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Abstract

We observe (Xi, Yi)n
i=1 where the Yi’s are real valued outputs and the Xi’s are

m× T matrices. We observe a new entry X and we want to predict the output
Y associated with it. We focus on the high-dimensional setting, where mT � n.
This includes the matrix completion problem with noise, as well as other prob-
lems. We consider linear prediction procedures based on different penalizations,
involving a mixture of several norms: the nuclear norm, the Frobenius norm and
the `1-norm. For these procedures, we prove sharp oracle inequalities, using a
statistical learning theory point of view. A surprising fact in our results is that
the rates of convergence do not depend on m and T directly. The analysis is con-
ducted without the usually considered incoherency condition on the unknown
matrix or restricted isometry condition on the sampling operator. Moreover, our
results are the first to give for this problem an analysis of penalization (such
nuclear norm penalization) as a regularization algorithm: our oracle inequalities
prove that these procedures have a prediction accuracy close to the deterministic
oracle one, given that the reguralization parameters are well-chosen.

Keywords. High dimensional matrix ; Matrix completion ; Oracle inequalities ;
Schatten norms ; Nuclear norm ; Empirical risk minimization ; Empirical process
theory ; Sparsity

1 Introduction

1.1 The model and some basic definitions

Let (X,Y ) and Dn = (Xi, Yi)ni=1 be n + 1 i.i.d random variables with values in
Mm,T×R, whereMm,T is the set of matrices with m rows and T columns with entries
in R. Based on the observations Dn, we have in mind to predict the real-valued ouput
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Y by a linear transform of the input variable X. We focus on the high-dimensional
setting, where mT � n. We use a “statistical learning theory point of view”: we do
not assume that E(Y |X) has a particular structure, such as E(Y |X) = 〈X,A0〉 for
some A0 ∈ Mm,T , where 〈·, ·〉 is the standard Euclidean inner product given for any
A,B ∈Mm,T by

〈A,B〉 := tr(A>B). (1)

The statistical performance of a linear predictor 〈X,A〉 for some A ∈ Mm,T is mea-
sured by the quadratic risk

R(A) := E[(Y − 〈X,A〉)2]. (2)

If Ân ∈ Mm,T is a statistic constructed from the observations Dn, then its risk is
given by the conditional expectation

R(Ân) := E[(Y − 〈X, Ân〉)2|Dn].

A natural candidate for the prediction of Y using Dn is the empirical risk minimiza-
tion procedure, namely any element in Mm,T minimizing the empirical risk Rn(·)
defined for all A ∈Mm,T by

Rn(A) =
1
n

n∑
i=1

(Yi − 〈Xi, A〉)2.

It is well-known that the excess risk of this procedure is of order mT/n. In the high
dimensional setting, this rate is not going to zero. So, if X 7→ 〈A0, X〉 is the best
linear prediction of Y by X, we need to know more about A0 in order to construct
algorithms with a small risk. In particular, we need to know that A0 has a “low-
dimensional structure”. In this setup, this is usually done by assuming that A0 is low
rank. A first idea is then to minimize Rn and to penalize matrices with a large rank.
Namely, one can consider

Ân ∈ argmin
A∈Mm,T

{
Rn(A) + λ rank(A)

}
, (3)

for some regularization parameter λ > 0. But A 7→ rank(A) is far from being a
convex function, thus minimizing (3) is very difficult in practice, see [19] for instance
on this problem. Convex relaxation of (3) leads to the following convex minimization
problem

Ân ∈ argmin
A∈Mm,T

{
Rn(A) + λ‖A‖S1

}
, (4)

where ‖ · ‖S1 is the 1-Schatten norm, also known as nuclear norm or trace norm.
This comes from the fact that the nuclear norm is the convex envelope of the rank
on the unit ball of the spectral norm, see [18]. For any matrix A ∈Mm,T , we denote
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by s1(A), . . . , srank(A)(A) its nonincreasing sequence of singular values. For every
p ∈ [1,∞], the p-Schatten norm of A is given by

‖A‖Sp :=
( rank(A)∑

j=1

sj(A)p
)1/p

. (5)

In particular, the ‖·‖S∞-norm is the operator norm or spectral norm. The ‖·‖S2-norm
is the Frobenius norm, which satisfies

‖A‖2S2
=
∑
i,j

A2
i,j = 〈A,A〉.

1.2 Motivations

A particular case of the matrix prediction problem described in Section 1.1 is the
problem of (noisy) matrix completion, see [38, 39], which became very popular because
of the buzz surrounding the Netflix prize1. In this problem, it is assumed that X is
uniformly distributed over the set {ep,q : 1 ≤ p ≤ m, 1 ≤ q ≤ T}, where ep,q ∈ Mm,T

is such that (ep,q)i,j = 0 when i 6= q or j 6= p and (ep,q)p,q = 1. If E(Y |X) = 〈A0, X〉
for some A0 ∈ Mm,T , then the Yi are n noisy observations of the entries of A0, and
the aim is to denoise the observed entries and to fill the non-observed ones.

First motivation. Quite surprisingly, for matrix completion without noise (Yi =
〈Xi, A0〉), it is proved in [15] and [16] (see also [21], [32]) that nuclear norm mini-
mization is able, with a large probability (of order 1 − m−3) to recover exactly A0

when n > cr(m + T )(log n)6, where r is the rank of A0. This result is proved under
a so-called incoherency assumption on A0. This assumption requires, roughly, that
the left and right singular vectors of A0 are well-spread on the unit sphere. Using
this incoherency assumption [14], [23] give results concerning the problem of matrix
completion with noise. However, recalling that this assumption was introduced in
order to prove exact completion, and since in the noisy case it is obvious that exact
completion is impossible, a natural goal is then to obtain results for noisy matrix
completion without the incoherency assumption. This is a first motivation of this
work: we derive very general sharp oracle inequalities without any assumption on
A0, not even that it is low-rank. More than that, we don’t need to assume that
E(Y |X) = 〈X,A0〉 for some A0, since we use a statistical learning point-of-view in
the statement of our results. More precisely, we construct procedures Ân satisfying
sharp oracle inequalities of the form

R(Ân) ≤ inf
A∈Mm,T

{
R(A) + rn(A)

}
(6)

that hold with a large probability, where rn(A) is a residue related to the penalty
used in the definition of Ân that we want as small as possible. By “sharp” we mean
that in the right hand side of (6), the constant in front of R(A) is equal to one.

1http://www.netflixprize.com/
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A surprising fact in our results is that, for penalization procedures that involve
the 1-Schatten norm (and 2-Schatten norm if a mixed penalization is considered), the
residue rn(·) does not depend on m and T directly: it only depends on the 1-Schatten
norm of A0, see Section 2 for details. This was not, as far as we know, previously
noticed in literature (all the upper bounds obtained for ‖Ân−A0‖2S2

depend directly
on m and T and on ‖A0‖S1 or on its rank and on ‖A0‖S∞ , see the references above and
below). This fact can be used to argue that ‖·‖S1 is a better measure of sparsity than
the rank, and it points out an interesting difference between nuclear-norm penalization
(also called “Matrix Lasso”) and the Lasso for vectors.

In [34], which is a work close to ours, upper bounds for p-Schatten penalization
procedures for 0 < p ≤ 1 are given in the same setting as ours, including in particu-
lar the matrix completion problem. The results are stated without the incoherency
assumption for matrix completion. But for this problem, the upper bounds are given
using the empirical norm ‖Ân − A0‖2n =

∑n
i=1〈Xi, Ân − A0〉2/n only. An upper

bound for this measure of accuracy gives information only about the denoising part
and not about the filling part of the matrix completion problem. Our results have
the form (6), and taking A0 instead of the minimum in this equation gives an up-
per bound for R(Ân) − R(A0), which is equal to ‖Ân − A0‖2S2

/(mT ) in the matrix
completion problem when E(Y |X) = 〈X,A0〉 (see Section 2).

