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Abstract

Classical approach to regularization is to design norms enhancing smoothness or
sparsity and then to use this norm or some power of this norm as a regularization
function. The choice of the regularization function (for instance a power function) in
terms of the norm is mostly dictated by computational purpose rather than theoretical
considerations.

In this work, we design regularization functions that are motivated by theoreti-
cal arguments. To that end we introduce a concept of optimal regularization called
“minimax regularization” and, as a proof of concept, we show how to construct such
a regularization function for the `d1 norm for the random design setup. We develop a
similar construction for the deterministic design setup. It appears that the resulting
regularized procedures are different from the one used in the LASSO in both setups.
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1 Introduction

Let (X , µ) be a probability space and (X,Y ) be a couple of random variables, in which X is
distributed according to µ. One is given a sample of N independent couples (Xi, Yi)i=1..N

distributed according to the joint law of (X,Y ). On the basis of this sample, one tries to
link X and Y by a random mapping f̂ with f̂(X) close (in L2) to Y . This is the classical
problem, in learning theory, of the prediction of an output Y from an input X given a i.i.d.
copies of the couple (X,Y ).

To that end, one is given a class F of functions from X to R and the aim in learning
theory is to mimic the best element in F for the prediction of Y by a function of X in F . We
assume that F is closed and convex in L2(µ) so that it exists a function f∗ that minimizes
the square loss in F :

f∗ ∈ argmin
f∈F

E (Y − f(X))2 . (1.1)

This function is usually called the oracle (cf. [30]); it is the closest function in F to Y in
L2. Now, the goal is to construct an estimator f̂ whose L2(µ) distance to f∗ is as small
as possible using the dataset {(Xi, Yi) : i = 1, . . . , N}. In the framework considered in this
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paper, the excess risk of f̂ , which is the difference E(Y − f̂(X))2−E(Y −f∗(X))2, is actually
equal to ‖f̂ − f∗‖2L2(µ) and so estimating f∗ is equivalent to predicting Y ; thus we fall back

on the original prediction problem by estimating f∗ in L2(µ).
One may therefore try to bound the quadratic error ‖f̂ − f∗‖L2(µ) either in expectation

or in deviation with respect to the sample. In this work, we obtain upper bounds on the
quadratic error that are valid in deviation, showing that the results are true for “most”
samples rather than in average.

Given that we want to be close to a function f∗ minimizing f → E(Y − f(X))2 over F ,
a natural candidate for this problem is the Empirical Risk Minimizer (ERM) also known as
the “least squares estimator”:

f̂ERM ∈ argmin
f∈F

1

N

N∑
i=1

(Yi − f(Xi))
2. (1.2)

Many works have been carried out for general classes (see, [20, 27, 40, 44]) or on the vectorial
case(see [36] for the famous Stein paradox, and [14] for elements about the admissibility of
the ERM).

It appears that when F is too large (for instance the whole L2(µ) space), the ERM tends
to “overfit”. The understanding of this phenomenon has led to the introduction of “regu-
larization methods” which were originally used to smooth estimators in order to overcome
the “overfitting phenomena”. Those procedures are nowadays used beyond their smoothing
effect and, in particular, they are now extensively used in Statistics and learning theory for
their “low-dimensional / sparsity inducing properties”. At a high level description, those
methods make a trade-of between an “adequation to the data term” and a “regularization
term” and their general form (for the quadratic loss) is

f̂ ∈ argmin
f∈F

( 1

N

N∑
i=1

(Yi − f(Xi))
2 + Ψ(f)

)
(1.3)

where Ψ is a function usually called the regularization function.
The “adequation to the data term” can be constructed from any loss function; for the

case of the quadratic loss, this term reads like N−1
∑N

i=1(Yi − f(Xi))
2.

As for the regularization term Ψ, several choices are possible, enabling to smooth the
estimator, or to force a low-dimensional structure. It depends thus on the a priori knowledge
one has on the data (and in particular on f∗), and on computational issues.

A first option is the Tikhonov / ridge regularization:

f̂λ ∈ argmin
f∈H

( 1

N

N∑
i=1

(Yi − f(Xi))
2 + λ‖f‖2H

)
(1.4)

where ‖ · ‖H is a Hilbert norm. One expects in this case that ‖f‖H reflects the smoothness

of f (for instance ‖f‖H = f(0) +
( ∫

R |f
′(t)|2dt

)1/2
) and that the oracle function f∗ has a

small ‖f∗‖H norm.
In the finite but high dimensional vectorial case, one often wishes the estimator to be

sparse, i.e., to have few non-zero components (for some well designed basis, cf. [26]). This
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may come from the fact that the vector to be estimated is known in advance to be sparse; or
that, in high-dimensional problems, it is computationally important not to have to manage
a huge amount of non-zero coefficients.

Then, a natural way to address this question is to use a sparsity-inducing penaliza-
tion: like the number of non-zero components of the vector, sometimes called the “`0-
norm”. Even though it is theoretically appealing (cf. [18]), it proves to be computationally
intractable (actually NP-Hard, in general, cf. [29]). But for geometric reasons, another
regularization is efficient to induce sparsity: the `1 norm (which can be see as the con-
vex relaxation of the `0 norm on the unit `∞-ball). The associated estimator is called the
LASSO (“Least Absolute Shrinkage and Selection Operator”, [38]):

t̂λ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + λ‖t‖1

)
. (1.5)

In [9], it is emphasized that Lasso leads generally to sparsity, though giving some counter-
examples in which it doesn’t work well –in particular Lasso struggles when dealing with
a data matrix with high correlations among the columns. To tackle this kind of issues, it
is possible to “mix” regularizations: it is the principle of the “Elastic net method” ([47]),
which penalty is a combination of the `1 and `2 norms.

All these methods rely on the choice of one (even two for the Elastic net) regularization
parameter λ, fixed by the statistician on the basis of empirical methods such as cross-
validation. It has to be chosen wisely in order to make the right trade-off between the two
terms and thus to minimize the rate of convergence of the regularization procedure towards
the oracle.

1.1 Regularization and Model Selection

At this point, it should be clear to the reader that choosing (or even designing) a specific
regularization norm like ‖ · ‖H or ‖ · ‖1 depends only on an a priori knowledge we have. But
once this choice has been made, why would someone use the square of this norm in one case
(as for the Tikhonov / ridge regularization), or the norm itself (as for the LASSO) or some
other power of this norm (cf. [33] for some examples) in other situations? In many cases,
this choice is only made following some computational considerations.

In this work, we want to support the choice of regularization functions (given some
norm) on theoretical arguments. To that end we will rely on the model selection theory
and, in particular, on a key principle in model selection which is to design penalty functions
that capture the “complexity” of a model in the most accurate way.

The right calibration of penalty functions has opened an important stream of researches
since the work [2]. It has led many researchers to (re)think about the notion of complexity in
statistics. In a nutshell, there are mainly three types of quantities that have been introduced
to measure the statistical complexity of a statistical model: combinatorial (like the VC
dimension, [45]), metric (like the entropy) and random (like Gaussian mean width and
Rademacher complexities, [3, 19]). Penalty calibration has culminated with the notion of
“minimal penalty” that are sharp penalty functions with exact constants (cf. for instance
[7]) thanks to second order term analysis of the notion of complexity of a model.
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In the present work, we want to put forward the idea that the “right” choice (from a
theoretical point of view) of a regularization function may also follow from a careful study
of the complexity of a specific family of models. To that end, the first argument is to
look at regularization as a model selection problem for which one has to design a sharp
penalty. This has been done for instance in Chapter 3.7 in [21]. In the particular case
where one is given a norm ‖ · ‖ for regularization, then the associated regularized ERM is
a penalized estimator associated to the sequence of embedded models (mr)r≥0 where for
all r ≥ 0, mr = {f ∈ F : ‖f‖ ≤ r} and the right way to regularize is given by a function
reg : f ∈ F → pen(m‖f‖) where m‖f‖ is the smallest model in (mr)r≥0 containing f , see
[7]. This idea is a baseline of this work.

Before diving into further details about the way we suggest to construct a regularization
function, let us precise what we expect from a good procedure, in particular how we evaluate
that a regularization function is the “right” one, at least from a theoretical point of view.
We therefore need to introduce a concept of optimality for regularized estimators. Once
again we rely on the basics of model selection theory.

Model selection procedures have been used originally to construct adaptive estimators.
For the model selection problem we want to solve, this adaptivity problem reads like select-
ing the smallest model in the family ({f ∈ F : ‖f‖ ≤ r})r≥0 containing f∗ which is obviously
{f ∈ F : ‖f‖ ≤ ‖f∗‖}. Therefore, the adaptation problem we want to solve here is to con-
struct a procedure which performance is as good as if we had been given the value ‖f∗‖ in
advance. In particular, an estimator achieving the minimax rate of convergence over the
model {f ∈ F : ‖f‖ ≤ ‖f∗‖} would solve this adaptation problem. In what follows, we
design regularization functions in order to meet this requirement but before that we clarify
the notion of minimax rate over a model for the type of deviation results we prove below.

To simplify the exposition, we will focus on a specific, though very classical and widely-
used, framework: the vectorial case, i.e. when F =

{〈
·, t
〉

: t ∈ T
}

is a class of linear
functionals from Rd to R indexed by some subset T ⊂ Rd, with Gaussian design, and
Gaussian noise (with known variance σ2).

Definition 1.1 Let T ⊂ Rd, X denote a standard Gaussian vector in Rd and ξ be a centered
real-valued Gaussian random variable with variance σ2, independent of X. For all t∗ ∈ T ,
define the random variable Y t∗ =

〈
X, t∗

〉
+ ξ and denote by YT := {Y t∗ : t∗ ∈ T} the set of

all such random variables.
Let t̂N be a statistics from (Rd × R)N to Rd. Let 0 < δN < 1 and ζN > 0. We say that

t̂N performs with accuracy ζN and confidence 1−δN relative to the set of targets
YT , if for all Y ∈ YT , with probability, w.r.t. to a sample D := {(Xi, Yi) : i = 1, · · · , N} of
i.i.d. copies of (X,Y ), at least 1− δN , ‖t̂N − t∗‖22 ≤ ζN .

We say that RN is a minimax rate of convergence over T for the confidence
1− δN if the two following statements hold:

1. there exists a statistics t̂N which performs with accuracy RN and confidence 1 − δN
relative to the set of targets YT

2. there exists an absolute constant g0 > 0 such that if t̃N is a statistics which attains an
accuracy ζN with confidence 1 − δN relative to the set of targets YT then necessarily
ζN ≥ g0RN .
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In the following (cf. Theorem 1.3 below), we recall a result from [22] on the minimax
rate of convergence over T = ρBd

1 , the unit `d1-ball of radius ρ ≥ 0, for a constant confidence
(i.e., for instance, δN = 1/4). Note that classical minimax rates of convergence are usually
given in expectation (cf. for instance [39]). The main difference here with Definition 1.1 is
that it is given for deviation results: the minimax rate RN may depend on the confidence
parameter δN (cf. [22]).

In the present work, we are interested in procedures achieving the minimax rate of
convergence over the model {t ∈ Rd : ‖t‖ ≤ ‖t∗‖}. This provides a natural way to introduce
a notion of optimality for the problem of designing regularization functions.

Definition 1.2 Let ‖ · ‖ be a norm on Rd, 0 < δN < 1 and T ⊂ Rd. Let us consider the
following RERM for some function Ψ : R+ → R:

t̂ ∈ argmin
t∈Rd

(
1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + Ψ(‖t‖)

)

constructed from a sample D := {(Xi, Yi) : i = 1, · · · , N} of i.i.d. copies of (X,Y t∗) where
Y t∗ =

〈
X, t∗

〉
+ ξ with X ∼ N (0, Id×d), ξ ∼ N (0, σ2) is independent of X and t∗ ∈ Rd.

We say that Ψ is a minimax regularization function for the norm ‖ · ‖ and the
confidence 1 − δN over T , if there exists an absolute constant g1 > 0 such that for all

t∗ ∈ T , the RERM t̂ is such that with Pt∗-probability at least 1− δN , ‖t̂− t∗‖22 ≤ g1R‖t
∗‖1

N ,

where R‖t
∗‖1

N is the minimax rate of convergence over {t ∈ Rd : ‖t‖ ≤ ‖t∗‖} and Pt∗ denotes
the probability distribution of a N sample of i.i.d. copies of (X,Y t∗).

The aim of this work is to show that one can design minimax regularization functions by
finding the right notion of complexity of the sequence of embedded models

(
{t ∈ Rd : ‖t‖ ≤ r}

)
r≥0

.
Note however that there should be some situations where designing such an optimal regular-
ization function would be impossible at some given confidence parameter δN . In particular,
such a situation should happen when the Empirical risk minimization (ERM) procedure
over the “true model” {t ∈ Rd : ‖t‖ ≤ ‖t∗‖} is not itself a minimax procedure over the
model {t ∈ Rd : ‖t‖ ≤ ‖t∗‖}. This happens for constant confidence bound (for instance,
when δN = 1/4) when there is a gap in Sudakov inequality (cf. [22] for more details).
Nevertheless, in [22], it is proved that for high confidence bounds (that is when δN decays
exponentially fast with the complexity of the model) ERM is always minimax over convex
classes. It appears that for the case of `d1-balls ERM is minimax for all confidence regime
therefore this subtlety will not show up in this special case.

1.2 General approach provided in this paper

Let us now present our approach. As we mentioned before, we want to construct a regular-
ization function depending on the complexity of the models {t ∈ Rd : ‖t‖ ≤ r} for all r ≥ 0.
This leads to choose a RERM (in the vectorial case) having the following form:

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + comp

(
‖t‖B‖·‖

) )
(1.6)
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where B‖·‖ is the unit ball associated with the given regularization norm ‖ · ‖ and for all

t ∈ Rd, ‖t‖B‖·‖ = {u ∈ Rd : ‖u‖ ≤ ‖t‖}. The key feature in (1.6) is the “complexity
function” r ≥ 0 → comp

(
rB‖·‖

)
which aims at measuring with the best possible accuracy

the complexity of the models rB‖·‖ for all r ≥ 0 from a statistical point if view. Or course,
finding the right notion of complexity is paramount in this approach.

