non-negative function f ∈ L2(Z, T , µ) bounded
by B.

The margin assumption is linked to the convexity of the underlying loss. In density and
regression estimation it is naturally satisfied with the better margin parameter κ = 1, but,
for non-convex loss (for instance in classification) this assumption does not hold naturally
(cf. Chapter 4 for a discussion on the margin assumption and for examples of such losses).

2.2. Aggregation Procedures. Let’s work with the notations introduced in the
beginning of the previous Subsection. The aggregation framework considered, among
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others, by [74], [125], [35],[98], [114], [87], [17] is the following: take F0 a finite subset of
F , our aim is to mimic (up to an additive residual) the best function in F0 w.r.t. the risk
A. For this, we consider two aggregation procedures.

The Aggregation with Exponential Weights aggregate (AEW) over F0 is defined by

(9.4) f̃ (AEW )
n

def=
∑
f∈F0

w(n)(f)f,

where the exponential weights w(n)(f) are defined by

(9.5) w(n)(f) =
exp (−nAn(f))∑
g∈F0

exp (−nAn(g))
, ∀f ∈ F0.

We consider the Empirical Risk Minimization procedure (ERM) over F0 defined by

(9.6) f̃ (ERM)
n ∈ Arg min

f∈F0

An(f).

2.3. Oracle Inequalities. In this Subsection we state an exact oracle inequality
satisfied by the ERM procedure and the AEW procedure (in the convex case) in the
general framework of the beginning of Subsection 2.1. From this exact oracle inequality we
deduce two other oracle inequalities in the density estimation and the bounded regression
framework. We introduce a quantity which is going to be our residual term in the exact
oracle inequality. We consider

γ(n,M, κ,F0, π,Q) =


(
B(F0,π,Q)

1
κ logM

β1n

)1/2

if B(F0, π,Q) ≥
(

logM
β1n

) κ
2κ−1(

logM
β2n

) κ
2κ−1 otherwise,

where B(F0, π,Q) denotes minf∈F0 (A(f)−A∗), κ ≥ 1 is the margin parameter, π is the
underlying probability measure, Q is the loss function,

(9.7) β1 = min
( log 2

96cK
,
3
√

log 2
16K

√
2
,

1
8(4c+K/3)

,
1

576c

)
.

and

(9.8) β2 = min
(1

8
,
3 log 2
32K

,
1

2(16c+K/3)
,
β1

2

)
,

where the constant c > 0 appears in MA(κ, c,F0).

Theorem 9.1. Consider the general framework introduced in the beginning of Subsection
2.1. Let F0 denote a finite subset of M elements f1, . . . , fM in F , where M ≥ 2 is an
integer. Assume that the underlying probability measure π satisfies the margin assumption
MA(κ, c,F0) for some κ ≥ 1, c > 0 and |Q(Z, f) − Q(Z, f∗)| ≤ K a.s., for any f ∈ F0,
where K ≥ 1 is a constant. The Empirical Risk Minimization procedure (9.6) satisfies

E[A(f̃ (ERM)
n )−A∗] ≤ min

j=1,...,M
(A(fj)−A∗) + 4γ(n,M, κ,F0, π,Q).

Moreover, if f 7−→ Q(z, f) is convex for π-almost z ∈ Z, then the AEW procedure
satisfies the same oracle inequality as the ERM procedure.

Now, we give two corollaries of Theorem 9.1 in the density estimation and bounded
regression framework.

Corollary 9.1. Consider the bounded regression setup. Let f1, . . . , fM be M functions
on X with values in [0, 1]. Let f̃n denote either the ERM or the AEW procedure. We have,
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for any ε > 0,

E[||f∗ − f̃n||2L2(PX)] ≤ (1 + ε) min
j=1,...,M

(||f∗ − fj ||2L2(PX)) +
4 logM
εβ2n

,

where β2 is defined in (9.8) where we take K equals to 4.

Corollary 9.2. Consider the density estimation framework. Assume that the under-
lying density function f∗ to estimate is bounded by B ≥ 1. Let f1, . . . , fM be M functions
bounded from above and below by B. Let f̃n denote either the ERM or the AEW procedure.
We have, for any ε > 0,

(9.9) E[||f∗ − f̃n||2L2(µ)] ≤ (1 + ε) min
j=1,...,M

(||f∗ − fj ||2L2(µ)) +
4 logM
εβ2n

,

where β2 is defined in (9.8) where we replace K by 2B2µ(Z) + 4B.

In both of the last Corollaries, the ERM and the AEW procedures can both be used to
mimic the best fj among the fj ’s. Nevertheless, from a computational point of view the
AEW procedure does not require any minimization step contrarily to the ERM procedure.
Moreover, from a theoretical point of view the ERM procedure can not mimic the best
fj among the fj ’s as fast as the cumulative aggregate with exponential weights (it is an
average of AEW procedures). For a comparison between these procedures we refer to
Chapter 4.

Remark 9.1. The constants of aggregation multiplying the residual term in Theorem
9.1 and in both of the following Corollaries are very large and are certainly not optimal.
Nevertheless, this is a constant of aggregation and not a constant of estimation. It means
that when we use, for instance, the oracle inequality (9.9), to construct adaptive estimators,
the term (1 + ε) minj=1,...,M (||f∗ − fj ||2L2(µ)) is equal to (1 + ε)Cn−(2s)/(2s+1), where s is a
regularity parameter. In that case, the constant of aggregation is divided by n, whereas the
constant of estimation C is divided by n−(2s)/(2s+1) >> n−1. Moreover, They come from
the proof and does not appear in the simulations (cf. Section 5).

3. Multi-thresholding wavelet estimator

In the present section, we propose an adaptive estimator constructed from aggregation
techniques and wavelet thresholding methods. For the density model and the regression
model with uniform random design, we show that it is optimal in the minimax sense over
a wide range of function spaces.

3.1. Wavelets and Besov balls. We consider an orthonormal wavelet basis gen-
erated by dilation and translation of a compactly supported ”father” wavelet φ and a
compactly supported ”mother” wavelet ψ. For the purposes of this chapter, we use the peri-
odized wavelets bases on the unit interval. Let φj,k = 2j/2φ(2jx−k), ψj,k = 2j/2ψ(2jx−k) be
the elements of the wavelet basis and φperj,k (x) =

∑
l∈Z φj,k(x−l), ψ

per
j,k (x) =

∑
l∈Z ψj,k(x−l),

there periodized versions, defined for any x ∈ [0, 1], j ∈ N and k ∈ {0, . . . , 2j−1}. There ex-
ists an integer τ such that the collection ζ defined by ζ = {φperj,k , k = 0, ..., 2τ−1; ψperj,k , j =
τ, ...,∞, k = 0, ..., 2j − 1} constitutes an orthonormal basis of L2([0, 1]). In what follows,
the superscript ”per” will be suppressed from the notations for convenience. For any integer
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l ≥ τ , a square-integrable function f∗ on [0, 1] can be expanded into a wavelet series

f∗(x) =
2l−1∑
k=0

αl,kφl,k(x) +
∞∑
j=l

2j−1∑
k=0

βj,kψj,k(x),

where αj,k =
∫ 1
0 f

∗(x)φj,k(x)dx and βj,k =
∫ 1
0 f

∗(x)ψj,k(x)dx. Further details on wavelet
theory can be found in [95] and [43].

Now, let us define the main function spaces of the study. Let M ∈ (0,∞), s ∈ (0, N),
p ∈ [1,∞) and q ∈ [1,∞). Let us set βτ−1,k = ατ,k. We say that a function f∗ belongs to
the Besov balls Bs

p,q(M) if and only if the associated wavelet coefficients satisfy[ ∞∑
j=τ−1

[
2j(s+1/2−1/p)

( 2j−1∑
k=0

|βj,k|p
)1/p]q]1/q

≤M, if q ∈ [1,∞),

with the usual modification if q = ∞. We work with the Besov balls because of their
exceptional expressive power. For a particular choice of parameters s, p and q, they contain
the Hölder and Sobolev balls (see [95]).

3.2. Term-by-term thresholded estimator. In this Subsection, we consider the
estimation of an unknown function f∗ in L2([0, 1]) from a general situation. We only
assume to have n observations gathered in the data set Dn from which we are able to
estimate the wavelet coefficients αj,k and βj,k of f∗ in the basis ζ. We denote by α̂j,k and
β̂j,k such estimates.

A term-by-term thresholded wavelet estimator is given by

f̂λ(Dn, x) =
2τ−1∑
k=0

α̂τ,kφτ,k(x) +
j1∑
j=τ

2j−1∑
k=0

Υλj
(β̂j,k)ψj,k(x),(9.10)

where j1 is an integer satisfying (n/ log n) ≤ 2j1 < 2(n/ log n), λ = (λτ , ...λj1) is a vector of
positive integers and, for any u > 0, the operator Υu is such that there exist two constants
C1, C2 > 0 satisfying, for any x, y ∈ R,

|Υu(x)− y|2 ≤ C1(min(y, C2u)2 + |x− y|21I{|x−y|≥2−1u}).(9.11)

The inequality (9.11) holds for the hard thresholding rule Υhard
u (x) = x1I{|x|>u}, the soft

thresholding rule Υsoft
u (x) = sign(x)(|x| − u)1I{|x|>u} (see [50], [51] and [46]) and the

non-negative garrote thresholding rule ΥNG
u (x) =

(
x− u2/x

)
1I{|x|>u} (see [57]).

If we consider the minimax point of view over Besov balls under the integrated squared
risk, then [46] makes the conditions on α̂j,k, β̂j,k and the threshold λ such that the estimator
f̂λ(Dn, .) defined by (9.10) is optimal for numerous statistical models. This result is recalled
in Theorem 9.2 below.

Theorem 9.2 (Delyon and Juditsky (1996)). Let us consider the general statistical
framework described in the beginning of the present section. Assume that there exists a
constant C > 0 such that, for any j ∈ {τ − 1, ..., j1}, k ∈ {0, ..., 2j − 1} and n large enough,
we have

E(|β̂j,k − βj,k|4) ≤ Cn−2, where we take β̂τ−1,k = α̂τ,k,(9.12)
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and that there exist two constants C > 0 and ρ∗ > 0 such that, for any a, j ∈ {τ, ..., j1},
k ∈ {0, ..., 2j − 1} and n large enough, we have

P
(
2
√
n|β̂j,k − βj,k| ≥ ρ∗

√
a
)

6 C2−4a.(9.13)

Let us consider the term-by-term thresholded estimator f̂vjs
(Dn, .) defined by (9.10) with

the threshold
vjs = (ρ∗(j − js)+)j=τ,...,j1 ,

where js is an integer such that n1/(1+2s) ≤ 2js < 2n1/(1+2s). Then, there exists a constant
C > 0 such that, for any p ∈ [1,∞], s ∈ (1/p,N ], q ∈ [1,∞] and n large enough, we have:

sup
f∈Bs

p,q(L)
E[‖f̂vjs

(Dn, .)− f∗‖2
L2([0,1])] 6 Cn−2s/(2s+1).

The rate of convergence Vn = n−2s/(1+2s) is minimax for numerous statistical models,
where s is a regularity parameter. For the density model and the regression model with
uniform design, we refer the reader to [46] for further details about the choice of the
estimator β̂j,k and the value of the thresholding constant ρ∗. Starting from this non-
adaptive result, we use aggregation methods to construct an adaptive estimator at least as
good in the minimax sense as f̂vjs

(Dn, .).

3.3. Multi-thresholding estimator. Let us divide our observations Dn into two
disjoint subsamples Dm, of size m, made of the first m observations and D(l), of size l,
made of the last remaining observations, where we take

l = dn/log ne and m = n− l.

The first subsample Dm, sometimes called ”training sample”, is used to construct a family
of estimators (in our case this is thresholded estimators) and the second subsample D(l),
called the ”training sample”, is used to construct the weights of the aggregation procedure.
For a discussion on the sample splitting we refer to Chapter 7.

Definition 9.1. Let us consider the term-by-term thresholded estimator described in
(9.10). Assume that we want to estimate a function f∗ from [0, 1] with values in [a, b].
Consider the projection function

(9.14) ha,b(y) = max(a,min(y, b)),∀y ∈ R.

We define the multi-thresholding estimator f̃n : [0, 1] → [a, b] at a point x ∈ [0, 1] by
the following aggregate

f̃n(x) =
∑
u∈Λn

w(l)(ha,b(f̂vu(Dm, .)))ha,b(f̂vu(Dm, x)),(9.15)

where Λn = {0, ..., log n}, vu = (ρ(j − u)+)j=τ,...,j1 ,∀u ∈ Λn and ρ is a positive constant
depending on the model worked out and

w(l)(ha,b(f̂vu(Dm, .))) =
exp

(
−lA(l)(ha,b(f̂vu(Dm, .)))

)
∑

γ∈Λn
exp

(
−lA(l)(ha,b(f̂vγ (Dm, .)))

) , ∀u ∈ Λn,

where A(l)(f) = 1
l

∑n
i=m+1Q(Zi, f) is the empirical risk constructed from the l last obser-

vations, for any function f and for the choice of a loss function Q depending on the model
considered (cf. (9.2) and (9.3) for examples).
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The multi-thresholding estimator f̃n realizes a kind of ’adaptation to the threshold’ by
selecting the best threshold vu for u describing the set Λn. Since we know that there exists
an element in Λn depending on the regularity of f∗ such that the non-adaptive estimator
f̂vu(Dm, .) is optimal in the minimax sense (see Theorem 9.2), the multi-thresholding
estimator is optimal independently of the regularity of f∗. Moreover, the cardinality of
Λn is only log n, thus the construction of f̃n does not require the construction of too many
estimators.

4. Performances of the multi-thresholding estimator

In this section we explore the minimax performances of the multi-thresholding estimator
defined in (9.15) under the L2([0, 1]) risk over Besov balls in the density estimation and
the bounded regression with uniform random design models.

