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Abstract

We prove that iid random vectors that satisfy a rather weak mo-
ment assumption can be used as measurement vectors in Compressed
Sensing, and the number of measurements required for exact recon-
struction is the same as the best possible estimate – exhibited by a
random Gaussian matrix. We then show that this moment condition
is necessary, up to a log log factor. In addition, we explore the Com-
patibility Condition and the Restricted Eigenvalue Condition in the
noisy setup, as well as properties of neighbourly random polytopes.

1 Introduction and main results

Data acquisition is an important task in diverse fields such as mobile commu-
nications, medical imaging, radar detection and others, making the design
of efficient data acquisition processes a problem of obvious significance.

The core issue in data acquisition is retaining all the valuable information
at one’s disposal, while keeping the ‘acquisition cost’ as low as possible. And
while there are several ways of defining that cost, depending on the problem
(storage, time, financial cost, etc.), the common denominator of being ‘cost
effective’ is ensuring the quality of the data while keeping the number of
measurements as small as possible.

The rapidly growing area of Compressed Sensing studies ‘economical’
data acquisition processes. We refer the reader to [9, 17] and to the book
[23] for more information on the origins of Compressed Sensing and a survey
of the progress that has been made in the area in recent years.
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At the heart of Compressed Sensing is a simple idea that has been a
recurring theme in Mathematics and Statistics: while complex objects (in
this case, data), live in high-dimensional spaces, they can be described effec-
tively using low-dimensional, approximating structures; moreover, random-
ness may be used to expose these low-dimensional structures. Of course, un-
like more theoretical applications of this idea, identifying the low-dimensional
structures in the context of Compressed Sensing must be robust and efficient,
otherwise, such procedures will be of little practical use.

In the standard Compressed Sensing setup, one observes linear measure-
ments yi =

〈
Xi, x0

〉
, i = 1, ..., N of an unknown vector x0 ∈ Rn. To make

the data acquisition process ‘cost-effective’, the number of measurements N
is assumed to be much smaller than the dimension n, and the goal is to
identify x0 using those measurements.

Because the resulting system of equations is under-determined, there is
no hope, in general, of identifying x0. However, if x0 is believed to be well
approximated by a low-dimensional structure, for example, if x0 is supported
on at most s coordinates for some s ≤ N , the problem becomes more feasible.

Let (f1, ..., fN ) be the canonical basis of RN (we will later use (e1, . . . , en)
to denote the canonical basis of Rn) and consider the matrix

Γ =
1√
N

N∑
i=1

〈
Xi, ·

〉
fi,

called the measurement matrix. One possible recovery procedure is `0-
minimization, in which one selects a vector t ∈ Rn that has the shortest
support among all vectors satisfying Γt = Γx0. Unfortunately, `0 minimiza-
tion is known to be NP-hard in general (see [33] or Theorem 2.17 in [23]).
Thus, even without analyzing if and when `0-minimization actually recovers
x0, it is obvious that a more computationally reasonable procedure has to
be found.

Fortunately, efficient procedures have been used since the seventies in
geophysics (see, for instance [14],[42], [40], and Logan’s Ph.D. thesis [28]).
Those procedures are based on `1-minimization for which early theoretical
works can be found in [20] and [13].

In particular, Basis Pursuit is a convex relaxation of `0-minimization,
and since it can be recast as a linear program (see, e.g., Chapter 15 in
[23]), it is far more reasonable than `0-minimization from the computational
viewpoint.
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Definition 1.1 Given the measurement matrix Γ and the measurements
Γx0 = (

〈
Xi, x0

〉
)Ni=1, Basis Pursuit returns a vector x̂ that satisfies

x̂ ∈ argmin
(
‖t‖1 : Γt = Γx0

)
. (1.1)

Since one may solve this minimization problem effectively, the focus may
be shifted to the quality of the solution: whether one can identify measure-
ment vectors X1, ...., XN for which (1.1) has a unique solution, which is x0

itself, for any x0 that is s-sparse (i.e. supported on at most s coordinates).

Definition 1.2 Let Σs be the set of all s−sparse vectors in Rn. An N × n
matrix Γ satisfies the exact reconstruction property of order s if for
every x0 ∈ Σs,

argmin
(
‖t‖1 : Γt = Γx0

)
= {x0}. (ER(s))

It follows from Proposition 2.2.18 in [12] that if Γ satisfies ER(s) then
necessarily the number of measurements (rows) is at leastN ≥ c0s log

(
en/s

)
,

where c0 is a suitable absolute constant. On the other hand, there are con-
structions of (random) matrices Γ that satisfy ER(s) with N proportional
to s log

(
en/s

)
. From here on and with a minor abuse of notation, we will

refer to s log(en/s) as the optimal number of measurements and ignore the
exact dependence on the constant c0.

Unfortunately, the only matrices that are known to satisfy the recon-
struction property with an optimal number of measurements are random
– which is not surprising, as randomness is one of the most effective tools
in exposing low-dimensional, approximating structures. A typical exam-
ple of an ‘optimal matrix’ is the Gaussian matrix, which has independent
standard normal random variables as entries. Other examples of optimal
measurement matrices are Γ = N−1/2

∑N
i=1

〈
Xi, ·

〉
fi where X1, ..., XN are

independent, isotropic and L-subgaussian random vectors:

Definition 1.3 A symmetric random vector X ∈ Rn is isotropic if for every
t ∈ Rn, E

〈
X, t

〉2
= ‖t‖22; it is L-subgaussian if for every t ∈ Rn and every

p ≥ 2, ‖
〈
X, t

〉
‖Lp ≤ L

√
p‖
〈
X, t

〉
‖L2.

The optimal behaviour of isotropic, L-subgaussian matrix ensembles and
other ensembles like it, occurs because a typical matrix acts on Σs in an
isomorphic way when N ≥ c1s log(en/s), and in the L-subgaussian case, c1

is a constant that depends only on L. In Compressed Sensing literature, this
isomorphic behaviour is called the Restricted Isometry property (RIP) (see,
for example [8, 10, 32]): A matrix Γ satisfies the RIP in Σs with constant
0 < δ < 1, if for every t ∈ Σs,

(1− δ)‖t‖2 ≤ ‖Γt‖2 ≤ (1 + δ)‖t‖2. (1.2)
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It is straightforward to show that if Γ satisfies the RIP in Σ2s for a sufficiently
small constant δ, then it has the exact reconstruction property of order s
(see, e.g. [9, 10, 7]).

The standard proof of the RIP for subgaussian ensembles is based on
the rapid tail decay of linear functionals

〈
X, t

〉
. Thus, it seemed natural

to ask whether the RIP holds even when linear functionals exhibit a slower
decay – for example, when X is L-subexponential – that is, when linear
functionals only satisfy that ‖

〈
X, t

〉
‖Lp ≤ Lp‖

〈
X, t

〉
‖L2 for every t ∈ Rn

and every p ≥ 2.
Proving the RIP for subexponential ensembles is a much harder task

than for subgaussian ensembles (see, e.g. [1]). Moreover, the RIP does not
exhibit the same optimal quantitative behaviour as in the Gaussian case:
it holds with high probability only when N ≥ c2(L)s log2(en/s), and this
estimate cannot be improved, as can be seen when X has independent,
symmetric exponential random variables as coordinates [1].

Although the RIP need not be true for isotropic L-subexponential en-
semble using the optimal number of measurements, results in [24] (see Theo-
rem 7.3 there) and in [22] show that exact reconstruction can still be achieved
by such an ensemble and with the optimal number of measurements. This
opens the door to an intriguing question: whether considerably weaker as-
sumptions on the measurement vector may still lead to Exact Reconstruction
even when the RIP fails.

The main result presented here does just that, using the small-ball method
introduced in [30, 31].

Definition 1.4 A random vector X satisfies the small-ball condition in
the set Σs with constants u, β > 0 if for every t ∈ Σs,

P
(
|
〈
X, t

〉
| > u ‖t‖2

)
≥ β.

