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Median-of-means (MOM) based procedures have been recently
introduced in learning theory [43, 35]. These estimators outperform
classical least-squares estimators when data are heavy-tailed and/or
are corrupted. None of these procedures can be implemented, which
is the major issue of current MOM procedures [44].

In this paper, we introduce minmax MOM estimators and show
that they achieve the same subgaussian deviation bounds as the al-
ternatives [43, 35], both in small and high-dimensional statistics. In
particular, these estimators are efficient under moments assumptions
on data that may have been corrupted by a few outliers.

Besides these theoretical guarantees, the definition of minmax
MOM estimators suggests simple and systematic modifications of
standard algorithms used to approximate least-squares estimators
and their regularized versions. As a proof of concept, we perform
an extensive simulation study of these algorithms for robust versions
of the LASSO.

1. Introduction. Consider the least-squares regression problem where,
given a dataset (Xi, Yi)i∈{1,...,N} of points in X ×R and a new input X ∈ X ,
one wants to predict the associated real valued output Y ∈ R. A classical
approach is to consider (X,Y ) as a random variable with values in X × R
and, given a set F of functions f : X → R, to look for the oracle in F , which
is defined by

f∗ ∈ argmin
f∈F

P (Y − f(X))2 .

To estimate f∗, we have a dataset (Xi, Yi)i∈{1,...,N} for which there exists
a partition {1, . . . , N} = O ∪ I such that data (Xi, Yi)i∈I are inliers or
informative and data (Xi, Yi)i∈O are “outliers” in the sense that nothing is
assumed on these data. On inliers, one grants independence and finiteness
of some moments, allowing for “heavy-tailed” data. Moreover, departing
from the independent and identically distributed (i.i.d.) setup, we also allow
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2 G. LECUÉ AND M. LERASLE

inliers to have different distributions than (X,Y ). We assume that, for all
i ∈ I and all f ∈ F ,

E[(Yi − f∗(Xi))(f − f∗)(Xi)] = E[(Y − f∗(X))(f − f∗)(X)]

E[(f − f∗)2(Xi)] = E[(f − f∗)2(X)] .

These assumptions imply that the distribution P of (X,Y ) and the dis-
tribution Pi of (Xi, Yi) for i ∈ I induce the same L2-geometry on F − f∗ =
{f − f∗ : f ∈ F} and therefore, in particular, that the oracles w.r.t. P and
Pi for any i ∈ I are the same. Of course, the sets O and I are unknown to
the statistician.

Regression problems with possibly heavy-tailed inliers cannot be handled
by classical least-squares estimators, which are particular instances of em-
pirical risk minimizers (ERM) of Vapnik [67]. Least-squares estimators have
subgaussian deviations under stronger assumptions, such as boundedness
[45] or sub-gaussian [38] assumptions on the noise and the design. In this
paper, the main hypothesis is the small ball assumption of [32, 49] which says
that L2(P ) and L1(P ) norms are equivalent over F −f∗ – see Section 3.1 for
details. Although sometimes restrictive [58, 26], this assumption does not
involve high moment conditions unnecessary for the problem to make sense.

Least-squares estimators and their regularized versions are also useless in
corrupted environments. This has been known for a long time and can easily
be checked in practice. Figure 1 for example shows estimation bounds of the
LASSO [60] on a dataset containing a single outlier in the outputs.

Fig 1. Estimation error of the LASSO (blue curve) and MOM LASSO (red curve) after
one outliers was added at observation 100.

These restrictions of least-squares estimators gave rise in the 1960’s to
the theory of robust statistics of John Tukey [61, 62], Peter Huber [27,



ROBUST MACHINE LEARNING BY MEDIAN-OF-MEANS 3

28] and Frank Hampel [24, 25]. The most classical alternatives to least-
squares estimators are M -estimators, which are ERM based on loss func-
tions `f (X,Y ) less sensitive to outliers than the square loss, such as a trun-
cated version of the square loss. The idea is that, while (Yi − f(Xi))

2 can
be very large for some outliers data and influence all the empirical mean
N−1

∑N
i=1(Yi − f(Xi))

2, the influence of these anomalies will be asymptoti-
cally null if `f (Xi, Yi) is bounded. Recent works study deviation properties
of M -estimators: [22, 57, 21, 56] considered the Huber-loss in linear regres-
sion with heavy-tailed noise and subgaussian design. They obtain minimax
optimal deviation bounds in this setting. The limitation on the design is not
surprising: it is well known that M -estimators using loss functions such as
Huber or L1 loss are not robust to outliers in the inputs Xi. This problem is
called the“leverage points problem” [29]. In a slightly different approach than
M -estimation, [6] proposed a minmax estimator based on losses introduced
in [18] in a least-squares regression framework and prove optimal subgaus-
sian bounds under a L2 assumption on the noise and a L4/L2 assumption
on the design, which is close to the assumptions we grant on inliers.