4.1. Density model. In the density estimation model, Theorem 9.3 below investigates
rates of convergence achieved by the multi-thresholding estimator (defined by (9.15)) under
the L2([0, 1]) risk over Besov balls.

Theorem 9.3. Let us consider the problem of estimating f∗ from the density model.
Assume that there exists B ≥ 1 such that the underlying density function f∗ to estimate is
bounded by B. Let us consider the multi-thresholding estimator defined in (9.15) where we
take a = 0, b = B, ρ such that ρ2 ≥ 4(log 2)(8B + (8ρ/(3

√
2))(‖ψ‖∞ +B)) and

α̂j,k =
1
n

n∑
i=1

φj,k(Xi), β̂j,k =
1
n

n∑
i=1

ψj,k(Xi).(9.16)

Then, there exists a constant C > 0 such that

sup
f∗∈Bs

p,q(L)
E[‖f̃n − f∗‖2

L2([0,1])] 6 Cn−2s/(2s+1),

for any p ∈ [1,∞], s ∈ (p−1, N ], q ∈ [1,∞] and integer n.

The rate of convergence Vn = n−2s/(1+2s) is minimax over Bs
p,q(L). Further details

about the minimax rate of convergence over Besov balls under the L2([0, 1]) risk for the
density model can be found in [46] and [62]. For further details about the density estimation
via adaptive wavelet thresholded estimators, see [52], [46] and [99]. See also [65] for a
practical study.

4.2. Bounded regression. In the framework of the bounded regression model with
uniform random design, Theorem 9.4 below investigates the rate of convergence achieved
by the multi-thresholding estimator defined by (9.15) under the L2([0, 1]) risk over Besov
balls.

Theorem 9.4. Let us consider the problem of estimating the regression function f∗

in the bounded regression model with random uniform design. Let us consider the multi-
thresholding estimator (9.15) with ρ such that ρ2 ≥ 4(log 2)(8 + (8ρ/(3

√
2))(‖ψ‖∞ + 1))

and

α̂j,k =
1
n

n∑
i=1

Yiφj,k(Xi), β̂j,k =
1
n

n∑
i=1

Yiψj,k(Xi).(9.17)

Page 153



CHAPTER 9. MULTI-THRESHOLDING ESTIMATOR

Then, there exists a constant C > 0 such that, for any p ∈ [1,∞], s ∈ (p−1, N ], q ∈ [1,∞]
and integer n, we have

sup
f∗∈Bs

p,q(L)
E[‖f̃n − f∗‖2

L2([0,1])] 6 Cn−2s/(2s+1).

The rate of convergence Vn = n−2s/(1+2s) is minimax over Bs
p,q(L). The multi-

thresholding estimator has better minimax properties than several other wavelet estimators
developed in the literature. To the authors’s knowledge, the result obtained, for instance, by
the hard thresholded estimator (see [50]), by the global wavelet block thresholded estimator
(see [76]), by the localized wavelet block thresholded estimator (see [29, 32, 30], [61, 60],
[39] and [31]) and, in particular, the penalized Blockwise Stein method (see [36]) are worse
than the one obtained by the multi-thresholding estimator and stated in Theorems 9.3
and 9.4. This is because, on the difference of those works, we obtain the optimal rate of
convergence without any extra logarithm factor. In fact, the multi-thresholding estimator
has similar minimax performances than the empirical Bayes wavelet methods (see [128]
and [70]) and several term-by-term wavelet thresholded estimators defined with a random
threshold (see [71] and [18]). Finally, it is important to mention that the multi-thresholding
estimator does not need any minimization step and is relatively easy to implement.

Table 1. Theoretical performances of some well known adaptive wavelet
estimators and of the multi-thresholding estimator.

XXXXXXXXXXXXX
Estimators

Bs
p,q(L)

1 < π < 2 2 ≤ π

Hard thresholding near optimal near optimal

Block thresholding near optimal optimal

Multi-thresholding optimal optimal

In the table 1, ’near optimal’ means that the estimation procedure achieves the minimax
rate up to a logarithm factor.

5. Simulated Illustrations

This section illustrates the performances of the multi-thresholding estimator. Let
us consider the regression model with random uniform design and with the noise ζ =
max(−2−1,min(N, 2−1))σ where σ = 0, 05 and N is a standard Gaussian variable. For the
simulations we take n = 213 observations.

Let us define the multi-thresholding estimator (9.15) with
• the non-negative garrote thresholding operator Υu(x) =

(
x− u2/x

)
1{|x|>u}. The

reason why we chose this thresholding rule is that, for the universal threshold, it
provides better numerical and graphical result than the hard and soft thresholding
rules (cf. [57]).

• the wavelet basis ’sym8’ (Symlet 8, see for instance [43])
• the function f is ’Heavisine’,

f(x) = 3, 3662 ∗ [4 sin(4πx)− sgn(x− 0, 3)− sgn(0, 72− x)].
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• the estimators α̂j,k and β̂j,k defined by (9.17),
• the thresholding constant ρ = σ

√
2.

In the simulation below, the multi-thresholding estimator is called Estimator Multi-NG,
(NG is for ”nonnegative garotte”) and we use all the observations for the construction
of the estimators to aggregate and for the construction of the exponential weights. The
Estimator NG is the usual nonnegative garotte thresholding estimator taken with the
threshold

λ = (λτ , . . . , λj1), where λj = σ
√

2
√

(j/n),∀j ∈ {τ, ..., j1}
proposed by [52]. The resulting estimator is near optimal in the minimax sense over Besov
balls under the L2 risk (cf. [57]). The multi-thresholding estimator is visually better

figure 1: Visual comparisons of the reconstructions of the Estimator Multi-NG and the
conventional Estimator NG.

than the usual nonnegative garotte thresholding estimator. The next figure shows the
repartition of the ’mass’ between the aggregated estimators.
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figure 2: Spatial repartition of the weights w.

On figure 2, we can see a concentration of the weights around the estimator with
threshold vu where u = 6. Around this estimator there are five others estimators which
share most of the remaining mass. This figure shows how the multi-thresholding estimator
proceeds by concentrating around the best estimator among the fvu for u in Λn.

6. Proofs

Proof of Theorem 9.1. We recall the notations of the general framework introduced
in the beginning of Subsection 2.1. Consider a loss function Q : Z × F 7−→ R, the risk
A(f) = E[Q(Z, f)], the minimum risk A∗ = minf∈F A(f), where we assume, w.l.o.g., that
it is achieved by an element f∗ in F and the empirical risk An(f) = (1/n)

∑n
i=1Q(Zi, f),

for any f ∈ F . The following proof is a generalization of the proof of Theorem 3.1 in
Chapter 3.

We first start by a ’linearization’ of the risk. Consider the convex set

C =
{

(θ1, . . . , θM ) : θj ≥ 0 and
M∑
j=1

θj = 1
}

and define the following functions on C

Ã(θ) def=
M∑
j=1

θjA(fj) and Ãn(θ)
def=

M∑
j=1

θjAn(fj)

which are linear versions of the risk A and its empirical version An.
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Using the Lagrange method of optimization we find that the exponential weights
w

def= (w(n)(fj))1≤j≤M are the unique solution of the minimization problem

min
(
Ãn(θ) +

1
n

M∑
j=1

θj log θj : (θ1, . . . , θM ) ∈ C
)
,

where we use the convention 0 log 0 = 0. Take ̂ ∈ {1, . . . ,M} such that An(f̂) =
minj=1,...,M An(fj). The vector of exponential weights w satisfies

Ãn(w) ≤ Ãn(ê) +
logM
n

,

where ej denotes the vector in C with 1 for j-th coordinate (and 0 elsewhere).
Let ε > 0. Denote by ÃC the minimum minθ∈C Ã(θ). We consider the subset of C

D def=
{
θ ∈ C : Ã(θ) > ÃC + 2ε

}
.

Let x > 0. If

sup
θ∈D

Ã(θ)−A∗ − (Ãn(θ)−An(f∗))
Ã(θ)−A∗ + x

≤ ε

ÃC −A∗ + 2ε+ x
,

then for any θ ∈ D, we have

Ãn(θ)−An(f∗) ≥ Ã(θ)−A∗ − ε(Ã(θ)−A∗ + x)
(ÃC −A∗ + 2ε+ x)

≥ ÃC −A∗ + ε,

because Ã(θ)−A∗ ≥ ÃC −A∗ + 2ε. Hence,

P
[

inf
θ∈D

(
Ãn(θ)−An(f∗)

)
< ÃC −A∗ + ε

]
≤ P

[
sup
θ∈D

Ã(θ)−A∗ − (Ãn(θ)−An(f∗))
Ã(θ)−A∗ + x

>
ε

ÃC −A∗ + 2ε+ x

]
.(9.18)

Observe that a linear function achieves its maximum over a convex polygon at one of
the vertices of the polygon. Thus, for j0 ∈ {1, . . . ,M} such that Ã(ej0) = minj=1,...,M Ã(ej)
(= minj=1,...,M A(fj)), we have Ã(ej0) = minθ∈C Ã(θ). We obtain the last inequality by
linearity of Ã and the convexity of C. Let ŵ denotes either the exponential weights w or
ê. According to (9.18), we have

Ãn(ŵ) ≤ min
j=1,...,M

Ãn(ej) +
logM
n

≤ Ãn(ej0) +
logM
n

So, if Ã(ŵ) > ÃC +2ε then ŵ ∈ D and thus, there exists θ ∈ D such that Ãn(θ)− Ãn(f∗) ≤
Ãn(ej0)− Ãn(f∗) + (logM)/n. Hence, we have

P
[
Ã(ŵ) > ÃC + 2ε

]
≤ P

[
inf
θ∈D

Ãn(θ)−An(f∗) ≤ Ãn(ej0)−An(f∗) +
logM
n

]
≤ P

[
inf
θ∈D

Ãn(θ)−An(f∗) < ÃC −A∗ + ε

]
+P
[
Ãn(ej0)−An(f∗) ≥ ÃC −A∗ + ε− logM

n

]
≤ P

[
sup
θ∈C

Ã(θ)−A∗ − (Ãn(f)−An(f∗))
Ã(θ)−A∗ + x

>
ε

ÃC −A∗ + 2ε+ x

]
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+P
[
Ãn(ej0)−An(f∗) ≥ ÃC −A∗ + ε− logM

n

]
.

If we assume that

sup
θ∈C

Ã(θ)−A∗ − (Ãn(θ)−An(f∗))
Ã(θ)−A∗ + x

>
ε

ÃC −A∗ + 2ε+ x
,

then, there exists θ(0) = (θ(0)
1 , . . . , θ

(0)
M ) ∈ C, such that

Ã(θ(0))−A∗ − (Ãn(θ(0))−An(f∗))
Ã(θ(0))−A∗ + x

>
ε

ÃC −A∗ + 2ε+ x
.

The linearity of Ã yields

Ã(θ(0))−A∗ − (Ãn(θ(0))−An(f∗))
Ã(θ(0))−A∗ + x

=

∑M
j=1 θ

(0)
j [A(fj)−A∗ − (An(fj)−An(f∗))∑M

j=1 θ
(0)
j [A(fj)−A∗ + x]

and since, for any numbers a1, . . . , aM and positive numbers b1, . . . , bM , we have∑M
j=1 aj∑M
j=1 bj

≤ max
j=1,...,M

(
aj
bj

)
,

then, we obtain

max
j=1,...,M

A(fj)−A∗ − (An(fj)−An(f∗))
A(fj)−A∗ + x

>
ε

AF0 −A∗ + 2ε+ x
,

where AF0

def= minj=1,...,M A(fj) (= ÃC).
Now, we use the relative concentration inequality of Lemma 9.1 to obtain

P
[

max
j=1,...,M

A(fj)−A∗ − (An(fj)−An(f∗))
A(fj)−A∗ + x

>
ε

AF0 −A∗ + 2ε+ x

]
≤ M

(
1 +

4c(AF0 −A∗ + 2ε+ x)2x1/κ

n(εx)2

)
exp

(
− n(εx)2

4c(AF0 −A∗ + 2ε+ x)2x1/κ

)
+M

(
1 +

4K(AF0 −A∗ + 2ε+ x)
3nεx

)
exp

(
− 3nεx

4K(AF0 −A∗ + 2ε+ x)

)
.

Using the margin assumption MA(κ, c,F0) to upper bound the variance term and applying
Bernstein’s inequality, we get

P
[
An(fj0) − An(f∗) ≥ AF0 −A∗ + ε− logM

n

]
≤ exp

(
− n(ε− (logM)/n)2

2c(AF0 −A∗)1/κ + (2K/3)(ε− (logM)/n)

)
,

for any ε > (logM)/n. From now, we take x = AF0 −A∗ + 2ε, then, for any (logM)/n <
ε < 1, we have

P
(
Ã(ŵ) > AF0 + 2ε

)
≤ exp

(
− n(ε− logM/n)2

2c(AF0 −A∗)1/κ + (2K/3)(ε− (logM)/n)

)
+ M

(
1 +

16c(AF0 −A∗ + 2ε)1/κ

nε2

)
exp

(
− nε2

16c(AF0 −A∗ + 2ε)1/κ

)
+ M

(
1 +

8K
3nε

)
exp

(
−3nε

8K

)
.
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If ŵ denotes ê then, Ã(ŵ) = Ã(ê) = A(f̃ (ERM)). If ŵ denotes the vector of exponential
weights w and if f 7−→ Q(z, f) is convex for π-almost z ∈ Z, then, Ã(ŵ) = Ã(w) ≥
A(f̃ (AEW )

n ). If f 7−→ Q(z, f) is assumed to be convex for π-almost z ∈ Z then, let f̃n
denote either the ERM procedure or the AEW procedure, otherwise, let f̃n denote the
ERM procedure f̃ (ERM)

n . We have for any 2(logM)/n < u < 1,

(9.19) E[A(f̃n)−AF0 ] ≤ E
[
Ã(ŵ)−AF0

]
≤ 2u+ 2

∫ 1

u/2
[T1(ε) +M(T2(ε) + T3(ε))] dε,

where

T1(ε) = exp
(
− n(ε− (logM)/n)2

2c(AF0 −A∗)1/κ + (2K/3)(ε− (logM)/n)

)
,

T2(ε) =

(
1 +

16c(AF0 −A∗ + 2ε)1/κ

nε2

)
exp

(
− nε2

16c(AF0 −A∗ + 2ε)1/κ

)
and

T3(ε) =
(

1 +
8K
3nε

)
exp

(
−3nε

8K

)
.