The small-ball condition is a rather minimal assumption on the measurement
vector and is satisfied in fairly general situations for values of u and β that
are suitable constants, independent of the dimension n.

Under some normalization (like isotropicity), a small-ball condition is
an immediate outcome of the Paley-Zygmund inequality (see, e.g. [15])
and moment equivalence. For example, in the following cases a small-ball
condition holds with constants that depend only on κ0 (and on ε for the
first case); the straightforward proof may be found in [30].

• X is isotropic and for every t ∈ Σs,
∥∥〈X, t〉∥∥

L2+ε
≤ κ0

∥∥〈X, t〉∥∥
L2

for
some ε > 0;
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• X is isotropic and for every t ∈ Σs,
∥∥〈X, t〉∥∥

L2
≤ κ0

∥∥〈X, t〉∥∥
L1

.

Because the small-ball condition means that marginals ofX do not assign
too much weight close to 0, it may hold even without integrability (and in
particular, X need not have a covariance matrix). One such example is a
random vector whose coordinates are independent random variables that
are absolutely continuous with respect to the Lebesgue measure and with
a density almost surely bounded by κ0. Indeed, as noted in Theorem 1.2
from [38], for every t ∈ Rn,

〈
X, t/‖t‖2

〉
has a density that is almost surely

bounded by
√

2κ0. In particular, P
(
|
〈
X, t

〉
| ≥ (4

√
2κ0)−1‖t‖2

)
≥ 1/2 and

X satisfies the small ball condition with u = (4
√

2κ0)−1 and β = 1/2. The
estimate on the density of

〈
X, t/‖t‖2

〉
follows by combining a result due to

B. Rogozin [36] on the maximal value of a convolution product of densities,
and a result due to K. Ball [2], on the maximal volume of a section of the
cube [−1/2, 1/2]n.

Our first result shows that a combination of the small-ball condition
and a weak moment assumption suffices to ensure the exact reconstruction
property with the optimal number of measurements.

Theorem A. There exist absolute constants c0, c1 and c2 and for every
α ≥ 1/2 there exists a constant c3(α) that depends only on α for which the
following holds. Let X = (xi)

n
i=1 be a random vector on Rn (with potentially

dependent coordinates). Assume that

1. there are κ1, κ2, w > 1 that satisfy that for every 1 ≤ j ≤ n, ‖xj‖L2 = 1
and, for every 4 ≤ p ≤ 2κ2 log(wn), ‖xj‖Lp ≤ κ1p

α.

2. X satisfies the small ball condition in Σs with constants u and β.

If

N ≥ c0 max
{
s log

(en
s

)
, (c3(α)κ2

1)2(κ2 log(wn))max{4α−1,1}
}
,

and X1, ..., XN are independent copies of X, then, with probability at least

1− 2 exp(−c1β
2N)− 1/wκ2nκ2−1,

Γ = N−1/2
∑N

i=1

〈
Xi, ·

〉
fi satisfies the exact reconstruction property in Σs1

for s1 = c2u
2βs.

An immediate outcome of Theorem A is the following:
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• Let x be a centered random variable that has variance 1 and for which
‖x‖Lp ≤ c

√
p for 1 ≤ p ≤ 2 log n. If X has independent coordi-

nates distributed as x, then the corresponding matrix Γ with N ≥
c1s log(en/s) rows can be used as a measurement matrix and recover
any s-sparse vector with large probability.

It is relatively straightforward to derive many other results of a similar
flavour, leading to random ensembles that satisfy the exact reconstruction
property with the optimal number of measurements.

Remark 1.5 Our focus is on measurement matrices with independent rows,
that satisfy conditions of a stochastic nature – they have i.i.d. rows. Other
types of measurement matrices that have some structure have also been used
in Compressed Sensing. One notable example is a random Fourier measure-
ment matrix, obtained by randomly selecting rows from the discrete Fourier
matrix (see, e.g. [10], [37] or Chapter 12 in [23]).

One may wonder if the small-ball condition is satisfied for more struc-
tured matrices, as the argument we use here does not extend immediately to
such cases. And, indeed, for structured ensembles one may encounter a dif-
ferent situation: a small-ball condition that is not uniform, in the sense that
the constants u and β from Definition 1.4 are direction-dependent. More-
over, in some cases, the known estimates on these constants are far from
what is expected.

Results of the same flavour of Theorem A may follow from a ‘good
enough’ small-ball condition, even if it is not uniform, by slightly modifying
the argument we use here. However, obtaining a satisfactory ‘non-uniform’
small-ball condition is a different story. For example, in the Fourier case,
such an estimate is likely to require quantitative extensions of the Littlewood-
Paley theory – a worthy challenge in its own right, and one which goes far
beyond the goals of this article.

Just as noted for subexponential ensembles, Theorem A cannot be proved
using an RIP-based argument. A key ingredient in the proof is the following
observation:

Theorem B. Let Γ : Rn 7→ RN and denote by (e1, . . . , en) the canonical
basis of Rn. Assume that:

a) for every x ∈ Σs, ‖Γx‖2 ≥ c0 ‖x‖2, and

b) for every j ∈ {1, . . . , n}, ‖Γej‖2 ≤ c1.
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Setting s1 =
⌊
(c2

0(s − 1))/(4c2
1)
⌋
− 1, Γ satisfies the exact reconstruction

property in Σs1.

Compared with the RIP, conditions a) and b) in Theorem B are weaker,
as it suffices to verify the right-hand side of (1.2) for 1-sparse vectors rather
than for every s-sparse vector. This happens to be a substantial difference:
the assumption that for every t ∈ Σs, ‖Γt‖2 ≤ (1 + δ) ‖t‖2 is a costly one,
and happens to be the reason for the gap between the RIP and the exact
reconstruction property. Indeed, while the lower bound in the RIP holds for
rather general ensembles (see [30] and the next section for more details), and
is guaranteed solely by the small-ball condition, the upper bound is almost
equivalent to having the coordinates of X exhibit a subgaussian behaviour
of moments, at least up to some level. Even the fact that one has to verify
the upper bound for 1-sparse vectors comes at a cost, namely, the moment
assumption (1) in Theorem A.

The second goal of this note is to illustrate that while Exact Reconstruc-
tion is ‘cheaper’ than the RIP, it still comes at a cost – namely, that the
moment condition (1) in Theorem A is truly needed.

Definition 1.6 A random matrix Γ is generated by the random variable x
if Γ = N−1/2

∑N
i=1

〈
Xi, ·

〉
fi and X1, ..., XN are independent copies of the

random vector X = (x1, ..., xn)> whose coordinates are independent copies
of x.

Theorem C. There exist absolute constants c0, c1, c2 and c3 for which the
following holds. Given n ≥ c0 and N logN ≤ c1n, there exists a mean-zero,
variance one random variable x with the following properties:

• ‖x‖Lp
≤ c2
√
p for 2 < p ≤ c3(log n)/(logN).

• If (xj)
n
j=1 are independent copies of x then X = (x1, ..., xn)> satisfies the

small-ball condition with constants u and β that depend only on c2.

• Denote by Γ the N × n matrix generated by x. For every k ∈ {1, . . . , n},
with probability larger than 1/2, argmin

(
‖t‖1 : Γt = Γek

)
6= {ek};

therefore, ek is not exactly reconstructed by Basis Pursuit and so Γ
does not satisfy the exact reconstruction property of order 1.

To put Theorem C in some perspective, note that if Γ is generated by
x for which ‖x‖L2

= 1 and ‖x‖Lp
≤ c4

√
p for 2 < p ≤ c5 log n, then X =
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(xi)
n
i=1 satisfies the small-ball condition with constants that depend only

on c4, and by Theorem A, if N ≥ c6 log n, Γ satisfies ER(1) with high
probability. On the other hand, the random ensemble from Theorem C is
generated by x that has almost identical properties – with one exception: its
Lp norm is well behaved only for p ≤ c7(log n)/ log logn. This small gap in
the number of moments has a significant impact: with probability at least
1/2, Γ does not satisfy ER(1) when N is of the order of log n.