Second motivation. In the setting considered here, an assumption called Restricted
Isometry (RI) on the sampling operator L(A) = (〈X1, A〉, . . . , 〈Xn, A〉)/

√
n has been

introduced in [33] and used in a series of papers, see [34], [13], [29, 30]. This assump-
tion is the matrix version of the restricted isometry assumption for vectors introduced
in [12]. Note that in the high-dimensional setting (mT � n), this assumption is not
satisfied in the matrix completion problem, see [34] for instance, which works with
and without this assumption. The RI assumption is very restrictive and (up to now)
is only satisfied by some special random matrices (cf. [36, 22, 28, 27] and references
therein). This is a second motivation for this work: our results do not require any
RI assumption. Our assumptions on X are very mild, see Section 2, and are satisfied
in the matrix completion problem, as well as other problems, such as the multi-task
learning.

Third motivation. Our results are the first to give an analysis of nuclear-norm
penalization (and of other penalizations as well, see below) as a regularization algo-
rithm. Indeed, an oracle inequality of the form (6) proves that these penalization
procedures have a prediction accuracy close to the deterministic oracle one, given
that the reguralization parameters are well-chosen.

Fourth motivation. We give oracle inequalities for penalization procedures involv-
ing a mixture of several norms: ‖ · ‖S1 , ‖ · ‖2S2

and the `1-norm ‖ · ‖1. As far as we
know, no result for penalization using several norms was previously given in literature
for high-dimensional matrix prediction.

Procedures based on 1-Schatten norm penalization have been considered by many
authors recently, with applications to multi-task learning and collaborative filtering.
The first studies are probably the ones given in [38, 39], using the hinge loss for binary
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classification. In [6], it is proved, under some condition on the Xi, that nuclear norm
penalization can consistently recover rank(A0) when n → +∞. Let us recall also
the references we mentioned above and close other ones [18, 33], [13, 11, 15, 14, 16],
[24, 23], [34], [21], [32, 33], [29, 30], [4, 3, 5], [1].

1.3 The procedures studied in this work

If E(Y |X) = 〈X,A0〉 where A0 is low rank, in the sense that r � n, nuclear norm
penalization (4) is likely to enjoy some good prediction performances. But, if we know
more about the properties of A0, then other penalization procedure can be considered.
For instance, if we know that the non-zero singular values of A0 are “well-spread”
(that is almost equal) then it may be interesting to use the “regularization effect” of
a “S2 norm” based penalty in the same spirit as “ridge type” penalty for vectors or
functions. Moreover, if we know that many entries of A0 are close or equal to zero,
then using also a `1-penalization

A 7→ ‖A‖1 =
∑

1≤p≤m
1≤q≤T

|Ap,q| (7)

may improve even further the prediction. In this paper, we consider a penalization
that uses a mixture of several norms: for λ1, λ2, λ3 > 0, we consider

penλ1,λ2,λ3
(A) = λ1‖A‖S1 + λ2‖A‖2S2

+ λ3‖A‖1 (8)

and we will study the prediction properties of

Ân(λ1, λ2, λ3) ∈ argmin
A∈Mm,T

{
Rn(A) + penλ1,λ2,λ3

(A)
}
. (9)

Of course, if more is known on the structure of A0, other penalty functions can be
considered.

We obtain sharp oracle inequalities for the procedure Ân(λ1, λ2, λ3) for any val-
ues of λ1, λ2, λ3 ≥ 0 (excepted for (λ1, λ2, λ3) = (0, 0, 0) which provides the well-
studied empirical risk minimization procedure). In particular, depending on the “a
priori” knowledge that we have on A0 we will consider different values for the triple
(λ1, λ2, λ3). If A0 is only known to be low-rank, one should choose λ1 > 0 and
λ2 = λ3 = 0. If A0 is known to be low-rank with many zero entries, one should
choose λ1, λ3 > 0 and λ2 = 0. If A0 is known to be low-rank with well-spread non-
zero singular values, one should choose λ1, λ2 > 0 and λ3 = 0. Finally, one should
choose λ1, λ2, λ3 > 0 when a significant part of the entries of A0 are zero, that A0 is
low rank and that the non-zero singular values of A0 are well-spread.

2 Results

We will use the following notation: for a matrix A ∈Mm,T , vec(A) denotes the vector
of RmT obtained by stacking its columns into a single vector. Note that this is an

5



isometry between (Mm,T , ‖·‖S2) and (RmT , | · |`mT2
) since 〈A,B〉 = 〈vecA, vecB〉. We

introduce also the `∞ norm ‖A‖∞ = maxp,q |Ap,q|. Let us recall that for α ≥ 1, the ψα-
norm of a random variable Z is given by ‖Z‖ψα := inf{c > 0 : E[exp(|Z|α/cα))] ≤ 2}
and a similar norm can be defined for 0 < α < 1 (cf. [25]).

2.1 Assumptions and examples

The first assumption concers the “covariate” matrix X.

Assumption 1 (Matrix X). There are positive constants bX,∞, bX,`∞ and bX,2 such
that ‖X‖S∞ ≤ bX,∞, ‖X‖∞ ≤ bX,`∞ and ‖X‖S2 ≤ bX,2 almost surely. Moreover, we
assume that the “covariance matrix”

Σ := E[vecX(vecX)>]

is invertible.

This assumption is met in the matrix completion and the multitask-learning prob-
lems:

1. In the matrix completion problem, the matrix X is uniformly distributed over
the set {ep,q : 1 ≤ p ≤ m, 1 ≤ q ≤ T} (see Section (1.2)), so in this case
Σ = (mT )−1Im×T and bX,2 = bX,∞ = bX,`∞ = 1.

2. In the multitask-learning problem, the matrix X is uniformly distributed in
{Aj(xj,s) : j = 1, . . . , T ; s = 1, . . . , kj}, where (xj,s : j = 1, . . . , T ; s = 1, . . . , kj)
is a family of vectors in Rm and for any j = 1, . . . , T and x ∈ Rm, Aj(x) ∈Mm,T

is the matrix having the vector x for j-th column and zero everywhere else. So,
in this case Σ is equal to T−1 times the mT ×mT block matrix with T diagonal
blocks of size m×m made of the T matrices k−1

j

∑kj
i=1 xj,sx

>
j,s for j = 1, . . . , T .

If we assume that the smallest singular values of the matrices k−1
j

∑kj
i=1 xj,sx

>
j,s ∈

Mm,m for j = 1, . . . , T are larger than a constant σmin (note that this implies
that kj ≥ m), then Σ has its smallest singular value larger than σminT

−1, so it
is invertible. Moreover, if the vectors xj,s are normalized in `2, then one can
take bX,∞ = bX,`∞ = bX,2 = 1.

The next assumption deals with the regression function of Y given X. It is
standard in regression analysis.

Assumption 2 (Noise). There are positive constants bY , bY,∞, bY,ψ2 , bY,2 such that
‖Y − E(Y |X)‖ψ2 ≤ bY,ψ2, ‖E(Y |X)‖L∞ ≤ bY,∞, E[(Y − E(Y |X))2|X] ≤ b2Y,2 almost
surely and EY 2 ≤ b2Y .

In particular, any model Y = 〈A0, X〉 + ε, where ‖A0‖S∞ < +∞ and ε is a
sub-gaussian noise satisfies Assumption 2. Note that by using the whole strength of
Talagrand’s concentration inequality on product spaces for ψα (0 < α ≤ 1) random
variables obtained in [2], other type of tail decay of the noise could be considered (yet
leading to slower decay of the residual term) depending on this assumption.
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2.2 Main results

In this section we state our main results. We give sharp oracle inequalities for the
penalized empirical risk minimization procedure

Ân ∈ argmin
A∈Mm,T

{ 1
n

n∑
i=1

(Yi − 〈Xi, A〉)2 + pen(A)
}
, (10)

where pen(A) is a penalty function which will be either a pure ‖ · ‖S1 penalization, or
a “matrix elastic-net” penalization ‖ ·‖S1 +‖ ·‖2S2

or other penalty functions involving
the ‖ · ‖1 norm.