We recall that β1 is defined in (9.7). Consider separately the following cases (C1) and
(C2).
(C1) The case AF0 −A∗ ≥ ((logM)/(β1n))κ/(2κ−1).

Denote by µ(M) the unique solution of µ0 = 3M exp(−µ0). Then, clearly (logM)/2 ≤
µ(M) ≤ logM . Take u such that (nβ1u

2)/(AF0 −A∗)1/κ = µ(M). Using the definition of
case (1) and of µ(M) we get u ≤ AF0 −A∗. Moreover, u ≥ 4 logM/n, then∫ 1

u/2
T1(ε)dε ≤

∫ (AF0
−A∗)/2

u/2
exp

(
− n(ε/2)2

(2c+K/6)(AF0 −A∗)1/κ

)
dε

+
∫ 1

(AF0
−A∗)/2

exp
(
− n(ε/2)2

(4c+K/3)ε1/κ

)
dε.

Using Lemma 9.2 and the inequality u ≤ AF0 −A∗, we obtain

(9.20)
∫ 1

u/2
T1(ε)dε ≤

8(4c+K/3)(AF0 −A∗)1/κ

nu
exp

(
− nu2

8(4c+K/3)(AF0 −A∗)1/κ

)
.

We have 16c(AF0 −A∗ + 2u) ≤ nu2 thus, using Lemma 9.2, we get∫ 1

u/2
T2(ε)dε ≤ 2

∫ (AF0
−A∗)/2

u/2
exp

(
− nε2

64c(AF0 −A∗)1/κ

)
dε

+2
∫ 1

(AF0
−A∗)/2

exp

(
−nε

2−1/κ

128c

)
dε

≤ 2148c(AF0 −A∗)1/κ

nu
exp

(
− nu2

2148c(AF0 −A∗)1/κ

)
.(9.21)

We have 16(3n)−1 ≤ u ≤ AF0 −A∗, thus,

(9.22)
∫ 1

u/2
T3(ε)dε ≤

16K(AF0 −A∗)1/κ

3nu
exp

(
− 3nu2

16K(AF0 −A∗)1/κ

)
.

From (9.20), (9.21), (9.22) and (9.19) we obtain

E
[
A(f̃n)−AF0

]
≤ 2u+ 6M

(AF0 −A∗)1/κ

nβ1u
exp

(
− nβ1u

2

(AF0 −A∗)1/κ

)
.
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The definition of u leads to E
[
A(f̃n)−AF0

]
≤ 4

√
(AF0

−A∗)1/κ logM

nβ1
.

(C2)The case AF0 −A∗ ≤ ((logM)/(β1n))κ/(2κ−1).
We now choose u such that nβ2u

(2κ−1)/κ = µ(M), where µ(M) denotes the unique
solution of µ0 = 3M exp(−µ0) and β2 is defined in (9.8). Using the definition of case (2)
and of µ(M) we get u ≥ AF0 − A∗ (since β1 ≥ 2β2). Using the fact that u > 4 logM/n

and Lemma 9.2, we have

(9.23)
∫ 1

u/2
T1(ε)dε ≤

2(16c+K/3)
nu1−1/κ

exp

(
− 3nu2−1/κ

2(16c+K/3)

)
.

We have u ≥ (128c/n)κ/(2κ−1) and using Lemma 9.2, we obtain

(9.24)
∫ 1

u/2
T2(ε)dε ≤

256c
nu1−1/κ

exp

(
−nu

2−1/κ

256c

)
.

Since u > 16K/(3n) we have

(9.25)
∫ 1

u/2
T3(ε)dε ≤

16K
3nu1−1/κ

exp

(
−3nu2−1/κ

16K

)
.

From (9.23), (9.24), (9.25) and (9.19) we obtain

E
[
A(f̃n)−AF0

]
≤ 2u+ 6M

exp
(
−nβ2u

(2κ−1)/κ
)

nβ2u1−1/κ
.

The definition of u yields E
[
A(f̃n)−AF0

]
≤ 4

(
logM
nβ2

) κ
2κ−1

. This completes the proof.

Lemma 9.1. Consider the framework introduced in the beginning of Subsection 2.1. Let
F0 = {f1, . . . , fM} be a finite subset of F . We assume that π satisfies MA(κ, c,F0), for
some κ ≥ 1, c > 0 and |Q(Z, f)−Q(Z, f∗)| ≤ K a.s., for any f ∈ F0, where K ≥ 1 is a
constant. We have for any positive numbers t, x and any integer n

P
[
max
f∈F

A(f)−An(f)− (A(f∗)−An(f∗))
A(f)−A∗ + x

> t

]
≤M

((
1 +

4cx1/κ

n(tx)2

)
exp

(
−n(tx)2

4cx1/κ

)
+
(

1 +
4K
3ntx

)
exp

(
−3ntx

4K

))
.

Proof. We use a ”peeling device”. Let x > 0. For any integer j, we consider
Fj = {f ∈ F : jx ≤ A(f)−A∗ < (j + 1)x} . Define the empirical process

Zx(f) =
A(f)−An(f)− (A(f∗)−An(f∗))

A(f)−A∗ + x
.

Using Bernstein’s inequality and margin assumption MA(κ, c,F0) to upper bound the
variance term, we have

P
[
max
f∈F

Zx(f) > t

]
≤

+∞∑
j=0

P
[
max
f∈Fj

Zx(f) > t

]

≤
+∞∑
j=0

P
[
max
f∈Fj

A(f)−An(f)− (A(f∗)−An(f∗)) > t(j + 1)x
]
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≤ M

+∞∑
j=0

exp
(
− n[t(j + 1)x]2

2c((j + 1)x)1/κ + (2K/3)t(j + 1)x

)

≤ M
( +∞∑
j=0

exp
(
− n(tx)2(j + 1)2−1/κ

4cx1/κ

)
+ exp

(
− (j + 1)

3ntx
4K

))

≤ M
(

exp

(
−nt

2x2−1/κ

4c

)
+ exp

(
−3ntx

4K

))
+M

∫ +∞

1

(
exp

(
−nt

2x2−1/κ

4c
u2−1/κ

)
+ exp

(
−3ntx

4K
u

))
du.

Lemma 9.2 completes the proof.

Lemma 9.2. Let α ≥ 1 and a, b > 0. An integration by part yields∫ +∞

a
exp (−btα) dt ≤ exp(−baα)

αbaα−1

Proof of Corollaries 9.1 and 9.2. In the bounded regression setup, any probability
distribution π on X × [0, 1] satisfies the margin assumption MA(1, 16,F1), where F1

is the set of all measurable functions from X to [0, 1]. In density estimation with the
integrated squared risk, any probability measure π on (Z, T ), absolutely continuous w.r.t.
the measure µ with one version of its density a.s. bounded by a constant B ≥ 1, satisfies
the margin assumption MA(1, 16B2,FB) where FB is the set of all non-negative function
f ∈ L2(Z, T , µ) bounded by B. To complete the proof we use that for any ε > 0,(B(F0, π,Q) logM

β1n

)1/2
≤ εB(F0, π,Q) +

logM
β2nε

and in both cases f 7−→ Q(z, f) is convex for any z ∈ Z.
Proof of Theorem 9.3. We apply Theorem 9.2, with ε = 1, to the multi-thresholding

estimator f̂n defined in (9.15). Since the density function f∗ to estimate takes its values in
[0, B], Card(Λn) = log n and m ≥ n/2, we have, conditionally to the first subsample Dm,

E[‖f∗ − f̂n‖2
L2([0,1]) |Dm]

≤ 2 min
u∈Λn

(||f∗ − h0,B(f̂vu(Dm, .))||2L2([0,1])) +
4(log n) log(log n)

β2n

≤ 2 min
u∈Λn

(||f∗ − f̂vu(Dm, .)||2L2([0,1])) +
4(log n) log(log n)

β2n
,

where h0,B is the projection function introduced in (9.14) and β2 is given in (9.8). Now, for
any s > 0, let us consider js an integer in Λn such that n1/(1+2s) ≤ 2js < 2n1/(1+2s). Since
the estimators α̂j,k and β̂j,k defined by (9.16) satisfy the inequalities (9.12) and (9.13),
Theorem 9.2 implies that, for any p ∈ [1,∞], s ∈ (1/p,N ], q ∈ [1,∞] and n large enough,
we have

sup
f∗∈Bs

p,q(L)
E[‖f̃ − f∗‖2

L2([0,1])] = sup
f∗∈Bs

p,q(L)
E[E[‖f̃ − f∗‖2

L2([0,1]) |Dm]]

≤ 2 sup
f∗∈Bs

p,q(L)
E[min
u∈Λn

(||f∗ − f̂vu(Dm, .)||2L2([0,1])] +
4(log n) log(log n)

β2n
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≤ 2 sup
f∗∈Bs

p,q(L)
E[||f∗ − f̂vjs

(Dm, .)||2L2([0,1])] +
4(log n) log(log n)

β2n

≤ Cn−2s/(1+2s).

This completes the proof of Theorem 9.3.
Proof of Theorem 9.4. The proof of Theorem 9.4 is similar to the proof of Theorem

9.3. We only need to prove that, for any j ∈ {τ, ..., j1} and k ∈ {0, ..., 2j−1}, the estimators
α̂j,k and β̂j,k defined by (9.17) satisfy the inequalities (9.12) and (9.13). First of all, let us
notice that the random variables Y1ψj,k(X1), ..., Ynψj,k(Xn) are i.i.d and that there m−th
moment, for m ≥ 2, satisfies

E(|ψj,k(X1)|m) ≤ ‖ψ‖m−2
∞ 2j(m/2−1)E(|ψj,k(X1)|2) = ‖ψ‖m−2

∞ 2j(m/2−1).

For the first inequality (cf. inequality (9.12)), Rosenthal’s inequality (see [62, p.241])
yields, for any j ∈ {τ, ..., j1},

E(|β̂j,k − βj,k|4) ≤ C(n−3E(|Y1ψj,k(X1)|4) + n−2[E(|Y1ψj,k(X1)|2)]2)
≤ C‖Y ‖4

∞‖ψ‖4
∞(n−32j1 + n−2) ≤ Cn−2.

For second inequality (cf. inequality (9.13)), Bernstein’s inequality yields

P
(
2
√
n|β̂j,k − βj,k| ≥ ρ

√
a
)
≤ 2 exp

(
− ρ2a

8σ2 + (8/3)Mρ
√
a/(2

√
n)

)
,

where a ∈ {τ, ..., j1}, ρ ∈ (0,∞),

M = ‖Y ψj,k(X)− βj,k‖∞ ≤ 2j/2‖Y ‖∞‖ψ‖∞ + ‖f∗‖2
L2([0,1])

≤ 2j1/2(‖ψ‖∞ + 1) ≤ 21/2(n/ log n)1/2(‖ψ‖∞ + 1),

and σ2 = E(|Y1ψj,k(X1) − βj,k|2) ≤ E(|Y1ψj,k(X1)|2) ≤ ‖Y ‖2
∞ ≤ 1. Since a ≤ log n, we

complete the proof by seeing that for ρ large enough, we have

exp
(
− ρ2a

8σ2 + (8/3)Mρ
√
a/(2

√
n)

)
≤ 2−4a.
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CHAPTER 10

Optimal rates and adaptation in the single-index model

using aggregation

We want to recover the regression function in the single-index model. Using an aggre-
gation algorithm with local polynomial estimators, we answer in particular to Question 2
from Stone (1982) [110] on the optimal convergence rate within this model. The procedure
constructed here has strong adaptation properties: it adapts both to the smoothness of
the link function and to the unknown index. Moreover, the procedure locally adapts to
the distribution of the data, which allows to prove the results for a fairly general design.
The behavior of this algorithm is studied through numerical simulations. In particular, we
show empirically that it improves strongly empirical risk minimization.
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publication (cf. [56]).
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CHAPTER 10. AGGREGATION IN THE SINGLE-INDEX MODEL

1. Introduction

The single-index model is standard in statistical literature. It is widely used in sev-
eral fields, since it provides a simple trade-off between purely nonparametric and purely
parametric approaches. Moreover, it is well-known that it allows to deal with the so-called
“curse of dimensionality” phenomenon. Within the minimax theory, this phenomenon is
explained by the fact that the minimax rate linked to this model (which is multivariate,
in the sense that the number of explanatory variables is larger than 1) is the same as in
the univariate model. Indeed, if n is the sample size, the minimax rate over an isotropic
s-Hölder ball is n−2s/(2s+d) for mean integrated square error (MISE) in the d-dimensional
regression model without the single-index constraint, while in the single-index model, this
rate is conjectured to be n−2s/(2s+1) by [110]. Hence, even for small values of d (larger
than 2), the dimension has a strong impact on the quality of estimation when no prior
assumption on the structure of the multivariate regression function is made. In this sense,
the single-index model provides a simple way to reduce the dimension of the problem.