Therefore, the moment condition in Theorem A is indeed required (up
to a log log n factor).

The idea behind the proof of Theorem C is to construct a random matrix
Γ for which, given any basis vector ek, with probability at least 1/2, ‖Γek‖2 ≤
1, while the set {Γej , j 6= k} has many ‘very spiky’ vectors: the convex hull
conv(±Γej , j 6= k) contains a perturbation of 2

√
NBN

1 , i.e., a large multiple
of the unit ball in `N1 . Since such a set must contain the Euclidean unit ball,
and in particular, Γek as well, it follows that ek cannot be the unique solution
of the `1 minimization problem min(‖t‖1 : Γt = Γek).

The fact that the coordinates of X do not have enough well behaved
moments is the key feature that allows one to generate many ‘spiky’ columns
in a typical Γ.

An alternative formulation of Theorem C is the following:

Theorem C′. There are absolute constants c0, c1, c2 and κ for which the
following holds. If n ≥ c0 and 2 < p < c1 log n, there exists a mean-zero and
variance 1 random variable x, for which ‖x‖Lq ≤ κ

√
q for 2 < q ≤ p, and if

N ≤ c2
√
p(n/ log n)1/p and Γ is the N × n matrix generated by x, then with

probability at least 1/2, Γ does not satisfy the exact reconstruction property
of order 1.

Theorem C and Theorem C′ imply that Basis Pursuit may perform
poorly when the coordinates of X do not have enough moments, and requires
a polynomial number of measurements in n to ensure Exact Reconstruction.
This happens to be the price of convex relaxation: a rather striking obser-
vation is that `0-minimization achieves recovery with the optimal number
of measurements under an even weaker small-ball condition than in Theo-
rem A, and without any additional moment assumptions.

Recall that `0-minimization is defined by x̂ = argmin
(
‖t‖0 : Γt = Γx0

)
,

where ‖t‖0 is the cardinality of the support of t.

Definition 1.7 X satisfies a weak small-ball condition in Σs with constant
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β if for every t ∈ Σs,
P
(
|
〈
X, t

〉
| > 0

)
≥ β. (1.3)

Theorem D. For every 0 < β < 1 there exist constants c0 and c1 that
depend only on β and for which the following holds. Let X be a random vec-
tor that satisfies the weak small-ball condition in Σs with a constant β. Let
X1, . . . , XN be N independent copies of X and set Γ = N−1/2

∑N
i=1

〈
Xi, ·

〉
fi.

If N ≥ c0s log(en/s) then with probability at least 1−2 exp(−c1N), for every
x0 ∈ Σbs/2c, `0-minimization has a unique solution, which is x0 itself.

The price of convex relaxation can now be clearly seen through the num-
ber of measurements needed for exact reconstruction: consider the random
vector X constructed in Theorem C′ for, say, p = 4. Since X satisfies
the conditions of Theorem D, `0 minimization may be used to recover any
s-sparse vector with only N = cs log(en/s) random measurements. In con-
trast, Basis Pursuit requires at least ∼ (n/ log n)1/4 measurements to recon-
struct 1-sparse vectors.

It should be noted that under much stronger assumptions on X, the
exact recovery of s-sparse vectors using `0-minimization may occur when N
is as small as 2s. Indeed, it suffices to ensure that all the N×2s sub-matrices
of Γ are non-singular, and this is the case when N = 2s if the entries of Γ are
independent random variables that are absolutely continuous (see Chapter 2
in [23] for more details).

We end this introduction with a word about notation and the organiza-
tion of the article. The proofs of Theorem A, Theorem B and Theorem D
are presented in the next section, while the proofs of Theorem C and Theo-
rem C′ may be found in Section 3. The final section is devoted to results in
a natural ‘noisy’ extension of Compressed Sensing. In particular, we prove
that both the Compatibility Condition and the Restricted Eigenvalue Condi-
tion hold under weak moment assumptions; we also study related properties
of random polytopes.

As for notation, throughout, absolute constants or constants that de-
pend on other parameters are denoted by c, C, c1, c2, etc., (and, of course,
we will specify when a constant is absolute and when it depends on other
parameters). The values of these constants may change from line to line.
The notation x ∼ y (resp. x . y) means that there exist absolute constants
0 < c < C for which cy ≤ x ≤ Cy (resp. x ≤ Cy). If b > 0 is a parameter
then x .b y means that x ≤ C(b)y for some constant C(b) that depends
only on b.
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Let `mp be Rm endowed with the norm ‖x‖`mp =
(∑

j |xj |p
)1/p

; the cor-
responding unit ball is denoted by Bm

p and the unit Euclidean sphere in Rm
is Sm−1. If A ⊂ Rn then 1A denotes the indicator function of A. Finally,
we will assume that (X , µ) is a probability space, and that X is distributed
according to µ.

2 Proof of Theorem A, B and D

The proof of Theorem A has several components, and although the first of
which is rather standard, we present it for the sake of completeness.

Lemma 2.1 Let Γ : Rn → RN be a matrix and set ker(Γ) to be its kernel.
If 0 < r < 1 and Bn

1 ∩ rSn−1 does not intersect ker(Γ), then Γ satisfies the
exact reconstruction property in Σb(2r)−2c.

Proof. Observe that if x ∈ Bn
1 and ‖x‖2 ≥ r then y = rx/‖x‖2 ∈ Bn

1 ∩
rSn−1. Therefore, if y 6∈ ker(Γ), the same holds for x; thus

sup
x∈Bn

1 ∩ker(Γ)
‖x‖2 < r.

Let s = b(2r)−2c, fix x0 ∈ Σs and put I to be the set indices of coordinates
on which x0 is supported. Given a nonzero h ∈ ker(Γ), let h = hI +hIc – the
decomposition of h to coordinates in I and in Ic. Since h/‖h‖1 ∈ Bn

1 ∩ker(Γ),
it follows that ‖h‖2 < r‖h‖1, and by the choice of s, 2

√
s‖h‖2 < ‖h‖1.

Therefore,

‖x0 + h‖1 = ‖x0 + hI‖1 + ‖hIc‖1 ≥ ‖x0‖1 − ‖hI‖1 + ‖hIc‖1
= ‖x0‖1 − 2‖hI‖1 + ‖h‖1 ≥ ‖x0‖1 − 2

√
|I|‖hI‖2 + ‖h‖1 > ‖x0‖1.

Hence, ‖x0+h‖1 > ‖x0‖1 and x0 is the unique minimizer of the basis pursuit
algorithm.

The main ingredient in the proof of Theorem A is Lemma 2.3 below,
which is based on the small-ball method introduced in [30, 31]. To formulate
the lemma, one requires the notion of a VC class of sets.

Definition 2.2 Let G be a class of {0, 1}-valued functions defined on a set
X . The set G is a VC-class if there exists an integer V for which, given any
x1, ..., xV+1 ∈ X ,

|{(g(x1), ..., g(xV+1)) : g ∈ G}| < 2V+1. (2.1)

The VC-dimension of G, denoted by V C(G), is the smallest integer V for
which (2.1) holds.
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The VC dimension is a combinatorial complexity measure that may
be used to control the L2(µ)-covering numbers of the class; indeed, set
N(G, ε, L2(µ)) to be the smallest number of open balls of radius ε rela-
tive to the L2(µ) norm that are needed to cover G. A well known result due
to Dudley [21] is that if V C(G) = V and µ is a probability measure on X
then for every 0 < ε < 1,

N
(
G, ε, L2(µ)

)
≤
(c1

ε

)c2V
, (2.2)

where c1 and c2 are absolute constants.

Lemma 2.3 There exist absolute constants c1 and c2 for which the following
holds. Let F be a class of functions and assume that there are β > 0 and
u ≥ 0 for which

inf
f∈F

P
(
|f(X)| > u

)
≥ β.