This paper focuses on Median-of-means (MOM) [2, 30, 54], which provide
alternatives to M -estimators. MOM estimators of the real valued expecta-
tion E[Z] are built as follows, the dataset Z1, . . . , ZN is partitioned into
blocks (Zi)i∈Bk , k = 1, . . . ,K of the same cardinality. The MOM estimator
is the median of the K empirical means constructed on each block:

MOMK

(
Z
)

= median

 1

|Bk|
∑
i∈Bk

Zi, k = 1, . . . ,K

 .

Subgaussian properties of these estimators can be found in [20, 40].
As in [43, 35], MOM estimators are used to estimate real valued incre-

ments of square risks P [(Y − f(X))2 − (Y − g(X))2], where f, g ∈ F . This
construction does not require a notion of median in dimension larger than
1, contrary to “geometric median-of-means” approach presented in [52, 51].
In [43, 35], each f ∈ F receives a score which is the L2(P )-diameter ∆(f)
of the set B(f), where g ∈ B(f) if MOMK

(
`f − `g

)
< 0. The approach of

[43, 35] requires therefore an evaluation of the diameter of the sets B(f) for
all f ∈ F , which makes the procedure impossible to implement.

This paper presents an alternative to [43, 35] which relies on the following
minmax formulation. By linearity of P , f∗ is solution of:

f∗ ∈ argmin
f∈F

sup
g∈F

P [(Y − f(X))2 − (Y − g(X))2] .
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Replacing the real valued means P [(Y − f(X))2 − (Y − g(X))2] in this
equation by their MOM estimators produces the minmax MOM estimators
of f∗ which are rigorously introduced in Section 2.3. Compared with [43,
35], minmax MOM estimators do not require an estimation of L2-distances
between elements in F and are therefore simpler to define. Minmax strategies
have also been considered in [6] and [9, 8]. The idea of building estimators
of f∗ from estimators of increments goes back to seminal works by Le Cam
[33, 34] and was further developed by Birgé with the T -estimators [14]. In
Le Cam and Birgé’s works, the authors used “robust tests” to compare
densities f and g and deduce from these an alternative to the non-robust
maximum likelihood estimators. Baraud [10] showed that robust tests could
be obtained by estimating the difference of Hellinger risks of f and g and
used a variational formula to build these new tests. Finally, Baraud, Birgé
and Sart [9] used Baraud’s estimators of increments in a minmax procedure
to build ρ-estimators.

The first aim of this paper is to show that minmax MOM estimators
satisfy the same subgaussian deviation bounds as other MOM estimators [42,
35]. The analysis of minmax MOM estimators is conceptually and technically
simpler: an adaptation of Lemmas 5.1 and 5.5 in [43] or Lemmas 2 and 3
[35] is sufficient to prove subgaussian bound for minmax MOM estimators
while a robust estimation (based on MOM estimates) of the L2(P )-metric
was required in [42, 35].

Another advantage of the minmax MOM approach lies in the Lepski-step
(see Theorem 2), which selects adaptively the number K of blocks. This step
is way easier to implement and to study than the one presented in [35], as
only one confidence region is sufficient to grant adaptation with respect to
the excess risk, the regularization and L2 norms. Recall that, in corrupted
environments, a data-driven choice of K has to be performed since K must
be larger than twice the (unknown) number of outliers. Note that the idea of
aggregating estimators built on blocks of data and selecting the number of
blocks by Lepski’s method was already present in Birgé [13, proof of Theorem
1]. It was also used in [20] to build “multiple-δ” subgaussian estimators of
univariate means.