Let (X,Y ) ∈ Rd × R be a random variable satisfying

(10.1) Y = g(X) + σ(X)ε,

where ε is independent of X with law N(0, 1) and where σ(·) is such that σ0 < σ(X) ≤ σ

a.s. for some σ0 > 0 and a known σ > 0. We denote by P the probability distribution
of (X,Y ) and by PX the margin law in X or design law. In the single-index model, the
regression function as a particular structure. Indeed, we assume that g can be written has

(10.2) g(x) = f(ϑ>x)

for all x ∈ Rd, where f : R → R is the link function and where the direction ϑ ∈ Rd, or
index, belongs to the half-unit sphere

Sd−1
+ =

{
v ∈ Rd | ‖v‖2 = 1 and vd ≥ 0

}
,

where ‖ · ‖2 is the Euclidean norm over Rd. The assumption ϑ ∈ Sd−1
+ entails the unicity

of (f, ϑ) in (10.2) and thus the identifiability of the model. We assume that the available
data

(10.3) Dn := [(Xi, Yi); 1 ≤ i ≤ n]

is a sample of n i.i.d. copies of (X,Y ) satisfying (10.1) and (10.2). In this model, we can
focus on the estimation of the index ϑ based on Dn when the link function f is unknown,
or we can focus on the estimation of the regression g when both f and ϑ are unknown. In
this chapter, we consider the latter problem. It is assumed below that f belongs to some
family of Hölder balls, that is, we do not suppose its smoothness to be known.

Statistical literature on this model is wide. Among many other references, see [66]
for applications in econometrics, an application in medical science can be found in [122],
see also [44], [45] and the survey paper by [58]. For the estimation of the index, see for
instance [67]; for testing the parametric versus the nonparametric single-index assumption,
see [111]. See also a chapter in [59] which is devoted to dimension reduction techniques
in the bounded regression model. While the literature on single-index modelling is vast,
several problems remain open. For instance, Question 2 from [110] concerning the minimax
rate over Hölder balls in model (10.1),(10.2) is still open.

This chapter provides new minimax results about the single-index model, which answer
in particular to latter question. Indeed, we prove that in model (10.1),(10.2), we can achieve
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2. CONSTRUCTION OF THE PROCEDURE

the rate n−2s/(2s+1) for a link function in a whole family of Hölder balls with smothness s,
see Theorem 10.1. The optimality of this rate is proved in Theorem 10.2. To prove the
upper bound, we use an estimator which adapts both to the index parameter and to the
smoothness of the link function. This result is stated under fairly general assumptions on
the design, which include any “non-pathological” law for PX . Moreover, this estimator has
a nice “design-adaptation” property, since it does not depend within its construction on
PX .

2. Construction of the procedure

The procedure developed here for recovering the regression does not use a plugin
estimator by direct estimation of the index. Instead, it adapts to it, by aggregating several
univariate estimators based on projected samples

(10.4) Dm(v) := [(v>Xi, Yi), 1 ≤ i ≤ m],

where m < n, for several v in a lattice of Sd−1
+ . This “adaptation to the direction” uses

a split of the sample, like in cross-validation for instance. We split the whole sample Dn

into a training sample
Dm := [(Xi, Yi); 1 ≤ i ≤ m]

and a learning sample
D(m) := [(Xi, Yi);m+ 1 ≤ i ≤ n].

The choice of the split size can be quite general (see Section 3 for details). In the numerical
study (conducted in Section 4 below), we consider simply m = 3n/4 (the learning sample
size is a quarter of the whole sample), which provides good results, but other splits can be
considered as well.

Using the training sample, we compute a family {ḡ(λ) ; λ ∈ Λ} of linear (or weak)
estimators of the regression g. Each of these estimators depend on a parameter λ = (v, s)
which make them work based on the data “as if” the true underlying index were v and “as
if” the smoothness of the link function were s (in the Hölder sense, see Section 3).

Then, using the learning sample, we compute a weight w(ḡ) ∈ [0, 1] for each ḡ ∈
{ḡ(λ) ; λ ∈ Λ}, satisfying

∑
λ∈Λw(ḡ(λ)) = 1. These weights give a level of significance to

each weak estimator. Finally, the adaptive, or aggregated estimator, is simply the convex
combination of the weak estimators:

ĝ :=
∑
λ∈Λ

w(ḡ(λ))ḡ(λ).

The family of weak estimators consists of univariate local polynomial estimators (LPE),
with a data-driven bandwidth that fits locally to the amount of data. In the next section
the parameter λ = (v, s) is fixed and known, thus we contruct a univariate LPE based on
the sample Dm(v) = [(Zi, Yi); 1 ≤ i ≤ m] = [(v>Xi, Yi); 1 ≤ i ≤ m].

2.1. Weak estimators: univariate LPE. The LPE is standard in statistical lit-
erature, see for instance [115], among many others. The reason why we consider local
polynomials instead of some other method (like smoothing splines, for instance) is theoreti-
cal. It is linked with the fact that we need rate-optimal weak estimators under the general
design Assumption (D), so that the aggregated estimator is also rate-optimal. We construct
an estimator f̄ of f based on i.i.d. copies [(Zi, Yi); 1 ≤ i ≤ m] of a couple (Z, Y ) ∈ R× R
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CHAPTER 10. AGGREGATION IN THE SINGLE-INDEX MODEL

such that

(10.5) Y = f(Z) + σ(Z)ε,

where ε is standard Gaussian noise independent of Z, σ : R → [σ0, σ1] ⊂ (0,+∞) and
f ∈ H(s, L) where H(s, L) is the set of s-Hölderian functions such that

|f (bsc)(z1)− f (bsc)(z2)| ≤ L|z1 − z2|s−bsc

for any z1, z2 ∈ R, where L > 0 and bsc stands for the largest integer smaller than s. This
Hölder assumption is standard in nonparametric literature.

Let r ∈ N and h > 0 be fixed. If z is fixed, we consider the polynomial P̄(z,h) ∈ Polr
(the set of real polynomials with degree at most r) which minimizes in P :

(10.6)
m∑
i=1

(
Yi − P (Zi − z)

)21Zi∈I(z,h),

where I(z, h) := [z − h, z + h] and we define the LPE at z by

f̄(z, h) := P̄(z,h)(z).

The polynomial P̄(z,h) is well-defined and unique when the symmetrical matrix Z̄m(z, h)
with entries

(10.7) (Z̄m(z, h))a,b :=
1

mP̄Z [I(z, h)]

m∑
i=1

(Zi − z

h

)a+b
1Zi∈I(z,h)

for (a, b) ∈ {0, . . . , R}2 is definite positive, where P̄Z is the empirical distribution of
(Zi)1≤i≤m, given by

(10.8) P̄Z [A] :=
1
m

m∑
i=1

1Zi∈A

for any A ⊂ R. When Z̄m(z, h) is degenerate, we simply take f̄(z, h) := 0. The tuning
parameter h > 0, which is called bandwidth, localizes the least square problem around
the point z in (10.6). Of course, the choice of h is of first importance in this estimation
method (as with any linear method). An important remark is then about the design law.
Indeed, the law of Z = v>X varies with v strongly: even if PX is very simple (for instance
uniform over some subset of Rd with positive Lebesgue measure), Pv>X can be “far” from
the uniform law, namely with a density that can vanish at the boundaries of its support,
or inside the support, see the examples in Figure 1. This remark motivates the following
choice for the bandwidth.

If f ∈ H(s, L) for known s and L, a “natural” bandwidth, which makes the balance
between the bias and the variance of the LPE is given by

(10.9) Hm(z) := argmin
h∈(0,1)

{
Lhs ≥ σ

(mP̄Z [I(z, h)])1/2

}
.

This bandwidth choice stabilizes the LPE, since it fits point-by-point to the local amount
of data. We consider then

(10.10) f̄(z) := f̄(z,Hm(z)),

for any z ∈ R, which is in view of Theorem 10.3 (see Section 3) a rate-optimal estimator
over H(s, L) in model (10.5).
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density of Pϑ!
2 XPX = uniform law

on [−1, 1]2

ϑ2

ϑ1

density of Pϑ!
1 X

density of Pϑ!X

ϑ

PX = uniform on the
union of discs

figure 1: Simple design examples

2.2. Adaptation by aggregation. If λ := (v, s) is fixed, we consider the LPE f̄ (λ)

given by (10.10), and we take

(10.11) ḡ(λ)(x) := τQ(f̄ (λ)(ϑ>x)),

for any x ∈ Rd as an estimator of g, where τQ(f) := max(−Q,min(Q, f)) is the truncation
operator byQ > 0. The reason why we need to truncate the weak estimators is related to the
theoretical results concerning the aggregation procedure described below, see Theorem 10.4
in Section 3. In order to adapt to the index ϑ and to the smoothness s of the link function,
we aggregate the weak estimators from the family {ḡ(λ);λ ∈ Λ} with the following algorithm:
we take the convex combination

(10.12) ĝ :=
∑
λ∈Λ

w(ḡ(λ))ḡ(λ)

where for a function ḡ ∈ {ḡ(λ);λ ∈ Λ}, the weight is given by

(10.13) w(ḡ) :=
exp

(
− TR(m)(g)

)∑
λ∈Λ exp

(
− TR(m)(ḡ(λ))

) ,
with a temperature parameter T > 0 and

(10.14) R(m)(ḡ) :=
n∑

i=m+1

(Yi − ḡ(Xi))2,

which is the empirical least squares of ḡ over the training sample (up to a division by the
sample size). The set of parameters Λ is given by Λ := S̄ ×G, where G is the grid with
step (log n)−1 given by

(10.15) G :=
{
smin, smin + (log n)−1, smin + 2(log n)−1, . . . , smax

}
The tuning parameters smin and smax correspond to the minimum and maximum “allowed”
smoothness for the link function: with this choice of G, the aggregated estimator converges
with the optimal rate for a link function in H(s, L) for any s ∈ [smin, smax] in view of
Theorem 10.1. The set S̄ = S̄d−1

∆ is the regular lattice of the half unit-sphere Sd−1
+ with

step ∆. Namely, S̄d−1
∆ is such that for any lattitude, any consecutive points in the same
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lattitude have distance ∆ (if d ≥ 3, a couple of points in Sd−1
+ belongs to the same lattitude

if they have one common coordinate). The step is taken as

(10.16) ∆ = (n log n)−1/(2smin),

which relies on the minimal allowed smoothness of the link function. For instance, if we
want the estimator to be adaptive over Hölder classes of functions at least Lipschitz, we
take ∆ = (n log n)−1/2.

We can understand this algorithm in the following way: first, we compute the least
squares of each weak estimators. This is the most natural way of assessing the level of
significance of some estimator among the other ones. Then, we put a Gibbs law over the
set of weak estimators. The mass of each estimator relies on its least squares (over the
learning sample). Finally, the aggregate is simply the mean expected estimator according
to this law.

Remark 10.1. This aggregation algorithm (with Gibbs weights) can be found in [87]
in the regression framework, for projection-type weak estimators. Iterative versions of this
algorithm can be found in [35], [72], [125]. This aggregation algorithm is also a simplified
version of the one from [75]. Indeed, the algorithm proposed therein is a refinement of
a stochastic gradient descent, namely a so-called mirror descent in the dual space with
averaging, see [75] and [72] for more details. It makes an extra summation of weights
relying to the cummulative least squares over the learning sample, that we do not make
here.

If T is small, the weights (10.13) are close to the uniform law over the set of weak
estimators, and of course, the resulting aggregate is inaccurate. If T is large, only one
weight will equal 1, and the others equal to 0: in this situation, the aggregate is equal
to the estimator obtained by empirical risk minimization (ERM). This behavior can be
also explained by equation (10.30) in the proof of Theorem 10.4. Indeed, the exponential
weights (10.13) realize an optimal tradeoff between the ERM procedure and the uniform
weights procedure. The parameter T is somehow a regularization parameter of this tradeoff.

The ERM already gives good results, but if T is chosen carefully, we expect to obtain an
estimator which outperforms the ERM. It has been proved theoretically in Chapter 4 that
the aggregate outperforms the ERM in the regression framework. This fact is confirmed by
the numerical study conducted in Section 4, where the choice of T is done using a simple
leave-one-out cross-validation algorithm over the whole sample for aggregates obtained
with several T . Namely, we consider the temperature

(10.17) T̂ := argmin
T∈T

n∑
j=1

∑
i6=j

(
Yi − ĝ

(T )
−i (Xi)

)2
,

where ĝ(T )
−i is the aggregated estimator (10.12) with temperature T , based on the sample

D−i
n = [(Xj , Yj); j 6= i], and where T is some set of temperatures (in Section 4, we take

T = {0.1, 0.2, . . . , 4.9, 5}).

2.3. Reduction of the complexity of the algorithm. The procedure described
below requires the computation of the LPE for each parameter λ ∈ Λ̃ := Λ × L (in
the simulations, we do also a grid L over the radius parameter L). Hence, there are
|S̄d−1

∆ | × |G| × |L| LPE to compute. Namely, this is (π/∆)d−1 × |G| × |L|, which equals,
if |G| = |L| = 4 and ∆ = (n log n)−1/2 (as in the simulation, see Section 4) to 1079 when
d = 2 and to 72722 when d = 3, which is much too large. Hence, the complexity of this
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procedure must be reduced: we propose a recursive algorithm which improves strongly the
complexity of the estimator. Indeed, most of the coefficients w(ḡ(λ)) are very close to zero
(see Figures 6 and 7 in Section 4) when λ = (s, v) is such that v is “far” from the true index
ϑ. Hence, these coefficients should not be computed at all, since the corresponding weak
estimators do not contribute to the aggregated estimator (10.12). Hence, the computation
of the lattice should be done iteratively, only around the coefficients which are significative
among the other ones. This is done with the following algorithm, which makes a preselection
of weak estimators to aggregate (Bd−1(v, δ) stands for the ball in (Rd, ‖ · ‖2) centered at v
with radius δ and R(m)(ḡ) is given by (10.14)).