Let Gu =
{
1{|f |>u} : f ∈ F

}
. If V C(Gu) ≤ d and N ≥ c1d/β

2 then with
probability at least 1− exp(−c2β

2N),

inf
f∈F

∣∣{i ∈ {1, . . . , N} : |f(Xi)| > u
}∣∣ ≥ βN

2
.

Remark 2.4 Note that u = 0 is a ‘legal choice’ in Lemma 2.3, a fact that
will be used in the proof of Theorem D.

Proof. Let G(X1, ..., XN ) = supg∈Gu |N
−1
∑N

i=1 g(Xi) − Eg(X)|. By the
bounded differences inequality (see, for example, Theorem 6.2 in [5]), with
probability at least 1− exp(−t),

G(X1, ..., XN ) ≤ EG(X1, ..., XN ) + c1

√
t

N
.

Standard empirical processes arguments (symmetrization, the fact that Bernoulli
processes are subgaussian and the entropy estimate (2.2) – see, for example,
Chapters 2.2, 2.3 and 2.6 in [47]), show that since V C(G) ≤ d,

EG(X1, ..., XN ) ≤ c2

√
d

N
≤ β

4
, (2.3)

provided that N & d/β2. Therefore, taking t = Nβ2/16c2
1, it follows that

with probability at least 1− exp(−c3β
2N), for every f ∈ F ,

1

N

N∑
i=1

1{|f |>u}(Xi) ≥ P
(
|f(X)| > u

)
− β

2
≥ β

2
.

Therefore, on that event, |{i : |f(Xi)| > u}| ≥ βN/2 for every f ∈ F .
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Corollary 2.5 There exist absolute constants c1 and c2 for which the fol-
lowing holds. Let X ∈ Rn be a random vector.

1. If there are 0 < β ≤ 1 and u ≥ 0 for which P
(
|
〈
t,X

〉
| > u

)
≥ β

for every t ∈ Sn−1 and if N ≥ c1n/β
2, then with probability at least

1− exp(−c2Nβ
2),

inf
t∈Sn−1

1

N

N∑
i=1

〈
Xi, t

〉2
>
u2β

2
.

2. If there are 0 < β ≤ 1 and u ≥ 0 for which P
(
|
〈
t,X

〉
| > u

)
≥ β for

every t ∈ Σs∩Sn−1 and if N ≥ c1s log(en/s)/β2, then with probability
at least 1− exp(−c2Nβ

2),

inf
t∈Σs∩Sn−1

1

N

N∑
i=1

〈
Xi, t

〉2
>
u2β

2
.

Remark 2.6 Note that the first part of Corollary 2.5 gives an estimate on
the smallest singular value of the random matrix Γ = N−1/2

∑N
i=1

〈
Xi, ·

〉
fi.

The proof follows the same path as in [25], but unlike the latter, no as-
sumption on the covariance structure of X, used both in [25] and in [41], is
required. In fact, Corollary 2.5 may be applied even if the covariance ma-
trix does not exist. Thus, under a small-ball condition, the smallest singular
value of Γ is larger than c(β, u) with high (exponential) probability.

Proof of Corollary 2.5. To prove the first part of the claim, let F =
{
〈
t, ·
〉

: t ∈ Sn−1}. Recall that the VC dimension of a class of half-spaces
in Rn is at most n, and thus, one may verify that for every u ≥ 0, the VC
dimension of

Gu = {1{|f |>u} : f ∈ F}

is at most c1n for a suitable absolute constant c1 (see, e.g., Chapter 2.6 in
[47]). The claim now follows immediately from Lemma 2.3 because

1

N

N∑
i=1

〈
t,Xi

〉2
>
u2

N
|{i : |

〈
Xi, t

〉
| > u}|

for every t ∈ Sn−1.

12



Turning to the second part, note that Σs∩Sn−1 is a union of
(
n
s

)
spheres

of dimension s. Applying the first part to each one of those spheres, com-
bined with the union bound, it follows that for N ≥ c2β

−2s log(en/s), with
probability at least 1− exp(−c3Nβ

2),

inf
t∈Σs∩Sn−1

1

N

N∑
i=1

〈
Xi, t

〉2
>
u2β

2
.

Corollary 2.5 shows that the small-ball condition for linear function-
als implies that Γ ‘acts well’ on s-sparse vectors. However, according to
Lemma 2.1, exact recovery is possible if Γ is well behaved on the set

√
κ0sB

n
1 ∩ Sn−1 = {x ∈ Rn : ‖x‖1 ≤

√
κ0s, ‖x‖2 = 1}

for a well-chosen constant κ0. In the standard (RIP-based) argument, one
proves exact reconstruction by first showing that the RIP holds in Σs, and
then the fact that each vector in

√
κ0sB

n
1 ∩ Sn−1 is well approximated by

vectors from Σs (see, for instance, [12]) allows one to extend the RIP from
Σs to

√
κ0sB

n
1 ∩Sn−1. Unfortunately, this extension requires both upper and

lower estimates in the RIP.
Since the upper part of the RIP in Σs forces severe restrictions on the

random vector X, one has to resort to a totally different argument if one
wishes to extend the lower bound from Σs (which only requires the small-ball
condition) to

√
κ0sB

n
1 ∩ Sn−1.

The method presented below is based on Maurey’s empirical method and
has been recently used in [34].

Lemma 2.7 Let Γ : Rn → RN , put 1 < s ≤ n and assume that for every
x ∈ Σs, ‖Γx‖2 ≥ λ‖x‖2. If y ∈ Rn is a nonzero vector and µj = |yj |/‖y‖1,
then

‖Γy‖22 ≥ λ2‖y‖22 −
‖y‖21
s− 1

 n∑
j=1

‖Γej‖22 µj − λ
2

 .

Proof. Fix y ∈ Rn, let Y be a random vector in Rn defined by

P (Y = ‖y‖1sgn(yj)ej) = |yj |/‖y‖1,

for every j = 1, . . . , n and observe that EY = y.

13



Let Y1, ..., Ys be independent copies of Y and set Z = s−1
∑s

k=1 Yk. Note
that Z ∈ Σs for every realization of Y1, ..., Ys; thus ‖ΓZ‖22 ≥ λ2‖Z‖22 and

E‖ΓZ‖22 ≥ λ2E‖Z‖22. (2.4)

It is straightforward to verify that E
〈
Y, Y

〉
= ‖y‖21; that if i 6= j then

E
〈
ΓYi,ΓYj

〉
=
〈
Γy,Γy

〉
; and that for every 1 ≤ k ≤ s,

E
〈
ΓYk,ΓYk

〉
= ‖y‖1

n∑
j=1

|yj | ‖Γej‖22 .

Therefore, setting µj = |yj |/‖y‖1 and W =
∑n

j=1 ‖Γej‖
2
2 µj ,

E‖ΓZ‖22 =
1

s2

s∑
i,j=1

E
〈
ΓYi,ΓYj

〉
=

(
1− 1

s

)
‖Γy‖22 +

‖y‖1
s

n∑
j=1

|yj | ‖Γej‖22

=

(
1− 1

s

)
‖Γy‖22 +W

‖y‖21
s

,

and using the same argument one may show that

E‖Z‖22 =

(
1− 1

s

)
‖y‖22 +

‖y‖21
s

.

Combining these two estimates with (2.4),(
1− 1

s

)
‖Γy‖22 ≥ λ2

((
1− 1

s

)
‖y‖22 +

‖y‖21
s

)
−W ‖y‖

2
1

s
,

proving the claim.

Proof of Theorem B: Assume that for every x ∈ Σs, ‖Γx‖2 ≥ c0‖x‖2
and that for every 1 ≤ i ≤ n, ‖Γei‖2 ≤ c1. It follows from Lemma 2.7 that
if s− 1 > c2

1/(c
2
0r

2), then for every y ∈ Bn
1 ∩ rSn−1,

‖Γy‖22 ≥ c
2
0 ‖y‖

2
2 −
‖y‖1
s− 1

n∑
i=1

‖Γei‖22 |yi| ≥ c
2
0r

2 − c2
1

s− 1
> 0.