In our opinion, the most interesting feature of the minmax formulation is
that it suggests a generic method to modify descent algorithms designed to
approximate ERM and their regularized versions and make them efficient
even if run on corrupted datasets. Let us give a rough presentation of a
“MOM version” of descent algorithms: at each time-step t, all empirical
means PBk(Y − ft(X))2 for k = 1, . . . ,K are evaluated and one computes
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the index kmed ∈ [K] of the block such that

PBkmed
(Y − ft(X))2 = med

{
PBk(Y − ft(X))2, k = 1, . . . ,K

}
.

The descent direction is the opposite gradient−∇(f → PBkmed
(Y−f(X))2)|f=ft .

This descent algorithm can be turned into a descent-ascent algorithm ap-
proximating minmax MOM estimators. Section 5 presents several examples
of modifications of classical algorithms.

In practice, these basic algorithms perform poorly when applied on a
fixed partition of the dataset. However, empirical performance are improved
when the partition is chosen uniformly at random at each descent step of
the algorithm, cf. Section 6.2. In particular, the shuffling step prevents the
algorithms to converge to local minimaxima. Besides, randomized algorithms
define a notion of depth of data: each time a data belongs to the median
block, its “score” is incremented by 1. The higher the final score is, the
deeper is the data. This notion of depth is based on the risk function which
is natural in a learning framework and should probably be investigated more
carefully in future works. It also suggests an empirical definition of outliers
and therefore an outliers detection algorithm. This by-product is presented
in Section 6.2.

The paper is organized as follows. Section 2 introduces the framework and
presents the minmax MOM estimator, Section 3 details the main theoretical
results. These are illustrated in Section 4 on some classical problems of
machine learning. Many robust versions of standard optimization algorithms
are presented in Section 5. An extensive simulation study illustrating our
results is performed in Section 6. Proofs of the main results, complementary
theorems showing minimax optimality of our bounds are postponed to the
supplementary material.

2. Setting. Let X denote a measurable space. Let (Xi, Yi)i∈{1,...,N},
(X,Y ) denote random variables taking values in X × R. Let P denote the
distribution of (X,Y ) and, for i ∈ {1, . . . , N}, let Pi denote the distribu-
tion of (Xi, Yi). Let F denote a convex class of functions f : X → R and
suppose that E[Y 2] < ∞. For any Q ∈ {P, (Pi)i∈[N ]} and any p > 1, let

LpQ denote the set of functions f such that the norm ‖f‖LpQ = (Q|f |p)1/p,

where Qg = EZ∼Q[g(Z)]. Assume that F ⊂ L2
P . For any (x, y) ∈ X ×R, let

`f (x, y) = (y − f(x))2 denote the square loss and let f∗ denote an oracle

(1) f∗ ∈ argmin
f∈F

P`f where ∀g ∈ L1
P , Pg = E[g(X,Y )] .
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Let R(f) = P`f denote the risk. The goal is to build estimators f̂ satis-
fying: with probability at least 1− δ,

R(f̂) ≤ min
f∈F

R(f) + r
(1)
N and

∥∥∥f̂ − f∗∥∥∥
L2
P

≤ r(2)
N .

The residue r
(1)
N of the oracle inequality, the estimation rate r

(2)
N and the

confidence level δ should be as small as possible. Oracle inequalities provide
risk bounds for the estimation the regression function f(x) = E[Y |X = x]:

R(f̂) ≤ R(f∗) + r
(1)
N is equivalent to

‖f − f̂‖2L2
P
6 ‖f − f∗‖2L2

P
+ r

(1)
N .

Finally, let ‖·‖ be a norm defined on the span of F ; ‖·‖ will be used as
a regularization norm to induce some low dimensional structure or some
regularity, such as the `1 or SLOPE norm (see Section 4).

2.1. Minmaximization. The oracle f∗ is solution of the minmax problem:

(2) f∗ ∈ argmin
f∈F

P`f = argmin
f∈F

sup
g∈F

P (`f − `g) .

Any estimator of real valued expectations P`f or P (`f − `g) can be plugged
in (2) to obtain estimators of f∗. Plugging the empirical means (in both the
min and the minmax problems) yields the classical ERM over F for example.
In general, plugging non-linear (robust or not) estimators of the mean in
the minmax problem or in the min problem in (2) does not yield the same
estimator of f∗ though. The main advantage of the minmax formulation is
that it allows to bound the risk of the estimator using the complexity of F
around f∗. This “localization” idea is central to derive optimal (fast) rates
for the ERM [31, 45, 15] and cannot be used directly when empirical means
are simply replaced by non linear estimators of the mean in a minimization
formulation.