Theorem 1 (Pure ‖ · ‖S1 penalization). There is an absolute constants c > 0 such
that the following holds. Let Assumptions 1 and 2 hold, and let x > 0 be the some
fixed confidence level. Consider any

Ân ∈ argmin
A∈Mm,T

{
Rn(A) + λn,x‖A‖S1

}
,

for

λn,x = cX,Y
(x+ log n) log n√

n
,

where cX,Y := c(1 + b2X,2 + bY bX + b2Y,ψ1
+ b2Y,∞ + b2Y,2 + b2X,∞). Then one has, with a

probability larger than 1− 5e−x, that

R(Ân) ≤ inf
A∈Mm,T

{
R(A) + λn,x(1 + ‖A‖S1)

}
.

Note that the residue that we obtain is of the form ‖A0‖S1/
√
n. In particular,

this residual term is not deteriorated if A0 is of full rank but close to a low rank
matrix. Classical residue involving the rank of A0 are useless in this situation. It is
also still meaningful when the quantity m + T becomes large compare to n. This is
not the case of the residue of the form r(m+ T )/n obtained previously for the same
procedure (for other risks and under other - stronger - assumptions).

We now state three sharp oracle inequalities for procedures of the form (10) where
the penalty function is a mixture of norms.

Theorem 2 (Matrix Elastic-Net). There is an absolute constant c > 0 such that
the following holds. Let Assumptions 1 and 2 hold. Fix any x > 0, r1, r2 > 0, and
consider

Ân ∈ argmin
A∈Mm,T

{
Rn(A) + λn,x(r1‖A‖S1 + r2‖A‖2S2

)
}
,

where
λn,x = cX,Y

log n√
n

( 1
r1

+
(x+ log n) log n

r2
√
n

)
,
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where cX,Y = c(1+b2X,2+bX,2bY +b2Y,ψ1
+b2Y,∞+b2Y,2). Then one has, with a probability

larger than 1− 5e−x, that

R(Ân) ≤ inf
A∈Mm,T

{
R(A) + λn,x(1 + r1‖A‖S1 + r2‖A‖2S2

)
}
.

Theorem 3 (‖ · ‖S1 + ‖ · ‖1 penalization). There is an absolute constant c > 0 such
that the following holds. Let Assumptions 1 and 2 hold. Fix any x, r1, r3 > 0, and
consider

Ân ∈ argmin
A∈Mm,T

{
Rn(A) + λn,x(r1‖A‖S1 + r3‖A‖1)

}
for

λn,x := cX,Y

( 1
r1
∧
√

log(mT )
r3

)(x+ log n)(log n)3/2√
n

,

where cX,Y = c(1 + b2X,2 + bX,2bY + b2Y,ψ1
+ b2Y,∞ + b2Y,2 + b2X,∞ + b2X,`∞). Then one

has, with a probability larger than 1− 5e−x, that

R(Ân) ≤ inf
A∈Mm,T

{
R(A) + λn,x(1 + r1‖A‖S1 + r3‖A‖1))

}
.

Theorem 4 (‖ ·‖S1 +‖ ·‖2S2
+‖ ·‖1 penalization). There is an absolute constant c > 0

such that the following holds. Let Assumptions 1 and 2 hold. Fix any x, r1, r2, r3 > 0,
and consider

Ân ∈ argmin
A∈Mm,T

{
Rn(A) + λn,x(r1‖A‖S1 + r2‖A‖2S2

+ r3‖A‖1)
}

for

λn,x := cX,Y
(log n)3/2√

n

( 1
r1
∧
√

log(mT )
r3

+
x+ log n
r2
√
n

)
,

where cX,Y = c(1+b2X,2+bX,2bY +b2Y,ψ1
+b2Y,∞+b2Y,2). Then one has, with a probability

larger than 1− 5e−x, that

R(Ân) ≤ inf
A∈Mm,T

{
R(A) + λn,x(1 + r1‖A‖S1 + r2‖A‖2S2

+ r3‖A‖1))
}
.

The parameters r1, r2 and r3 in the above procedures are completely free and
can depend on n,m and T . Intuitively, it is clear that r2 should be smaller than
r1 since the ‖ · ‖S2 term is used for “regularization” of the non-zero singular values
only, while the term ‖ · ‖S1 makes Ân of low rank, as for the elastic-net for vectors
(see [43]). Indeed, for the ‖ · ‖S1 + ‖ · ‖2S2

penalization, any choice of r1 and r2 such
that r2 = r1 log n/

√
n leads to a residual term smaller than

cX,Y (1 + x+ log n)
((log n)2

r2n
+

log n√
n
‖A‖S1 +

(log n)2

n
‖A‖2S2

)
.
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Note that the rate related to ‖A‖S1 is (up to logarithms) 1/
√
n while the rate related

to ‖A‖2S2
is 1/n. The choice of r3 depends on the number of zeros in the matrix. Note

that in the ‖ · ‖S1 + ‖ · ‖1 case, any choice 1 ≤ r3 ≤ r1 entails a residue smaller than

cX,Y
(x+ log n) log n√

n
(1 + ‖A‖S1 + ‖A‖1),

which makes again the residue independent of m and T .
Note that, in the matrix completion case, the term

√
logmT can be removed

from the regularization (and thus the residual) term thanks to the second statement
of Proposition 1 below.

3 Proof of the main results

3.1 Some definitions

For any r, r1, r2, r3 ≥ 0, we consider the ball

Br,r1,r2,r3 := {A ∈Mm,T : r1‖A‖S1 + r2‖A‖2S2
+ r3‖A‖1 ≤ r}, (11)

and we denote by Br,1 = Br,1,0,0 the nuclear norm ball, by Br,r1,r2 = Br,r1,r2,0 the
elastic-net ball. In what follows, Br will be either Br,1, Br,r1,r2 , Br,r1,r2,r3 or Br,r1,0,r3 ,
depending on the penalization. We consider an oracle matrix in Br given by:

A∗r ∈ argmin
A∈Br

E(Y − 〈X,A〉)2

and the following excess loss function over Br defined for any A ∈ Br by

Lr,A(X,Y ) := (Y − 〈X,A〉)2 − (Y − 〈X,A∗r〉)2.

Define also the excess loss functions class

Lr := {Lr,A : A ∈ Br}. (12)

The star-shaped-hull at 0 of Lr is given by

Vr := star(Lr, 0) = {αLr,A : A ∈ Br and 0 ≤ α ≤ 1}

and its localized set at level λ > 0

Vr,λ := {g ∈ Vr : Eg ≤ λ}. (13)

The proof of Theorems 1 to 4 rely on the isomorphic penalization method, introduced
by P. Bartlett, S. Mendelson and J. Neeman (cf. [8], [26] and [7]). It has improved
several results on penalized empirical risk minimization procedures for the Lasso
(cf. [7]) and for regularization in reproducing kernel Hilbert spaces (cf. [26]). This
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approach relies on a sharp analysis of the complexity of the set Vr,λ. Indeed, an
important quantity appearing in learning theory is the maximal deviation of the
empirical distribution around its mean uniformly over a class of function. If V is a
class of functions, we define the supremum of the deviation of the empirical mean
around its actual mean over V by

‖Pn − P‖V = sup
h∈V

∣∣∣ 1
n

n∑
i=1

h(Xi, Yi)− Eh(X,Y )
∣∣∣.

3.2 On the importance of convexity

An important parameter driving the quality of concentration of ‖Pn − P‖V to its
expectation is the so-called Bernstein’s parameter (cf. [9]). We are studying this
parameter in our context without introducing a formal definition of this quantity.

For every matrix A ∈ Mm,T , we consider the random variable fA := 〈X,A〉 and
the following subset of L2:

Cr := {fA : A ∈ Br}, (14)

where Br = Br,r1,r2,r3 is given by (11). Because of the convexity of the norms ‖ · ‖S1 ,
‖ · ‖S2 and ‖ · ‖1, the set Cr is convex, for any r, r1, r2, r3 ≥ 0. Now, consider the
following minimum

f∗r ∈ argmin
f∈Cr

‖Y − f‖L2 (15)

and

Cr := min
(
bX,∞

r

r1
, bX,2

√
r

r2
, bX,`∞

r

r3

)
, (16)

with the convention 1/0 = +∞.