To aim at optimality, in this paper we advocate complexities that are tailored for the
specific statistical problem at stake. It turns out that the “right” choice of complexity, and
hence, of regularization, is linked to the behavior of two empirical processes. Those two
empirical processes are ultimately connected to the two sources of statistical complexities
in the considered problem. When estimating t∗ from the data (Xi, Yi)

N
i=1 there are two

statistical issues : 1)(an inverse problem) t∗ is observed only through X, where X ∈ RN×d
is the operator whose rows vectors are given by the Xi’s; 2)(noisy data) the observations
have been corrupted by some noise ξ. The action of the operator X on the models rB‖·‖ for
all r ≥ 0 plays a prominent role in our analysis. In particular, the size of the intersection
of its kernel with the model is a natural minmax lower bound for any estimator since
any two vectors in the kernel of X and the model are indistinguishable. The effect of the
“distortion” of the operator X does not show up for small models (i.e. small values of r)
because of the presence of the noise which blurs everything at small scales. But passing
beyond some threshold for the signal-to-noise ratio r/σ, only the distortion of X matters
from a statistical point of view. This phenomenon occurs only when N . d, because that is
the regime where X has a non trivial kernel. On the contrary, in the low dimensional setup
d . N , X is well conditioned with high probability and therefore, there is no statistical
complexity coming from the distortion of X since in that regime there is no such distortion.
Controlling the distortion of X is a key issue in high-dimensional statistics. It is behind all
classical properties like RIP (cf. [12]) or REC (cf. [6]) and it will play equally a key role in
our analysis. In particular, the `d2 diameter of the intersection of X with the model rB‖·‖ will
appear explicitly in the optimal regularization. Given that X is a standard Gaussian random
matrix, this diameter will be the Gelfand width of rB‖·‖ in our example (cf. [31], Chapter 2
in [13] or [22] for more details on Gelfand widths and their role in signal processing and
learning theory).

1.3 Overview of the paper; main results

As a proof of concept we present an example of the construction of a minimax regularization
function in the popular set-up of regularization by the `d1 norm. Let us recall the statistical
model we used in both Definition 1.2 and Definition 1.1: the Gaussian linear regression
model with a Gaussian design

Y =
〈
X, t∗

〉
+ ξ (1.7)

where X ∼ N (0, Id×d) and ξ ∼ N (0, σ2) are independent, centered Gaussian variables in
Rd and R respectively. As written before, a dataset (Xi, Yi)

N
i=1 of N i.i.d. copies of the

couple (X,Y ) is provided and one wants to use it to estimate t∗.
Note that we choose a Gaussian random design to make the exposition as simple as

possible. The results can be extended to more general sub-Gaussian designs. Nonetheless,
our goal is not to provide general results but to show that the approach we present allows
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to achieve minimax regularization in some classical set-up. Moreover, we want to see the
effect of the random design on the construction of a minimax regularization.

In the supplementary material 4, we consider a fixed design setup, in which one still has
for all i: Yi =

〈
Xi, t

∗〉 + ξi with ξi ∼ N (0, σ2) i.i.d., but with Xi deterministic, satisfying
an “isomorphic property” on “compressible vectors”, equivalent to the RIP from [12]. We
will see that under this property, the arguments and the results will be quite similar to the
random design case.

We will not be interested in getting optimal or sharp numerical constants, and some
of the inequalities and coefficients in the arguments will be rather loose from this point of
view, but what actually matters is that the quantity will have the right order of magnitude
w.r.t. N, d, σ and ‖t∗‖1.

As for our choice to consider regularizations that are functions of the `d1 norm, its
motivation is that the `d1-norm has been one of the most studied regularization norm since
the beginning of high-dimensional statistics, in particular for the reasons presented in the
Introduction. Moreover, as mentioned previously, the ERM over `d1-balls is minimax for
every confidence 1 − δN (cf. [22]), this makes the construction of minimax regularization
possible for different deviation parameters and this makes the exposition also simpler.

Let the choice of the `d1-norm as a regularization norm be made once and for all. Now,
the problem we want to solve is to construct a regularization function Ψ : R→ R such that
the regularized procedure

t̂Ψ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + Ψ(‖t‖1)

)
(1.8)

achieves the minimax rate of convergence over ‖t∗‖1Bd
1 given N i.i.d. data (Xi, Yi), i =

1, . . . , N distributed according to (1.7). And, we want t̂Ψ to satisfy that property whatever
t∗ ∈ Rd is.

Now, let us explain the strategy we use to design a minimax regularization function. We
denote for all ρ ≥ 0 and r ≥ 0, ρBd

1 = {t ∈ Rd : ‖t‖1 ≤ ρ}, and rBd
2 = {t ∈ Rd : ‖t‖2 ≤ r}.

The starting point to our approach is that t̂Ψ minimizes t 7→ PNLΨ
t over Rd, where, for

every t ∈ Rd,

PNLΨ
t :=

(
1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + Ψ(‖t‖1)

)
−

(
1

N

N∑
i=1

(Yi −
〈
Xi, t

∗〉)2 + Ψ(‖t∗‖1)

)
,

in particular, PNLΨ
t̂
≤ PNLΨ

t∗ = 0. So if one shows that PNLΨ
t > 0 for all ‖t‖1 & ‖t∗‖1

then this will prove that ‖t̂Ψ‖1 . ‖t∗‖1, proving that t̂Ψ belongs to the right model. This
will be essentially the main step since for the correct choice of Ψ, we will show that the
regularization has no effect within the right model and that the RERM t̂Ψ has essentially
the same statistical behavior as the ERM in ‖t∗‖1Bd

1 which is known to be minimax. We
will therefore conclude that t̂Ψ can learn t∗ at the minimax rate of convergence within the
model ‖t∗‖1Bd

1 without knowing in advance the radius ‖t∗‖1.
Using the quadratic / multiplier decomposition as in [22, 34, 35], one can write PNLΨ

t

as the sum of three terms: PNLΨ
t = PNQt−t∗ + PNMt−t∗ +Rt,t∗ where
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• PNQt−t∗ :=
∑N

i=1

(〈
Xi, t

∗〉− 〈Xi, t
〉)2

/N is the “quadratic process”

• PNMt−t∗ := 2
∑N

i=1

(
Yi −

〈
Xi, t

∗〉) (〈Xi, t
∗〉− 〈Xi, t

〉)
/N is the “multiplier process”

• Rt,t∗ := Ψ(‖t‖1)−Ψ(‖t∗‖1) is the regularization part.

The definition of our complexity will thus be a consequence of the study of the behavior
of the quadratic and multiplier empirical processes indexed by t ∈ ρBd

1 for all ρ ≥ 0. The
two processes are associated to the two statistical complexities previously discussed: 1) the
quadratic process can be written as PNQt−t∗ = ‖X(t − t∗)‖22 and is well behaved (i.e. of
the order of ‖t − t∗‖22) when X is well conditioned; 2) the multiplier process is measuring
the statistical complexity coming from the noise ξ = Y −

〈
X, t∗

〉
, PNMt−t∗ is the empirical

correlation between the noise and the model shifted by
〈
·, t∗
〉
. All the game is now to

identify regions of the space Rd where the statistical complexity come from the distortion
of X or from the noise. This drives the construction of the optimal regularization function
Ψ.

In order to identify those regions, note that for every fixed t ∈ Rd, the distribution of
these two processes depend on t − t∗ only by its `d2-norm ‖t − t∗‖2, in two different ways:
PNQt−t∗ in a quadratic way, PNMt−t∗ in a linear way. So it is natural to partition the model
ρBd

1 into vectors with “small” `2 norm – i.e. the intersection of ρBd
1 ∩ rBd

2 for an adequate
radius r – and vectors of ρBd

1 with `d2-norm larger than r. We will see that outside rBd
2 , with

high probability the two processes are “well-behaved” and regularization is unnecessary; but
inside rBd

2 it is not the case, the operator X may have a kernel and the noise is making the
estimation hard: hence, this is where the regularization will be needed to keep control of the
situation and this is precisely where the regularization function is designed. In that case,
either the statistical complexity comes from the size of the intersection of the kernel of X
with ρBd

1 and therefore one needs to take Ψ(ρ) of the order of this diameter (which appears
to be equal to the Gelfand width of ρBd

1 to the square) or the statistical complexity comes
from the noise and then Ψ(ρ) is of the order of the oscillations of the multiplier process
inside ρBd

1 ∩ rBd
2 .

The choice of the “adequate radius” r is of course paramount in our approach. It
results from the right understanding of the two previously discussed sources of statistical
complexities: the bigger these complexities, the bigger this radius (since, as we mentioned,
outside rBd

2 the processes are well-behaved). First, we want to identify the smallest `d2
radius rQ(ρ) above which X is well-behaved in ρBd

1 , i.e. such that for every t ∈ ρBd
1 , if

‖t− t∗‖2 ≥ rQ(ρ), then PNQt−t∗ = ‖X(t− t∗)‖22 ∼ ‖t− t∗‖22. Then, we need to identify the
smallest `d2-radius rM (ρ) above which the effect of the noise is below the signal intensity
that is above which one can clearly identify if t 6= t∗ when ‖t−t∗‖2 ≥ rM (ρ). To that end we
want to make the oscillations of the multiplier process smaller than the one of the quadratic
process, which is of the order of ‖t − t∗‖22 when ‖t − t∗‖2 ≥ rQ(ρ). It will appear that, in
our framework, the two radii obtained from the above trade-offs are solution of fixed point
equations for all ρ ≥ 0: for some absolute constants Q and η (to be chosen later):

• the “quadratic fixed point” is rQ(ρ) := inf
(
r > 0 : `∗(ρBd

1 ∩ rBd
2) = Qr

√
N
)

• the “multiplier fixed point” is rM (ρ) := inf
(
r > 0 : σ`∗(ρBd

1 ∩ rBd
2) = ηr2

√
N
)
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where `∗(ρBd
1 ∩ rBd

2) is the Gaussian mean width of the localized set ρBd
1 ∩ rBd

2 defined as

`∗(ρBd
1 ∩ rBd

2) = E sup
t∈ρBd

1∩rBd
2

〈
G, t

〉
where G is a standard Gaussian vector in Rd. As our framework involves “Gaussian random-
ness” in both the design and the noise, it is not surprising that the Gaussian mean width
arise when dealing with the control of the two processes. However, Gaussian mean widths
appear in learning theory, statistics and signal processing way beyond the “full Gaussian
framework” as considered here (see, for instance, [24]).

These two fixed points have been introduced in [22] and used later in [23] for the study or
ERM and RERM. As their names suggest, the quadratic fixed point will be used to control
the quadratic process, and the multiplier fixed point to control the multiplier process.
Their general definitions use an inequality rather than an equality inside the infimum:

rQ(ρ) is defined as inf
(
r > 0 : `∗(ρBd

1 ∩ rBd
2) ≤ Qr

√
N
)

and rM (ρ) as inf
(
r > 0 :

σ`∗(ρBd
1 ∩ rBd

2) ≤ ηr2
√
N
)

. This allows to deal with infinite-dimensional set-ups in which

the mapping r 7→ `∗(F ∩ rB2) is not necessarily continuous. But in our case, this mapping
is continuous and the infimum is attained in a point for which there is exact equality.

It appears that one can provide an explicit formulation for the two fixed point rQ(ρ)
and rM (ρ) in many situations and, in particular, in the case of the `d1-norm (cf. [22]):

for some absolute constants C
(1)
M , C

(2)
M , C

(1)
Q , C

(2)
Q and ζ < 1 < ζ ′, for all ρ, there exists

CM ∈ [C
(1)
M , C

(2)
M ] such that:

r2
M (ρ) = CM



σ2d
N if ρ2N ≥ σ2d2

ρσ

√
1
N log

(
eσd
ρ
√
N

)
if σ2 log d ≤ ρ2N ≤ σ2d2

ρσ

√
log(ed)
N if ρ2N ≤ σ2 log d.

(1.9)

and there exists CQ ∈ [C
(1)
Q , C

(2)
Q ] such that

r2
Q(ρ) = CQ

{
0 if N ≥ ζ ′d

ρ2

N log
(
ed
N

)
if N ≤ ζd. (1.10)

Note that when ζd ≤ N ≤ ζ ′d, rQ(ρ) decays from (ρ2/N) log(ed/N) to 0 and one only has
an upper estimate on rQ(ρ) given by CQρ

2/N . We will therefore not consider this case in
the following since it involves to deal with sharp estimates on the spectra of squared or
approximatively squared Gaussian random matrices. Note also that CM and CQ may de-
pend on ρ,N, d, σ but they are both controlled from above and below by absolute constants
(independent of ρ,N, d and σ).

Now that we have a way to measure the statistical complexity of a model we need one
more thing before turning to the effective construction of a minimax regularization for the
`d1-norm: we need to know the minimax rate of convergence over `d1-ball ρBd

1 for all ρ ≥ 0.

9



We will see below that one way to measure the statistical complexity of a model is closely
related to its minimax rate. To that end, we summarize the main results in the constant
deviation case δN = 1/4 from section 4.1 in [22] in the following theorem.

Theorem 1.3 Consider the Gaussian linear model with Gaussian design introduced in
(1.7). Let ρ > 0. The minimax rate of convergence for constant confidence parameter
δN = 1/4 over ρBd

1 is achieved by the ERM and is given (up to absolute constants) by

min
(
r2(ρ), ρ2

)
where r(ρ) = max

(
rQ(ρ), rM (ρ)

)
. (1.11)

Up to multiplicative absolute constants, this rate is given for some ζ < 1 < ζ ′,

1. when N ≤ log d, by ρ2,

2. when log d ≤ N ≤ ζd, by
ρ2 if ρ2N ≤ σ2 log d,

ρσ

√
1
N log

(
ed2σ2

ρ2N

)
if σ2 log d ≤ ρ2N ≤ σ2N2

log(ed/N) ,

ρ2

N log
(
ed
N

)
if ρ2N ≥ σ2N2

log(ed/N)

3. when N ≥ ζ ′d, by
ρ2 if ρ2N ≤ σ2 log d,

ρσ

√
1
N log

(
ed2σ2

ρ2N

)
if σ2 log d ≤ ρ2N ≤ σ2d2,

σ2d
N if ρ2N ≥ σ2d2.

In other words, for all ρ ≥ 0 and t∗ ∈ ρBd
1 , the ERM t̂ERMρ ∈ argmint∈ρBd

1

∑N
i=1(Yi −〈

Xi, t
〉
)2, is such that, with probability at least 3/4, ‖t̂ERMρ − t∗‖22 ≤ min

(
r2(ρ), ρ2

)
. More-

over, there are no estimator that can do uniformly better than the ERM t̂ERMρ over ρBd
1

when N /∈ (ζd, ζ ′d).

Note that we have decided to present the result in the constant deviation result (that
is for δN = 1/4) whereas it is actually true with a much better probability estimate in
section 4.1 in [22]. We will also obtain our main results with an exponentially large
deviation below.