2.2. MOM estimators. Let K denote an integer smaller than N/2 and let
B1, . . . , BK denote a partition of [N ] = {1, . . . , N} into blocks of equal size
N/K (w.l.o.g. we assume that K divides N). For all functions L : X×R→ R
and k ∈ [K] = {1, . . . ,K}, let PBkL = |Bk|−1

∑
i∈Bk L(Xi, Yi).

For all α ∈ (0, 1) and real numbers x1, . . . , xK , denote by Qα(x1, . . . , xK)
the set of α-quantiles of {x1, . . . , xK}:

{u ∈ R : |{k ∈ [K] : xk > u}| > (1− α)`, |{k ∈ [K] : xk 6 u}| > α`}
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and let Qα(x) denote any point in Qα(x1, . . . , xK). For x = (x1, . . . , xK) ∈
RK and t ∈ R, we say that Qα(x) > t when there exists J ⊂ [K] such that
|J | > (1− α)K and for all k ∈ J, xk > t; we write Qα(x) 6 t if there exists
J ⊂ [K] such that |J | > αK and for all k ∈ J, xk 6 t.

Let y = (y1, . . . , yK) ∈ RK . We write Q1/2(x − y) 6 Q3/4(x) − Q1/4(y)
when there exist u, l ∈ R such that Q1/2(x − y) 6 u − l, Q3/4(x) 6 u and
Q1/4(y) > l.

Definition 1. Let α ∈ (0, 1), K ∈ [N ]. For any L : X × R → R
the α-quantile on K blocks of L is Qα,K(L) = Qα((PBkL)k∈[K]). In
particular, the Median-of-Means (MOM) of L on K blocks is defined as
MOMK

(
L
)

= Q1/2,K(L). For all f, g ∈ F , the MOM estimator on K
blocks of the loss increment from g to f is defined by

TK(g, f) = MOMK

(
`f − `g

)
and, for a given regularization parameter λ > 0, its regularized version is

TK,λ(g, f) = MOMK

(
`f − `g

)
+ λ(‖f‖ − ‖g‖) .

2.3. Minmax MOM estimators. Minmax MOM estimators are obtained
by replacing the unknown expectations P (`f − `g) in (2) by their MOM
estimators.

Definition 2. For any K ∈ [N/2], let

(3) f̂K ∈ argmin
f∈F

max
g∈F

TK(g, f) and f̂K,λ ∈ argmin
f∈F

max
g∈F

TK,λ(g, f).

We shall provide results for f̂K,λ only in the main text. The estimators f̂K
are studied in the supplement in Section 7.

Remark 1 (K = 1 and ERM). If one chooses K = 1 then for all
f, g ∈ F , TK(g, f) = PN (`f − `g) and it is straightforward to check that f̂K
and f̂K,λ are respectively the Empirical risk Minimization (ERM) and its
regularized version (RERM).

3. Assumptions and main results. Denote by {O, I} a partition of
[N ] and by |O| the cardinality of O. On (Xi, Yi)i∈O, no assumptions is
granted, these data are outliers. They may not be independent, nor indepen-
dent from the remaining data (not even random). (Xi, Yi), i ∈ I are called
inliers or informative data. They are hereafter assumed independent. The
sets O, I are unknown.
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3.1. Assumptions. The main assumptions involve first and second mo-
ments of the functions in F and Y under the distributions P, (Pi)i∈I .

Assumption 1. For all f ∈ F and all i ∈ I,

Pi(f − f∗)2 = P (f − f∗)2 and Pi[ζ(f − f∗)] = P [ζ(f − f∗)] .

where ζ(x, y) = (y − f∗(x)) for all x ∈ X and y ∈ R.

Assumption 1 holds in the i.i.d. framework, with I = [N ] but it covers
also other cases where inliers follow different distributions (see, for instance,
multimodal datasets such as in [46] or heteroscedastic noise [4]). It is also
possible to weaken Assumption 1 such as in [35]. The second assumption
bounds the correlation between ζi = Yi−f∗(Xi) and the shifted class F−f∗.