Lemma 5 (Bernstein’s parameter). Let assumptions 1 and 2 hold. There is a unique
f∗r satisfying (15) and a unique A∗r ∈ Br such that f∗r = fA∗r . Moreover, any A ∈ Br
satisfies

ELr,A ≥ E〈X,A−A∗r〉2,

and the class Lr satisfies the following Bernstein’s condition: for all A ∈ Br

EL2
r,A ≤ 4(b2Y,2 + (bY,∞ + Cr)2)ELr,A.

Proof. By convexity of Cr we have 〈Y − f∗r , f − f∗r 〉L2 ≤ 0 for any f ∈ Cr. Thus, we
have, for any f ∈ Cr

‖Y − f‖2L2
− ‖Y − f∗r ‖2L2

= 2〈f∗r − f, Y − f∗r 〉+ ‖f − f∗r ‖2L2
≥ ‖f − f∗r ‖2L2

. (17)

In particular, the minimum is unique. Moreover, Cr is a closed set and since Σ is
invertible under Assumption 1, there is a unique A∗r ∈ Br such that f∗r = fA∗r . By
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the trace duality formula and Assumption 1, we have, for any A ∈ Br,r1,r2,r3 :

|fA| ≤ ‖X‖S∞‖A‖S1 ≤ bX,∞
r

r1
, |fA| ≤ ‖X‖S2‖A‖S2 ≤ bX,2

√
r

r2
,

and |fA| ≤ ‖X‖∞‖A‖1 ≤ bX,`∞
r

r3

almost surely, so that |fA| ≤ Cr for any A ∈ Br a.s.. Moreover, for any A ∈ Br:

Lr,A = 2(Y − E(Y |X))〈X,A∗r −A〉+ (2E(Y |X)− 〈A+A∗r , X〉)〈X,A∗r −A〉. (18)

Thus, using Assumption 2, we obtain

EL2
r,A = E

[
4(Y − E(Y |X))2〈X,A−A∗r〉2 + (2E(Y |X)− 〈X,A+A∗r〉)2〈X,A−A∗r〉2

]
≤ 4E

[
〈X,A−A∗r〉2E

[
(Y − E(Y |X))2|X

]]
+ 4(bY,∞ + Cr)2E〈X,A−A∗r〉2

≤ 4(b2Y,2 + (bY∞ + Cr)2)E〈X,A−A∗r〉2,

which concludes the proof using (17).

3.3 The isomorphic property of the excess loss functions class

The isomorphic property of a functions class has been introduced in [26] and is a
consequence of Talagrand’s concentration inequality (cf. [40]) applied to a localization
of the functions class together with the Bernstein property of this class (here this
property was studied in Lemma 5). We recall here the argument in our special case.

Theorem 6 ([10]). There exists an absolute constant c > 0 such that the following
holds. Let Assumptions 1 and 2 hold. Let r > 0 and λ(r) > 0 be such that

E‖Pn − P‖Vr,λ(r)
≤ λ(r)

8
.

Then, with probability larger than 1− 4e−x: for all A ∈ Br

1
2
PnLr,A − ρn(r, x) ≤ PLr,A ≤ 2PnLr,A + ρn(r, x),

where
ρn(r, x) := c

(
λ(r) +

[
bY,ψ1 + bY,∞ + bY,2 + Cr

]2(x log n
n

))
,

and Cr has been introduced in (16).

Proof. We follow the line of [10]. Let λ > 0 and x > 0. Thanks to [2], with probability
larger than 1− 4 exp(−x),

‖P − Pn‖Vr,λ ≤ 2E‖P − Pn‖Vr,λ + c1σ(Vr,λ)
√
x

n
+ c2bn(Vr,λ)

x

n
(19)

11



where, by using the Bernstein’s properties of Lr (cf. Lemma 5)

σ2(Vr,λ) := sup
g∈Vr,λ

Var(g) ≤ sup
(
E(αLr,A)2 : 0 ≤ α ≤ 1, A ∈ Br,E(αLr,A) ≤ λ

)
≤ sup

(
4(b2Y,2 + (bY,∞ + Cr)2)E(αLr,A) : 0 ≤ α ≤ 1, A ∈ Br,E(αLr,A) ≤ λ

)
≤ 4(b2Y,2 + (bY,∞ + Cr)2)λ, (20)

and using Pisier’s inequality (cf. [42]):

bn(Vr,λ) :=
∥∥∥ max

1≤i≤n
sup
g∈Vr,λ

g(Xi, Yi)
∥∥∥
ψ1

≤ log n
∥∥∥ sup
g∈Vr,λ

g(X,Y )
∥∥∥
ψ1

= log n
∥∥∥ sup

(
α(2Y − 〈X,A+A∗r〉)〈X,A∗r −A〉 : 0 ≤ α ≤ 1, A ∈ Br

)∥∥∥
ψ1

≤ 4(log n)(bY,ψ1 + bY,∞ + Cr)Cr, (21)

where we used decomposition (18) and Assumption 2 together with the uniform bound
|〈A,X〉| ≤ Cr holding for all A ∈ Br.

Moreover, for any λ > 0, Vr,λ is star-shaped so G : λ 7→ E‖P − Pn‖Vr,λ/λ is
non-increasing. Since G(λ(r)) ≤ 1/8 and ρn(r, x) ≥ λ(r), we have

E‖P − Pn‖Vr,ρn(r,x)
≤ ρn(r, x)/8,

which yields, in Equation (19) together with the variance control of Equation (20)
and the control of Equation (21), that there exists an event Ω0 of probability measure
greater than 1− 4 exp(−x) such that, on Ω0,

‖P − Pn‖Vr,ρn(r,x)
≤ ρn(r, x)

4
+ c1(bY,∞ + bY,2 + Cr)

√
ρn(r, x)x

n

+ c2(bY,ψ1 + bY,∞ + Cr)Cr
x log n
n

≤ ρn(r, x)
2

(22)

in view of the definition of ρn(r, x). In particular, on Ω0, for every A ∈ Br such
that PLr,A ≤ ρn(r, x), we have |PLr,A − PnLr,A| ≤ ρn(r, x)/2. Now, take A ∈ Br
such that PLr,A = β > ρn(r, x) and set g = ρn(r, x)Lr,A/β. Since g ∈ Vr,ρn(r,x),
Equation (22) yields, on Ω0, |Pg − Png| ≤ ρn(r, x)/2 < β/2 and so (1/2)PnLr,A ≤
PLr,A ≤ (3/2)PnLr,A which concludes the proof.

A function r 7→ λ(r) such that E‖Pn − P‖Vr,λ(r)
≤ λ(r)/8 is called an isomorphic

function and is directly connected to the choice of the penalization used in the proce-
dure which was introduced in Section 2. The computation of this function is related
to the complexity of Schatten balls, computed in the next section.

12



3.4 Complexity of Schatten balls

The generic chaining technique (see [41]) is a powerful technique for the control of
the supremum of empirical processes. For a subgaussian process, such a control is
achieved using the γ2 functional recalled in the next definition.

Definition 7 ([41]). Let (F, d) be a metric space. We say that (Fj)j≥0 is an admis-
sible sequence of partitions of F if |F0| = 1 and |Fj | ≤ 22j for all j ≥ 1. The γ2

functional is defined by

γ2(F, d) = inf
(Fj)j

sup
f∈F

∑
j≥0

2j/2d(f, Fj),

where the infimum is taken over all admissible sequence (Fj)j≥1 of F .

A classical upper bound on the γ2 functional is the Dudley’s entropy integral:

γ2(F, d) ≤ c0
∫ ∞

0

√
logN(F, d, ε)dε, (23)

where N(B, ‖ · ‖, ε) is the minimal number of balls with respect to the metric d of
radius ε needed to cover B. When B enjoys some convexity properties, this bound
can be improved. Let (E, ‖ · ‖) be a Banach space. We denote by B(E) its unit
ball. We say that (E, ‖ · ‖) is 2-convex if there exists some ρ > 0 such that for all
x, y ∈ B(E), we have

‖x+ y‖ ≤ 2− 2ρ‖x− y‖2.

In the case of 2-convex bodies, the following theorem gives an upper bound on the γ2

functional that can improve the one given by Dudley’s entropy integral.