The claim now follows from Lemma 2.1.

Consider the matrix Γ = N−1/2
∑N

i=1

〈
Xi, ·

〉
fi. Observe that for every

t ∈ Rn, ‖Γt‖22 = N−1
∑N

i=1

〈
Xi, t

〉2
, and that if Xj = (xi,j)

n
i=1 then

‖Γej‖22 =
1

N

N∑
i=1

x2
i,j ,

14



which is an average of N iid random variables (though ‖Γe1‖2 , . . . , ‖Γen‖2
need not be independent).

Thanks to Theorem B and Corollary 2.5, the final component needed for
the proof of Theorem A is information on the sum of iid random variables,
which will be used to bound max1≤j≤n ‖Γej‖22 from above.

Lemma 2.8 There exists an absolute constant c0 for which the following
holds. Let z be a mean-zero random variable and put z1, . . . , zN to be N
independent copies of z. Let p0 ≥ 2 and assume that there exists κ1 > 0 and

α ≥ 1/2 for which ‖z‖Lp ≤ κ1p
α for every 2 ≤ p ≤ p0. If N ≥ p

max{2α−1,1}
0

then for every 2 ≤ p ≤ p0,∥∥∥ 1√
N

N∑
i=1

zi

∥∥∥
Lp

≤ c1(α)κ1
√
p,

where c1(α) = c0 exp((2α− 1)).

Lemma 2.8 shows that even under a weak moment assumption, namely
that ‖z‖Lp . pα for p ≤ p0 and α ≥ 1/2 that can be large, a normalized
sum of N independent copies of z exhibits a ‘subgaussian’ moment growth
up to the same p0, as long as N is sufficiently large.

The proof of Proposition 2.8 is based on the following fact due to Lata la.

Theorem 2.9 ([26], Theorem 2 and Remark 2) If z is a mean-zero ran-
dom variable and z1, ..., zN are independent copies of z, then for any p ≥ 2,∥∥ N∑

i=1

zi
∥∥
Lp
∼ sup

{
p

s

(
N

p

)1/s

‖z‖Ls : max{2, p/N} ≤ s ≤ p

}
.

Proof of Lemma 2.8. Let 2 ≤ p ≤ p0 and N ≥ p. Since ‖z‖Ls ≤ κ1s
α for

any 2 ≤ s ≤ p, it follows from Theorem 2.9 that∥∥ N∑
i=1

zi
∥∥
Lp
≤ c0κ1 sup

{
p(N/p)1/ss−1+α : max{2, p/N} ≤ s ≤ p

}
.

It is straightforward to verify that the function h(s) = (N/p)1/ss−1+α is non-
increasing when α ≤ 1 and attains its maximum in s = max{2, p/N} = 2 or
in s = p when α > 1. Therefore, when N ≥ p,∥∥ N∑

i=1

zi
∥∥
Lp
≤ c1κ1 max

{√
Np,N1/ppα

}
.

Finally, if N ≥ p2α−1 then e2α−1
√
Np ≥ N1/ppα, which completes the proof.
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Proof of Theorem A. Consider N ≥ c1s log(en/s)/β2. By Corollary 2.5,
with probability at least 1− exp(−c2Nβ

2),

inf
t∈Σs∩Sn−1

1

N

N∑
i=1

〈
Xi, t

〉2
>
u2β

2
. (2.5)

Set (Xi)
N
i=1 for which (2.5) holds and let Γ = N−1/2

∑N
i=1

〈
Xi, ·

〉
fi. By

Lemma 2.7 for λ2 = u2β/2, it follows that when r ≥ 1,

inf
t∈
√
rBn

1 ∩Sn−1
‖Γt‖22 ≥ λ2 − 2r

s
max

1≤j≤n
‖Γej‖22 . (2.6)

Next, one has to obtain a high probability upper estimate on max1≤j≤n ‖Γej‖22.
To that end, fix w ≥ 1 and consider z = x2

j − 1 - where xj is the j-th
coordinate of X. Observe that z is a centered random variable and that
‖z‖Lq

. 4ακ2
1q

2α for every 1 ≤ q ≤ κ2 log(wn). Thus, by Lemma 2.8 for

p = κ2 log(wn) and c3(α) ∼ 4α exp((4α− 1)),∥∥ 1

N

N∑
i=1

zi
∥∥
Lp
≤ c3(α)κ2

1

√
p

N
,

provided that N ≥ pmax{4α−1,1} = (κ2 log(wn))max{4α−1,1}. Hence, if N ≥
(c3(α)κ2

1)2(κ2 log(wn))max{4α−1,1}, and setting Vj = ‖Γej‖22, one has

‖Vj‖Lp = ‖ 1

N

N∑
i=1

x2
i,j‖Lp ≤ 1 + c3(α)κ2

1

√
κ2 log(wn)

N
≤ 2;

thus,

P ( max
1≤j≤n

Vj ≥ 2e) ≤
n∑
j=1

P (Vj ≥ 2e) ≤
n∑
j=1

(‖Vj‖Lp

2e

)p
≤n
(

1

e

)p
=

1

wκ2nκ2−1
.

Combining the two estimates, if

N & max
{
s log(en/s), (c3(α)κ2

1)2(κ2 log(wn))max{4α−1,1}
}

and r ≤ sλ2/8e = su2β/16e, then with probability at least 1−exp(−c2Nβ
2)−

1/(wκ2nκ2−1),

inf
t∈
√
rBn

1 ∩Sn−1
‖Γt‖22 ≥ λ2 − 4er

s
≥ λ2/2. (2.7)

Therefore, by Lemma 2.1, Γ satisfies the exact reconstruction property for
vectors that are c4u

2βs-sparse, as claimed.
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Proof of Theorem D: Since the argument is almost identical to the one
used in the proof of the second part of Corollary 2.5, we will only sketch the
details. Observe that if Γ = N−1/2

∑N
i=1

〈
Xi, ·

〉
fi and ker(Γ)∩Σs = {0}, then

for any x0 ∈ Σbs/2c, the only t ∈ Rn for which Γt = Γx0 and ‖t‖0 ≤ ‖x0‖0 is
x0 itself. Thus, it suffices to show that for every x ∈ Σs∩Sn−1, |

〈
Xi, x

〉
| > 0

for some 1 ≤ i ≤ n. Since Σs ∩ Sn−1 is a union of
(
n
s

)
spheres, the claim

follows from Lemma 2.3 applied to each one of those spheres and for u = 0,
combined with a union bound argument.

3 Proof of Theorem C and Theorem C′

Consider an N ×n matrix Γ and J ⊂ {1, . . . , n}. Set ΓJ to be the (N × |J |)
restriction of Γ to span{ej : j ∈ J}. Recall that Bn

1 is the unit ball in
`n1 = (Rn, ‖ · ‖1), and put BJc

1 to be the set of vectors in Bn
1 that are

supported in Jc – the complement of J in {1, ..., n}.

Lemma 3.1 Fix integers s,N ≤ n and J ⊂ {1, ..., n} of cardinality at most
s. If v ∈ Rn is supported in J , ‖v‖1 = 1 and Γv ∈ ΓBJc

1 , then Γ does not
satisfy the exact reconstruction property of order s.

Proof. Let w ∈ BJc

1 for which Γv = Γw and observe that v 6= w (otherwise,
v ∈ BJ

1 ∩BJc

1 , implying that v = 0, which is impossible because ‖v‖1 = 1).
Since ‖w‖1 ≤ 1 = ‖v‖1, w is at least as good a candidate as v for the

`1-minimization problem min
(
‖t‖1 : Γt = Γv

)
; hence, v is not the unique

solution of that problem.