Assumption 2. There exists θm > 0 such that, for any i ∈ I and f ∈ F ,

var(ζi(f − f∗)(Xi)) 6 θ2
m ‖f − f∗‖

2
L2
P
.

Assumption 2 holds when data are i.i.d. and Y − f∗(X) has uniformly
bounded L2-moments conditionally to X. This last assumption holds when
Y − f∗(X) is independent of X and has a L2-moment bounded by θm.
Assumption 2 also holds if, for all i ∈ I, ‖ζ‖L4

Pi

6 θ2 <∞ – where ζ(x, y) =

y − f∗(x) for all x ∈ X and y ∈ R – and, for every f ∈ F , ‖f − f∗‖L4
Pi

6

θ1 ‖f − f∗‖L2
P

. Actually, in this case,√
var(ζi(f − f∗)(Xi)) 6 ‖ζ‖L4

Pi

‖f − f∗‖L4
Pi

6 θ1θ2 ‖f − f∗‖L2
P
,

so Assumption 2 holds for θm = θ1θ2. The third assumption states that the
norms L2

P and L1
P are equivalent over F − f∗.

Assumption 3. There exists θ0 > 1 such that for all f ∈ F and i ∈ I,

‖f − f∗‖L2
P
6 θ0 ‖f − f∗‖L1

Pi

.

Under Assumption 1, ‖f − f∗‖L1
Pi

6 ‖f − f∗‖L2
Pi

= ‖f − f∗‖L2
P

for all

f ∈ F and i ∈ I, hence, Assumptions 1 and 3 imply that the norms
L1
P , L

2
P , L

2
Pi
, L1

Pi
, i ∈ I are equivalent over F−f∗. Assumption 3 is equivalent

to the small ball property (cf. [32, 49]), see Proposition 1 in [35].
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3.2. Complexity measures. For all ρ, r > 0, let

B(f∗, ρ) = {f ∈ F : ‖f − f∗‖ 6 ρ}, B2(f∗, r) = {f ∈ F : ‖f − f∗‖L2
P
6 r} .

Definition 3. Let (εi)i∈[N ] be independent random variables uniformly

distributed in {−1, 1}, independent from (Xi, Yi)
N
i=1. For all f ∈ F , r > 0

and ρ ∈ (0,+∞], let

Breg(f, ρ, r) =
{
g ∈ F : ‖g − f‖L2

P
6 r, ‖g − f‖ 6 ρ

}
.

Let ζi = Yi − f∗(Xi) for all i ∈ I and for γQ, γM > 0 define rQ(ρ, γQ) as

inf

{
r > 0 : sup

J⊂I,|J |>N/2
E sup
f∈Breg(f∗,ρ,r)

∣∣∣∣∣ 1

|J |
∑
i∈J

εi(f − f∗)(Xi)

∣∣∣∣∣ 6 γQr

}
,

and rM (ρ, γM ) as

inf

{
r > 0 : sup

J⊂I,|J |>N/2
E sup
f∈Breg(f∗,ρ,r)

∣∣∣∣∣ 1

|J |
∑
i∈J

εiζi(f − f∗)(Xi)

∣∣∣∣∣ 6 γMr
2

}
.

Let ρ→ r(ρ, γQ, γM ) be a continuous and non decreasing function such that
for every ρ > 0, r(ρ) = r(ρ, γQ, γM ) > max{rQ(ρ, γQ), rM (ρ, γM )}.

It follows from Lemma 2.3 in [38] that rM and rQ are continuous and non
decreasing functions, that depend on f∗. According to [38], for appropriate
choice of γQ, γM , r(ρ) = max(rM (ρ, γM ), rQ(ρ, γQ)) is the minimax rate of
convergence over B(f∗, ρ). Note also that rQ and rM are well defined when
|I| > N/2, meaning that at least half data should be informative.

3.3. The sparsity equation. Risk bounds follow from upper bounds on
TK,λ(f, f∗) for functions f far from f∗ either in L2

P -norm or for the regu-
larization norm ‖·‖. Let f ∈ F and let ρ = ‖f − f∗‖. When ‖f − f∗‖L2

P

is small, TK,λ has to be bounded from above by λ(‖f∗‖ − ‖f‖). To bound
‖f∗‖ − ‖f‖ from bellow, introduce the subdifferentials of ‖·‖. Let (E∗, ‖·‖∗)
be the dual normed space of (E, ‖·‖) and for all f ∈ F , let

(∂ ‖·‖)f = {z∗ ∈ E∗ : ∀h ∈ E, ‖f + h‖ > ‖f‖+ z∗(h)} .