Theorem 8 ([41]). For any ρ > 0, there exists c(ρ) > 0 such that if (E, ‖ · ‖) is a
2-convex Banach space and ‖ · ‖E is another norm on E, then

γ2(B(E), ‖ · ‖E) ≤ c(ρ)
(∫ ∞

0
ε logN(B(E), ‖ · ‖E , ε)dε

)1/2
.

The generic chaining technique provides the following upper bound on Gaussian
processes.

Theorem 9 ([41]). There is an absolute constants c > 0 such that the following holds.
If (Zf )f∈F is a subgaussian process for some metric d (i.e. ‖Zf − Zg‖ψ2 ≤ c0d(f, g)
for all f, g ∈ F ) and if f0 ∈ F , then one has

E sup
f∈F
|Zf − Zf0 | ≤ cγ2(F, d).
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The metric used to measure the complexity of the excess loss classes we are working
on is an empirical one defined for any A ∈Mm,T by

‖A‖∞,n := max
1≤i≤n

|〈Xi, A〉|. (24)

This metric comes out of the so-called L∞,n-method of M. Rudelson introduced in [35]
and first used in learning theory in [26]. We denote by B(Sp) the unit ball of the
Banach space Sp of matrices in Mm,T endowed with the Schatten norm ‖ · ‖Sp . We
denote also by B1 the unit ball of Mm,T endowed with the `1-norm ‖ · ‖1. In the
following, we compute the complexity of the balls B(S1), B(S2) and B1 with respect
to the empirical metric ‖ · ‖∞,n.

Proposition 1. There exists an absolute constant c > 0 such that the following holds.
Assume that ‖Xi‖S2 , ‖Xi‖∞ ≤ 1 for all i = 1, . . . , n. Then, we have

γ2(rB(S1), ‖ · ‖∞,n) ≤ γ2(rB(S2), ‖ · ‖∞,n) ≤ cr log n

and
γ2(rB1, ‖ · ‖∞,n) ≤ cr(log n)3/2

√
log(mT ).

Moreover, if we assume that X1, . . . , Xn have been obtained in the matrix completion
model then

γ2(rB1, ‖ · ‖∞,n) ≤ cr(log n)3/2.

Proof. The first inequality is obvious since B(S1) ⊂ B(S2). By using Dual Sudakov’s
inequality (cf. [31]), we have for all ε > 0,

logN(B(S2), ‖ · ‖∞,n, ε) ≤ c0
(E‖G‖∞,n

ε

)2
,

where G is a m×T matrix with i.i.d. standard Gaussian random variables for entries.
A Gaussian maximal inequality and the fact that ‖Xi‖S2 ≤ 1 for all i = 1, . . . , n
provides E‖G‖∞,n ≤ c1

√
log n, hence

logN(B(S2), ‖ · ‖∞,n, ε) ≤
c2 log n
ε2

.

Denote by B∞,n the unit ball of (Mm,T , ‖·‖∞,n) in Vn = span(X1, . . . , Xn), the linear
subspace of Mm,T spanned by X1, . . . , Xn. The volumetric argument provides

logN(B(S2), ‖ · ‖∞,n, ε) ≤ logN(B(S2), ‖ · ‖∞,n, η) + logN(ηB∞,n, εB∞,n)

≤ c2 log n
η2

+ n log
(3η
ε

)
for any η ≥ ε > 0. Thus, for ηn =

√
log n/n, we have, for all 0 < ε ≤ ηn

logN(B(S2), ‖ · ‖∞,n, ε) ≤ c3n log
(3ηn
ε

)
.
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Since B(S2) is the unit ball of a Hilbert space, it is 2-convex. We can thus apply
Theorem 8 to obtain the following upper bound

γ2(rB(S2), ‖ · ‖∞,n) ≤ c4r log n.

Now, we prove an upper bound on the complexity of B1 with respect to ‖ · ‖∞,n.
Recall that vec : Mm,T → RmT concatenates the columns of a matrix into a single
vector of size mT . Obviously, vec is an isometry between (Mm,T , ‖ ·‖S2) and (RmT , | ·
|2), since 〈A,B〉 = 〈vec(A), vec(B)〉. Using this mapping, we see that, for any ε > 0,

N(B1, ‖ · ‖∞,n, ε) = N(bmT1 , | · |∞,n, ε)

where bmT1 is the unit ball of `mT1 and | · |∞,n is the pseudo norm on RmT defined
for any x ∈ RmT by |x|∞,n = max1≤i≤n |〈yi, x〉| where yi = vec(Xi) for i = 1, . . . , n.
Note that y1, . . . , yn ∈ bmT2 , where bmT2 is the unit ball of `mT2 . We use the Carl-
Maurey’s empirical method to compute the covering number N(bmT1 , | · |∞,n, ε) for
“large scales” of ε and the volumetric argument for “small scales”. Let us begin with
the Carl-Maurey’s argument. Let x ∈ bmT1 and Z be a random variable with values
in {±e1, . . . ,±emT , 0} - where (e1, . . . , emT ) is the canonical basis of RmT - defined
by P[Z = 0] = 1− |x|1 and for all i = 1, . . . ,mT ,

P[Z = sign(xi)ei] = |xi|.

Note that EZ = x. Let s ∈ N − {0} to be defined later and take s i.i.d. copies of
Z denoted by Z1, . . . , Zs. By the Giné-Zinn symmetrization argument and the fact
that Rademacher processes are upper bounded by Gaussian processes, we have

E
∣∣∣1
s

s∑
i=1

Zi − EZ
∣∣∣
∞,n
≤ c0E

∣∣∣1
s

s∑
i=1

giZi

∣∣∣
∞,n
≤ c1

√
log n
s

(25)

where the last inequality follows by a Gaussian maximal inequality and the fact that
|yi|2 ≤ 1. Take s ∈ N to be the smallest integer such that ε ≥ c1

√
(log n)/s. Then,

the set {1
s

s∑
i=1

zi : z1, . . . , zs ∈ {±e1, . . . ,±emT , 0}
}

(26)

is an ε-net of bmT1 with respect to | · |∞,n. Indeed, thanks to (25) there exists ω ∈ Ω
such that |s−1

∑s
i=1 Zi(ω) − x|∞,n ≤ ε. This implies that there exists an element in

the set (26) which is ε-close to x. Since the cardinality of the set introduced in (26)
is, according to [17], at most(

2mT + s− 1
s

)
≤
(e(2mT + s− 1)

s

)s
,

we obtain for any ε ≥ ηn :=
(
(log n)(logmT )/n

)1/2 that

logN(bmT1 , | · |∞,n, ε) ≤ s log
(e(2mT + s− 1)

s

)
≤ c2(log n) log(mT )

ε2
,
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and a volumetric argument gives

logN(bmT1 , | · |∞,n, ε) ≤ c3n log
(3ηn
ε

)
for any 0 < ε ≤ ηn. Now we use the upper bound (23) and compute the Dudley’s
entropy integral to obtain

γ2(rB1, ‖ · ‖∞,n) ≤ c4r(log n)3/2
√

log(mT ).

For the “matrix completion case”, we have

N(bmT1 , | · |∞,n, ε) ≤ N(bn1 , εb
n
∞)

where N(bn1 , εb
n
∞) is the minimal number of balls εbn∞ needed to cover bn1 . We use the

following proposition from [37] to compute N(bn1 , εb
n
∞).

Proposition 2 ([37]). For any ε > 0, we have

logN(bn1 , εb
n
∞) ∼


0 if ε ≥ 1
ε−1 log

(
enε
)

if n−1 ≤ ε ≤ 1
n log

(
1/(εn)

)
if 0 < ε ≤ n−1.

Then the result follows from (23) and the computation of the Dudley’s entropy
integral using Proposition 2.

3.5 Computation of the isomorphic function

Introduce the ellipsoid

D := {A ∈Mm,T : E〈X,A〉2 ≤ 1}.

A consequence of Equation (17) in Lemma 5 is the following inclusion, of importance
in what follows. Indeed, since Br is convex and symmetrical, one has:

{A ∈ Br : ELr,A ≤ λ} ⊂ A∗r +Kr,λ, (27)

where
Kr,λ := 2Br ∩

√
λD.