(1) Define ∆ = (n log n)−1/2 and ∆0 = (2d log n)−1/(2(d−1));
(2) compute the lattice Ŝ = S̄d−1

∆0
;

(3) find the point v̂ such that (ŝ, v̂) = λ̂ = argminλ∈ΛR(m)(ḡ(λ));
(4) divide ∆0 by 2;
(5) put Ŝ = S̄d−1

∆0
∩Bd−1(v̂, 21+1/(d−1)∆0);

(6) stop if ∆0 ≤ ∆, otherwise continue with step 3.
When the algorithm exits, Ŝ is a section of the lattice S̄d−1

∆ centered at v̂ with radius
2d−1∆, which contains (with a high probability) the points v ∈ S̄d−1

∆ corresponding to
the largest coefficients w(ḡ(λ)) where λ = (v, s, L) ∈ S̄d−1

∆ ×G× L. The aggegate is then
computed for a set of parameters Λ̂ = Ŝ ×G× L using (10.12) with weights (10.13). The
parameter ∆0 is chosen so that the surface of Bd−1(v,∆0) is Cd(2d log n)−1/2 for any d,
which gets larger with the dimension. Moreover, the number of iterations is O(log n),
thus the complexity is much smaller than the full aggregation algorithm. This procedure
gives nice empirical results, see Section 4. We give a numerical illustration of the iterative
construction of Ŝ in Figure 2.
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figure 2: Iterative construction of Ŝ

Remark 10.2. Most of the weak estimators {ḡ(λ);λ ∈ Λ} are constructed with a sample
Dm(v) where v is “far” from the true index ϑ. Thus, most of these estimators are quite
inaccurate, and it is very unlikely to have overfitted estimation in {ḡ(λ);λ ∈ Λ} (with
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respect to the true sample Dm(ϑ)). This is the reason why we do not add a penalization
term in Step 3 of the algorithm.

3. Main results

The error of estimation is measured with the L2(PX)-norm, defined by

‖f‖L2(PX) :=
(∫

Rd

f(x)2PX(dx)
)1/2

,

where we recall that PX is the design law. We consider the set HQ(s, L) := H(s, L) ∩
{f | ‖f‖∞ := supx |f(x)| ≤ Q}. Since we want the adaptive procedure to work whatever
ϑ ∈ Sd−1

+ is, we need to work with as general assumptions on the law of ϑ>X as possible.
As mentioned in Section 2, even if PX is simple, Pϑ>X can be quite complicated. The
following assumption generalizes the usual assumptions on random designs (when PX has
a density with respect to the Lebesgue measure) that can be met in literature, namely, we
do not assume that the design density is bounded away from zero, since even with very
simple designs, this assumption is not met (see Figure 1). We say that a real random
variable Z satisfies Assumption (D) if:

Assumption (D). There is a density µ of PZ with respect to the Lebesgue measure
which is continuous. Moreover, we assume that

• µ is compactly supported ;
• There is a finite number of z in the support of µ such that µ(z) = 0;
• For any such z, there is an interval Iz = [z − az, z + bz] such that µ is decreasing

over [z − az, z] and increasing over [z, z + bz];
• There is β ≥ 0 and γ > 0 such that

PZ(I) ≥ γ|I|β+1

for any I, where |I| stands for the length of I.

This assumption includes any design with continuous density with respect to the
Lebesgue measure that can vanish at several points, but not faster than some power
function.

3.1. Upper and lower bounds. The next Theorem provides an upper bound for
the adaptive estimator constructed in Section 2. For the upper bound to hold, the tuning
parameters of the procedure must be as follows: T > 0 can be arbitrary (for the proof of
the upper bound, but not in practice of course), the choice of the training sample size is
quite general: we consider

(10.18) m = [n(1− `n)],

where [x] is the integral part of x, and where `n is a positive sequence such that for all n,
(log n)−α ≤ `n < 1 with α > 0. Note that in methods involving data splitting, the optimal
choice of the split size is open. The degree r of the LPE and the grid choice G must be
such that smax ≤ r + 1. The upper bound below shows that the estimator converges with
the optimal rate for a link function in a whole family of Hölder classes, and for any index.
In what follows, En stands for the expectation with respect to the joint law Pn of the
whole sample Dn.
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Theorem 10.1. Let ĝ be the aggregated estimator given by (10.12) with the weights (10.13).
If for all ϑ ∈ Sd−1

+ , ϑ>X satisfies Assumption (D), we have

sup
ϑ∈Sd−1

+

sup
f∈HQ(s,L)

En‖ĝ − g‖2
L2(PX) ≤ Cn−2s/(2s+1),

for any s ∈ [smin, smax] when n is large enough, where we recall that g(·) = f(ϑ>·). The
constant C > 0 depends on σ, L, smin, smax and PX only.

Note that ĝ does not depend within its construction on the index ϑ, nor the smoothness
s of the link function f , nor the design law PX . In Theorem 10.2 below, we prove in our
setting (when Assumption (D) holds on the design) that n−2s/(2s+1) is indeed the minimax
rate for a link function in H(s, L) in the single-index model.

Theorem 10.2. Let s, L,Q > 0 and ϑ ∈ Sd−1
+ be such that ϑ>X satisfies Assump-

tion (D). We have

inf
g̃

sup
f∈HQ(s,L)

En‖g̃ − g‖2
L2(PX) ≥ C ′n−2s/(2s+1),

where the infimum is taken among all estimators based on data from (10.1),(10.2), and
where C ′ > 0 is a constant depending on σ, s, L and Pϑ>X only.

Theorem 10.1 and Theorem 10.2 together entail that n−2s/(2s+1) is the minimax rate
for the estimation of g in model (10.1) under the constraint (10.2) when the link function
belongs to an s-Hölder class. It answers in particular to Question 2 from [110].

3.2. A new result for the LPE. In this section, we give upper bounds for the LPE
in the univariate regression model (10.5). Despite the fact that the literature about LPE
is wide, the Theorem below is new. It provides a minimax optimal upper bound for the
L2(PX)-integrated risk of the LPE over Hölder balls under Assumption (D), which is a
general assumption for random designs (having a density with respect to the Lebesgue
measure). This generalization is important in the situation where the univariate explanatory
variables Zi are equal to ϑ>Xi for some ϑ ∈ Sd−1

+ , like in the single-index model for instance,
see also Figure 1.

In this section, the smoothness s is supposed known and fixed, and we assume that the
degree r of the local polynomials satisfies r + 1 ≥ s. First, we give an upper bound for the
pointwise risk conditionally on the design. Then, we derive from it an upper bound for the
L2(PZ)-integrated risk, using standard tools from empirical process theory (see Appendix).
Here, Em stands for the expectation with respect to the joint law Pm of the observations
[(Zi, Yi); 1 ≤ i ≤ m]. Let us define the matrix

Z̄m(z) := Z̄m(z,Hm(z))

where Z̄m(z, h) is given by (10.7) and Hm(z) is given by (10.9). Let us denote by λ(M)
the smallest eigenvalue of a matrix M and introduce Zm1 := (Z1, . . . , Zm).

Theorem 10.3. For any z ∈ SuppPZ , let f̄(z) be given by (10.10). We have on the
event {λ(Z̄m(z)) > 0}:

(10.19) sup
f∈H(s,L)

Em
[
(f̄(z)− f(z))2|Zm1

]
≤ 2λ(Z̄m(z))−2L2Hm(z)2s.

Moreover, if Z satisfies Assumption (D), we have

(10.20) sup
f∈HQ(s,L)

Em
[
‖τQ(f̄)− f‖2

L2(PZ)

]
≤ C2m

−2s/(2s+1)
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for m large enough, where we recall that τQ is the truncation operator by Q > 0 and where
C2 > 0 is a constant depending on s, Q, and PZ only.

Remark 10.3. Note that while inequality (10.19) in Theorem 10.3 is stated over
{λ(Z̄m(z)) > 0}, which entails existence and unicity of a solution to the linear system (10.6)
(this inequality is stated conditionally on the design), we only need Assumption (D) for
inequality (10.20) to hold.

3.3. Oracle inequality. In this section, we provide an oracle inequality for the
aggregation algorithm (10.12) with weights (10.13). This result, which is of independent
interest, is stated for a general finite set {ḡ(λ);λ ∈ Λ} of deterministic functions such that
‖ḡ(λ)‖∞ ≤ Q for all λ ∈ Λ. These functions are for instance weak estimators computed with
the training sample (or frozen sample), which is independent of the learning sample. Let
D := [(Xi, Yi); 1 ≤ i ≤ |D|] (where |D| stands for the cardinality of D) be an i.i.d. sample
of (X,Y ) from the multivariate regression model (10.1), where no particular structure
like (10.2) is assumed.

The aim of aggregation schemes is to mimic (up to an additive residual) the oracle
in {ḡ(λ);λ ∈ Λ}. This aggregation framework has been considered, among others, by [17],
[35], [74], [87], [98], [114] and [125].

Theorem 10.4. The aggregation procedure ĝ based on the learning sample D defined
by (10.12) and (10.13) satisfies

ED‖ĝ − g‖2
L2(PX) ≤ (1 + a) min

λ∈Λ
‖ḡ(λ) − g‖2

L2(PX) +
C log |Λ|(log |D|)1/2

|D|
for any a > 0, where |Λ| denotes the cardinality of Λ, where ED stands for the joint law of
D, and where C := 3[8Q2(1 + a)2/a+ 4(6Q2 + 2σ2

√
2)(1 + a)/3] + 2 + 1/T .

This theorem is a model-selection type oracle inequality for the aggregation procedure
given by (10.12) and (10.13). Sharper oracle inequalities for more general models can
be found in [75], where the algorithm used therein requires an extra summation, see
Remark 10.1.

Remark 10.4. Inspection of the proof shows that the ERM (which is the estimator
minimizing the empirical risk R(m)(g) :=

∑n
i=m+1(Yi − g(Xi))2 over all g in {ḡ(λ);λ ∈ Λ})

satisfies the same oracle inequality of Theorem 10.4 as the exponential weighted average
scheme ĝ. Nevertheless, it has been proved in Chapter 4 that the ERM is theoretically
suboptimal in this framework. The simulation study of Section 4 (especially Figures 3, 4,
5) confirm this suboptimality.

4. Numerical illustrations

We implemented the procedure described in Section 2 using the R software1. In order
to increase computation speed, we implemented the computation of local polynomials and
the bandwidth selection (10.9) in C language. We simulate samples from the single index
model (10.1),(10.2). We consider Gaussian noise with variance

σ =
[ ∑

1≤i≤n
f(ϑ>Xi)2/(n× rsnr)

]1/2
,

where rsnr = 5. We consider the following link functions:

1see http://www.r-project.org/
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• oscsine(x) = 4(x+ 1) sin(4πx2),
• hardsine(x) = 2 sin(1 + x) sin(2πx2 + 1).

The simulations are done with a uniform design on [−1, 1]d, with dimensions d ∈ {2, 3, 4}
and we consider several indexes ϑ that makes Pϑ>X not uniform.

In all the computations below, the parameters for the procedure are Λ = Ŝ ×G× L
where Ŝ is computed using the algorithm described in Section 2.3 and where G = {1, 2, 3, 4}
and L = {0.1, 0.5, 1, 1.5}. The degree of the local polynomials is r = 5. The learning sample
has size [n/4], and is chosen randomly in the whole sample. We do not use a jackknife
procedure (that is, the average of estimators obtained with several learning subsamples),
since the results are stable enough (at least when n ≥ 100) when we consider only one
learning sample.

In Tables 1, 2, 3 and Figures 3, 4, 5, we show the mean MISE for 100 replications and
its standard deviation for several Gibbs temperatures, several sample sizes and indexes.
These results give the empirical proof that the aggregated estimator outperforms the ERM
(which is computed as the aggregated estimator with a large temperature T = 30) since
in each case, the aggregated estimator with cross-validated temperature (aggCVT, given
by (10.17), with T = {0.1, 0.2, . . . , 4.9, 5}), has a MISE up to three times smaller than
the MISE of the ERM. Moreover, aggCVT is more stable than the ERM in view of the
standard deviations (in brackets). Note also that as expected, the dimension parameter has
no impact on the accuracy of estimation: the mises are barely the same when d = 2, 3, 4.

The aim of Figures 6 and 7 is to give an illustration of the aggregation phenomenon.
In these figures, we show the weights obtained for a single run, using the aggregation
procedure with the parameter set Λ = S̄d−1

∆ ×{3}× {1} (that is, s = 3 and L = 1 are fixed
and we do not use the reduction of complexity algorithm). These figures motivates indeed
the use the reduction of complexity algorithm, since only weights corresponding to a point
of S̄d−1

∆ which is close to the true index are significant (at least numerically). Finally, we
show typical realisations for several index functions, indexes and sample sizes in Figures 8,
9, 10, 11.

Table 1. Mise against the Gibbs temperature (f = hardsine, d = 2, ϑ = (1/
√

2, 1/
√

2).)

Temperature 0.1 0.5 0.7 1.0 1.5 2.0 ERM aggCVT

n = 100 0.026 0.017 0.015 0.014 0.014 0.015 0.034 0.015
(.009) (.006) (.006) (.005) (.005) (.006) (.018) (.005)

n = 200 0.015 0.009 0.008 0.008 0.009 0.011 0.027 0.009
(.004) (.002) (.003) (.003) (.005) (.007) (.014) (.004)

n = 400 0.006 0.005 0.004 0.005 0.006 0.007 0.016 0.005
(.001) (.001) (.001) (.001) (.002) (.002) (.003) (.002)
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figure 3: MISE against the Gibbs temperature for f = hardsine, ϑ = (1/

√
2, 1/

√
2),

n = 200, 400 (solid line = mean of the MISE for 100 replications, dashed line = mean
MISE ± standard deviation.)