For any ρ > 0, let Hρ denote the set of functions “close” to f∗ in L2
P and

at distance ρ from f∗ in regularization norm and let Γf∗(ρ) denote the set
of subdifferentials of all vectors close to f∗:

Γf∗(ρ) =
⋃

f∈F :‖f−f∗‖6ρ/20

(∂ ‖·‖)f
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and Hρ = {f ∈ F : ‖f − f∗‖ = ρ and ‖f − f∗‖L2
P
6 r(ρ)}. If there exists

f∗∗ such that ‖f∗ − f∗∗‖ 6 ρ/20 and (∂ ‖·‖)f∗∗ is almost all the unit dual
sphere, then ‖f‖ − ‖f∗∗‖ is large for any f ∈ Hρ so ‖f‖ − ‖f∗‖ > ‖f‖ −
‖f∗∗‖ − ‖f∗ − f∗∗‖ is large as well. Formally, for all ρ > 0, let

∆(ρ) = inf
f∈Hρ

sup
z∗∈Γf∗ (ρ)

z∗(f − f∗) .

The sparsity equation, introduced in [39], quantifies these notions of “large”.

Definition 4. A radius ρ > 0 is said to satisfy the sparsity equation
when ∆(ρ) > 4ρ/5.

If ρ∗ satisfies the sparsity equation, so do all ρ > ρ∗. Let

ρ∗ = inf

(
ρ > 0 : ∆(ρ) >

4ρ

5

)
.

If ρ > 20 ‖f∗‖, then 0 ∈ Γf∗(ρ). Moreover, (∂ ‖·‖)0 is the unit ball of
(E∗, ‖·‖∗), so ∆(ρ) = ρ. This implies that any ρ > 20 ‖f∗‖ satisfies the
sparsity equation. This simple observation can be used to get “complexity-
dependent rates of convergence” [37].

3.4. Main results. The first results give risk bounds for f̂K,λ. Similar
bounds have been obtained for other MOM estimators [42, 35].

Theorem 1. Grant Assumptions 1, 2 and 3 and let rQ, rM denote the
complexity functions introduced in Definition 3. Assume that N > 384θ2

0

and |O| 6 N/(768θ2
0). Let ρ∗ be solution to the sparsity equation from

Definition 4. Let ε = 1/(833θ2
0) and r2(·) is defined in Definition 3 for

γQ = (384θ0)−1 and γM = ε/192. Let K∗ denote the smallest integer such
that

K∗ >
Nε2

384θ2
m

r2(ρ∗) .

For any K > K∗, define the radius ρK and the regularization parameter as

r2(ρK) =
384θ2

m

ε2
K

N
and λ =

16εr2(ρK)

ρK
.

Then, for all K ∈ [max(K∗, 8|O|), N/(96θ2
0)], with probability larger than

1− 4 exp(−7K/9216), the estimator f̂K,λ defined in Section 2.3 satisfies∥∥∥f̂K,λ − f∗∥∥∥ 6 2ρK ,
∥∥∥f̂K,λ − f∗∥∥∥

L2
P

6 r(2ρK),

R(f̂K,λ) 6 R(f∗) + (1 + 52ε)r2(2ρK) .
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The function r is used to define the regularization parameter in Theo-
rem 1, so it cannot depend on f∗. When rM , rQ depend on f∗, r should be
a computable upper bound independent from f∗. The best rates of estima-
tion and prediction that follow from Theorem 1 are obtained for K = K∗

when |O| ≤ K∗/8 ∼ Nr2(ρ∗). In that case, it is proved in Section 4 on two
examples that the rate ρK∗ and the residue r(2ρK∗) are minimax optimal.
In a setup where data only induce the same L2 metric as P and may have
been corrupted by up to K∗/8 ∼ Nr2(ρ∗) outliers, Theorem 1 shows that
our estimators achieve the subgaussian deviations bounds of the ERM when
data are i.i.d. with a noise ζ independent of X and both X and ζ have
Gaussian distributions (see Section 8 in the supplement).