As mentioned previously, when N ∈ [ζd, ζ ′d], we only have an upper bound on (rQ(ρ))2

that does not match the minimax lower bound. As a consequence, the N ∼ d regime is not
considered in Theorem 1.3. Notable is that the rate ρ2 is the trivial rate obtained by taking
the `d2 diameter of the model ρBd

1 which is simply 2ρ. Therefore, any statistics t̃N (like the
ERM t̂ERMρ ) taking its values in ρBd

1 satisfies with probability 1, ‖t̃N − t∗‖22 ≤ 4ρ2 for all

t∗ ∈ ρBd
1 . This is a trivial bound that one can get for free as long as the radius ρ is known.

However, for the construction of an optimal regularization function which can be seen as
an adaptation to the radius ‖t∗‖1, which is therefore not known, this trivial bound is not

10



available. This will be an issue for designing a minimax regularization function when ‖t∗‖1
is unknown and small (actually smaller than σ

√
log(ed)/N). Somehow the “signal-to-noise

ratio” is too small for the models ρBd
1 with small ρ’s. Therefore, the trivial upper bound

ρ2 is optimal when ρ is known but in the other case we will have to pay the price due to
the noise and there will be no way to achieve the trivial optimal ρ2 bound for small ρ’s
(except for the trivial estimator t̂0 = 0, see the discussion after Proposition 1.6). That is
the reason why we will not be able to construct a minimax regularization function over
the entire space Rd but only for t∗ such that ‖t∗‖1 & σ/

√
log(ed)/N . We will also show

that such a construction of an optimal regularization function over the entire space Rd is
actually not possible at all later in Proposition 1.6.

Finally let us turn to the construction of a minimax regularization function for the `d1-
norm. To that end we will use the function ρ ≥ 0 7→ r2(ρ) = max

(
r2
Q(ρ), r2

M (ρ)
)

as a sharp

way to measure the complexity of the model ρBd
1 . The main result of this article is that

this function is a minimax regularization function as introduced in Definition 1.2.

Theorem 1.4 There are absolute constants η,Q, ζ, ζ ′,∆0, c0 such that the following holds.
When ζ ′d ≥ N or ζd ≤ N , a minimax regularization function for the `d1-norm over
Rd\(∆0σ

√
log(ed)/NBd

1) for the confidence parameter δN = 1/4 is given by the follow-
ing function: for all ρ > 0,

Ψ(ρ) = c0r
2(ρ)

where r(ρ) = max
(
rQ(ρ), rM (ρ)

)
for

rQ(ρ) = inf
(
r > 0 : `∗(ρBd

1 ∩ rBd
2) = Qr

√
N
)

and
rM (ρ) = inf

(
r > 0 : σ`∗(ρBd

1 ∩ rBd
2) = ηr2

√
N
)

denoting by `∗(ρBd
1 ∩ rBd

2) the Gaussian mean width of the localized sets ρBd
1 ∩ rBd

2 . In
that case, the rate achieved by the RERM t̂Ψ is the minimax rate r2(‖t∗‖1) when ‖t∗‖1 ≥
∆0σ

√
log(ed)/N .

The shape of the minimax regularization function ρ → Ψ(ρ) = c0r
2(ρ) is given in

Figure 1 in the two cases N ≤ ζd (“high-dimensional statistics”) and N ≥ ζ ′d (“classical
or low-dimensional statistics”).

The only difference between the two cases (ζ ′d ≥ N or ζd ≤ N) appears for large radii
ρ. The reason for that lies in the statistical complexity coming (or not) from the distortion
of the operator X. In the low-dimensional case, X is such that (with high probability),
‖Xt‖2 ∼ ‖t‖2 for all t ∈ Rd. There is no distortion coming from X. Somehow observing Xt∗
is the same as observing t∗ itself, one just has to invert X – this can be done because X
acts like an isomorphy on the entire space Rd. Therefore, there is no statistical complexity
coming from X and so its associated complexity parameter rQ(·) does not show up in the
final complexity parameter r(·) = max(rM (·), rQ(·)). We therefore end up with r(·) =
rM (·) in the low-dimensional case. In particular, for large radii ρ (for which, one has
ρBd

1 ∩ rM (ρ)Bd
2 = rM (ρ)Bd

2), we pay the worst rate of convergence in Rd, which is σ2d/N

11



σ
√

log(d)/N σ
√
N/log(d/N) ρ

r
2
(ρ

)

ρσ

√
log(ed)

N

ρσ
√

1
N

log
(
eσd

ρ
√
N

)

ρ2

N
log

(
ed
N

)

N ζd

σ
√

log(d)/N σd/
√
N ρ

r
2
(ρ

)

ρσ

√
log(ed)

N

ρσ
√

1
N

log
(
eσd

ρ
√
N

) σ2d/N

N≥ ζ ′d

Figure 1: Shape of the graph of the minimax regularization function ρ → r2(ρ) of the
`d1-norm for the cases N ≤ ζd (left) and N ≥ ζ ′d (right)

because learning over ρBd
1 for large values of ρ is as hard as learning over the entire space

Rd and the price for the latter is the rate σ2d/N .
The situation is totally different in the high-dimensional setup because in that case the

operator X ∈ RN×d has a none trivial kernel; therefore, observing Xt∗ is totally different from
observing t∗ (for instance, imaging that t∗ ∈ kerX). This adds to the statistical complexity
of the problem of estimating t∗. In this regime, both the noise and the distortion effect
of X appear in the statistical complexity of the estimation problem; this means that both
complexity parameter rQ(·) and rM (·) appear in the total complexity parameter r(·) and
therefore in the ultimately designed minimax regularization function. For small values of
ρ, the effect of the noise is predominant but for large values of ρ this is the effect of X
which is the main responsible of the statistical complexity. In particular, the `d2-diameter of
kerX∩‖t∗‖1Bd

1 is important because there is of course no way to distinguish t∗ from t∗+ h
for all h ∈ Rd such that Xt∗ = X(t∗+h) that is for all h ∈ kerX such that t∗+h ∈ ‖t∗‖1Bd

1 .
Hence, estimating t∗ is at least as hard as estimating any point in (t∗+ kerX)∩‖t∗‖Bd

1 and

therefore, no estimator t̃ can estimate t∗ at a rate better than diam
(
kerX ∩ ‖t∗‖1Bd

1 , `
d
2

)2
.

The latter quantity is itself lower bounded by the Gelfand’s N -width of ‖t∗‖Bd
1 defined as

cN (‖t∗‖1Bd
1) := inf

{
diam(ker Γ ∩ ‖t∗‖1Bd

1) : Γ ∈ RN×d
}
∼ ‖t∗‖min

{
1,

√
log(ed/N)

N

}
(1.12)

the latter result is due to Garanaev and Gluskin [17]. It appears that the Gelfand’s N -width
of ‖t∗‖Bd

1 are achieved (up to absolute constants and with high probability) by the kernel
of standard N × d Gaussian matrices, which is exactly the case of the design matrix X.
Therefore, with high probability,

diam
(

kerX ∩ ‖t∗‖1Bd
1 , `

d
2

)2
∼ c2

N (‖t∗‖1Bd
1) ∼ ‖t

∗‖1
N

log

(
ed

N

)
∼ r2

Q(‖t∗‖1) (1.13)

This is exactly the price we pay in rQ(ρ) when ρ ≥ σ
√
N/ log(ed/N). That is the reason

why we take the regularization function Ψ(ρ) of the order of the Gelfand’s N -width of ρBd
1
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(to the square) for large radii ρ: it is the right concept of statistical complexity that shows
up in this part of the space Rd, where the statistical complexity coming from the distortion
of X becomes more important than the one due to the noise.

Remark 1.5 (Regularization function for the LASSO) The LASSO is the RERM pro-
cedure obtained for a linear regularization function Ψ(ρ) = σρ

√
log d/N which is obtained

by using a trivial upper bound on the complexity of the model ρBd
1 in (1.8):

comp
(
ρBd

1

)
= r2

M (ρ) ≤
σ`∗

(
ρBd

1

)
√
N

= σρ

√
log(ed)

N
. (1.14)

This complexity is obtained by simply removing the localization (i.e. the intersection with
rBd

2) in the multiplier process when computing rM (·), and does not take rQ(·) into account.
This means that the distortion of the operator X is supposed to have no effect on the statis-
tical complexity of the problem. This is why estimation results for the LASSO deal only with
the reconstruction of vectors which are sparse or almost sparse, i.e. for vectors belonging
to the cone appearing in the RE or CC conditions, cf. [6]. Over this cone, the quadratic
process behaves nicely (that is, the isomorphic property from Proposition 2.1 holds on this
cone) or in other words, the operator X is well-conditioned on the set of vectors we want
to reconstruct, so that there is no statistical complexity coming from the distortion of this
operator. So, as long as estimation of sparse or approximately sparse vectors is concerned,
there is no need for the complexity function rQ(·). That is why the regularization function
used for the LASSO take into account only the fixed point rM (·) associated to the statistical
complexity due to the noise and not the one from the inverse problem. On the contrary, by
taking rM (·) and rQ(·) into account, our regularization function allows us to deal with the
full space Rd (except for a small `d1-ball centered in 0, cf. Proposition 1.6) and not only a
cone.

Moreover, as said before, the way the regularization function is designed in (1.14) is sub-
optimal because it uses a trivial upper bound on rM (·) instead of using the exact formulation
of rM (·) as in (1.9). Contrary to the LASSO, this latter exact formulation takes into
account, thanks to the localization, the fact that the regularization is not needed on the whole
space –in some areas the random processes behave nicely whatever. The suboptimal approach
for the LASSO is likely to be responsible for a loss in the rate of convergence achieved by the
LASSO, which is sσ2 log(ed)/N whereas the minimax rate is sσ2 log(ed/s)/N (cf. [5]). This
is not a big loss, especially when d >> s, but from a purely theoretical point of view the right
way to regularize for the reconstruction of sparse vectors should be using r2

M (‖t‖1) instead
of σ‖t‖1

√
log(ed)/N as it is the case for the LASSO. However, the resulting regularization

function would be concave (cf. the right-hand side plot in Figure 1). Therefore, the small
price paid from a theoretical point of view by using the trivial upper bound in (1.14) seems
to be worth the computational gain obtained by using a convex regularization as does the
LASSO.

Let us now turn to the adaptation problem in the ball ρBd
1 for ρ ∼ σ

√
log(ed)/N . We

want to answer the following question: is it possible to construct a regularization function
Ψ(·) so that the associated regularized procedure t̂Ψ is adaptive on the entire space Rd?
Or (even stronger) is there any statistic that can be adaptive (in the sense that it achieves
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the rate of the ERM on ‖t∗‖1Bd
1 without knowing ‖t∗‖1 beforehand) on the entire space

Rd (this statistics may not be a regularized procedure)? It appears that the answer to this
question is negative, which we prove in the following proposition.

However, one needs to be cautious with the next statement because there is a trivial
estimator t̂0 = 0 such that for every t∗ ∈ Rd, with probability 1, ‖t̂0 − t∗‖22 = ‖t∗‖22 and
therefore t̂0 is adaptive on ρBd

1 as long as the minimax rate over ρBd
1 is ρ2, which is the

case for any ρ . σ
√

log(ed)/N . Therefore, there exists a procedure adaptive on ρBd
1 when

ρ ∼ σ
√

log(ed)/N . Moreover, according to Theorem 1.4, there exists a procedure adaptive
on Rd\ρBd

1 . But the question concerns the adaptation on the entire space Rd at the same
time.

The following statement shows that if t̂ is a procedure adaptive on Rd\ρBd
1 then it

cannot be adaptive on ρBd
1 for ρ ∼ σ

√
log(ed)/N . Moreover, it also proves that adaptation

on the entire space Rd is not possible and that Theorem 1.4 is optimal given that the range
of radii [∆0σ

√
log(ed)/N,+∞) on which it is adaptive cannot be inflated (up to absolute

constants). Before turning to the statement let us denote by Pt∗ the probability distribution
of a N -sample (Xi, Yi)

N
i=1 of i.i.d. copies of (X,Y ) when (X,Y ) is distributed according to

(1.7).

Proposition 1.6 Assume that 2d ≥ exp(544/225) and that there exists an absolute con-
stant χ1 such that the following holds. Let ρ ≤ 2σ

√
(log(2d))/(96N) be such that 16χ1r

2(ρ) ≤
ρ2 and denote by (ej)

d
j=1 the canonical basis of Rd. Assume that t̂ is an estimator such that

for every t∗ ∈ {±ρe1, . . . ,±ρed},

Pt∗
[
‖t̂− t∗‖22 ≤ χ1r

2(ρ)
]
≥ 3

4
.

Then, for every t∗ ∈ (ρ/2)Bd
1 ,

Pt∗
[
‖t̂− t∗‖22 ≥ ρ2/16

]
≥ 1

2
. (1.15)

The proof of Proposition 1.6 is given in Section 3. Note that the only property of the
design X used to prove Proposition 1.6 is isotropicity. Since isotropicity does not tell much
on the distortion properties of the design matrix X, it means that Proposition 1.6 is only
based on the statistical complexity coming from the noise. This is not a surprise given that
Proposition 1.6 is a result for very small radii less than ∼ σ

√
log(ed)/N . At that scale, even

if kerX is in the worst possible position, i.e. diam(kerX∩ ρB2
1 , `

d
2)2 = diam(ρB2

1 , `
d
2)2 = ρ2,

we still have ρ2 . r2
M (ρ). Hence, the distortion of X does not play any role at this very

small scale and therefore that is not a surprise that Proposition 1.6 is true for any isotropic
design X.

Finally, let us rephrase Proposition 1.6 in other words. Proposition 1.6 shows that if
a procedure can learn all vectors in {±ρe1, . . . ,±ρed} at the minimax rate r2(ρ) then this
estimator cannot learn any t∗ ∈ (ρ/2)Bd

1 at the optimal minimax rate ρ2 for confidence
1/4. For instance, given that the result (1.15) holds for any t∗ ∈ (ρ/2)Bd

1 , in particular,
for t∗ = 0, it tells that t̂ cannot estimate t∗ = 0 at a rate better than ρ2 ∼ σ2 log(ed)/N
whereas the minimax rate over ρ∗Bd

1 for ρ∗ = 0 is obviously 0. Finally, note that the
condition 16χ1r

2(ρ) ≤ ρ2 implies that ρ & σ
√

log(ed)/N so that the phase transition
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radius above which adaptation is possible but not below is of the order of σ
√

log(ed)/N
which is the radius we have found in Theorem 1.4.