Set x·1, · · · , x·n to be the columns of Γ. It immediately follows from
Lemma 3.1 that if one wishes to prove that Γ does not satisfy ER(1), it
suffices to show that, for instance the first basis vector e1 cannot be exactly
reconstruct. This follows from

Γe1 = x·1 ∈ absconv
(
x·k : k 6= 1

)
= absconv

(
Γek : k 6= 1

)
= ΓB

{1}c
1 ,

where absconv(S) is the convex hull of S ∪ −S. Therefore, if

‖x·1‖2 ≤ c0 and c0B
N
2 ⊂ absconv

(
x·k : k 6= 1

)
, (3.1)

for some absolute constant c0, then Γ does not satisfy ER(1).
The proofs of Theorem C and of Theorem C′ follow from the construction

of a random matrix ensemble for which (3.1) holds with probability larger
than 1/2. We now turn on to such a construction.
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Let η be a selector (a {0, 1}-valued random variable) with mean δ to be
named later, and let ε be a symmetric {−1, 1}-valued random variable that
is independent of η. Fix R > 0 and set

z = ε(1 +Rη).

Observe that if p ≥ 2 and R ≥ 1 then

‖z‖Lp

‖z‖L2

=

(
1 +

(
(1 +R)p − 1

)
δ
)1/p(

1 +
(
(1 +R)2 − 1

)
δ
)1/2 ∼ (1 +Rpδ)1/p

(1 +R2δ)1/2
∼ Rδ1/p,

and the last equivalence holds when R2δ . 1 and Rpδ & 1. Fix 2 < p ≤
2 log(1/δ) which will be specified later and set R =

√
p(1/δ)1/p. Since the

function q → √q/δ1/q is decreasing for 2 ≤ q ≤ 2 log(1/δ) one has that for
2 ≤ q ≤ p and for δ that is small enough,

‖z‖Lq ≤ c0
√
q‖z‖L2 .

Note that x = z/ ‖z‖L2
is a mean-zero, variance one random variable

that exhibits a ‘subgaussian’ moment behaviour only up to p. Indeed, if
2 ≤ q ≤ p, ‖z‖Lq .

√
q‖z‖L2 , and if q > p, ‖z‖Lq

∼ √pδ1/q−1/p ‖z‖L2
, which

may be far larger than
√
q ‖z‖L2

if δ is sufficiently small.
Let X = (x1, . . . , xn) be a vector whose coordinates are independent,

distributed as x and let Γ be the measurement matrix generated by x. Note
that up to the normalization factor of ‖z‖L2

, which is of the order of a

constant when R2δ . 1,
√
NΓ is a perturbation of a Rademacher matrix by

a sparse matrix with few random spikes that are either R or −R.
As noted earlier, if for every t ∈ Rn,

‖
〈
X, t

〉
‖L4 ≤ C‖

〈
X, t

〉
‖L2 , (3.2)

then the small-ball condition holds with constants that depend only on C.
To show that X satisfies (3.2), denote by Eη (resp. Eε) the expectation
with respect to the η-variables (resp. ε-variables), and observe that by
a straightforward application of Khintchine’s inequality (see, e.g., p.91 in
[27]), for every t ∈ Rn,

E
〈
X, t

〉4
. EηEε

( n∑
j=1

εj(1 +Rηj)tj

)4
. Eη

( n∑
j=1

(1 +Rηj)
2t2j

)2

= Eη
∑
k,`

(1 +Rηk)
2t2k(1 +Rη`)

2t2` . ‖t‖
4
2 =

(
E
〈
X, t

〉2
)2
,
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provided that R4δ . 1.
Set (fi)

N
i=1 to be the canonical basis of RN and put Γ̃ = (z`k) = ‖z‖L2

√
NΓ,

an N × n matrix whose entries are independent copies of z. Let

vj = Γ̃ej =

N∑
`=1

z`jfj ,

and consider
V = absconv ({vj : 2 ≤ j ≤ n}) ,

the convex hull of (±vj)nj=2.

We will show that with probability at least 1/2,
√
NBN

2 ⊂ V and ‖v1‖2 ≤√
N , in three steps:

Lemma 3.2 With probability at least 3/4, for every 1 ≤ i ≤ N there is
yi ∈ BN

∞ for which yi +Rfi ∈ V .

In other words, with non-trivial probability, V contains a perturbation of
all the vectors Rfi, i = 1, . . . , N , and thus, V ‘almost’ contains RBN

1 .

Proof. Fix a realization of the N × n Rademacher matrix (ε`j) and note
that for every 1 ≤ i ≤ N and every 2 ≤ j ≤ n

vj =
N∑
`=1

ε`jf` + εijRfi

if ηij = 1 and for every ` 6= i, η`j = 0. Moreover, if this happens, and since
V is centrally symmetric (that is, if v ∈ V then −v ∈ V ),

εij

(
N∑
`=1

ε`jf`

)
+Rfi = yi +Rfi ∈ V,

and yi ∈ BN
∞.

Thus, it remains to estimate the probability that for every 1 ≤ i ≤ N
there is some 2 ≤ j ≤ n for which ηij = 1 and for every ` 6= i, η`j = 0.
Clearly, for every 1 ≤ i ≤ N ,

Pη

(
there exists j ∈ {2, . . . , n} : ηij = 1, and η`j = 0 if ` 6= i

)
= 1− (1− (1− δ)N−1δ)n−1 ≥ 1− 1

4N
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provided that
logN

n
. δ .

log
(
en/N

)
N

.

Hence, the claim follows by the union bound and integration with respect
to the (εij).

Next, it is straightforward to verify that when V contains such a pertur-
bation of RBN

1 (by vectors in BN
∞), it must also contain a large Euclidean

ball, assuming that R is large enough.

Lemma 3.3 Let R > N , and for every 1 ≤ i ≤ N , set yi ∈ BN
∞ and put

vi = Rfi + yi. If V is a convex, centrally symmetric set, and if vi ∈ V for
every 1 ≤ i ≤ N then

(
R/
√
N −

√
N
)
BN

2 ⊂ V .

Proof. A separation argument shows that if supv∈V |
〈
v, w

〉
| ≥ ρ for every

w ∈ SN−1, then ρBN
2 ⊂ V (indeed, otherwise there would be some x ∈

ρBN
2 \V ; but it is impossible to separate x and the convex and centrally

symmetric V using any norm-one functional).
To complete the proof, observe that for every w ∈ SN−1,

sup
v∈V
|
〈
v, w

〉
| ≥ max

1≤i≤N
|
〈
Rfi + yi, w

〉
|

≥ max
1≤i≤N

|
〈
Rfi, w

〉
| − max

1≤i≤N
|
〈
yi, w

〉
| ≥ R/

√
N −

√
N.

Applying Lemma 3.3, it follows that if R ≥ 2N then with probability at
least 3/4,

√
NBN

2 ⊂ V . Finally, if δ . 1/N then

P
( N∑
`=1

z`1f` ∈
√
NBN

2

)
≥ P

(
‖

N∑
`=1

z`1f`‖2 =
√
N
)

= (1− δ)N ≥ 3/4.

Hence, with probability at least 1/2,

N∑
`=1

z`1f` = Γ̃e1 ∈ V = absconv
(
Γ̃ej : j ∈ {2, ..., n}

)
,

and the same assertion holds for the normalized matrix Γ, showing that it
does not satisfy ER(1).

Of course, this assertion holds under several conditions on the parame-
ters involved: namely, that R =

√
p(1/δ)1/p ≥ 2N ; that (logN)/n . δ .

log
(
en/N

)
/N ; that R4δ . 1; that p ≤ 2 log(1/δ) and that δ . 1/N .
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For instance, one may select δ ∼ (logN)/n and p ∼ (log n)/ logN , in
which case all these conditions are met; hence, with probability at least 1/2,
Γ does not satisfy ER(1), proving Theorem C. A similar calculation leads
to the proof of Theorem C′.

Remark 3.4 Note that the construction leads to a stronger, non-uniform
result, namely, that for every basis vector ek, with probability at least 1/2, ek
is not the unique solution of min(‖t‖1 : Γt = Γek). In particular, uniformity
over all supports of size 1 in the definition of ER(1) is not the reason why
the moment assumption in Theorem A is required.