Hence, the complexity of {A ∈ Mm,T : Lr,A ∈ Lr,λ} will be smaller than the com-
plexity of Br and

√
λD. This will be of importance in the analysis below. The next

result provides an upper bound on the complexity of Vr,λ where we recall that

Vr,λ := {αLr,A : 0 ≤ α ≤ 1, A ∈ Br,E(αLr,A) ≤ λ}.

From this statement we will derive corollaries that provide the shape of the considered
penalty functions.
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Proposition 3. There exists two absolute constants c1 and c2 such that the following
holds. Let Assumptions 1 and 2 hold. For any r > 0 and λ > 0, we have

E‖P − Pn‖Vr,λ ≤ c1
∑
i≥0

2−iφn(r, 2i+1λ),

where

φn(r, λ) := c2

(
Un(Kr,λ)

√
λ

n
+ Un(Kr,λ)

√
R(A∗r)
n

+
Un(Kr,λ)2

n

)
,

for Kr,λ = 2Br ∩
√
λD.

Proof. Introduce Lr,λ = {Lr,A : A ∈ Br,ELr,A ≤ λ}. Using the Giné-Zinn sym-
metrization [20] and the inclusion of (27), one has, for any r > 0 and λ > 0,

E‖P − Pn‖Lr,λ ≤ EEε
2
n

sup
A∈A∗r+Kr,λ

∣∣∣ n∑
i=1

εiLr,A(Xi, Yi)
∣∣∣,

where ε1, . . . , εn are n i.i.d Rademacher variables. Introduce the Rademacher process
ZA :=

∑n
i=1 εiLr,A(Xi, Yi), and note that for any A,A′ ∈ A∗r +Kr,λ:

Eε|ZA − ZA′ |2 =
n∑
i=1

〈Xi, A−A′〉2(2Yi − 〈Xi, A+A′〉)2

= 4
n∑
i=1

〈Xi, A−A′〉2(Yi − 〈Xi, A
∗
r〉 − 〈Xi,

A+A′

2
−A∗r〉)2

≤ 8‖A−A′‖2n,∞
( n∑
i=1

(Yi − 〈Xi, A
∗
r〉)2 + sup

A∈Kr,λ

n∑
i=1

〈Xi, A〉2
)
,

where we recall that ‖A‖n,∞ = maxi=1,...,n |〈Xi, A〉|. So, using the generic chaining
mechanism (cf. Theorem (9)), we obtain

E‖P − Pn‖Lr,λ ≤
c

n
E
[
γ2(Kr,λ, ‖ · ‖n,∞)

( n∑
i=1

(Yi − 〈Xi, A
∗
r〉)2 + sup

A∈Kr,λ

n∑
i=1

〈Xi, A〉2
)1/2]

≤ c√
n

(Eγ2(Kr,λ, ‖ · ‖n,∞)2)1/2
(
R(A∗r) + E sup

A∈Kr,λ

1
n

n∑
i=1

〈Xi, A〉2
)1/2

.

Now, introduce, for some set K ⊂Mm,T the functional

Un(K) := (Eγ2(K, ‖ · ‖n,∞)2)1/2.

Using Theorem 1.2 from [22], we obtain:

E sup
A∈Kr,λ

1
n

n∑
i=1

〈Xi, A〉2 ≤ λ+ cmax
(√λ

n
Un(Kr,λ),

Un(Kr,λ)
n

2)
,
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and so, we arrive at
E‖P − Pn‖Lr,λ ≤ cφn(r, λ),

where

φn(r, λ) := c
Un(Kr,λ)√

n

(
λ+R(A∗r) +

√
λUn(Kr,λ)√

n
+
Un(Kr,λ)2

n

)1/2

≤ c
(
Un(Kr,λ)

√
λ

n
+ Un(Kr,λ)

√
R(A∗r)
n

+
Un(Kr,λ)2

n

)
.

We conclude with the peeling argument provided in Lemma 4.6 of [26]:

E‖P − Pn‖Vr,λ ≤ c
∑
i≥0

2−iE‖P − Pn‖Lr,2i+1λ
.

Now, we can derive the following corollary. It gives several upper bounds for
E‖P − Pn‖Vr,λ , depending on what Br is (i.e. which penalty function is used).

Corollary 1 (‖ · ‖S1 penalization). Let Assumptions 1 and 2 hold and assume that
Br = Br,1,0,0 for r > 0, see (11). Then, we have

E‖P − Pn‖Vr,λ1(r)
≤ λ1(r)

8

for any r > 0, where

λ1(r) = c
(b2X,2r2(log n)2

n
+
bX,2bY r log n√

n

)
.

Proof. If Br = rB(S1), we have using the embedding Kr,λ ⊂ 2Br and Proposition 1
that Un(Kr,λ) ≤ cbX,2r log n, so

φn(r, λ) ≤ c
(
bX,2r log n

√
λ

n
+ bX,2r log n

√
R(A∗r)
n

+
b22,Xr

2(log n)2

n

)
=: cφn,1(r, x).

Hence, using Proposition 3 we obtain

E‖P − Pn‖Vr,λ ≤ c
∑
i≥0

2−iφn,1(r, 2i+1λ) ≤ cφn,1(r, λ),

where we used the fact that the sum is comparable to its first term because of the
exponential decay of the summands. Thus, one has E‖P − Pn‖Vr,λ ≤ λ/8 when
λ ≥ cφn,1(r, λ). In particular, since R(A∗r) ≤ EY 2 ≤ b2Y (see Assumption 2), for
values of λ such that

λ ≥ c
(b2X,2r2(log n)2

n
+
bX,2bY r log n√

n

)
,

we have E‖P − Pn‖Vr,λ ≤ λ/8, which proves the Corollary.
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Corollary 2 (‖ · ‖S1 +‖ · ‖1 penalization). Let Assumptions 1 and 2 hold and assume
that Br = Br,r1,0,r3 for r, r1, r3 > 0, see (11). Then, we have

E‖P − Pn‖Vr,λr1,0,r3 (r)
≤ λr1,0,r3(r)

8

for any r > 0, where

λr1,0,r3(r) = c
[( 1
r21
∧ log(mT )

r23

)b2X,2r2(log n)2

n
+
( 1
r1
∧
√

log(mT )
r3

)bX,2bY r(log n)3/2√
n

)
]
.

Proof. The proof follows the same steps as the proof of Corollary 1.

Corollary 3 (‖·‖S1 +‖·‖2S2
penalization). Let Assumptions 1 and 2 hold and assume

that Br = Br,r1,r2,0 for r, r1, r2 > 0, see (11). Then, we have

E‖P − Pn‖Vr,λr1,r2 (r)
≤ λr1,r2(r)

8

for any r > 0, where

λr1,r2(r) = c
(b2X,2r(log n)2

r2n
+
bX,2bY r log n

r1
√
n

)
.

Proof. Use the inclusion

Br ⊂
√

r

r2
B(S2) ∩ r

r1
B(S1)

to obtain using Proposition 1 that

φn(r, λ) ≤ c
(
bX,2

√
r

r2
log n

√
λ

n
+ bX,2

r

r1
log n

√
R(A∗r)
n

+
b2X,2r(log n)2

r2n

)
.

The remaining of the proof is the same as the one of Corollary 1 so it is omitted.

Corollary 4 (‖ · ‖S1 + ‖ · ‖2S2
+ ‖ · ‖1 penalization). Let Assumptions 1 and 2 hold

and assume that Br = Br,r1,r2,r3 for r, r1, r2, r3 > 0, see (11). Then, we have

E‖P − Pn‖Vr,λr1,r2,r3 (r)
≤ λr1,r2,r3(r)

8

for any r > 0, where

λr1,r2,r3(r) = c
[b2X,2r(log n)2

r2n
+
( 1
r1
∧
√

log(mT )
r3

)bX,2bY r(log n)3/2√
n

)
]
.

Proof. The proof follows the same steps as the proof of Corollary 3.
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The main difference between λ1(r), λr,r1,0,r3(r) and λr1,r2(r), λr1,r2,r3(r) is that
λr1,r2(r) and λr1,r2,r3(r) are linear in r while λ1(r) and λr1,0,r3(r) are quadratic. The
analysis of the isomorphic functions with quadratic terms will require an extra argu-
ment in the proof, in order to remove them from the penality (see below).