2 Proof of Theorem 1.4

Most of the proof consists in showing that with high probability, t̂ belongs to t∗ + ρ∗Bd
1

where

ρ∗ = max

(
10, 8

C
(2)
M )2

(C
(1)
M )2η

+ 1

)
‖t∗‖1. (2.1)

(once this goal is achieved, it is straightforward to show (again with high probability) that
‖t̂− t∗‖22 is less than the minimax rate of convergence over ρ∗Bd

1).
To do so, we will prove that with high probability, any t outside t∗ + ρ∗Bd

1 satisfies
PNLΨ

t > 0 (whereas PNLΨ
t̂
≤ 0). We partition Rd\(t∗ + ρ∗Bd

1) into shelves of the form

t∗ + (2j+1ρ∗Bd
1\(2jρ∗)Bd

1), in which the regularization function remains mostly constant.
We only need to study the smallest shells, i.e. for k = 1, . . . ,K0 for some well-chosen K0

(K0 is the smallest integer so that 2K0−1ρ∗Bd
1 ∩ r(2K0−1ρ∗)Bd

2 = r(2K0−1ρ∗)Bd
2), the part

of Rd for which ‖t‖1 ≥ 2K0ρ∗ will be treated by an homogeneity argument.
On each of the smallest shelves, the argument is roughly and heuristically the following:

we place ourselves on a high probability event on which random processes (PNM, PNQ,
their supremum, their infimum,...) “behave nicely” (i.e. they both scale like ‖t − t∗‖22).
Then, as PNMt−t∗ is the only possibly negative term, it suffices to identify zones where
PNQt−t∗ > PNMt−t∗ (then directly PNLΨ

t > 0), and compensate |PNMt−t∗ | on the other
part by using a penalty that is close to the supremum (on this other part) of PNMt−t∗ .
As PNQt−t∗ grows quicker than PNMt−t∗ with respect to ‖t − t∗‖2, the big zone where
PNQt−t∗ > PNMt−t∗ will be the exterior of t∗+rBd

2 for an adequate r (cf. Figure 2). This r
must be such that any t in the exterior of this ball satisfies PNQt−t∗ & ‖t−t∗‖22 & PNMt−t∗ ,
and we will see that the first inequality amounts to r ≥ rQ(ρ), and the second one to
r ≥ rM (ρ). Next, the supremum of PNMt−t∗ on ρBd

1∩r(ρ)Bd
2 is less than rM (ρ)r(ρ) ≤ r2(ρ)

for r(ρ) = max(rM (ρ), rQ(ρ)). We therefore set the regularization function Ψ(ρ) at level ρ
to be proportional to the quantity r2(ρ) because it is this quantity measuring the amplitude
of the oscillation of the multiplier process in ρBd

1 ∩ r(ρ)Bd
2 .

As for its presentation, the proof of Theorem 1.4 is divided into two parts. The first part
(Section 2.1) defines the event on which the two processes “behave nicely” and computes a
lower bound on its probability. In the second part (Section 2.2) we will place ourselves on
this event and carry out the deterministic geometric part of the argument.

2.1 Probabilistic control of the processes

Instead of controlling the two processes on shelves, we will control them on the full `1 balls,
because it does not change the complexity, up to constants, and the very last step of the
proof requires a control on the two processes on the full `1 ball ρ∗Bd

1 .
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2.1.1 Control of the quadratic process

This first section provides the classical analysis of the quadratic process based upon its
isomorphic properties on the set of “almost sparse vectors”. Such a property holds in the
optimal regime of observation (or the optimal size of the cone of “almost sparse vectors”),
only in the sub-Gaussian case. It is the case we are considering here since we assumed
that the design is a standard Gaussian random variable. This analysis borrows some ideas
from the “isomorphic method” from [3] or the Restricted Isometry Property from [10] in
the sub-Gaussian case. For the sake of completeness we recall here the argument from [22].

Proposition 2.1 There are absolute constants C1 and C ′1 such that the following holds.
Let X1, . . . , XN be N i.i.d. standard Gaussian vectors in Rd. Denote by Ω∗ the event on
which: for every ρ ≥ ρ∗ and all t ∈ t∗ + ρBd

1 ,

if ‖t− t∗‖2 ≥ rQ(ρ) then
1

2
‖t− t∗‖22 ≤

1

N

N∑
i=1

〈
Xi, t− t∗

〉2 ≤ 3

2
‖t− t∗‖22. (2.2)

Then, one has P[Ω∗] ≥ 1− 2 exp(−C1Q
2N) as long as Q ≤ C ′1.

Proof. First note that for all ρ > 0, rQ(ρ) = ρrQ(1). Indeed, we have

`∗(ρBd
1 ∩ rBd

2) = `∗
(
ρ(Bd

1 ∩ (r/ρ)Bd
2)
)

= ρ`∗
(
Bd

1 ∩ (r/ρ)Bd
2

)
and so

rQ(ρ) = inf{r > 0 : `∗(ρBd
1 ∩ rBd

2) = Q
√
Nr}

= inf{r > 0 : `∗(Bd
1 ∩ (r/ρ)Bd

2) = Q
√
N(r/ρ)}

= ρ inf{r > 0 : l∗(Bd
1 ∩ rBd

2) = Q
√
Nr} = ρrQ(1). (2.3)

For all ρ > 0, define the event Ω(ρ) on which one has for all t ∈ t∗ + ρBd
1 ,

if ‖t− t∗‖2 ≥ rQ(ρ) then
1

2
‖t− t∗‖22 ≤

1

N

N∑
i=1

〈
Xi, t− t∗

〉2 ≤ 3

2
‖t− t∗‖22.

Let us show that if Ω(ρ∗) holds then for any ρ ≥ ρ∗, Ω(ρ) holds as well. Suppose that Ω(ρ∗)
holds. Consider t ∈ t∗ + ρBd

1 such that ‖t− t∗‖2 > rQ(ρ) and define

t′ := t∗ + (ρ∗/ρ)(t− t∗) ∈ t∗ + ρ∗Bd
1 .

It follows from (2.3) that rQ(ρ∗) = (ρ∗/ρ)rQ(ρ). Thus ‖t′ − t∗‖2 = (ρ∗/ρ)‖t − t∗‖2 >

(ρ∗/ρ)rQ(ρ) = rQ(ρ∗), and since Ω(ρ∗) holds, it follows that ‖t′ − t∗‖22/2 ≤
∑N

i=1

〈
Xi, t

′ −
t∗
〉2
/N ≤ 3‖t′− t∗‖22/2. This implies that ‖t− t∗‖22/2 ≤

∑N
i=1

〈
Xi, t− t∗

〉2
/N ≤ 3‖t− t∗‖22/2

so Ω(ρ) holds.
As a conclusion, Ω∗ = Ω(ρ∗) and we can now lower bound the probability that this event

holds.
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Let us consider the class of linear functions

F =
{〈
·, t− t∗

〉
, t ∈ t∗ + ρ∗Bd

1 ∩ rQ(ρ∗)Sd−1
2

}
=
{〈
·, t
〉
, t ∈ ρ∗Bd

1 ∩ rQ(ρ∗)Sd−1
2

}
.

We assume that F is non empty (if F = ∅ then the theorem is trivially satisfied). It
follows from Theorem 1.12 in [28] that for any x > 0, with probability at least 1− 2 exp

(
−

C1 min(x2, x
√
N)
)
,

sup
f∈F

∣∣∣∣∣ 1

N

N∑
i=1

f2(Xi)− Ef2(X)

∣∣∣∣∣ ≤ C2

(
∆γ√
N

+
γ2

N
+
x∆2

√
N

)
where ∆ is the diameter in ψ2 of F and γ is Talagrand’s γ2 functional of F w.r.t. ψ2. Note
that since X is a standard Gaussian variable in Rd, for any t ∈ Rd, ‖

〈
X, t

〉
‖ψ2 = C3‖t‖2 for

some absolute constant C3. It follows that

∆ = 2 sup
t∈ρ∗Bd

1∩rQ(ρ∗)Sd−1
2

C3‖t‖2 = 2C3rQ(ρ∗) and γ = γ2(ρ∗Bd
1 ∩ rQ(ρ∗)Sd−1

2 , `d2).

Moreover, it follows from the Majorizing measure theorem (cf. Chapter 1 in [37]) that

γ2(ρ∗Bd
1 ∩ rQ(ρ∗)Sd−1

2 , `d2) ≤ C4`
∗(ρ∗Bd

1 ∩ rQ(ρ∗)Sd−1
2 )

Since F is non-empty, by Lemma 3.1 the right-hand side is equal to C4`
∗(ρ∗Bd

1∩rQ(ρ∗)Bd−1
2 )

and so by definition of rQ(ρ∗), one has γ ≤ C4QrQ(ρ∗)
√
N .

Since X is isotropic (i.e. for any t ∈ Rd, E
〈
X, t

〉2
= ‖t‖22), we obtain for x = Q

√
N

that, with probability greater than 1 − 2 exp(−C1 min(Q,Q2)N), for any t ∈ t∗ + ρ∗Bd
1 ∩

rQ(ρ∗)Sd−1
2 ,∣∣∣∣∣ 1

N

N∑
i=1

〈
Xi, t− t∗

〉2 − ‖t− t∗‖22

∣∣∣∣∣ ≤ (2C2C3C4Q+ C2C
2
4Q

2 + 4C2QC
2
3 )r2

Q(ρ∗)

So, as long as long as: Q ≤ C ′1 := min{1, (12C2C3C4)−1, (
√

6C2C4)−1, (24C2C
2
3 )−1}, one

has, with probability greater than 1− 2 exp(−C1Q
2N), for all t ∈ t∗ + ρ∗Bd

1 ∩ rQ(ρ∗)Sd−1
2 ,∣∣∣∣∣ 1

N

N∑
i=1

〈
Xi, t− t∗

〉2 − ‖t− t∗‖22

∣∣∣∣∣ ≤ r2
Q(ρ∗)

2
=

1

2
‖t− t∗‖22. (2.4)

In other words, the quadratic process satisfies an isomorphic property on the set t∗+(ρ∗Bd
1∩

rQ(ρ∗)Sd−1
2 ). Now, it remains to extend this result to the set of vectors t ∈ t∗ + ρ∗Bd

1 such
that ‖t− t∗‖2 ≥ rQ(ρ∗). Let t be such a vector and define t′ := t∗+(rQ(ρ∗)/‖t− t∗‖)(t− t∗).
Since t′ ∈ t∗ + (ρ∗Bd

1 ∩ rQ(ρ∗)Sd−1
2 ), it satisfies the isomorphic property from (2.4) and so

1

2
‖t− t∗‖22 ≤

1

N

N∑
i=1

〈
Xi, t− t∗

〉2 ≤ 3

2
‖t− t∗‖22

which corresponds exactly to the event Ω(ρ∗). Therefore, P[Ω∗] = P[Ω(ρ∗)] ≥ 1−2 exp(−C1Q
2N).
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2.1.2 Control of the multiplier process

In this section, we provide a control of the multiplier process on several shelves of the space
Rd.

Define r0 as the non-null solution to σ`∗(rBd
2) = ηr2

√
N – i.e. r0 = σ`∗(Bd

2)/(η
√
N) =

(σ/η)
√
d/N . Let ρ0 be the smallest ρ such that ρBd

1 contains r0B
d
2 –i.e., ρ0 = r0

√
d. We

can see that ρ0 is such that rM (ρ) = rM (ρ0) for all ρ ≥ ρ0. Indeed, one first sees that
rM (ρ0) = r0, since σ`∗(r0B

d
2 ∩ ρ0B

d
1) = σ`∗(r0B

d
2) = ηr2

0

√
N , and σ`∗(rBd

2 ∩ ρ0B
d
1) =

σr`∗(Bd
2) > ηr2

√
N for all r < r0 and for r > r0, σ`∗(rBd

2 ∩ ρ0B
d
1) ≤ σr`∗(Bd

2) ≤ ηr2
√
N .

This last argument also holds for ρ ≥ ρ0. In the latter case, if r > r0 then

σ`∗(rBd
2 ∩ ρBd

1) ≤ r

r0
σ`∗(r0B

d
2 ∩ ρBd

1) =
r

r0
σ`∗(r0B

d
2 ∩ ρ0B

d
1) =

r

r0
ηr2

0

√
N < ηr2

√
N

which means that rM (ρ) ≤ r0. And as ρ ≥ ρ0, rM (ρ) ≥ rM (ρ0) = r0. Therefore, for ρ ≥ ρ0,
rM (ρ) is constant, equal to r0. And on [0, ρ0], rM is non-decreasing: let ρ′ ≤ ρ′′ ≤ ρ0, then
σ`∗(rM (ρ′)Bd

2 ∩ ρ′′Bd
1) ≥ σ`∗(rM (ρ′)Bd

2 ∩ ρ′Bd
1) = ηrM (ρ′)2

√
N so rM (ρ′′) ≥ rM (ρ′).

We denote K0 = min{k ∈ N : 2kρ∗ ≥ 2ρ0}: we will see later that K0 is defined that way
to be the number of the first “shell” such that rM (2K0−1ρ∗)Bd

2 ⊂ 2K0−1ρ∗Bd
1 .

Proposition 2.2 There exists an absolute constant C5 such that the following holds. Let
X1, . . . , XN be N i.i.d. standard Gaussian vectors in Rd and ξ1, . . . , ξN be N standard real-
valued Gaussian variables independent of the Xi’s. For all k = 0, . . . ,K0, denote by Ak the
event on which, for every t ∈ Rd such that ‖t− t∗‖1 ≤ 2kρ∗:

|PNMt−t∗ | ≤
1

4
max

(
rM (2kρ∗)2, ‖t− t∗‖22

)
. (2.5)

Then, for η = 1/(16
√

2), one has

P

[
K0⋂
k=0

Ak

]
≥ 1− 2 exp (−C5N)− 40 exp

(
−
C

(1)
M NrM (ρ∗)2)

1024C
(2)
M σ2

)

when ρ∗ ≥ 4096 log(2)σ/
(
C

(1)
M

√
N
)
.

Proof. We first work conditionally to the ξi, i = 1, . . . , N . Let ρ > 0 and define
T (ρ) := t∗ + ρBd

1 ∩ rM (ρ)Bd
2 . It follows from the Gaussian concentration inequality (cf.