Table 2. Mise against the Gibbs temperature (f = hardsine, d = 3,
ϑ = (2/

√
14, 1/

√
14, 3/

√
14)).

Temperature 0.1 0.5 0.7 1.0 1.5 2.0 ERM aggCVT

n = 100 0.029 0.021 0.019 0.018 0.017 0.018 0.037 0.020
(.011) (.008) (.008) (0.007) (.008) (.009) (.022) (.008)

n = 200 0.016 0.010 0.010 0.009 0.009 0.010 0.026 0.010
(.005) (.003) (.003) (.002) (.002) (.003) (0.008) (.003)

n = 400 0.007 0.006 0.005 0.005 0.006 0.007 0.017 0.006
(.002) (.001) (.001) (.001) (.001) (.002) (.003) (.001)
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figure 4: MISE against the Gibbs temperature for f = hardsine, ϑ =
(2/

√
14, 1/

√
14, 3/

√
14), n = 200, 400 (solid line = mean of the MISE for 100 replica-

tions, dashed line = mean MISE ± standard deviation.)
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Table 3. Mise against the Gibbs temperature (f = hardsine, d = 4,
ϑ = (1/

√
21,−2/

√
21, 0, 4/

√
21))

Temperature 0.1 0.5 0.7 1.0 1.5 2.0 ERM aggCVT

n = 100 0.038 0.027 0.021 0.019 0.017 0.017 0.038 0.020
(.016) (.010) (.009) (.008) (.007) (.007) (.025) (.010)

n = 200 0.019 0.013 0.012 0.012 0.013 0.014 0.031 0.013
(.014) (.009) (.010) (.011) (.012) (.012) (.016) (.010)

n = 400 0.009 0.006 0.005 0.005 0.006 0.007 0.017 0.006
(.002) (.001) (.001) (.001) (.001) (.002) (.004) (.001)
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figure 5: MISE against the Gibbs temperature for f = hardsine, ϑ =
(2/

√
14, 1/

√
14, 3/

√
14), n = 200, 400.
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figure 6: Weights (for a single run) at each points of the lattice S̄1
∆ for ∆ = 0.03, ϑ =

(1/
√

2, 1/
√

2) and T = 0.05, 0.2, 0.5, 10 (from top to bottom and left to right).
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figure 7: Weights (for a single run) at each points of the lattice S̄2
∆ for ∆ = 0.07, ϑ = (0, 0, 1),

and T = 0.05, 0.3, 0.5, 10 (from top to bottom and left to right).
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CHAPTER 10. AGGREGATION IN THE SINGLE-INDEX MODEL
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figure 8: Simulated datasets and aggregated estimators with cross-validated temperature
for f = hardsine, n = 100, and indexes ϑ = (1/

√
2, 1/

√
2), ϑ = (2/

√
14, 1/

√
14, 3/

√
14),

ϑ = (1/
√

21,−2/
√

21, 0, 4/
√

21) from top to bottom.
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4. NUMERICAL ILLUSTRATIONS
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figure 9: Simulated datasets and aggregated estimators with cross-validated temperature
for f = oscsine, n = 100, and indexes ϑ = (1/

√
2, 1/
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21) from top to bottom.
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figure 10: Simulated datasets and aggregated estimators with cross-validated temperature
for f = hardsine, n = 200, and indexes ϑ = (1/
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figure 11: Simulated datasets and aggregated estimators with cross-validated temperature
for f = oscsine, n = 200, and indexes ϑ = (1/

√
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5. Proofs

Proof of Theorem 10.1. First, we use Theorem 10.4. The functions ḡ(λ) are given
by (10.11). They are computed based on the training (or “frozen”) sample Dm, which is
independent of the learning sample D(m). If E(m) denotes the integration with respect to
the joint law of D(m), we obtain using Theorem 10.4:

E(m)‖ĝ − g‖2
L2(PX) ≤ (1 + a) min

λ∈Λ
‖ḡ(λ) − g‖2

L2(PX) +
C log |Λ|(log |D(m)|)1/2

|D(m)|

≤ (1 + a)‖ḡ(λ̄) − g‖2
L2(PX) + o(n−2s/(2s+1)),

since log |Λ|(log |D(m)|)1/2/|D(m)| ≤ d(log n)3/2+γ/(2τn) (see (10.18) and (10.16)), and
where λ̄ = (ϑ̄, s̄) ∈ Λ is such that ‖ϑ̄− ϑ‖2 ≤ ∆ and bs̄c = bsc with s ∈ [s̄, s̄+ (log n)−1].
By integration with respect to Pm, we obtain

(10.21) En‖ĝ − g‖2
L2(PX) ≤ (1 + a)Em‖ḡ(λ̄) − g‖2

L2(PX) + o(n−2s/(2s+1)).

The choice of λ̄ entails HQ(s, L) ⊂ HQ(s̄, L̄) and

n−2s̄/(2s̄+1) ≤ e1/2n−2s/(2s+1).

Thus, together with (10.21), the Theorem follows if we prove that

(10.22) sup
f∈HQ(s̄,L̄)

Em‖ḡ(λ̄) − g‖2
L2(PX) ≤ Cm−2s̄/(2s̄+1).

for n large enough, where C > 0. We cannot use directly Theorem 10.3 to prove this, since
the weak estimator ḡ(λ̄) works based on data Dm(ϑ̄) (see (10.4)) while the true index is ϑ.
In order to simplify notations, we replace the dependence upon λ̄ by ϑ̄, since in the upper
bound (10.22), the estimator uses the “correct” smoothness parameter s̄. We have

Em‖ḡ(ϑ̄) − g‖2
L2(PX) ≤ 2

(
Em‖ḡ(ϑ̄)(·)− f(ϑ̄>·)‖2

L2(PX) + ‖f(ϑ̄>·)− f(ϑ>·)‖2
L2(PX)

)
and using together (10.16) and fact that f ∈ HQ(s, L) for s ≥ τ , we obtain

‖f(ϑ̄>·)− f(ϑ>·)‖2
L2(PX) ≤ L2

∫
‖x‖2τ

2 PX(dx)∆2τ ≤ C(n log n)−1.

Let us denote by Qϑ(·|Xm
1 ) the joint law of (Xi, Yi)1≤i≤m from model (10.1) (when the

index is ϑ) conditional on the (Xi)1≤i≤m, which is given by

Qϑ(dym1 |xm1 ) :=
m∏
i=1

1
(σ(xi)(2π)1/2)

exp
(
− (yi − f(ϑ>xi))2

2σ(xi)2
)
dyi.

Under Qϑ̄(·|Xm
1 ), we have

LX(ϑ, ϑ̄) :=
dQϑ(·|Xm

1 )
dQϑ̄(·|Xm

1 )

(law)
= exp

(
−

m∑
i=1

εi(f(ϑ̄>Xi)− f(ϑ>Xi))
σ(Xi)

− 1
2

m∑
i=1

(f(ϑ̄>Xi)− f(ϑ>Xi))2

σ(Xi)2
)
.

Hence, if PmX denotes the joint law of (X1, . . . , Xm),

Em‖ḡ(ϑ̄)(·)− f(ϑ̄>·)‖2
L2(PX)

=
∫ ∫

‖ḡ(ϑ̄)(·)− f(ϑ̄>·)‖2
L2(PX)LX(ϑ, ϑ̄)dQϑ̄(·|Xm

1 )dPmX
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≤ C

∫ ∫
‖f̄ (ϑ̄)(ϑ̄>·)− f(ϑ̄>·)‖2

L2(PX)dQϑ̄(·|X
m
1 )dPmX(10.23)

+ 4Q2

∫ ∫
LX(ϑ, ϑ̄)1{LX(ϑ,ϑ̄)≥C}dQϑ̄(·|Xm

1 )dPmX ,

where we decomposed the integrand over {LX(ϑ, ϑ̄) ≥ C} and {LX(ϑ, ϑ̄) ≤ C} for some
constant C ≥ 3, and where we used the fact that ‖ḡ(ϑ̄)‖∞, ‖f‖∞ ≤ Q. Under Qϑ̄(·|Xm

1 ), the
(Xi, Yi) have the same law as (X,Y ) from model (10.1) where the index is ϑ̄. Moreover, we
assumed that Pϑ̄>X satisfies Assumption (D). Hence, Theorem 10.3 entails that, uniformly
for f ∈ HQ(s̄, L̄),∫ ∫

‖f̄ (ϑ̄)(ϑ̄>·)− f(ϑ̄>·)‖2
L2(PX)dQϑ̄(·|X

m
1 )dPmX ≤ C ′m−2s̄/(2s̄+1).

Moreover, the second term in the right hand side of (10.23) is smaller than

4Q2

∫ (∫
LX(ϑ, ϑ̄)2dQϑ̄(·|Xm

1 )
)1/2

Qϑ̄
[
LX(ϑ, ϑ̄) ≥ C|Xm

1

]1/2
dPmX .

Using together (10.16), the fact that f ∈ HQ(s, L) for s ≥ τ , the fact that PX is compactly
supported and the fact that σ(X) > σ0 a.s., we obtain∫

LX(ϑ, ϑ̄)2dQϑ̄(·|Xm
1 ) ≤ exp

(1
2

m∑
i=1

(f(ϑ̄>Xi)− f(ϑ>Xi))2

σ(Xi)2
)
≤ 1

PmX -a.s. when m is large enough. Moreover, we have with the same arguments

Qϑ̄
[
LX(ϑ, ϑ̄) ≥ C|Xm

1

]
≤ m−(logC)2/2 ≤ m−4s̄/(2s̄+1)

for C large enough, where we use the standard Gaussian deviation P [N(0, b2) ≥ a] ≤
exp(−a2/(2b2)). This concludes the proof of Theorem 10.1. �

Proof of Theorem 10.2. We want to bound the minimax risk

(10.24) inf
ĝn

sup
f∈HQ(s,L)

En
∫ (

ĝn(x)− f(ϑ>x)
)2
PX(dx)

from below, where the infimum is taken among all estimators Rd → R based on data
from model (10.1),(10.2). We recall that ϑ>X satisfies Assumption (D). We consider
ϑ(2), . . . , ϑ(d) in Rd such that (ϑ, ϑ(2), . . . , ϑ(d)) is an orthogonal basis of Rd. We denote by
O the matrix with columns ϑ, ϑ(2), . . . , ϑ(d). We define Y := OX = (Y (1), . . . , Y (d)) and
Y d

2 := (Y (2), . . . , Y (d)). By a change of variable, we obtain∫
Rd

(
ĝn(x)− f(ϑ>x)

)2
PX(dx)

=
∫

Rd

(
ĝn(O−1y)− f(y(1))

)2
PY (dy)

=
∫

R

∫
Rd−1

(
ĝn(O−1y)− f(y(1))

)2
PY d

2 |Y (1)(dyd2 |y(1))PY (1)(dy(1))

≥
∫

R

(
f̂n(y(1))− f(y(1))

)2
Pϑ>X(dy(1)),

where f̂n(y(1)) :=
∫
ĝn(O−1y)PY d

2 |Y (1)(dyd2 |y(1)). Hence, if Z := ϑ>X, (10.24) is larger than

(10.25) inf
f̂n

sup
f∈HQ(s,L)

En
∫ (

f̂n(z)− f(z)
)2
PZ(dz),
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where the infimum is taken among all estimators R → R based on data from model (10.1)
with d = 1 (univariate regression). In order to bound (10.25) from below, we use the
following Theorem, from [115], which is a standard tool for the proof of such a lower bound.
We say that ∂ is a semi-distance on some set Θ if it is symmetric, if it satisfies the triangle
inequality and if ∂(θ, θ) = 0 for any θ ∈ Θ. We consider K(P |Q) :=

∫
log(dPdQ)dP the

Kullback-Leibler divergence between probability measures P and Q.

Theorem 10.5. Let (Θ, ∂) be a set endowed with a semi-distance ∂. We suppose that
{Pθ; θ ∈ Θ} is a family of probability measures on a measurable space (X ,A) and that
(vn)n∈N is a sequence of positive numbers. If there exist {θ0, . . . , θM} ⊂ Θ, with M ≥ 2,
such that

• ∂(θj , θk) ≥ 2vn ∀0 ≤ j < k ≤M

• Pθj
� Pθ0 ∀1 ≤ j ≤M,

• 1
M

∑M
j=1K(Pnθj

|Pnθ0) ≤ α logM for some α ∈ (0, 1/8),
then

inf
θ̂n

sup
θ∈Θ

Enθ [(v−1
n ∂(θ̂n, θ))2] ≥

√
M

1 +
√
M

(
1− 2α− 2

√
α

logM

)
,

where the infimum is taken among all estimators based on a sample of size n.

Let us define m := bc0n1/(2s+1)c, the largest integer smaller than c0n
1/(2s+1), where

c0 > 0. Let ϕ : R → [0,+∞) be a function in HQ(s, 1/2; R) with support in [−1/2, 1/2].
We take hn := m−1 and zk := (k − 1/2)/m for k ∈ {1, . . . ,m}. For ω ∈ Ω := {0, 1}m, we
consider the functions

f(·;ω) :=
m∑
k=1

ωkϕk(·) where ϕk(·) := Lhsnϕ
( · − zk

hn

)
.