Remark 1 (Localization does not work here). Note that, in Corollaries 1 to 2, we
don’t use the fact that Kr,λ ⊂

√
λD, that is, we don’t use the localization argument

which usually allows to derive fast rates in statistical learning theory. Indeed, for
the matrix completion problem, one has E〈X,A − A∗r〉2 = 1

mT ‖A − A
∗
r‖2S2

, so when
E〈X,A − A∗r〉2 ≤ λ, we only know that A ∈ A∗r +

√
mTλB(S2), leading to a term

of order mT/n (up to logarithms) in the isomorphic function. This term is way too
large, since one has typically in matrix completion problems that mT � n.

3.6 Isomorphic penalization method

We introduce the isomorphic penalization method developed by P. Bartlett, S. Mendel-
son and J. Neeman in the following general setup. Let (Z, σZ , ν) be a measurable
space endowed with the probability measure ν. We consider Z,Z1, Z2, . . . , Zn i.i.d.
random variables having ν for common probability distribution. We are given a class
F of functions on a measurable space (X , σX ), a loss function and a risk function

Q : Z × F → R; R(f) = EQ(Z, f).

For the problem we have in mind, we will use Q((X,Y ), A) = (Y −〈X,A〉)2 for every
A ∈Mm,T .

Now, we go into the core of the isomorphic penalization method. We are given a
model F ⊂ F and a family {Fr : r ≥ 0} of subsets of F . We consider the following
definition.

Definition 10 (cf. [26]). Let ρn be a non-negative function defined on R+ × R∗+
(which may depend on the sample). We say that the family {Fr : r ≥ 0} of subsets of
F is an ordered, parameterized hierarchy of F with isomorphic function ρn when the
following conditions are satisfied:

1. {Fr : r ≥ 0} is non-decreasing (that is s ≤ t⇒ Fs ⊆ Ft);

2. for any r ≥ 0, there exists a unique element f∗r ∈ Fr such that R(f∗r ) =
inf(R(f) : f ∈ Fr); we consider the excess loss function associated with the
class Fr

Lr,f (·) = Q(·, f)−Q(·, f∗r ); (28)

3. the map r 7−→ R(f∗r ) is continuous;

4. for every r0 ≥ 0, ∩r≥r0Fr = Fr0;

5. ∪r≥0Fr = F ;
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6. for every r ≥ 0 and u > 0, with probability at least 1− exp(−u)

(1/2)PnLr,f − ρn(r, u) ≤ PLr,f ≤ 2PnLr,f + ρn(r, u), (29)

for any f ∈ Fr and PnLr,f = (1/n)
∑n

i=1 Lr,f (Zi).

In the context of learning theory, ordered, parametrized hierarchy of a set F
with isomorphic function ρn provides a very general framework for the construction
of penalized empirical risk minimization procedure. The following result from [26]
proves that the isomorphic function is a “correct penalty function”.

Theorem 11 ([26]). There exists absolute positive constants c1 and c2 such that the
following holds. Let {Fr : r ≥ 0} be an ordered, parameterized hierarchy of F with
isomorphic function ρn. Let u > 0. With probability at least 1−exp(−u) any penalized
empirical risk minimization procedure

f̂ ∈ argmin
f∈F

(
Rn(f) + c1ρn(2(r(f) + 1), θ(r(f) + 1, u))

)
, (30)

where r(f) = inf(r ≥ 0 : f ∈ Fr) and Rn(f) = (1/n)
∑n

i=1Q(Zi, f) is the empirical
risk of f , satisfies

R(f̂) ≤ inf
f∈F

(
R(f) + c2ρn(2(r(f) + 1), θ(r(f) + 1, u))

)
where for all r ≥ 1 and x > 0,

θ(r, x) = x+ ln(π2/6) + 2 ln
(

1 +
R(f∗0 )

ρn(0, x+ log(π2/6))
+ log r

)
.

3.7 End of the proof of Theorems 1 and 2

First, we need to prove that the family of models {Br : r ≥ 0} is an ordered,
parametrized hierarchy of Mm,T . First, fourth and fifth points of Definition 10 are
easy to check. Second point follows from Lemma 5. For the third point, we consider
0 ≤ q < r < s, β := q/r and α := r/s. Since αA∗s ∈ Br, we have

0 ≤ R(A∗r)−R(A∗s) ≤ R(αA∗s)−R(A∗s) ≤ (α2−1)‖〈X,A∗s〉‖2L2+2(1−α)‖Y ‖2‖〈X,A∗s〉‖L2 .

As s→ r, the rights hand side tends to zero (because 〈X,A∗s〉 are uniformly bounded
in L2 for s ∈ [r, r + 1]). So r 7→ R(A∗r) is upper semi-continuous on (0,∞). The
continuity in r = 0 follows the same line. In the other direction,

0 ≤ R(A∗q)−R(A∗r) ≤ R(βA∗r)−R(A∗r) ≤ (α2−1)‖〈X,A∗r〉‖2L2+2(1−α)‖Y ‖2‖〈X,A∗r〉‖L2

and the right hand side tends to zero for the same reason as before.
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Now, we turn to the sixth point of Definition 10. That is the computation of the
isomorphic function ρn associated with the family {Br : r ≥ 0}. Using Theorem 6 we
obtain that, with a probability larger than 1− 4e−x:

1
2
PnLr,A − ρn(r, x) ≤ PLr,A ≤ 2PnLr,A + ρn(r, x) ∀A ∈ Br,

where
ρn(r, x) := c

[
λ(r) +

(
b′Y + Cr

)2(x log n
n

)]
,

where b′Y := bY,ψ1 + bY,∞ + bY,2, where Cr and λ(r) are defined depending on the
considered penalization (see (16) and Corollaries 1 to 4). Now, we apply Theorem 11
to the hierarchy Fr = Br for r ≥ 0. First of all, note that, for every x > 0 and r ≥ 1

θ(r, x) = x+ ln(π2/6) + 2 ln
(

1 +
EY 2

ρn(0, x+ log(π2/6))
+ log r

)
≤ x+ c(log n+ log log r),

so ρn(2(r + 1), θ(r + 1, x)) ≤ ρ′n(r, x), with:

ρ′n(r, x) := c
[
λ(2(r + 1)) + (b′Y + Cr)2

(x+ log n+ log log r) log n
n

]
.

From now on, the analysis depends on the penalization, so we consider them sepa-
rately.

3.7.1 The ‖ · ‖S1 case

Recall that in this case

λ(r) = c
(b2X,2r2(log n)2

n
+
bX,2bY r log n√

n

)
and Cr = bX,∞r, see (16). An easy computation gives ρ′n(r, x) ≤ ρ̃n,1(r, x) where

ρ̃n,1(r, x) := cX,Y
(r + 1)2(x+ log n ∨ log log r) log n

n
∨ pn,1(r, x),

where cX,Y := c(1 + b2X,2 + bY bX + b2Y,ψ1
+ b2Y,∞ + b2Y,2 + b2X,∞) and where

pn,1(r, x) := cX,Y
(r + 1)(x+ log n) log n√

n
.

Note that pn,1(r, x) is the penalty we want (the one considered in Theorem 1). Let
us introduce for short r(A) = ‖A‖S1 and the following functionals:

Λ1(A) = R(A) + pen1(A), Λn,1(A) = Rn(A) + pen1(A),

Λ̃1(A) = R(A) + ˜pen1(A), Λ̃n,1(A) = Rn(A) + ˜pen1(A),
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where pen1(A) := pn,1(r(A), x) and where ˜pen1(A) := ρ̃n,1(r(A), x) is a penaliza-
tion that satisfies that, if Ã ∈ argminA Λ̃n,1(A), then we have R(Ã) ≤ infA Λ̃1(A)
with a probability larger than 1 − 4e−x. Recall that we want to prove that if
Â ∈ argminA Λn,1(A), then we have R(Â) ≤ infA Λ1(A) with a probability larger
than 1− 5e−x. This will follow if we prove

inf
A

Λ̃1(A) ≤ inf
A

Λ1(A) and (31)

argmin
A

Λn,1(A) ⊂ argmin
A

Λ̃n,1(A), (32)

so we focus on the proof of these two facts. First of all, let us prove that if ρ̃n,1(r, x) >
pn,1(r, x) then both r and pn,1(r, x) cannot be small.