Borell’s inequality in [25]) that, for all x > 0, with probability greater than 1−2 exp(−x2/2),∣∣∣∣∣ sup
t∈T (ρ)

N∑
i=1

ξi
〈
Xi, t− t∗

〉
− E sup

t∈T (ρ)

N∑
i=1

ξi
〈
Xi, t− t∗

〉∣∣∣∣∣ ≤ xσ(T (ρ))

where

σ(T (ρ)) = sup
t∈T (ρ)

√√√√E

(
N∑
i=1

ξi
〈
Xi, t− t∗

〉)2

.
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Conditionally to the ξi’s, the Gaussian process
(∑N

i=1 ξi
〈
Xi, t− t∗

〉)
t∈T (ρ)

has the same

distribution as the Gaussian process
(
σ̂N
〈
X1, t− t∗

〉)
t∈T (ρ)

for σ̂N :=
√∑N

i=1 ξ
2
i . This

yields

E

[
sup
t∈T (ρ)

N∑
i=1

ξi
〈
Xi, t− t∗

〉]
= σ̂N`

∗(T (ρ)− t∗) = σ̂N`
∗(ρBd

1 ∩ rM (ρ)Bd
2) = σ̂N

η
√
Nr2

M (ρ)

σ

and σ(T (ρ)) = supt∈T (ρ) σ̂N

√
E[
〈
X, t− t∗

〉2
] = σ̂N supt∈T (ρ) ‖t− t∗‖2 ≤ σ̂NrM (ρ).

So, conditionally on (ξi)
N
i=1, for all x > 0, one has, with probability at least 1 −

2 exp(−x2/2),

sup
t∈T (ρ)

∣∣∣∣∣
N∑
i=1

ξi
〈
Xi, t− t∗

〉∣∣∣∣∣ ≤ σ̂N η
√
Nr2

M (ρ)

σ
+ xσ̂NrM (ρ)

Thus, taking x = η
√
NrM (ρ)/σ in the previous statement, one gets, on an event which

probability is at least 1− 2 exp(−η2Nr2
M (ρ)/(2σ2)),

sup
t∈t∗+ρBd

1∩rM (ρ)Bd
2

∣∣∣∣∣ 1

N

N∑
i=1

ξi
〈
Xi, t− t∗

〉∣∣∣∣∣ ≤ 2η
σ̂N

σ
√
N
r2
M (ρ). (2.6)

It remains to prove, on the same event, the result for all t ∈ t∗+ρBd
1 such that ‖t−t∗‖2 >

rM (ρ). Define t′ := t∗+
(
rM (ρ)/‖t− t∗‖2

)
(t− t∗). Since t′ ∈ T (ρ), it follows from (2.6) that

(on the same event):∣∣∣∣∣ 1

N

N∑
i=1

ξi
〈
Xi,

rM (ρ)

‖t− t∗‖2
(t− t∗)

〉∣∣∣∣∣ =

∣∣∣∣∣ 1

N

N∑
i=1

ξi
〈
Xi, t

′ − t∗
〉∣∣∣∣∣ ≤ 2η

σ̂N

σ
√
N
rM (ρ)2

and since rM (ρ) ≤ ‖t− t∗‖2 one gets∣∣∣∣∣ 1

N

N∑
i=1

ξi
〈
Xi, t− t∗

〉∣∣∣∣∣ ≤ 2η
σ̂N

σ
√
N
‖t− t∗‖rM (ρ) ≤ 2η

σ̂N

σ
√
N
‖t− t∗‖2.

Hence, with probability (conditionally to the ξi) at least 1−2 exp
(
−η2NrM (ρ)2)/(2σ2)

)
,

the multiplier process is controlled such that

sup
t∈t∗+ρBd

1

|PNMt−t∗ | ≤ 4η
σ̂N

σ
√
N

max
(
rM (ρ)2, ‖t− t∗‖22

)
. (2.7)

A control of the probability measure of the event Ak follows by applying the previous
result to ρ = 2kρ∗ when η ≤ 1/(16

√
2) together with a control of the term σ̂N . It follows from

an union bound that, conditionally to the ξi, (2.7) is satisfied for all ρ = 2kρ∗, k = 0, · · · ,K0

on an event whose probability measure is larger than

1− 2

K0∑
k=0

exp
(
−η2NrM (2kρ∗)2)/(2σ2)

)
. (2.8)
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We handle the last term below thanks to Lemma 3.2.
Now, we handle the random variables ξ1, . . . , ξN . It appears that only a control of the

empirical variance term σ̂N/
√
N is needed to get a fully deterministic upper bound in the

right-hand term of (2.7). It follows from Bernstein inequality for subexponential variables
(cf. Theorem 1.2.7 in [13]) that with probability greater than 1− 2 exp(−C5N),∣∣∣∣∣ 1

N

N∑
i=1

ξ2
i − σ2

∣∣∣∣∣ ≤ σ2,

which implies σ̂N/
√
N ≤

√
2σ. Therefore, for η = 1/(16

√
2) we have

P
[
4ησ̂N/(

√
Nσ) ≤ 1/4

]
≥ 1− 2 exp (−C5N) . (2.9)

Binding together (2.7), (2.8) and (2.9) gives

P

[
K0⋂
k=0

Ak

]
≥ 1− 2 exp (−C5N)− 2

K0∑
k=0

exp

(
−NrM (2kρ∗)2

1024σ2
)

)
.

Finally, Lemma 3.2 yields the following bound

K0∑
k=0

exp

(
−NrM (2kρ∗)2)

1024σ2

)
≤ 10

1− exp

(
−C

(1)
M

√
Nρ∗

4096σ

) exp

(
−
C

(1)
M

C
(2)
M

NrM
(
ρ∗
)2

1024σ2

)

and the result follows when ρ∗ ≥ 4096 log(2)σ/(C
(1)
M

√
N), which implies that the denomi-

nator of the right-hand side is greater than 1/2.

2.1.3 Conclusion: construction of the event Ω0

We define the event

Ω0 = Ω∗ ∩
K0⋂
k=0

Ak.

It follows from Proposition 2.1 and Proposition 2.2 (as well as Lemma 2.4 below), that, as

long as ρ∗ ≥ 4096 log(2)σ/(C
(1)
M

√
N),

P[Ω0] ≥ 1− 4 exp(−C6N)− 40 exp

(
−C

′
6NrM (‖t∗‖1)2)

σ2

)
where C6 and C ′6 are absolute constants.

2.2 Deterministic part of the proof

We first start with some few lemmas on the growth of rM (·) and rQ(·). We then construct
a partition of Rd depending on the behavior of function r2(·) (in particular, its concavity
for intermediate values is an issue; we solve it thanks to a peeling argument). We then turn
to the main deterministic argument showing that t̂ belongs to a `d1-ball of radius ρ∗ around
t∗. The latter holds on the event Ω0 introduced in Section 2.1.3.
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2.2.1 Two Lemmas on the growth of rM and rQ

Lemma 2.3 Let ρ > 0 and φ = 4(C
(2)
M )2/(C

(1)
M )2. If φρ ≤ ρ0 min(1, η), then for any

ρ′ ≥ φρ,
r2
M

(
ρ′
)
> 2r2

M (ρ) and r2
(
ρ′
)
> 2r2(ρ).

Proof. Since rM (·), rQ(·) and r(·) are non-decreasing, we only have to prove the result

for ρ′ = φρ. Recall that C
(2)
M ≥ C

(1)
M (so φ ≥ 4). First note that if N ≥ ζ ′d then rQ(ρ) = 0

and so the second claim follows from the first one since r(ρ) = rM (ρ) in this case. And when
N ≤ ζd, one has r2

Q(φρ) = φ2rQ(ρ) ≥ 16rQ(ρ) > 2rQ(ρ) (because in that case rQ(ρ)2 > 0).
Therefore the second claim is a straightforward consequence of the first one. So it only
remains to study the behavior of r2

M (·). For ρ < φρ ≤ ρ0, rM is given by one of the two
last expressions of (1.9).

First assume that (φρ)2N ≤ σ2 log d then

r2
M (φρ) ≥ C(1)

M φρσ
√

log(ed/N) > 2C
(2)
M ρσ

√
log(ed/N) ≥ 2r2

M (ρ).

Now, assume that σ2 log d ≤ ρ2N ≤ (φρ)2N then

r2
M (φρ) = CMφρσ

√
1

N
log

(
eσd

φρ
√
N

)

for some CM ∈ [C
(1)
M , C

(2)
M ]. One has that for all x ≥ φe, log(x/φ) > log(x)/φ, and,

since ρ0 = σd/(η
√
N),the assumption φρ ≤ ρ0 min(1, η) guarantees that eσd/ρ

√
N ≥ φe.

Therefore, we have:

r2
M (φρ) > C

(1)
M φρσ

√
1

φN
log
( eσd

ρ
√
N

)
≥ 2C

(2)
M ρσ

√
1

N
log
( eσd

ρ
√
N

)
≥ 2r2

M (ρ).

Finally, when ρ2N ≤ σ2 log d ≤ (φρ)2N , since rM is increasing, it is clear considering the

two previous cases that one has again r2
M (φρ) > (

√
φC

(1)
M /C

(2)
M )r2

M (ρ), so r2
M (φρ) > 2r2

M (ρ).

Lemma 2.4 Let ν > 0. If ν ≥ 1 then rM (νρ) ≤
√
νrM (ρ) and r(νρ) ≤ νr(ρ). If ν ≤ 1

then rM (νρ) ≥
√
νrM (ρ) and r(νρ) ≥ νr(ρ).

Proof. It is clear that rQ(νρ) = νrQ(ρ), because `∗(νρBd
1 ∩ νrQ(ρ)Bd

2) = ν`∗(ρBd
1 ∩

rQ(ρ)Bd
2). As for rM (νρ), for ν ≥ 1, one has

σ`∗(νρBd
1 ∩
√
νrM (ρ)Bd

2) ≤ σν`∗(ρBd
1 ∩ rM (ρ)Bd

2) = νη
√
NrM (ρ)2 = η

√
N(
√
νrM (ρ))2. So

rM (νρ) ≤
√
νrM (ρ).

As for the case ν ≤ 1, then 1/ν ≥ 1, and it suffices to write that rM (ρ) = rM ((1/ν)νρ) ≤
(1/ν)rM (νρ) to get the result (and still rQ(ρ/ν) = rQ(ρ)/ν).
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2.2.2 Partition of Rd into three zones

Recall that ρ∗ = max
(

10, 8(C
(2)
M )2/((C

(1)
M )2η) + 1

)
‖t∗‖1, that ρ0 is the smallest ρ such that

rM (ρ) = rM (ρ0) for all ρ ≥ ρ0 and that K0 = min{k ∈ N : 2kρ∗ ≥ 2ρ0}.
Hereunder, K0 is the number of shelves used to partition the intermediate “peeling zone”

defined below. We use ρ∗ and K0 to construct a partition of Rd into three main zones:

• the “central zone” t∗ + ρ∗Bd
1 ,

• the intermediate “peeling zone” {t ∈ Rd : ρ∗ < ‖t − t∗‖1 ≤ 2K0ρ∗} (recall that
2K0ρ∗ ' 2ρ0). This zone is considered only when K0 ≥ 1. We use a “peeling”, i.e. a
partition of this zone into K0 sub-areas called the “shelves”: 2k−1ρ∗ < ‖t−t∗‖1 ≤ 2kρ∗,
for k = 1, · · · ,K0.

• the “exterior zone” {t ∈ Rd : ‖t− t∗‖1 > 2K0ρ∗}, on which rM (·) is constant.

Our main objective is now to show that, on the event Ω0, t̂ belongs to the central zone.

t∗
(A)(A)

(A)

(A)

(B)

(B)

(B)

(B)

t∗ + ρBd
1

t∗ + (ρ/2)Bd
1

t∗ + r2(ρ)Bd
2

Figure 2: PNMt−t∗ is dominated by PNQt−t∗ in (A) and by Rt,t∗ in (B). The regularization
function Ψ(·) is designed in order to dominate PNMt−t∗ in (B).
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2.2.3 Locating t̂ in the central zone on the event Ω0

To show that, on the event Ω0, t̂ belongs to the central zone, it is enough to show that any
t outside this area satisfies PNLΨ

t > 0 where we recall that in our case,

PNLΨ
t :=

(
1

N

N∑
i=1

(Yi −
〈
Xi, t

〉
)2 + c0r

2(‖t‖1)

)
−

(
1

N

N∑
i=1

(Yi −
〈
Xi, t

∗〉)2 + c0r
2(‖t∗‖1)

)
.

This will indeed prove that ‖t̂− t∗‖1 ≤ ρ∗ since PNLΨ
t̂
≤ 0 = PNLΨ

t∗ .

Let t ∈ Rd be outside the central zone – i.e. ‖t − t∗‖1 > ρ∗. First note that t satisfies
‖t‖1 ≥ ‖t − t∗‖1 − ‖t∗‖1 ≥ ρ∗ − ‖t∗‖1 ≥ 9‖t∗‖1. Therefore, we have Rt′,t∗ = Ψ(‖t‖1) −
Ψ(‖t∗‖1) = c0r

2(‖t‖1)− c0r
2(‖t∗‖1) > 0 and (8/9)‖t‖1 ≤ ‖t− t∗‖1 ≤ (10/9)‖t‖1.

From now on, we place ourselves on the event Ω0 introduced in Section 2.1.3.
First suppose that ρ∗ < 2ρ0, then both the “intermediate peeling zone” and the “exterior

zone” must be considered. For t in any of these two areas, one has Rt′,t∗ ≥ 0.
Let us begin by the “peeling zone”. Consider t and k ≥ 1 such that

2k−1ρ∗ < ‖t− t∗‖1 ≤ 2kρ∗ and ‖t− t∗‖1 ≤ 2K0ρ∗.

We recall that 2K0−1ρ∗ < 2ρ0 ≤ 2K0ρ∗ and ρ0 is the smallest radius such that rM (ρ) =
rM (ρ0) for all ρ ≥ ρ0.

One possibility is that ‖t− t∗‖22 ≥ r2(2kρ∗), then on Ω∗ one has PNQt−t∗ ≥ ‖t− t∗‖22/2
and, on Ak, one has |PNMt−t∗ | ≤ ‖t−t∗‖22/4. Hence, on Ω0, PNLΨ

t ≥ ‖t−t∗‖22/4+Rt′,t∗ > 0.
Let us tackle now the other case: ‖t − t∗‖22 < r2(2kρ∗). We will show that in this

situation, if c0 is large enough, Rt,t∗/4 > |PNMt−t∗ |.
As ‖t‖1 > 4‖t∗‖1(C

(2)
M )2/(C

(1)
M )2 (t is not in the “central zone”) and 4‖t∗‖1(C

(2)
M )2/(C

(1)
M )2 ≤

ηρ0 (since 2ρ0 ≥ ρ∗ > 8‖t∗‖1(C
(2)
M )2/((C

(1)
M )2η)), by Lemma 2.3 one has that c0r

2(‖t‖1) ≥
2c0r

2(‖t∗‖1). Thus, Rt,t∗ ≥ c0r
2(‖t‖1)/2. So, thanks to Lemma 2.4, and since

‖t‖1
2kρ∗

=
‖t− t∗‖1

2kρ∗
‖t‖1

‖t− t∗‖1
>

1

2
· 9

10
>

2

5
,

one has

Rt,t∗ ≥
1

2
c0r

2(‖t‖1) ≥ 1

2
·
(
‖t‖1
2kρ∗

)2

c0r
2(2kρ∗) > (2/25)c0r

2(2kρ∗).