3.4.1. Adaptive choice of K. In Theorem 1, all rates depend on K, which
has to be larger than the number of outliers and Nr2(ρ∗). These quanti-
ties are unknown in general, for instance, Nr2(ρ∗) ∼ s log(ed/s) in high-
dimensional statistics where s is the unknown sparsity parameter. This sec-
tion presents an adaptive choice of K inspired from Lepski’s method that
allows to bypass this issue. However, this construction requires the knowl-
edge of constants θ0 and θm (see Section 6.1 for a fully data driven choice
of K in practice).

For all J ∈ [K], λ > 0, f ∈ F and cad > 0, let

CJ,λ(f) = sup
g∈F

TJ,λ(g, f) and R̂J,cad =

{
f ∈ F : CJ,λ

(
f
)
6
cad
θ2

0

r2(ρJ)

}
.

Let K̂cad = inf
{
K ∈ [1, N/(96θ2

0)] : ∩N/(96θ20)
J=K R̂J,cad 6= ∅

}
and

f̂cad ∈
N/(96θ20)⋂
J=K̂cad

R̂J,cad .(4)

The following theorem gives risk bounds for these estimators. Bounds in
regularization and L2

P norms have been proved for Le Cam test estimators
in [35]. To the best of our knowledge, adaptive bounds in excess risk have
never been proved before.

Theorem 2. Grant the assumptions of Theorem 1. Choose cad = 18/833
in (4) and let ε = (833θ2

0)−1. For any K ∈ [max(K∗, 8|O|), N/(96θ2
0)], with

probability larger than

1− 4 exp(−K/2304) = 1− 4 exp
(
−ε2Nr2(ρK)/884736

)
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one has
∥∥∥f̂cad − f∗∥∥∥ 6 2ρK ,

∥∥∥f̂cad − f∗∥∥∥
L2
P

6 r(2ρK) and

R(f̂cad) 6 R(f∗) + (1 + 52ε)r2(2ρK) ,

In particular, for K = K∗, we have r(2ρK∗) = max
(
r(2ρ∗),

√
|O|/N

)
.

Theorem 2 shows that f̂cad achieves similar performance as f̂K,λ simul-
taneously for all K from K∗ to O(N). For K = K∗, these rates match the
optimal minimax rates of convergence, see Section 4. The main difference
with Theorem 1 is that the knowledge of K∗ and |O| is not necessary to
design f̂cad . This is very useful in applications where these quantities are
typically unknown. Moreover, both the construction and the analysis are
much simpler for f̂cad than the adaptive estimator in [35] since they are
based on the analysis of confidence regions for CJ,λ only, instead of multiple
criteria in [35].

Remark 2 (deviation parameter). Note that r(·) can be any continuous,
non decreasing function such that r(ρ) > max (rQ(ρ, γQ), rM (ρ, γM )). In par-
ticular, if r∗ : ρ→ max (rQ(ρ, γQ), rM (ρ, γM )) is continuous, as it is clearly
non decreasing, then for every x > 0, r(ρ) = max (rQ(ρ, γQ), rM (ρ, γM )) +
x/N is another non decreasing upper bound. Therefore, one can derive re-
sults similar to Theorem 2 but with an extra confidence parameter: for all
x > 0, with probability at least 1− 4 exp(−c0Nr

2
∗(ρK∗) + c0x),∥∥∥f̂cad − f∗∥∥∥ 6 2ρK ,

∥∥∥f̂cad − f∗∥∥∥
L2
P

6 r∗(2ρK) +
x

N

R(f̂cad) 6 R(f∗) + (1 + 52ε)
(
r2(2ρK) +

x

N

)
.

In that case, f̂cad depends on x since λ = 16ε(r∗(ρK) + x/N)/ρK .

4. Examples of applications. This section presents two examples of
regularization in high-dimensional statistics: the `1 and the SLOPE norms.

4.1. The LASSO. The LASSO is obtained when F = {
〈
t, ·
〉

: t ∈ Rd}
and the regularization function is the `1-norm :

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(〈
t,Xi

〉
− Yi

)2
+ λ‖t‖1

)
, where ‖t‖1 =

d∑
i=1

|ti| .