4 Results in the noisy measurements setup

In previous sections, we considered the idealized scenario, in which the data
was noiseless. Here, we will study the noisy setup: one observes N couples
(zi, Xi)

N
i=1, and each zi is a noisy observation of

〈
Xi, x0

〉
:

zi =
〈
Xi, x0

〉
+ gi, i = 1, . . . , N. (4.1)

The goal is to obtain as much information as possible on the unknown vec-
tor x0 with only the data (zi, Xi)

N
i=1 at one’s disposal, and for the sake of

simplicity, we will assume that the gi’s are independent Gaussian random
variables N (0, σ2) that are also independent of the Xi’s.

Unlike the noiseless case, there is no hope of reconstructing x0 from
the given data, and instead of exact reconstruction, there are three natural
questions that one may consider:

• The estimation problem: given some norm ‖·‖ on Rn, one would like to
construct a procedure x̂ for which ‖x̂− x0‖ is as small as possible.

• The prediction problem: given a new (random, independent) ‘input’ X ∈
Rn, one has to find a good guess

〈
x̂, X

〉
of the most likely associated

output z, knowing that (z,X) shares the same distribution with the
other couples (z1, X1), . . . , (zN , XN ).

• The de-noising problem: given a norm ‖·‖ on RN and a measurement
matrix Γ, one has to construct x̂ for which ‖Γx̂− Γx0‖ is small.

These three problems are central in modern Statistics, and are featured in
numerous statistical monographs, particularly in the context of the Gaussian
regression model (Equation (4.1)).
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Recently, all three problems have been recast in a ‘high-dimensional’
scenario, in which the number of observations N may be much smaller than
the ambient dimension n. Unfortunately, such problems are often impossible
to solve without additional assumptions, and just as in the noiseless case, the
situation improves dramatically if x0 has some low-dimensional structure,
for example, if it is s-sparse. The aim is therefore to design a procedure that
performs as if the true dimension of the problem is s rather than n, despite
the noisy data.

To that end, `0 penalization methods, sometimes called Model Selection
procedures, have been introduced and studied extensively (see, e.g., [29, 4]
for results in the context of the model (4.1), as well as in other examples).
However, just as in the noise-free problem, the obvious downside of `0 pe-
nalization methods is that they are not feasible computationally. This has
lead to the introduction of convex relaxations, based on `1 minimization.

Two well established `1-based procedures are the LASSO (see, e.g., [43])
defined by

x̂λ ∈ argmin
x∈Rn

( 1

N

N∑
i=1

(
zi −

〈
Xi, x

〉)2
+ λ ‖x‖1

)
, (4.2)

and the Dantzig selector (see [11]).
Both procedures may be implemented effectively, and their estimation

and de-noising properties have been obtained under some assumptions on
the measurement matrix (see, e.g. [6, 3, 44] or Chapters 7 and 8 in [24]).

In this section, we shall focus on two such conditions on the measurement
matrix. The first, called the Compatibility Condition, was introduced in
[44] (see also Definition 2.1 in [45]); the second, the Restricted Eigenvalue
Condition, was introduced in [3].

Definition 4.1 Let Γ be an N × n matrix. For L > 0 and a set S ⊂
{1, . . . , n}, the compatibility constant associated with L and S is

φ(L, S) =
√
|S|min

(
‖ΓζS − ΓζSc‖2 : ‖ζS‖1 = 1, ‖ζSc‖1 ≤ L

)
, (4.3)

where ζS (resp. ζSc) denotes a vector that is supported in S (resp. Sc).
Γ satisfies the Compatibility Condition for the set S0 with constants

L > 1 and c0 if φ(L, S0) ≥ c0; it satisfies the uniform Compatibility
Condition (CC) of order s if min|S|≤s φ(L, S) ≥ c0.

A typical result for the LASSO in the Gaussian model (4.1) and when Γ
satisfies the Compatibility Condition, is Theorem 6.1 in [6]:
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Theorem 4.2 ([6], Theorem 6.1) Let x0 ∈ Rn be some fixed vector and as-
sume that the data (zi, Xi)

N
i=1 have been drawn according to the Gaussian re-

gression model (4.1). Denote by Γ = N−1/2
∑N

i=1

〈
Xi, ·

〉
fi the measurement

matrix. Let t > 0. If S0 is the support of x0 and λ = 4σ
√

(t2 + log n)/N ,
then with probability larger than 1− 2 exp(−t2/2),

‖Γx̂λ − Γx0‖22 ≤
64σ2 ‖x0‖0 (t2 + log n)

Nφ2(3, S0)
and ‖x̂λ − x0‖1 ≤

64σ ‖x0‖0
φ2(3, S0)

√
t2 + log n

N
.

Even though the Compatibility Condition in S0 suffices to show that the
LASSO is an effective procedure, the fact remains that S0 is not known. And
while a non-uniform approach is still possible (e.g., if Γ is a random matrix,
one may try showing that with high probability it satisfies the Compati-
bility Condition for the fixed, but unknown S0), the uniform Compatibility
Condition is a safer requirement – and the one we shall explore below.

Another uniform condition of a similar flavour is the Restricted Eigen-
value Condition from [3]. To define it, let us introduce the following notation:
for x ∈ Rn and a set S0 ⊂ {1, . . . , n} of cardinality |S0| ≤ s, let S1 be the
subset of indices of the m largest coordinates of (|xi|)ni=1 that are outside
S0. Let xS01 be the restriction of x to the set S01 = S0 ∪ S1.

Definition 4.3 Let Γ be an N × n matrix. Given c0 ≥ 1 and an integer
1 ≤ s ≤ m ≤ n for which m+ s ≤ n, the restricted eigenvalue constant
is

κ(s,m, c0) = min
( ‖Γx‖2
‖xS01‖2

: S0 ⊂ {1, . . . , n}, |S0| ≤ s,
∥∥xSc

0

∥∥
1
≤ c0 ‖xS0‖1

)
.

The matrix Γ satisfies the Restricted Eigenvalue Condition (REC) of
order s with a constant c if κ(s, s, 3) ≥ c.

Estimation and de-noising results follow from Theorem 6.1 (for the Dantzig
selector) and Theorem 6.2 (for the LASSO) in [3], when the measurement
matrix Γ, normalized by having the diagonal elements of Γ>Γ equal 1, satis-
fies the REC of an appropriate order and with a constant that is independent
of the dimension. We also refer to Lemma 6.10 in [6] for similar results that
do not require normalization.

Because the two lead to bounds on the performance of the LASSO and
the Dantzig selector, a question that comes to mind is whether there are
matrices that satisfy the CC or the REC. And, as in Compressed Sensing,
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the only matrices that are known to satisfy those conditions for the optimal
number of measurements (rows) are well-behaved random matrices (see [35,
39, 34, 46] for some examples).

Our aim in this final section is to extend our results to the noisy setup,
by identifying almost necessary and sufficient moment assumptions for the
CC and the REC. This turns out to be straightforward: on one hand, the
proof of Theorem A actually provides a stronger quantitative version of
the exact reconstruction property; on the other, the uniform compatibility
condition can be viewed as a quantitative version of a geometric condition
on the polytope ΓBn

1 that characterizes Exact Reconstruction. A similar
observation is true for the REC: it can be viewed as a quantitative version
of the null space property (see [18, 19] and below) which is also equivalent
to the exact reconstruction property.

Definition 4.4 Let 1 ≤ s ≤ N . A centrally symmetric polytope P ⊂ RN is
s-neighbourly if every set of s of its vertices, containing no antipodal pair,
is the set of all vertices of some face of P .

It is well known [16] that Γ satisfies ER(s) if and only if ΓBn
1 has 2n

vertices and ΓBn
1 is a centrally symmetric s-neighbourly polytope. It turns

out that this property is characterized by the uniform CC.

Lemma 4.5 Let Γ be an N × n matrix. The following are equivalent:

1. ΓBn
1 has 2n vertices and is s-neighbourly,

2. min
(
φ(1, S) : S ⊂ {1, . . . , n}, |S| ≤ s

)
> 0.