In addition, we have ‖t − t∗‖1 ≤ 2kρ∗ and ‖t − t∗‖22 < r2(2kρ∗), hence, on the event Ak,
|PNMt−t∗ | ≤ r2(2kρ∗)/4. As a consequence, for c0 > 13 one has

Rt,t∗
4
− |PNMt−t∗ | >

2

25
· c0r

2(2kρ∗) · 1

4
− 1

4
r2(2kρ∗) > 0. (2.10)

A fortiori, Rt′,t∗ − |PNMt−t∗ | > 0 and as PNQt−t∗ ≥ 0, this implies in particular that
PNLΨ

t > 0.
To sum up, we proved that for all t in the peeling zone, we have

PNLΨ
t ≥ PNQt−t∗ − |PNMt−t∗ |+Rt′,t∗/4 > 0. (2.11)
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Let us now study the exterior zone. We will mainly use homogeneity arguments. Let t ∈
Rd be outside the ball t∗+2K0ρ∗Bd

1 . Define t′ ∈ t∗+2K0ρ∗Sd−1
1 such that t− t∗ = αt(t

′− t∗)
for some αt ≥ 1. In particular, ‖t′ − t∗‖2 ≥ 2r0 > rM (2K0ρ∗) so by Proposition 2.2, on the
event AK0 , one has |PNMt′−t∗ | ≤ ‖t′ − t∗‖22/4. We consider now two cases.

If ‖t′ − t∗‖2 ≥ rQ(‖t′ − t∗‖1), then by Lemma 2.1, on the event Ω∗, one has PNQt′−t∗ ≥
‖t′ − t∗‖22/2. So on the event Ω0, PNQt′−t∗ − |PNMt′−t∗ | > 0 and

PNQt−t∗ − |PNMt−t∗ | = α2
tPNQt′−t∗ − αt|PNMt′−t∗ | ≥ αt (PNQt′−t∗ − |PNMt′−t∗ |) > 0

therefore PNLΨ
t > 0.

On the contrary, if ‖t′ − t∗‖2 < rQ(‖t′ − t∗‖1), as ‖t′ − t∗‖2 ≥ 2r0, then rQ(‖t′‖1) ≥
9rQ(‖t′ − t∗‖1)/10 > 9r0/5 = 9rM (‖t′‖1)/5 > rM (‖t′‖1) so r(‖t′‖1) = rQ(‖t′‖1). One
has ‖t‖1 = ‖t∗ + αt(t

′ − t∗)‖1 ≥ (4αt/5)‖t′‖1 since αt ≥ 1 and ‖t′ − t∗‖1 ≥ ρ∗. So
r2(‖t‖1) ≥ r2

Q (αt4‖t′‖1/5) = 42α2
t r

2(‖t′‖1)/52. We have seen before that rQ(‖t′‖1) ≥
9r0/5 ≥ 9rM (‖t∗‖1)/5, and rQ(‖t′‖1) ≥ 9rQ(‖t∗‖1), so r2(‖t′‖1) ≥ 3r2(‖t∗‖1). As a conse-
quence,

Rt,t∗ = c0r
2(‖t‖1)− c0r

2(‖t∗‖1) ≥ c0

(
α2
t

42

52
r2(‖t′‖1)− (1/3)r2(‖t′‖1)

)
≥ αt

c0

4
r2(‖t′‖1) ≥ αtRt′,t∗/4.

Moreover, since t − t∗ = αt(t
′ − t∗), one has PNQt−t∗ = α2

tPNQt′−t∗ and PNMt−t∗ =
αtPNMt′−t∗ . So, in the case ‖t′ − t∗‖2 < rQ(‖t′ − t∗‖1), by (2.11) applied to t′,

PNLΨ
t ≥ αt(PNQt′−t∗ − |PNMt′−t∗ |+Rt′,t∗/4) > 0.

Let us now consider the case ρ∗ > 2ρ0. In this situation, there is no need for the
intermediate “peeling” zone. Let t ∈ Rd be outside the ball t∗+ρ∗Bd

1 and set t′ ∈ t∗+ρ∗Sd−1
1

such that t − t∗ = αt(t
′ − t∗) with αt ≥ 1. Then one can apply arguments similar to the

peeling case (with ‖t′ − t∗‖1 = ρ∗, but this time k = K0 = 0), on the event A0 ∩ Ω∗, to
t′. If ‖t′ − t∗‖2 ≥ rQ(‖t′ − t∗‖1), then by Lemma 2.1, on the event Ω0 one has PNQt′−t∗ ≥
|PNMt′−t∗ |/2. Conversely, if ‖t′ − t∗‖2 < rQ(‖t′ − t∗‖1), then r2(‖t′‖1) ≥ 3r2(‖t∗‖1) so for
c0 big enough, in the same spirit as (2.10), one gets that Rt′,t∗/4− |PNMt′−t∗ | > 0. So in
both cases, PNQt−t∗ − |PNMt−t∗ |+Rt′,t∗/4 > 0. The same argument as previously for the
exterior zone, shows that PNLΨ

t ≥ αt(PNQt′−t∗ − |PNMt′−t∗ | + Rt′,t∗/4), so PNLΨ
t > 0.

As a conclusion, in the case ρ∗ > 2ρ0, we have for all t ∈ Rd satisfying ‖t− t∗‖1 ≥ ρ∗ > 2ρ
that PNLΨ

t > 0.
To sum up, on the event Ω0, any t outside the central zone satisfies PNLΨ

t > 0. There-
fore, given that t̂ satisfies PNLΨ

t̂
≤ 0, we conclude that t̂ belongs to the central zone.

2.2.4 Conclusion of the proof of Theorem 1.4

On the event Ω0, t̂ ∈ (t∗ + ρ∗Bd
1). Hence, either ‖t̂− t∗‖22 ≤ r2(ρ∗) and the proof is over or

‖t̂− t∗‖22 > r2(ρ∗). In the latter case, one has

PNQt̂−t∗ >
1

2
‖t̂− t∗‖22 and |PNMt̂−t∗ | <

1

4
‖t̂− t∗‖22

24



and so

0 ≥ PNLΨ
t̂
≥ 1

4
‖t̂− t∗‖22 + c0r

2(‖t̂‖1)− c0r
2(‖t∗‖1)

which implies ‖t̂− t∗‖22 ≤ 4c0r
2(‖t∗‖1).

Thus, taking θ0 = max
(

100, (8(C
(2)
M )2/(C

(1)
M )2 + 1)2, 4c0

)
, with probability at least

P[Ω0] ≥ 1− 4 exp (−C6N)− 40 exp
(
−C ′6NrM (‖t∗‖1)2/σ2

)
one gets that in both cases, R(t̂)− R(t∗) = ‖t̂− t∗‖22 ≤ θ0r

2(‖t∗‖1). Moreover, for ‖t∗‖1 ≥
∆0σ

√
log(ed)/N for ∆0 an absolute constant large enough, we have P[Ω0] ≥ 3/4. Given

that r2(‖t∗‖1) is the minimax rate of convergence over ‖t∗‖1Bd
1 (cf. Theorem 1.3), we

conclude that Ψ(ρ) = c0r
2(ρ) is indeed a minimax regularization function.

3 Technical material and proof of Proposition 1.6

3.1 Localization with balls and spheres

The next lemma shows that when the intersection is not trivial, localizing by intersecting
an `1 ball with an `2 sphere or the corresponding full `2 ball is equivalent.

Lemma 3.1 If ρ ≥ r, then `∗(ρBd
1∩rS

d−1
2 ) = `∗(ρBd

1∩rBd
2). If ρ < r, then `∗(ρBd

1∩rBd
2) =

`∗(ρBd
1) and `∗(ρBd

1 ∩ rS
d−1
2 ) = 0.

Proof. Since for any set T ⊂ Rd, `∗(T ) = `∗(conv(T )) (with conv(T ) denoting the
convex hull of T ), the result is a direct consequence of the fact that for ρ < r, conv(ρBd

1 ∩
rBd

2) = ρBd
1 and conv(ρBd

1 ∩ rS
d−1
2 ) = ∅ (which are two obvious statements), and that if

ρ ≥ r, then conv(ρBd
1 ∩ rS

d−1
2 ) = conv(ρBd

1 ∩ rBd
2), which we prove now.

One inclusion is immediate, it remains to prove that conv(ρBd
1 ∩ rBd

2) ⊂ conv(ρBd
1 ∩

rSd−1
2 ). First,

conv(ρBd
1 ∩ rBd

2) = ρBd
1 ∩ rBd

2 = conv{t ∈ Rd : max(‖t‖1/ρ, ‖t‖2/r) = 1}

so it only remains to show that {t ∈ Rd : max(‖t‖1/ρ, ‖t‖2/r) = 1} ⊂ conv(ρBd
1 ∩ rS

d−1
2 ).

First, remark that {t ∈ Rd : ‖t‖1/ρ ≤ 1, ‖t‖2/r = 1} is included in ρBd
1 ∩ rS

d−1
2 . Let

us now consider the set {t ∈ Rd : ‖t‖1/ρ = 1, ‖t‖2/r < 1} and consider an element t in
it. We denote by e1, . . . , ed the canonical basis of Rd and we recall that each face of ρBd

1

is the convex hull of its vertices. So, since t ∈ ρSd−1
1 , there exist b1 ∈ {ρe1,−ρe1}, b2 ∈

{ρe2,−ρe2}, . . . , bd ∈ {ρed,−ρed} such that t is in the convex hull of {b1 . . . , bd}: there
exist non-negative coefficients µ1, . . . , µd such that

∑d
j=1 µj(bj − t) = 0. Consider for each

j ∈ {1, . . . , d} the mapping

fj : x ∈ [0, 1] 7→ ‖t+ x(bj − t)‖2/r − ‖t+ x(bj − t)‖1/ρ

This mapping is continuous, fj(0) < 0 (t is in ρSd−1
1 and rBd

2 but not in rSd−1
2 ) , and

fj(1) ≥ 0 (because ‖bj‖2 = ‖bj‖1 = ρ and ρ ≥ r). So there exists xj in (0,1] such that
f(xj) = 0, which means that t+ xj(bj − t) ∈ ρSd−1

1 ∩ rSd−1
2 . One has that

d∑
j=1

µj
xj

(t+ xj(bi − t)− t) =
d∑
j=1

µj
xj
xj(bj − t) =

d∑
j=1

µj(bj − t) = 0.
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As a consequence, t is in the convex hull of the vectors t+ xj(bj − t) ∈ ρSd−1
1 ∩ rSd−1

2 , j ∈
{1, . . . , d} which achieves the proof.

3.2 Control of the probability estimate

Lemma 3.2 Set η = 1/(16
√

2). For all ν > 0, we have

K0∑
k=0

exp
(
−νrM

(
2kρ∗

)2) ≤ 10

1− exp
(
−νC(1)

M
σ

4
√
N
ρ∗
) exp

(
−
C

(1)
M

C
(2)
M

νrM
(
ρ∗
)2)

.

Proof. First, the terms of the sum are non-increasing (remember that rM is a non-
decreasing function). So skipping the last terms will not change the order of magnitude:

K0∑
k=0

exp
(
−νrM

(
2kρ∗

)2) ≤ max

(
10 exp

(
−νrM

(
ρ∗
)2)

, 10

K0−9∑
k=0

exp
(
−νrM

(
2kρ∗

)2))
.

One has 10 exp
(
−νrM

(
ρ∗
)2)

> 10
∑K0−9

k=0 exp
(
−νrM

(
2kρ∗

)2)
when K0 ≤ 8. Let us

now assume that K0 ≥ 9. We study the sum
∑K0−9

k=0 exp
(
−νrM

(
2kρ∗

)2)
.

In order to get rid of the “range” [C
(1)
M , C

(2)
M ] in the definition of rM (·), notice that∑K0−9

k=0 exp
(
−νrM

(
2kρ∗

)2) ≤∑K0−9
k=0 ak with:

ak :=


exp

(
−νC(1)

M 2kρ∗σ

√
log(ed)
N

)
if
(
2kρ∗

)2
N ≤ σ2 log(d)

exp

(
−νC(1)

M 2kρ∗σ

√
1
N log

(
eσd

2kρ∗
√
N

))
otherwise.

We emphasize that the sum goes only up to 2K0ρ∗, which excludes the constant third
form of rM (·).

Applying a second time the “range” [C
(1)
M , C

(2)
M ] in the bounds on rM allows to bound

a0 in terms of rM
(
ρ∗
)2

: a0 ≤ exp
(
−(C

(1)
M /C

(2)
M )νrM

(
ρ∗
)2)

. Therefore, in the following we

will bound
∑K0−9

k=0 ak with respect to a0, and then get back to rM
(
ρ∗
)2

.
We now prove that there exists α independent on k (but dependent on the other pa-

rameters) such that for any k ≤ K0 − 9, ak+1/ak ≤ α < 1.
If (2k+1ρ∗)2 ≤ σ2 log(d)/N then

ak+1

ak
= exp

(
−νC(1)

M 2k+1ρ∗σ

√
log(ed)

N
+ νC

(1)
M 2kρ∗σ

√
log(ed)

N

)

= exp

(
−νC(1)

M 2kρ∗σ

√
log(ed)

N

)
≤ exp(−νC(1)

M ρ∗β1)

with β1 = σ
√

log(ed)/N ≥ σ/
√
N .
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As for the case (2kρ∗)2 ≤ σ2 log(d)/N < (2k+1ρ∗)2 (which can only occur when d > 1),
then one has 2k+1ρ∗ ≤ 2σ

√
log d/

√
N and so

ak+1

ak
= exp

(
−νC(1)

M 2k+1ρ∗σ

√
1

N
log
( eσd

2k+1ρ∗
√
N

)
+ νC

(1)
M 2kρ∗σ

√
log(ed)

N

)

≤ exp

(
−νC(1)

M 2kρ∗
σ√
N

(
2

√
log

(
ed

2
√

log d

)
−
√

log ed

))

≤ exp

(
−νC(1)

M 2kρ∗
σ

2
√
N

)
≤ exp

(
−νC(1)

M ρ∗
σ

2
√
N

)
The second inequality relies on a straightforward analysis fact:

∀ d ≥ 2,

(
2

√
log

(
ed

2
√

log d

)
−
√

log ed

)
>

1

2

Let us tackle now the case (2kρ∗)2 > σ2 log(d)/N . We have ak+1/ak = exp(bkνC
(1)
M 2kρ∗σ/

√
N)

where

bk := −2

√
log

(
eσd

2k+1ρ∗
√
N

)
+

√
log

(
eσd

2k+1ρ∗
√
N

)
+ log(2).