We have

‖f(·;ω)− f(·;ω′)‖L2(PZ) =
( m∑
k=1

(ωk − ωk′)2
∫
ϕk(z)2PZ(dz)

)1/2

≥ µ
1/2
0 ρ(ω, ω′)L2h2s+1

n

∫
Sµ

ϕ(u)2du,

where Sµ := SuppPZ − ∪z[az, bz] (the union is over the z such that µ(z) = 0, see Assump-
tion (D)), where µ0 := minz∈Sµ µ(z) > 0 and where

ρ(ω, ω′) :=
m∑
k=1

1ωk 6=ω′k

is the Hamming distance on Ω. Using a result of Varshamov-Gilbert (see [115]) we can
find a subset {ω(0), . . . , ω(M)} of Ω such that ω(0) = (0, . . . , 0), ρ(ω(j), ω(k)) ≥ m/8 for any
0 ≤ j < k ≤M and M ≥ 2m/8. Therefore, we have

‖f(·;ω(j))− f(·;ω(k))‖L2(PZ) ≥ Dn−s/(2s+1),

where D = µ
1/2
0

∫
Sµ
ϕ(u)2du/(8c2s0 ) ≥ 2 for c0 small enough. Moreover,

1
M

M∑
k=1

K(Pn
f(·,ω(0))

|Pn
f(·,ω(k))

) ≤ n

2Mσ2
0

M∑
k=1

‖f(·;ω(0))− f(·;ω(k))‖2
L2(PZ)

≤ n

2σ2
0

L2h2s+1
n ‖ϕ‖2

2m ≤ α logM,
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where α := (L2‖ϕ‖2
2)/(σ

2c2s+1
0 log 2) ∈ (0, 1/8) for c0 small enough. The conclusion follows

from Theorem 10.5. �

Proof of Theorem 10.3. We recall that R = bsc is the largest integer smaller than
s, and that λ(M) stands for the smallest eigenvalue of a matrix M .

Proof of (10.19). First, we prove a bias-variance decomposition of the LPE at a fixed
point z ∈ SuppPZ . This kind of result is commonplace, see for instance [115]. We introduce
the following weighted pseudo-inner product, for fixed z ∈ R and h > 0, as

〈f, g〉h :=
1

mP̄Z [I(z, h)]

m∑
i=1

f(Zi)g(Zi)1Zi∈I(z,h),

where we recall that I(z, h) = [z − h, z + h], and that P̄Z is given by (10.8), and we
consider the associated pseudo-norm ‖g‖2

h := 〈g, g〉h. We introduce the power functions
ϕa(·) := ((· − x)/h)a for a ∈ {0, . . . , R}, which satisfy ‖ϕa‖h ≤ 1.

Note that the entries of the matrix Z̄m = Z̄m(z, h) (see (10.7)) satisfy (Z̄m(z, h))a,b :=
〈ϕa, ϕb〉h for (a, b) ∈ {0, . . . , R}2. Hence, (10.6) is equivalent to find P̄ ∈ PolR such that

(10.26) 〈P̄ , ϕa〉h = 〈Y, ϕa〉h
for any a ∈ {0, . . . , R}, where 〈Y, ϕ〉h := (mP̄Z [I(z, h)])−1

∑m
i=1 Yiϕ(Zi)1Zi∈I(z,h). In other

words, P̄ is the projection of Y onto PolR with respect to the inner product 〈·, ·〉h. For
e1 := (1, 0, . . . , 0) ∈ RR+1, we have

f̄(z)− f(z) = e>1 Z̄−1
m Z̄m(θ̄ − θ)

whenever λ(Z̄m) > 0, where θ̄ is the coefficient vector of P̄ and θ is the coefficient vector
of the Taylor polynomial P of f at z with degree R. In view of (10.26):

(Z̄m(θ̄ − θ))a = 〈P̄ − P,ϕa〉h = 〈Y − P,ϕa〉h,

thus Z̄m(θ̄ − θ)) = B + V where (B)a := 〈f − P,ϕa〉h and (V )a := 〈σ(·)ξ, ϕa〉h. The bias
term satisfies |e>1 Z̄−1

m B| ≤ (R+ 1)1/2‖Z̄−1
m ‖‖B‖∞ where for any a ∈ {0, . . . , R}

|(B)a| ≤ ‖f − P‖h ≤ Lhs/R!.

Let Z̄σm be the matrix with entries (Z̄σm)a,b := 〈σ(·)ϕa, σ(·)ϕb〉h. Since V is, conditionally
on Zm1 = (Z1, . . . , Zm), centered Gaussian with covariance matrix (mP̄Z [I(z, h)])−1Z̄σm,
e>1 Z̄−1

m V is centered Gaussian with variance smaller than

(mP̄Z [I(z, h)])−1e>1 Z̄−1
m Z̄σmZ̄−1

m e1 ≤ σ2(mP̄Z [I(z, h)])−1λ(Z̄m)−1

where we used σ(·) ≤ σ. Hence, if CR := (R+ 1)1/2/R!, we obtain

Em[(f̄(z)− f(z))2|Zm1 ] ≤ λ(Z̄m(z, h))−2
(
CRLh

s + σ(mP̄Z [I(z, h)])−1/2
)2

for any z, and the bandwidth choice (10.9) entails (10.19).

Proof of (10.20). Let us consider the sequence of positive curves hm(·) defined as the
point-by-point solution to

(10.27) Lhm(z)s =
σ

(mPZ [I(z, hm(z))])1/2

for all z ∈ SuppPZ , where we recall I(z, h) = [z − h, z + h], and let us define

rm(z) := Lhm(z)s.
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The sequence hm(·) is the deterministic equivalent to the bandwidth Hm(·) given by (10.9).
Indeed, with a large probability, Hm(·) and hm(·) are close to each other in view of
Lemma 10.1 below. Under Assumption (D) we have PZ [I] ≥ γ|I|β+1, which entails
together with (10.27) that

(10.28) hm(z) ≤ Dm−1/(1+2s+β)

uniformly for z ∈ SuppPZ , where D = (σ/L)2/(1+2s+β)(γ2β+1)−1/(1+2s+β). Moreover, since
PZ has a continuous density µ with respect to the Lebesgue measure, we have

(10.29) hm(z) ≥ Dm−1/(1+2s)

uniformly for z ∈ SuppPZ , where D = (σ/L)2/(1+2s)(2µ∞)−1/(2s+1). We recall that PmZ
stands for the joint law of (Z1, . . . , Zm).

Lemma 10.1. If PZ satisfies Assumption (D), we have for any ε ∈ (0, 1/2)

PmZ

[
sup

z∈Supp(PZ)

∣∣∣Hm(z)
hm(z)

− 1
∣∣∣ > ε

]
≤ exp(−Dε2mα)

for m large enough, where α := 2s/(1 + 2s+β) and D is a constant depending on σ and L.

The next lemma provides an uniform control on the smallest eigenvalue of Z̄m(z) :=
Z̄m(z,Hm(z)) under Assumption (D).

Lemma 10.2. If PZ satisfies Assumption (D), there exists λ0 > 0 depending on β and
s only such that

PmZ
[

inf
z∈SuppPZ

λ(Z̄m(z)) ≤ λ0

]
≤ exp(−Dmα),

for m large enough, where α = 2s/(1+2s+β), and D is a constant depending on γ, β, s, L, σ.

The proofs of the lemmas are given in Section 6. We consider the event

Ωm(ε) :=
{

inf
z∈SuppPZ

λ(Z̄m(z)) > λ0

}
∩
{

sup
z∈SuppPZ

|Hm(z)/hm(z)− 1| ≤ ε
}
,

where ε ∈ (0, 1/2). We have for any f ∈ HQ(s, L)

Em[‖τQ(f̄)− f‖2
L2(PZ)1Ωm(ε)] ≤ λ−2

0 (1 + ε)2s
σ2

m

∫
PZ(dz)∫ z+hm(z)

z−hm(z) PZ(dt)
,

where we used together the definition of Ωm(ε), (10.19) and (10.27). Let us denote
I := SuppPZ and let Iz∗ be the intervals from Assumption (D). Using together the fact
that minz∈I−∪z∗Iz∗ µ(z) > 0 and (10.29), we obtain

σ2

m

∫
I−∪z∗Iz∗

PZ(dz)∫ z+hm(z)
z−hm(z) PZ(dt)

≤ Cm−2s/(2s+1).

Using the monoticity constraints from Assumption (D), we obtain

σ2

m

∫
Iz∗

P (dz)∫ z+hm(z)
z−hm(z) PZ(dt)

≤ σ2

m

(∫ z∗

z∗−az∗

µ(z)dz∫ z
z−hm(z) µ(t)dt

+
∫ z∗+bz∗

z∗

µ(z)dz∫ z+hm(z)
z µ(t)dt

)
≤ σ2

m

∫
Iz∗

hm(z)−1dz ≤ Cm−2s/(2s+1),

hence Em[‖τQ(f̄) − f‖2
L2(PZ)1Ωm(ε)] ≤ Cm−2s/(2s+1) uniformly for f ∈ HQ(s, L). Using

together Lemmas 10.1 and 10.2, we obtain Em[‖τQ(f̄)− f‖2
L2(PZ)1Ωm(ε){ ] = o(n−2s/(2s+1)),

and (10.20) follows. �
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Proof of Theorem 10.4. In model (10.1), when the noise ε is centered and such that
E(ε2) = 1, the risk of a function ḡ : Rd → R is given by

A(ḡ) := E[(Y − ḡ(X))2] = E[σ(X)2] + ‖ḡ − g‖2
L2(PX),

where g is the regression function. Therefore, the excess risk satisfies

A(ḡ)−A = ‖ḡ − g‖2
L2(PX),

where A := A(g) = E[σ(X)2]. Let us introduce n := |D| the size of the learning sample,
and M := |Λ| the size of the dictionary of functions {ḡ(λ);λ ∈ Λ}. The empirical risk of ḡ
over the D = [(Xi, Yi); 1 ≤ i ≤ n] is given by

An(ḡ) :=
1
n

n∑
i=1

(Yi − ḡ(Xi))2.

We begin with a linearization of these risks. We consider the convex set

C :=
{

(θλ)λ∈Λ such that θλ ≥ 0 and
∑
λ∈Λ

θλ = 1
}
,

and define the linearized risks on C

Ã(θ) :=
∑
λ∈Λ

θλA(ḡ(λ)), Ãn(θ) :=
∑
λ∈Λ

θλAn(ḡ(λ)),

which are linear versions of the risk A and its empirical version An. The exponential
weights w = (wλ)λ∈Λ := (w(ḡ(λ)))λ∈Λ are actually the unique solution of the minimization
problem

(10.30) min
(
Ãn(θ) +

1
Tn

∑
λ∈Λ

θλ log θλ
∣∣ (θλ) ∈ C),

where T > 0 is the temperature parameter in the weights (10.13), and where we use
the convention 0 log 0 = 0. Let λ̂ ∈ Λ be such that An(ḡ(λ̂)) = minλ∈ΛAn(ḡ(λ)). Since∑

λ∈Λwλ log
(
wλ

1/M

)
= K(w|u) ≥ 0 where K(w|u) denotes the Kullback-Leibler diver-

gence between the weights w and the uniform weights u := (1/M)λ∈Λ, we have together
with (10.30):

Ãn(w) ≤ Ãn(w) +
1
Tn

K(w|u)

= Ãn(w) +
1
Tn

∑
λ∈Λ

wλ logwλ +
logM
Tn

≤ Ãn(eλ̂) +
logM
Tn

,

where eλ ∈ C is the vector with 1 for the λ-th coordinate and 0 elsewhere. Let a > 0 and
An := An(g). For any λ ∈ Λ, we have

Ã(w)−A = (1 + a)(Ãn(w)−An) + Ã(w)−A− (1 + a)(Ãn(w)−An)

≤ (1 + a)(Ãn(eλ)−An) + (1 + a)
logM
Tn

+ Ã(w)−A− (1 + a)(Ãn(w)−An).
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Let us denote by EK the expectation with respect to PK , the joint law of D for a noise ε
which is bounded almost surely by K > 0. We have

EK
[
Ã(w)−A

]
≤ (1 + a) min

λ∈Λ
(Ãn(eλ)−An) + (1 + a)

logM
Tn

+ EK
[
Ã(w)−A− (1 + a)(Ãn(w)−An)

]
.

Using the linearity of Ã on C, we obtain

Ã(w)−A− (1 + a)(Ãn(w)−An) ≤ max
g∈GΛ

(
A(g)−A− (1 + a)(An(g)−An)

)
,

where GΛ := {ḡ(λ) ; λ ∈ Λ}. Then, using Bernstein inequality, we obtain for all δ > 0

PK
[
Ã(w)−A− (1 + a)(Ãn(w)−An) ≥ δ

]
≤
∑
g∈GΛ

PK

[
A(g)−A− (An(g)−An) ≥

δ + a(A(g)−A)
1 + a

]
≤
∑
g∈GΛ

exp
(
− n(δ + a(A(g)−A))2(1 + a)−1

8Q2(1 + a)(A(g)−A) + 2(6Q2 + 2σK)(δ + a(A(g)−A))/3

)
.

Moreover, we have for any δ > 0 and g ∈ GΛ,

(δ + a(A(g)−A))2(1 + a)−1

8Q2(A(g)−A) + 2(6Q2(1 + a) + 2σK)(δ + a(A(g)−A))/3
≥ C(a,K)δ,

where C(a,K) :=
(
8Q2(1 + a)2/a+ 4(6Q2 + 2σK)(1 + a)/3

)−1, thus

EK
[
Ã(w)−A− (1 + a)(Ãn(w)−An)

]
≤ 2u+M

exp(−nC(a,K)u)
nC(a,K)

If we denote by γA the unique solution of γ = A exp(−γ), where A > 0, we have logA/2 ≤
γA ≤ logA. Thus, if we take u = γM/(nC(a,K)), we obtain

EK
[
Ã(w)−A− (1 + a)(Ãn(w)−An)

]
≤ 3 logM
C(a,K)n

.

By convexity of the risk, we have

Ã(w)−A ≥ A(ĝ)−A,

thus
EK
[
‖ĝ − g‖2

L2(PX)

]
≤ (1 + a) min

λ∈Λ
‖ḡ(λ) − g‖2

L2(PX) + C1
logM
n

,

where C1 := (1 + a)(T−1 + 3C(a,K)−1). It remains to prove the result when the noise is
Gaussian. Let us denote εn∞ := max1≤i≤n |εi|. For any K > 0, we have

E
[
‖ĝ − g‖2

L2(PX)

]
= E

[
‖ĝ − g‖2

L2(PX)1εn∞≤K
]
+ E

[
‖ĝ − g‖2

L2(PX)1εn∞>K
]

≤ EK
[
‖ĝ − g‖2

L2(PX)

]
+ 2Q2P [εn∞ > K].