If log n < log log r we have r > en and pn,1(x, r) > cX,Y e
n(log n)2/

√
n. If log n ≥

log log r and ρ̃n,1(r, x) > pn,1(r, x), then

(r + 1)2(x+ log n) log n
n

>
(r + 1)(x+ log n) log n√

n
,

so r >
√
n − 1 and pn,1(r, x) > cX,Y (log n)2. Hence, we proved that if ρ̃n,1(r, x) >

pn,1(r, x), then r > 1 and pn,1(r, x) > cX,Y (log n)2. Note also that pn,1(r, x) >
2(x+ log n) log n/

√
n since r > 1.

Let us turn to the proof of (31). Let A′ be such that Λ̃1(A′) > Λ1(A′). Then
˜pen1(A′) > pen1(A′), ie ρ̃n,1(r(A′), x) > pn,1(r(A′), x), so that r(A′) > 1, pn,1(r(A′), x) >
cX,Y (log n)2 and pn,1(r(A′), x) > 2cX,Y (x + log n) log n/

√
n. On the other hand, we

have infA Λ1(A) ≤ b2Y +pen1(0) = b2Y +pn,1(0, x). But pn,1(r(A′), x) > cX,Y (log n)2 >
2b2Y and pn,1(r(A′), x) > 2pn,1(0, x) since r(A′) > 1, so that b2Y + pn,1(0, x) <
pn,1(r(A′), x) and then

inf
A

Λ1(A) < pn(r(A′), x) ≤ Λ1(A′).

Hence, we proved that if A′ is such that Λ1(A′) ≤ infA Λ1(A), we have Λ̃1(A′) ≤
Λ1(A′), so infA Λ̃1(A) ≤ Λ̃1(A′) ≤ Λ1(A′) ≤ infA Λ1(A), which proves (31).

The proof of (32) is almost the same. Let A′ be such that Λ̃n,1(A′) > Λn,1(A′),
so as before we have r(A′) > 1, pn,1(r(A′), x) > cX,Y (log n)2 and pn,1(r(A′), x) >
2cX,Y (x+log n) log n/

√
n. This time we have infA Λn,1(A) ≤ n−1

∑n
i=1 Y

2
i +pn,1(0, x),

so we use some concentration for the sum of the Y 2
i ’s. Indeed, we have, as a conse-

quence of [2], that

1
n

n∑
i=1

Y 2
i ≤ EY 2 + c1

√
E(Y 4)

x

n
+ c2 log n

‖Y 2‖ψ1x

n
(33)

with a probability larger than 1 − e−x. But then, it is easy to infer that for n large
enough, the right hand side of (33) is smaller than pn,1(r(A′), x)/2, so that we have,
on an event of probability larger than 1− e−x, that

inf
A

Λn,1(A) ≤ 1
n

n∑
i=1

Y 2
i + pn,1(0, x) < pn,1(r(A′), x) < Λn,1(A′).
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So, we proved that if Λn,1(A′) < Λ̃n,1(A′), then A′ /∈ argminA Λn,1(A), or equivalently
that argminA Λn,1(A) ⊂ {A : Λ̃n,1(A) ≤ Λn,1(A)}. But Λn,1(A) ≤ Λ̃n,1(A) for any A
(since pn,1(r, x) ≤ ρ̃n,1(r, x)), so (32) follows. This concludes the proof of Theorem 1.

3.7.2 The ‖ · ‖S1 + ‖ · ‖1 case

Recall that in this case

λ(r) = c
[( 1
r1
∧
√

log(mT )
r3

)2 b2X,2r
2(log n)2

n
+
( 1
r1
∧
√

log(mT )
r3

)bX,2bY r(log n)3/2√
n

)
]
,

and that
Cr = min

(
bX,∞

r

r1
, bX,`∞

r

r3

)
,

see (16). An easy computation gives that ρ′n(r, x) ≤ ρ̃n,2(r, x), where

ρ̃n,2(r, x) := cX,Y

( 1
r1
∧
√

log(mT )
r3

)2 (r + 1)2(x+ log n ∨ log log r) log n
n

∨ pn,2(r, x),

where cX,Y = c(1 + b2X,2 + bX,2bY + b2Y,ψ1
+ b2Y,∞ + b2Y,2 + b2X,∞ + b2X,`∞) and

pn,2(r, x) := cX,Y

( 1
r1
∧
√

log(mT )
r3

)(r + 1)(x+ log n)(log n)3/2√
n

.

Note that pn,2(r, x) is the penalization we want (the one considered in Theorem 3).
Introducing r(A) = r1‖A‖S1 + r3‖A‖1, the remaining of the proof follows the lines of
the pure ‖ · ‖S1 case, so it is omitted.

3.7.3 The ‖ · ‖S1 + ‖ · ‖2S2
case

This is easier than what we did for the ‖ · ‖S1 case, since we only have a log log r term
to remove from the penalization. Recall that

λ(r) = c
(b2X,2r(log n)2

r2n
+
bX,2bY r log n

r1
√
n

)
,

and

Cr = min
(
bX,∞

r

r1
, bX,2

√
r

r2

)
≤ bX,2

√
r

r2
,

so that ρ′n(r, x) ≤ ρ̃n,3(r, x) where

ρ̃n,3(r, x) = cX,Y
(r + 1) log n√

n

( 1
r1

+
(x+ log n ∨ log log r) log n

r2
√
n

)
,

where cX,Y = c(1 + b2X,2 + bX,2bY + b2Y,ψ1
+ b2Y,∞ + b2Y,2). This is almost the penalty

we want, up to the log log r term, so we consider.

pn,3(r, x) = cX,Y
(r + 1) log n√

n

( 1
r1

+
(x+ log n) log n

r2
√
n

)
,
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Let us introduce for short

r(A) := r1‖A‖S1 + r2‖A‖2S2
= inf

(
r ≥ 0 : A ∈ Br

)
and the following functionals:

Λ3(A) = R(A) + pen3(A), Λn,3(A) = Rn(A) + pen3(A),

Λ̃3(A) = R(A) + ˜pen3(A), Λ̃n,3(A) = Rn(A) + ˜pen3(A),

where pen3(A) := pn,3(r(A), x) and where ˜pen3(A) := ρ̃n,3(r(A), x). We only need to
prove that

inf
A

Λ̃3(A) ≤ inf
A

Λ3(A) and (34)

argmin
A

Λn,3(A) ⊂ argmin
A

Λ̃n,3(A). (35)

Obviously, if ρ̃n,3(r, x) > pn,3(r, x), then r > en, so following the arguments we used
for the S1 penalty, it is easy to prove both (34) and (35). This concludes the proof
of Theorem 2.

3.7.4 The ‖ · ‖S1 + ‖ · ‖2S2
+ ‖ · ‖1 case

Recall that in this case

λ(r) = c
[b2X,2r(log n)2

r2n
+
( 1
r1
∧
√

log(mT )
r3

)bX,2bY r(log n)3/2√
n

]
.

and that

Cr = min
(
bX,∞

r

r1
, bX,2

√
r

r2
, bX,`∞

r

r3

)
≤ bX,2

√
r

r2
, (36)

see (16). An easy computation gives that ρ′n(r, x) ≤ ρ̃n,4(r, x), where

ρ̃n,4(r, x) := cX,Y
(r + 1)(log n)3/2√

n

( 1
r1
∧
√

log(mT )
r3

+
x+ log n ∨ log log r

r2
√
n

)
where cX,Y = c(1 + b2X,2 + bX,2bY + b2Y,ψ1

+ b2Y,∞ + b2Y,2). The penalization we want is

pn,4(r, x) := cX,Y
(r + 1)(log n)3/2√

n

( 1
r1
∧
√

log(mT )
r3

+
x+ log n
r2
√
n

)
,

so introducing r(A) = r1‖A‖S1 + r2‖A‖2S2
+ r3‖A‖1 and following the lines of the

proof of the S1 +S2 case to remove the log log r term, it is easy to conclude the proof
of Theorem 4.
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