Since
√
x+ y ≤

√
x+
√
y for all x, y ≥ 0, one has (still for k ≤ K0 − 9):

bk ≤
√

log(2)−

√
log

(
eσd

2k+1ρ∗
√
N

)
≤
√

log(2)−

√
log

(
eσd

2K0−8ρ∗
√
N

)
≤ (1−

√
2)
√

log(2)

because 2K0−8ρ∗ ≤ 2−6ρ0 ≤ 2−6σd/(η
√
N) ≤ σd/(2

√
N) (we recall that ρ0 = σd/(η

√
N)

and η = 1/(16
√

2)). It follows that

ak+1

ak
= exp

(
νC

(1)
M 2kρ∗

σ√
N
bk

)
≤ exp

(
−νC(1)

M ρ∗
σ√
N

(−bk)
)
≤ exp(−νC(1)

M ρ∗β2)

with β2 = (
√

2− 1)
√

log(2)σ/
√
N ≥ σ/(4

√
N). Then, we conclude that for all k ≤ K0 − 9,

ak+1/ak ≤ exp
(
−νC(1)

M
σ

4
√
N
ρ∗
)

and so

K0−9∑
k=0

ak ≤ a0

K0−9∑
k=0

exp

(
−kνC(1)

M

σ

4
√
N
ρ∗
)

= a0

1− exp
(
−(K0 − 8)νC

(1)
M

σ
4
√
N
ρ∗
)

1− exp
(
−νC(1)

M
σ

4
√
N
ρ∗
) .

Finally, the result follows, since a0 ≤ exp
(
−(C

(1)
M /C

(2)
M )νrM

(
ρ∗
)2)

and

1− exp
(
−(K0 − 8)νC

(1)
M

σ
4
√
N
ρ∗
)

1− exp
(
−νC(1)

M
σ

4
√
N
ρ∗
) ≤ 1

1− exp
(
−νC(1)

M
σ

4
√
N
ρ∗
) .
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3.3 Proof of Proposition 1.6

The proof of Proposition 1.6 relies on key ideas developed in minimax theory. We refer the
reader to [39] for a state of the art in minimax theory.

Let t̂ satisfy the properties of Proposition 1.6, i.e. a procedure adaptive on the finite set
{±ρe1, · · · ,±ρed} and let t∗ ∈ (ρ/2)Bd

1 . Denote Λ = {t∗,±ρe1, . . . ,±ρed} = {t∗0, t∗1, · · · , t∗2d}
so that t∗0 = t∗. It is straightforward to check that Λ is a ρ/2-separated set in ρBd

1 w.r.t. `d2.
Now, let us define the test statistics

φ̂ ∈ argmin
j∈{0,··· ,2d}

‖t∗j − t̂‖2.

One has for all j ∈ {0, 1, . . . , 2d} that, if φ̂ 6= j then ‖t̂− t∗j‖2 ≥ ρ/4. Indeed, if φ̂ 6= j then

there exists k ∈ {0, 1, . . . , 2d}\{j} such that ‖t∗k − t̂‖2 ≤ ‖t∗j − t̂‖2. If ‖t∗k − t̂‖2 ≥ ρ/4 then

the result holds otherwise ‖t∗k − t̂‖2 < ρ/4 and so ‖t∗j − t̂‖2 ≥ ‖t∗j − t∗k‖2 − ‖t∗k − t̂‖2 ≥ ρ/4.
Therefore, we have, for all τ > 0

Pt∗0
[
‖t̂− t∗0‖2 ≥ ρ/4

]
≥ Pt∗0

[
φ̂ 6= 0

]
=

2d∑
j=1

Pt∗0
[
φ̂ = j

]
≥

2d∑
j=1

τPt∗j

[
φ̂ = j and

dPt∗0
dPt∗j

≥ τ

]

≥ τ
2d∑
j=1

Pt∗j
[
φ̂ = j

]
− Pt∗j

[
dPt∗0
dPt∗j

< τ

]
≥ τ

2d∑
j=1

Pt∗j
[
‖t̂− t∗j‖2 < ρ/4

]
− Pt∗j

[
dPt∗0
dPt∗j

< τ

]
.

(3.1)

It follows from the adaptation property of t̂ over {±ρe1, · · · ,±ρed} that for every j ∈
{1, · · · , 2d},

Pt∗j
[
‖t̂− t∗j‖2 < ρ/4

]
≥ Pt∗j

[
‖t̂− t∗j‖22 < χ1r

2(ρ)
]
≥ 3/4 (3.2)

when χ1r
2(ρ) ≤ ρ2/16. Let j ∈ {1, · · · , 2d}. Following the same argument as in Proposi-

tion 2.3 in [39] (based on second Pinsker inequality), we obtain

Pt∗j

[
dPt∗0
dPt∗j

≥ τ

]
= Pt∗j

[
dPt∗j
dPt∗0

≤ 1

τ

]
= 1− Pt∗j

[
log

dPt∗j
dPt∗0

> log(1/τ)

]

≥ 1− 1

log(1/τ)

∫ (
log

dPt∗j
dPt∗0

)
+

dPt∗j ≥ 1− 1

log(1/τ)

[
K(Pt∗j ,Pt∗0) +

√
2K(Pt∗j ,Pt∗0)

]
where K(Pt∗j ,Pt∗0) denotes the Kullback-Leiber divergence between Pt∗j and Pt∗0 . Since the

noise is Gaussian and independent of X in (1.7) and X is isotropic, we have K(Pt∗j ,Pt∗0) =

N‖t∗j − t∗0‖22/(2σ2) ≤ N9ρ2/(8σ2). Hence, if ρ ≤ 2σ
√

log(1/τ)/(96N) and log(1/τ) ≥
544/225, one has

Pt∗j

[
dPt∗0
dPt∗j

≥ τ

]
≥ 3

4
.

Using the latter result together with (3.2) in (3.1) for the values τ = 1/(2d), we obtain
that

Pt∗0
[
‖t̂− t∗0‖2 ≥ ρ/4

]
≥ 1

2
.
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4 Minimax regularization function in the fixed design setup

In this section, we consider the Gaussian regression model with fixed design. Our aim
is to design a minimax regularization function in this setup. We are therefore given a
deterministic N × d design matrix X, whose i-th row vector is denoted by Xi ∈ Rd, and we
observe N noisy projections of a vector t∗ ∈ Rd, Yi =

〈
Xi, t

∗〉+ ξi, i = 1, . . . , N , where the
noises ξ1, . . . , ξN are independent centered Gaussian variables with variances σ2. The data
(Yi, Xi)

N
i=1 are used to construct estimators of t∗ and the only difference with the previous

random design setup is that the Xi’s are deterministic vectors whereas so far they were
random vectors. We will use most of the time the matrix form of the data: Y = Xt + ξ
where Y = (Yi)

N
i=1 and ξ ∼ N (0, σ2IN ) where IN is the N × N identity matrix. Note

that the fixed design setup is usually considered in signal processing over a finite grid or
in experiences where the statistician can chose in advance the design of an experience and
then observed an output.

In order to design a minimax regularization function in this setup, we need to adapt the
definitions introduced in Section 1 to the fixed design case. We first start with the definition
of a minimax rate of convergence over a subset of Rd. We use the empirical (or normalized)
Euclidean inner product and norm: for all u, v ∈ RN ,

〈
u, v
〉
LN
2

=
1

N

N∑
i=1

uivi and ‖u‖L2
N

=

√√√√ 1

N

N∑
i=1

u2
i

and the associated unit ball BL2
N

= {u ∈ RN : ‖u‖L2
N
≤ 1}.

Definition 4.1 Let T ⊂ Rd, X denote a (deterministic) N × d design matrix and ξ be a
centered Gaussian random vector in RN with covariance matrix σ2IN . For all t∗ ∈ T , define
the random vector Y t∗ = Xt∗ + ξ and denote by YT := {Y t∗ : t∗ ∈ T} the set of all such
random vectors.

Let t̂N be a statistics from RN to Rd. Let 0 < δN < 1 and ζN > 0. We say that t̂N
performs with accuracy ζN and confidence 1 − δN relative to the set of targets
YT , if for all t∗ ∈ T , with probability, w.r.t. to a vector Y distributed as Y t∗, at least 1−δN ,
‖X(t̂N (Y )− t∗)‖2

L2
N
≤ ζN .

We say that RN is a minimax rate of convergence over T for the confidence
1− δN if the two following hold:

1. there exists a statistics t̂N which performs with accuracy RN and confidence 1 − δN
relative to the set of targets YT

2. there exists an absolute constant g′0 > 0 such that if t̃N is a statistics which performs
with accuracy ζN and confidence 1−δN relative to the set of targets YT then necessarily
ζN ≥ g′0RN .

Note that we use the empirical LN2 -metric ‖X·‖L2
N

(to the square) with respect to the design
X as a measure of performances of estimators in Definition 4.1. The reason we do so is that
it is the natural counterpart to the random design case – that is when X is a standard
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Gaussian matrix then E‖Xt‖2
L2
N

= ‖t‖22 and the `d2-norm is the metric used to measure the

performance of estimators in the random design setup – and that it is the natural metric
associated to the prediction of Y problem given that if R(t) = E‖Y −Xt‖2

L2
N

is the risk of t

for all t ∈ Rd then we have for any estimator t̂N , R(t̂N ) = R(t∗) + ‖X(t̂N − t∗)‖2L2
N

. So that

predicting Y is the same problem as estimating t∗ with respect to the empirical ‖X · ‖L2
N

metric.
Now, we adapt the definition of a minimax regularization function to the fixed design

setup in the next definition.

Definition 4.2 Let ‖ · ‖ be a norm on Rd, T ⊂ Rd and 0 < δN < 1. Let us consider the
following RERM for some given function Ψ : R+ → R:

t̂ ∈ argmin
t∈Rd

(
‖Y − Xt‖2L2

N
+ Ψ(‖t‖)

)
constructed from a N × d deterministic matrix X and a random vector Y = Xt∗ + ξ, with
ξ ∼ σN (0, IN ). We say that Ψ is a minimax regularization function for the norm
‖·‖ over T for the confidence 1−δN , if there exists an absolute constant g′1 > 0 such that
for all t∗ ∈ T , the RERM t̂ is such that with probability at least 1− δN , ‖t̂− t∗‖2

L2
N
≤ g′1RN ,

where RN is the minimax rate of convergence over {t ∈ Rd : ‖t‖ ≤ ‖t∗‖}.

The statistical bounds one can prove in the fixed design setup depend generally on
the property of the design matrix X. Many different assumptions have been introduced
during the last two decades in high-dimensional statistics and we refer to [43] for some of
them. In particular, norm preserving properties like the RIP or weaker assumption on the
restricted eigenvalues like the REC or CC have played an important role in statistics (cf.
[12, 41, 6, 18, 42, 8]). In this paper, we assume that X satisfies the “Restricted Isometry
Property”. It appears that this condition is equivalent (up to constants) to the property
satisfied by a standard Gaussian matrix as in Lemma 2.1.

Assumption 4.1 (RIP(s)) If N < d and N/ log(ed/N) > 1 then we set s = N/ log(ed/N).
We assume that all t in Σs := {x ∈ Rd : ‖x‖0 ≤ s} is such that

1

2
‖t‖2 ≤ ‖Xt‖L2

N
≤ 3

2
‖t‖2 (4.1)

where ‖x‖0 is the size of the support of x. If N ≥ d, we assume that (4.1) is satisfied for
all t ∈ Rd.

Note that in the high-dimensional case, i.e. d > N , only the situation N/ log(ed/N) > 1
is considered in Assumption 4.1 to avoid the ultra-high dimensional phenomena discovered in
[46]. RIP was introduced in [11] and it has been widely used and discussed (cf. for example
[15], [1] or [16]), in particular in the field of Compressed Sensing. From our perspective, we
use this result for two reasons: 1) the minimax results over `d1 balls we need to develop for
our proof of minimax regularization function has been obtained in the fixed design under
this condition (or an equivalent one) in [32]; 2) the complexity parameter that we will be
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using in the fixed design setup have been computed under very general design matrix X in
[4] but they were only proved to be optimal under the RIP assumption. Our main result
covers more general design matrix than the one satisfying RIP but it turns out that those
results do not allow to conclude on the minimax optimality of the associated regularization
function beyond the RIP case; moreover and to our knowledge no sharp closed form are
available for the computation of this regularization function beyond the RIP case.

4.0.1 The multiplier process and its associated fixed point

Our analysis is based upon the study of the same regularized excess empirical risk quantity
as in the random design section: for all t ∈ Rd,

PNLΨ
t :=

(
‖Y − Xt‖2L2

N
+ Ψ(t)

)
−
(
‖Y − Xt∗‖2L2

N
+ Ψ(t∗)

)
.

We use the same quadratic / multiplier decomposition as in the random design case: for all
t ∈ Rd, PNLΨ

t = PNQt−t∗ + PNMt−t∗ +Rt−t∗ where

• PNQt−t∗ := ‖X(t− t∗)‖2
L2
N

is the quadratic part

• PNMt−t∗ := 2
〈
ξ,X(t∗ − t)

〉
is the multiplier part

• Rt,t∗ := Ψ(t)−Ψ(t∗) is the regularization part.

Contrary to the random design case, in the fixed design setup the only source of randomness
is the Gaussian noise ξ, in particular the quadratic process is fully deterministic. Therefore,
there is no need to define a fixed point similar to rQ for a control on the quadratic process.
The only fixed point we introduce is a version of the previous multiplier fixed point rM (·)
adapted to the fixed design setup: for η′ = 1/8, let

rX(ρ) := inf

(
r > 0 : σ`∗

(
ρ√
N

XBd
1 ∩ rBN

2

)
≤ η′r2

√
N

)
(4.2)

where XBd
1 := {Xt : t ∈ Bd

1} and BN
2 is the unit ball in `N2 .

Define r′0 as the non-zero solution to the equation σ`∗(rBN
2 ∩ Im(X)) = η′r2

√
N , where

Im(X) is the image of X in Rd, i.e.

r′0 = σ`∗(BN
2 ∩ Im(X))/(η′

√
N) = σ`∗(B

Rank(X)
2 )/(η′

√
N) = (σ/η′)

√
Rank(X)/N

Let ρ′0 be the smallest ρ such that (ρ/
√
N)XBd

1 contains r′0B
N
2 ∩Im(X). An argument similar

to the one used in the random design case shows that ρ′0 is the smallest radius such that
for all ρ ≥ ρ′0, rX(ρ) = rX(ρ′0) = r′0. Finally, we consider K ′0 = min{k ∈ N : 2kρ∗ ≥ 2ρ′0}.