For K = Kn := 2(2 log n)1/2, we obtain using standard results about the maximum of
Gaussian vectors that P [εn∞ > Kn] ≤ P [εn∞ −E[εn∞] > (2 log n)1/2] ≤ 1/n, which concludes
the proof of the Theorem. �
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6. Proof of the lemmas

Proof of Lemma 10.1. Using together (10.9) and (10.27), if Iεm(z) := [z − (1 +
ε)hm(z), z + (1 + ε)hm(z)] and Im(z) := I0

m(z), we obtain for any ε ∈ (0, 1/2):

{Hm(z) ≤ (1 + ε)hm(z)} =
{
(1 + ε)2sP̄Z [Iεm(z)] ≥ PZ [Im(z)]

}
⊃
{
(1 + ε)2sP̄Z [Im(z)] ≥ PZ [Im(z)]

}
,

where we used the fact that ε 7→ PZ [Iεm(z)] is nondecreasing. Similarly, we have on the
other side

{Hm(z) > (1− ε)hm(z)} ⊃
{
(1− ε)2sP̄Z [Im(z)] ≤ PZ [Im(z)]

}
.

Thus, if we consider the set of intervals

Im :=
⋃

z∈SuppPZ

{
Im(z)

}
,

we obtain {
sup

z∈SuppPZ

∣∣∣Hm(z)
hm(z)

− 1
∣∣∣ ≥ ε

}
⊂
{

sup
I∈Im

∣∣∣ P̄Z [I]
PZ [I]

− 1
∣∣∣ ≥ ε/2

}
.

Using together (10.27) and (10.28), we obtain

(10.31) PZ [Im(z)] = σ2/(mL2hm(z)2s) ≥ Dm−(β+1)/(1+2s+β) =: αm.

Hence, if ε′ := ε(1 + ε/2)/(ε+ 2), we have{
sup
I∈Im

∣∣∣ P̄Z [I]
PZ [I]

− 1
∣∣∣ ≥ ε/2

}
⊂
{

sup
I∈Im

P̄Z [I]− PZ [I]√
P̄Z [I]

≥ ε′α1/2
m

}
∪
{

sup
I∈Im

PZ [I]− P̄Z [I]√
PZ [I]

≥ εα1/2
m /2

}
.

Hence, Theorem 10.6 and the fact that the shatter coefficient satisfies S(Im,m) ≤ m(m+
1)/2 (see Appendix) entails the Lemma. �

Proof of Lemma 10.2. Let us denote Z̄m(z) := Z̄m(z,Hm(z)) where Z̄m(z, h) is given
by (10.7) and Hm(z) is given by (10.9). Let us define the matrix Z̃m(z) := Z̃m(z, hm(z))
where

(Z̃m(z, h))a,b :=
1

mPZ [I(z, h)]

m∑
i=1

(Zi − z

h

)a+b
1Zi∈I(z,h).

Step 1. Let us define for ε ∈ (0, 1) the event

Ω1(ε) :=
{

sup
z∈SuppPZ

∣∣∣Hm(z)
hm(z)

− 1
∣∣∣ ≤ ε

}
∩
{

sup
z∈SuppPZ

∣∣∣ P̄Z [I(z,Hm(z))]
PZ [I(z, hm(z))]

− 1
∣∣∣ ≤ ε

}
.

For a matrix A, we denote ‖A‖∞ := maxa,b |(A)a,b|. We can prove that on Ω1(ε), we have

‖Z̄m(z)− Z̃m(z)‖∞ ≤ ε.

Moreover, using Lemma 10.1, we have PmZ [Ω1(ε){] ≤ C exp(−Dε2mα). Hence, on Ω1(ε),
we have for any v ∈ Rd, ‖v‖2 = 1

v>Z̄m(z)v ≥ v>Z̃m(z)v − ε

uniformly for z ∈ SuppPZ .
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Step 2. We define the deterministic matrix Z(z) := Z(z, hm(z)) where

(Z(z, h))a,b :=
1

PZ [I(z, h)]

∫
I(z,h)

( t− z

h

)a+b
PZ(dt),

and
λ0 := liminfm inf

z SuppPZ

λ
(
Z(z, hm(z))

)
.

We prove that λ0 > 0. Two cases can occur: either µ(z) = 0 or µ(z) > 0. We show that
in both cases, the liminf is positive. If µ(z) > 0, the entries (Z(z, hm(z)))a,b have limit
(1 + (−1)a+b)/(2(a+ b+ 1)), which defines a positive definite matrix. If µ(z) = 0, we know
that the density µ(·) of PZ behaves as the power function |·−z|β(z) around z for β(z) ∈ (0, β).
In this case, (Z(z, hm(z)))a,b has limit (1 + (−1)a+b)(β(z) + 1)/(2(1 + a+ b+ β(z))), which
defines also a definite positive matrix.
Step 3. We prove that

PmZ [ sup
z∈SuppPZ

‖Z̃m(z)− Z(z)‖∞ > ε] ≤ exp(−Dε2mα).

We consider the sets of nonnegative functions (we recall that I(z, h) = [z − h, z + h])

F (even) :=
⋃

z∈SuppPZ
a even and 0≤a≤2R

{( · − z

hm(z)

)a
1I(z,hm(z))(·)

}
,

F
(odd)
+ :=

⋃
z∈SuppPZ

a odd and 0≤a≤2R

{( · − z

hm(z)

)a
1[z,z+hm(z)](·)

}
,

F
(odd)
− :=

⋃
z∈SuppPZ

a odd and 0≤a≤2R

{( z − ·
hm(z)

)a
1[z−hm(z),z](·)

}
.

Writing I(z, hm(z)) = [z − hm(z), z) ∪ [z, z + hm(z)] when a+ b is odd, and since

PZ [I(z, hm(z))] ≥ Ef(Z1)

for any f ∈ F := F (even) ∪ F (odd)
+ ∪ F (odd)

− , we obtain

‖Z̃m(z)− Z(z)‖∞ ≤ sup
f∈F

| 1
m

∑m
i=1 f(Zi)− Ef(Z1)|

Ef(Z1)
.

Hence, since x 7→ x/(x + α) is increasing for any α > 0, and since α := Ef(Z1) ≥
Dm−(β+1)/(1+2s+β) =: αm (see (10.31)), we obtain{

sup
z∈SuppPZ

‖Z̃m(z)− Z(z)‖∞ > ε
}
⊂
{

sup
f∈F

| 1
m

∑m
i=1 f(Zi)− Ef(Z1)|

αm + 1
m

∑m
i=1 f(Zi) + Ef(Z1)

> ε/2
}
.

Then, using Theorem 10.7 (note that any f ∈ F is non-negative), we obtain

PmZ [ sup
z∈SuppPZ

‖Z̃m(z)− Z(z)‖∞ > ε] ≤ 4E[N1(αmε/8, F, Zm1 )] exp
(
−Dε2m2s/(1+2s+β)

)
.

Together with the inequality

(10.32) E[N1(αmε/8, F, Zm1 )] ≤ D(αmε)−1m1/(2s+1)+(β−1)/(2s+β),

(see the proof below), this entails the Lemma. �

Proof of (10.32). It suffices to prove the inequality for F (even) and a fixed a ∈
{0, . . . , 2R}, since the proof is the same for F (odd)

+ and F
(odd)
− . We denote fz(·) := ((· −
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z)/hm(z))a1I(z,hm(z))(·). We prove the following statement

N (ε, F, ‖ · ‖∞) ≤ Dε−1m1/(2s+1)+(β−1)/(2s+β),

which is stronger than (10.32), where ‖ · ‖∞ is the uniform norm over the support of PZ .
Let z, z1, z2 ∈ SuppPZ . We have

|fz1(z)− fz2(z)| ≤ max(a, 1)
∣∣∣z − z1
h1

− z − z2
h2

∣∣∣1I1∪I2 ,
where hj := hm(zj) and Ij := [zj − hj , zj + hj ] for j = 1, 2. Hence,

|fz1(z)− fz2(z)| ≤
|h1 − h2|+ |z1 − z2|

min(h1, h2)
.

Using (10.27) together with a differentiation of z 7→ hm(z)2sPZ [I(z, hm(z))], we obtain
that

|hm(z1)− hm(z2)| ≤

sup
z1≤z≤z2

∣∣∣ hm(z)2s+1(µ(z − hm(z))− µ(z + hm(z)))
(2sσ2)/(mL) + hm(z)2s+1(µ(z − hm(z)) + µ(z + hm(z)))

∣∣∣|z1 − z2|,

for any z1 < z2 in Suppµ. This entails together with Assumption (D), (10.28) and (10.29):

|hm(z1)− hm(z2)| ≤
µ∞

2s(γL)(2s+1)/(2s+β+1)

(m
σ2

) β
2s+β+1 |z1 − z2|,

for any z1 < z2 in Suppµ. Hence,

|fz1(z)− fz2(z)| ≤ Dm
1

2s+1
+ β−1

2s+β |z1 − z2|,

which concludes the proof of (10.32). �

7. Some tools form empirical process theory

Let A be a set of Borelean subsets of R. If xn1 := (x1, . . . , xn) ∈ Rn, we define

N(A, xn1 ) :=
∣∣{{x1, . . . , xn} ∩A|A ∈ A

}∣∣
and we define the shatter coefficient

(10.33) S(A, n) := max
xn
1∈Rn

N(A, (x1, . . . , xn)).

For instance, if A is the set of all the intervals [a, b] with −∞ ≤ a < b ≤ +∞, we have
S(A, n) = n(n+ 1)/2.

Let X1, . . . , Xn be i.i.d. random variables with values in R, and let us define µ[A] :=
P (X1 ∈ A) and µ̄n[A] := n−1

∑n
i=1 1Xi∈A. The following inequalities for relative deviations

are due to Vapnik and Chervonenkis (1974), see for instance in [117].

Theorem 10.6 (Vapnik and Chervonenkis (1974)). We have

P
[

sup
A∈A

µ(A)− µ̄n(A)√
µ(A)

> ε
]
≤ 4S(A, 2n) exp(−nε2/4)

and
P
[

sup
A∈A

µ̄n(A)− µ(A)√
µ̄n(A)

> ε
]
≤ 4S(A, 2n) exp(−nε2/4)

where SA(2n) is the shatter coefficient of A defined by (10.33).
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Let (X , τ) be a measured space and F be a class of functions f : X → [−K,K]. Let
us fix p ≥ 1 and zn1 ∈ X n. Define the semi-distance dp(f, g) between f and g by

dp(f, g) :=
( 1
n

n∑
i=1

|f(zi)− g(zi)|p
)1/p

and denote by Bp(f, ε) the dp-ball with center f and radius ε. The ε−covering number of
F w.r.t dp is defined as

Np(ε,F , zn1 ) := min
(
N | ∃f1, . . . , fN s.t. F ⊆ ∪Mj=1Bp(fj , ε)

)
.

Theorem 10.7 (Haussler (1992)). If F consists of functions f : X → [0,K], we have

P
[

sup
f∈F

∣∣E[f(X1)]− 1
n

∑n
i=1 f(Xi)

∣∣
α+ E[f(X1)] + 1

n

∑n
i=1 f(Xi)

≥ ε
]
≤ 4E[Np(αε/8,F , Xn

1 )] exp
(
− nαε2

16K2

)
.
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Méthodes d’agrégation : optimalité et vitesses rapides.

Résumé : Le principal travail de cette thèse porte sur l’étude des méthodes d’agrégation
sous l’hypothèse de marge. Nous avons mis en avant que l’hypothèse de marge améliore
les vitesses d’agrégation. Un autre résultat de cette thèse montre que certaines méthodes
de minimisation du risque empirique pénalisé sont sous-optimales quand le risque est
convexe, même sous l’hypothèse de marge. Contrairement aux procédures d’agrégation à
poids exponentiels, ces méthodes n’arrivent pas à profiter de la marge du modèle. Nous
avons ensuite appliqué les méthodes d’agrégation à la résolution de quelques problèmes
d’adaptation. Une dernière contribution apportée dans cette thèse a été de proposer une
approche du contrôle du biais en classification par l’introduction d’espaces de règles de
prédiction parcimonieuses. Des vitesses minimax ont été obtenues pour ces modèles et une
méthode d’agrégation a donné une version adaptative de ces procédures d’estimation.

Mots-clés : Estimation non-paramétrique, classification, régression, estimation de densité,
adaptation, optimalité, réduction de dimension, vitesses minimax, inégalités d’oracle.

—————————————-

Aggregation procedures: optimality and fast rates.

Abstract: In this thesis we deal with aggregation procedures under the margin assump-
tion. We prove that the margin assumption improves the rate of aggregation. Another
contribution of this thesis is to show that some empirical risk minimization procedures are
suboptimal when the loss function is convex, even under the margin assumption. Contrarily
to some aggregation procedures with exponential weights, these model selection methods
cannot benefit from the large margin. Then, we apply aggregation methods to construct
adaptive estimators in several different problems. The final contribution of this thesis is
to purpose a new approach to the control of the bias term in classification by introducing
some spaces of sparse prediction rules. Minimax rates of convergence have been obtained
for these classes of functions and, by using an aggregation method, we provide an adaptive
version of these estimators.

Keywords: Non-parametric estimation, classification, regression, density estimation, adap-
tation, optimality, dimension reduction, minimax rates of convergence, oracle inequalities.

—————————————-

AMS Classification: Primary: 62G05. Secondary: 62H30, 68T10, 62G07, 62G08, 68T05,
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