In particular, min|S|≤s φ(L, S) for some L ≥ 1 is a quantitative measure
of the s-neighbourly property of ΓBn

1 : if ΓBn
1 is s-neighbourly and has 2n

vertices then the two sets{
ΓζS : ‖ζS‖1 = 1

}
and

{
ΓζSc : ‖ζSc‖1 ≤ 1

}
(4.4)

are disjoint for every |S| ≤ s. However, min|S|≤s φ(1, S) measures how far
the two sets are from one another, uniformly over all subsets S ⊂ {1, . . . , n}
of cardinality at most s.

Proof. Let C1, . . . , Cn be the n columns of Γ. It follows from Proposi-
tion 2.2.13 and Proposition 2.2.16 in [12] that ΓBn

1 has 2n vertices and is
a centrally symmetric s-neighbourly polytope if and only if for every S ⊂
{1, . . . , n} of cardinality |S| ≤ s and every choice of signs (εi) ∈ {−1, 1}S ,

conv
({
εiCi : i ∈ S

})
∩ absconv

({
Cj : j /∈ S

})
= ∅. (4.5)
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It is straightforward to verify that⋃
(εi)∈{±1}S

conv
({
εiCi : i ∈ S

})
=
{

ΓζS : ‖ζS‖1 = 1
}

and that
absconv

({
Cj : j /∈ S

})
=
{

ΓζSc : ‖ζSc‖1 ≤ 1
}
.

As a consequence, (4.5) holds for every S ⊂ {1, . . . , n} of cardinality at most
s if and only if min

(
φ(1, S) : S ⊂ {1, . . . , n}, |S| ≤ s

)
> 0.

An observation of a similar nature is true for the REC: it can be viewed
as a quantitative measure of the null space property.

Definition 4.6 Let Γ be an N × n matrix. Γ satisfies the null space prop-
erty of order s if it is invertible in the cone{

x ∈ Rn : there exists S ⊂ {1, . . . , n}, |S| ≤ s and ‖xSc‖1 ≤ ‖xS‖1
}
.

(4.6)

In [18, 19], the authors prove that Γ satisfies ER(s) if and only if it has
the null space property of order s.

A natural way of quantifying the invertibility of Γ in the cone (4.6)
is to consider its smallest singular value, restricted to this cone, which is
simply the REC κ(s, n − s, 1). Unfortunately, statistical properties of the
LASSO and of the Dantzig selector are not known under the assumption
that κ(s, n− s, 1) is an absolute constant (though if κ(s, s, 3) is an absolute
constant, LASSO is known to be optimal [3]).

The main result of this section is the following:

Theorem E. Let L > 0, 1 ≤ s ≤ n and c0 > 0. Under the same as-
sumptions as in Theorem A and with the same probability estimate, Γ =
N−1/2

∑N
i=1

〈
Xi, ·

〉
fi satisfies:

1. A uniform compatibility condition of order c1s, namely that

min
|S|≤c1s

φ(L, S) ≥ u2β/4

for c1 = u2β/(16e(1 + L)2).

2. A restricted eigenvalue condition of order c2s, with

κ(c2s,m, c0) ≥ u2β/4

for any 1 ≤ m ≤ n, as long as (1 + c0)2c2 ≤ u2β/(16e).
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On the other hand, if Γ is the matrix considered in Theorem C, then with
probability at least 1/2, φ(1, {e1}) = 0 and κ(1,m, 1) = 0 for any 1 ≤ m ≤ n.

Just like Theorem A and Theorem C, Theorem E shows that the require-
ment that the coordinates of the measurement vector have log n moments
is almost a necessary and sufficient condition for the uniform Compatibility
Condition and the Restricted Eigenvalue Condition to hold. Moreover, it
shows the significance of the small-ball condition, even in the noisy setup.

It also follows from Theorem E that if X satisfies the small-ball condition
and its coordinates have log n well-behaved moments as in Theorem A, then
ΓBn

1 has 2n vertices and is s-neighbourly with high probability for N ∼
s log(en/s). In particular, this improves Theorem 4.3 in [1] by a logarithmic
factor for matrices generated by subexponential variables.

Proof of Theorem E: Fix a constant c1 to be named later and let
S ⊂ {1, . . . , n} of cardinality |S| ≤ c1s. Let ζS ∈ Rn be a vector supported
on S with ‖ζS‖1 = 1 and let ζSc ∈ Rn be supported on Sc with ‖ζSc‖1 ≤ L.

Consider γ = (ζS − ζSc)/ ‖ζS − ζSc‖2. Since

‖ζS − ζSc‖2 ≥ ‖ζS‖2 ≥
‖ζS‖1√
|S|

=
1√
|S|

,

it follows that γ ∈
(
(1 + L)

√
|S|
)
Bn

1 ∩ Sn−1.
Recall that by (2.7), if r = (1 + L)2c1s ≤ su2β/(16e), then ‖Γγ‖2 ≥

(u2β)/4. Therefore,

‖ΓζS − ΓζSc‖2 ≥
u2β

4
‖ζS − ζSc‖2 ≥

u2β

4
‖ζS‖2 ≥

u2β ‖ζS‖1
4
√
|S|

=
u2β

4
√
|S|

,

and thus min|S|≤c1s φ(L, S) ≥ u2β/4 for c1 = u2β/
(
16e(1 + L)2

)
.

Turning to the REC, fix a constant c2 to be named later. Consider
x in the cone and let S0 ⊂ {1, . . . , n} of cardinality |S0| ≤ c2s for which∥∥xSc

0

∥∥
1
≤ c0 ‖xS0‖1. Let S1 ⊂ {1, . . . , n} be the set of indices of the m

largest coordinates of (|xi|)ni=1 that are outside S0 and put S01 = S0 ∪ S1.
Observe that ‖x‖1 ≤ (1+c0) ‖xS0‖1 ≤ (1+c0)

√
|S0| ‖x‖2; hence x/ ‖x‖2 ∈(

(1+c0)
√
|S0|

)
Bn

1 ∩Sn−1. Applying (2.7) again, if (1+c0)2c2s ≤ su2β/(16e),
then ‖Γx‖2 ≥

(
(u2β)/4

)
‖x‖2. Thus,

‖Γx‖2
‖xS01‖2

≥
‖Γx‖2
‖x‖2

≥ u2β

4

and κ(c2s,m, c0) ≥ u2β/4 for any 1 ≤ m ≤ n, as long as (1 + c0)2c2 ≤
u2β/(16e).
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The proof of the second part of Theorem E is an immediate corollary
of the construction used in Theorem C. Recall that with probability at
least 1/2, Γe1 ∈ absconv(Γej : j ∈ {2, ..., n}). Setting J = {e2, ..., en},
there is ζ ∈ BJ

1 for which ‖Γe1 − Γζ‖2 = 0. Therefore, φ(1, {e1}) = 0 and
κ(1,m, 1) = 0 for any 1 ≤ m ≤ n, as claimed.

Remark 4.7 The results obtained in Theorem A and in parts (1) and (2)
of Theorem E are also valid for the normalized (columns wise) measurement
matrix:

Γ1 = ΓD̃−1 where D̃ = diag
(
‖Γe1‖2 , . . . , ‖Γen‖2

)
.

The proof is almost identical to the one used for Γ itself, even though Γ1 does
not have independent rows vectors, due to the normalization. For the sake
of brevity, we will not present the straightforward proof of this observation.

Finally, the counterexample constructed in the proof of Theorem C and in
which a typical Γ does not satisfy ER(1), does not necessarily generate ΓBn

1

that is not s-neighbourly. Indeed, an inspection of the construction shows
that the reason ER(1) fails is that ΓBn

1 has less than 2n− 2 vertices, rather
than that ΓBn

1 is not s-neighbourly. Thus, the question of whether a moment
condition is necessary for the random polytope ΓBn

1 to be s-neighbourly with
probability at least 1/2 is still unresolved.
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