The fixed point function rX(·) depends on the Gaussian mean width of XBd
1 intersected

with rBN
2 for various radii r. This quantity has been recently controlled in Proposition 2

in [4].

Proposition 4.3 (Proposition 2 in [4]) Let X ∈ RN×d. Assume that the column vectors
of X are in BN

2 . Then, for all r ≥ 0,

`∗(XBd
1 ∩ rBN

2 ) ≤ min
(

4
√

log(8ed), 4
√

log(8edr2), r
√

Rank(X)
)
.
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It follows from some calculations (similar to the one used to obtain the closed form of
rM (·) in (1.9)) that there exists an absolute constant CX such that for all ρ, rX(ρ) ≤ rX(ρ)
with

rX
2(ρ) = C



σ2Rank(X)
N if ρ ≥ ρ′0

ρσ

√
1
N log

(
eσd
ρ
√
N

)
if σ2 log d ≤ ρ2N ≤ ρ′20 N

ρσ

√
log(ed)
N if ρ2N ≤ σ2 log d.

(4.3)

We see that rX(ρ) in (4.3) and rM (ρ) in (1.9) are very close. The only difference comes
from the rank of X and when N ≥ ζ ′d and Rank(X) ∼ d, the two fixed points rM and rX
are equal up to absolute constants. Furthermore, one can check that there are two absolute
constants 0 < C1 < C2 and CX = CX(ρ, d, σ,N) such that C1 ≤ CX ≤ C2 and

rX
2(ρ) = CX min

(
σ2Rank(X)

N
, ρσ

√
1

N
log

(
eσd

ρ
√
N

)
, ρσ

√
log(ed)

N

)
. (4.4)

We will use ρ → rX
2(ρ) as a regularization function (up to an absolute constant). It

will appear that even though ρ → rX
2(ρ) is only an upper bound on ρ → rX(ρ), it will be

an optimal minimax choice when the design matrix satisfies RIP.

4.0.2 Main result: a minimax regularization function

In this section, we prove that the regularization function Ψ(ρ) = c′0rX
2(ρ) is a minimax

regularization function for some well-chosen absolute constant c′0 when the design matrix
X satisfies RIP. To that end, we first need to know the minimax rate over `d1-balls in the
fixed design setup. Such a result was obtained in [32]. Let us now recall this result in our
context (see (5.25) in Section 5.2.2 in [32]).

Proposition 4.4 ([32]) Let X ∈ RN×d be a matrix satisfying RIP(2s). For all ρ ≥ 0, the
minimax rate of convergence over ρBd

1 in the Gaussian linear model with fixed design X in
expectation is given by

min

(
σ2Rank(X)

N
, ρσ

√
1

N
log

(
eσd

ρ
√
N

)
, ρ2

)
. (4.5)

The latter result holds in expectation whereas we are interested in deviation results. Even
though the minimax rate of convergence in deviation over ρBd

1 in the Gaussian linear model
under RIP has not been established, we believe that this rate of convergence in deviation
is identical to the one given in Proposition 4.4. Note that a proof of this fact follows
from Section 3 in [22] for the minimax lower bound in deviation and from the quadratic /
multiplier decomposition of the excess loss together with Lemma 4.6 below to show that the
ERM over ρBN

1 achieves the minimax bound in deviation. We do not provide the proof here
but we will use (4.5) as a benchmark result to construct a minimax regularization function.
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Theorem 4.5 Let X ∈ RN×d be such that the column vectors of X are in BN
2 . Consider

the following regularization function:

ρ ≥ 0→ Ψ(ρ) = c′0rX
2(ρ)

where rX(ρ) is defined in (4.4) and c′0 ≥ 2 is an absolute constant. Then there exist absolute
constants κ′1, κ′2 and κ′3 such that for any t∗ ∈ Rd the RERM t̂ constructed from the data
Y = Xt∗ + ξ:

t̂ ∈ argmin
t∈Rd

(
‖Y − Xt‖2L2

N
+ Ψ(‖t‖1)

)
satisfies with probability greater than 1− κ′1 exp

(
−κ′2NrX(‖t∗‖1)2/σ2

)
,

‖X(t̂− t∗)‖2
LN
2
≤ κ′3 min

(
σ2Rank(X)

N
,
‖t∗‖1σ√

N

√
log

(
edσ

‖t∗‖1
√
N

)
, ‖t∗‖1σ

√
log(ed)

N
,

)
.

Note that the probability estimate 1 − κ′1 exp
(
−κ′2NrX(‖t∗‖1)2/σ2

)
≥ 3/4 only when

‖t∗‖1 ≥ ∆′0σ
√

log(ed)/N for some absolute constant ∆′0 large enough. Therefore, if (4.5)
is indeed the minimax rate of convergence over ρBd

1 for the deviation 1 − δN = 3/4 under
RIP then Theorem 4.5 proves that ρ ≥ 0 → Ψ(ρ) = c′0rX

2(ρ) is a minimax regularization
function for the `d1-norm over Rd\∆′0σ

√
log(ed)/NBd

1 for the constant confidence regime.

4.1 Proof of Theorem 4.5

The proof is split into a probabilist part used to identify a high probability event Ω′0 on
which the multiplier process is well controlled on the entire space Rd and a deterministic
part where it is proved that, on the event Ω′0, PNLΨ

t > 0 if ‖X(t− t∗)‖2
L2
N
& rX(‖t∗‖1)2.

4.1.1 Probabilistic control of the multiplier process

The following lemma shows how the fixed point rX allows to control the multiplier process.

Lemma 4.6 Let ρ > 0 and take η′ = 1/8. Then, for all r ≥ rX(ρ), with probability greater
than 1− exp

(
−Nr2/(128σ2)

)
, for all t ∈ t∗ + ρBd

1 ,

|PNMt−t∗ | ≤
1

2
max

(
r2, ‖X(t− t∗)‖2L2

N

)
.

Proof. Let r ≥ rX(ρ). We denote by B2
X the unit ball associated with the pseudo-

metric ‖X · ‖L2
N

and rB2
X =

{
t ∈ Rd : ‖Xt‖L2

N
≤ r
}

its unit ball of radius r. We have

sup
t∈t∗+ρBd

1∩rB2
X

|PNMt−t∗ | = 2 sup
t∈t∗+ρBd

1∩rB2
X

∣∣∣〈X(t− t∗), ξ
〉
L2
N

∣∣∣ =
2√
N

sup
v∈V

〈
v, ξ
〉

where V = [(ρ/
√
N)XBd

1 ] ∩ rBN
2 . Then, it follows from Borell’s concentration inequality

(cf. [25]) that for all x > 0, with probability at least 1− exp(−x2/2),

sup
v∈V

〈
v, ξ
〉
≤ E sup

v∈V

〈
v, ξ
〉

+ xσ(V )
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where σ(V ) := supv∈V

√
E
〈
v, ξ
〉2

= supv∈V σ‖v‖2 ≤ σr. Moreover, given that ξ ∼
N (0, σ2IN ), we have

E sup
v∈V

〈
v, ξ
〉

= σ`∗(V ) = σ`∗
(

ρ√
N

XBd
1 ∩ rBN

2

)
≤ η′r2

√
N

where the last inequality follows from the definition of rX(ρ) and because r ≥ rX(ρ). Gath-
ering all the pieces together, it follows for x = η′r

√
N/σ, that, with probability at least

1− exp(−r2N/(128σ2)),

sup
t∈t∗+ρBd

1∩rB2
X

|PNMt−t∗ | ≤ 4η′r2 =
1

2
r2. (4.6)

Now, the proof follows from an homogeneity argument. Indeed, let us assume that (4.6)
holds. Let t ∈ t∗+ρBd

1 be such that ‖X(t− t∗)‖L2
N
> r and define t′ := t∗+αt(t− t∗) where

αt = r/‖X(t−t∗)‖L2
N

. Note that αt < 1 and t′ ∈ t∗+ρBd
1∩rB2

X. Hence, it follows from (4.6)

that |PNMt′−t∗ | ≤ r2/2 and so |PNMt−t∗ | = |PNMt′−t∗ |/αt ≤ r2/(2αt) ≤ ‖X(t̂−t∗)‖2
L2
N
/2.

4.1.2 Deterministic part of the proof

We start with two lemmas on the growth behavior of rX(·). Their proofs are almost identical
to the one of Lemmas 2.3 and 2.4 and are therefore omitted.

Lemma 4.7 Let φ′ = 4. If φ′ρ ≤ ρ′0 min(1, η′), then for any ρ′ ≥ φ′ρ, rX
2 (ρ′) > 2rX

2(ρ).

Lemma 4.8 Let ν > 0. If ν ≥ 1 then rX(νρ) ≤
√
νrX(ρ). If ν ≤ 1 then rX(νρ) ≥

√
νrX(ρ).

To prove Theorem 4.5, we use the same argument as in the proof of Theorem 1.4 for
the random design. Let ρ∗ = 10‖t∗‖1/η′ and split Rd into three zones:

• the “central zone” t∗ + ρ∗Bd
1 ,

• the intermediate “peeling zone”: {t ∈ Rd : ρ∗ < ‖t− t∗‖1 ≤ 2K
′
0ρ∗} – to be considered

only when K ′0 ≥ 1. This part of Rd is itself partitioned into K ′0 shelves: for k =
1, . . . ,K ′0, {t ∈ Rd : 2k−1ρ∗ < ‖t− t∗‖1 ≤ 2kρ∗},

• the “exterior zone”: {t ∈ Rd : ‖t− t∗‖1 > 2K
′
0ρ∗} on which rX is constant equal to r′0.

For all k = 0, . . . ,K ′0, we denote by A′k the event on which for all t ∈ t∗ + 2kρ∗Bd
1 ,

|PNMt−t∗ | ≤
1

2
max

(
rX(2kρ∗)2, ‖X(t− t∗)‖2L2

N

)
.

We consider the event Ω′0 = A′0 ∩ · · · ∩ A′K′0 . It follows from Lemma 4.6 and an argument

similar to the one in Lemma 3.2 that for some absolute constants κ′1, κ′2 and κ′4,

P
[
Ω′0
]
≥ 1− κ′1 exp

(
− κ′2NrX(‖t∗‖1)2/σ2

)
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as long as ‖t∗‖1 ≥ κ′4σ/
√
N (which is the case when ‖t∗‖1 ≥ ∆′0σ

√
log(ed)/N for ∆′0 ≥ κ′4).

Let us now assume for the remaining of the proof that Ω′0 holds. Note that unlike in
the random design case, there is no event such as Ω∗ in Ω′0 on which the quadratic process
is controlled, because, in the deterministic design case this process is deterministic.

Our strategy is to show that t̂ belongs to the “central zone”. To that end it is enough
to prove that PNLΨ

t > 0 for every t ∈ Rd such that ‖t − t∗‖1 > ρ∗ because by definition
PNLΨ

t̂
≤ 0.

Let t be in the intermediate peeling zone (which can happen only if ρ∗ ≤ 2ρ′0), say
in the k-th shell for some k ∈ {0, . . . ,K ′0}: 2k−1ρ∗ < ‖t − t∗‖1 ≤ 2kρ∗. In particular
‖t‖1 > ‖t∗‖1 and Rt,t∗ ≥ 0. Therefore, if ‖X(t − t∗)‖L2

N
≥ rX(2kρ∗) then by Lemma 4.6,

|PNMt−t∗ | ≤ ‖X(t−t∗)‖2
L2
N

= PNQt−t∗ and so PNLΨ
t > 0. Now, if ‖X(t−t∗)‖L2

N
≤ rX(2kρ∗)

then by Lemmas 4.6 and 4.8, for c′0 ≥ 2,

|PNMt−t∗ | ≤
1

2
rX(2kρ∗)2 <

c′0
2
rX

2(‖t− t∗‖1)

and since ‖t‖1 ≥ ‖t−t∗‖1−‖t∗‖1 ≥ 4‖t∗‖1, and 4‖t∗‖1 ≤ η′ρ∗/2 ≤ η′ρ′0, by Lemma 4.7 , one
has c′0rX

2(‖t‖1) ≥ 2c′0rX
2(‖t∗‖1). As a consequence, Rt,t∗ ≥ c′0rX

2(‖t‖1)/2 > |PNMt−t∗ |
and so PNLΨ

t > 0.
Let us now tackle the exterior zone in both cases ρ∗ ≤ 2ρ′0 and ρ∗ > 2ρ′0 . Let t ∈ Rd be

such that ‖t − t∗‖1 > 2K
′
0ρ∗. We have Rt,t∗ ≥ 0 because Ψ(‖t‖1) = c′0rX

2(‖t‖1) = c′0r
′2
0 ≥

c′0rX
2(‖t∗‖1) = Ψ(‖t∗‖1). Let t′ = t∗+αt(t−t∗) for some 0 < αt < 1 be such that ‖t′−t∗‖1 =

2K
′
0ρ∗. By definition of K ′0 and ρ′0, we have ‖X(t′−t∗)‖L2

N
≥ r′0. Therefore, since AK′0 ⊂ Ω′0,

we have |PNMt′−t∗ | ≤ (1/2)‖X(t′ − t∗)‖2
L2
N

which implies that PNQt′−t∗ + PNMt′−t∗ > 0

and therefore by an homogeneity argument that PNQt−t∗ + PNMt−t∗ > 0. Finally, given
that Rt̂,t∗ ≥ 0 we conclude that PNLΨ

t > 0.

This proves that t̂ lies in the central zone in both cases ρ∗ ≤ 2ρ′0 and ρ∗ > 2ρ′0. But,
now given that A′0 ⊂ Ω′0, we have

|PNMt̂−t∗ | ≤
1

2
max

(
rX(ρ∗)2, ‖X(t̂− t∗)‖2L2

N

)
.

If ‖X(t̂− t∗)‖2
L2
N
≤ rX(ρ∗)2 the proof is over and otherwise |PNMt̂−t∗ | ≤ (1/2)‖X(t̂− t∗)‖2

L2
N

which implies that ‖t̂− t∗‖2
L2
N
≤ 2Ψ(‖t∗‖1) ≤ 2c′0rX(ρ∗)2 because

0 ≥ PNLΨ
t̂
≥ 1

2
‖t̂− t∗‖2L2

N
+ Ψ(‖t̂‖1)−Ψ(‖t∗‖1).

This proves, on the event Ω′0, that ‖t̂− t∗‖2
L2
N
≤ 2c′0rX(ρ∗)2.
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