Even if recent advances show some limitations of LASSO [69, 64, 55], it
remains the benchmark estimator in high-dimensional statistics because a



ROBUST MACHINE LEARNING BY MEDIAN-OF-MEANS 13

high dimensional parameter space does not significantly affect its perfor-
mance as long as t∗ is sparse. One can refer to [12, 41, 65, 66, 48, 53, 63]
for estimation and sparse oracle inequalities, [47, 70, 7] for support recovery
results; more results and references on LASSO can be found in [17, 31].

4.2. SLOPE. SLOPE is an estimator introduced in [16, 59]. The class
F is still F = {

〈
t, ·
〉

: t ∈ Rd} and the regularization function is defined for

parameters β1 > β2 > ... > βd > 0 by ‖t‖SLOPE =
∑d

i=1 βit
]
i , where (t]i)

d
i=1

denotes the non-increasing re-arrangement of (|ti|)di=1. SLOPE norm is a
weighted `1-norm that coincide with `1-norm when (β1, ..., βd) = (1, ..., 1).

4.3. Classical results for LASSO and SLOPE. Typical results for LASSO
and SLOPE have been obtained when data are i.i.d. with subgaussian design
X and, most of the time, subgaussian noise ζ as well.

Definition 5. Let `d2 be a d-dimensional inner product space and let X
be a random variable with values in `d2. We say that X is isotropic when for
every t ∈ `d2, ‖

〈
X, t

〉
‖L2

P
= ‖t‖2

`d2
and it is L-subgaussian if for every t ∈ `d2

and every p > 2, ‖
〈
X, t

〉
‖LpP 6 L

√
p‖
〈
X, t

〉
‖L2

P
.

The covariance structure of an isotropic random variable coincides with
the inner product in `d2. If X is a L-subgaussian random vector, the LpP
norms of all linear forms do not grow faster than the LpP norm of a Gaussian
variable. When dealing with the LASSO and SLOPE, the natural Euclidean
structure is used in Rd.

Assumption 4. 1. Data are i.i.d. (in particular, |I| = N and |O| =
0, i.e. there is no outlier),

2. X is isotropic and L-subgaussian,
3. for f∗ =

〈
t∗, ·
〉
, ξ = Y − f∗(X) ∈ Lq0P for some q0 > 2.

Assumption 4 requires a Lq0 for q0 > 2 moment on the noise. LASSO and
SLOPE still achieve optimal rates of convergence under this assumption but
with a severely deteriorated probability estimate.

Theorem 3 (Theorem 1.4 in [36]). Grant Assumption 4. Let s ∈ [d].
Assume that N > c1s log(ed/s) and that there is some v ∈ Rd supported
on at most s coordinates for which ‖t∗ − v‖1 6 c2‖ξ‖Lq0P s

√
log(ed)/N . The

Lasso estimator t̂ with regularization parameter λ = c3‖ξ‖Lq0P
√

log(ed)/N is

such that with probability at least

(5) 1− c4 logq0 N

N q0/2−1
− 2 exp (−c5s log(ed/s))
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for every 1 6 p 6 2

∥∥t̂− t∗∥∥
p
6 c6‖ξ‖Lq0P s

1/p

√
log(ed)

N
.

The constants (cj)
6
j=1 depend only on L and q0.

Theorem 3 shows that LASSO achieves its optimal rate (cf. [12]) if t∗ is
close to a sparse vector and the noise ζ may be heavy tailed and may not be
independent from X. On the other hand, the dataset cannot contain outliers
and the data should be i.i.d. with subgaussian design matrix X.

Turning to SLOPE, recall the following result for the regularization norm
Ψ(t) =

∑d
j=1 βjt

]
j when βj = C

√
log(ed/j).

Theorem 4 (Theorem 1.6 in [36]). Consider the SLOPE under As-
sumption 4. Assume that N > c1s log(ed/s) and that there is v ∈ Rd such
that |supp(v)| 6 s and Ψ(t∗ − v) 6 c2‖ξ‖Lq0P s log(ed/s)/

√
N . The SLOPE

estimator with λ = c3‖ξ‖Lq0P /
√
N satisfies, with probability at least (5),

Ψ(t̂− t∗) 6 c4‖ξ‖Lq0P
s√
N

log
(ed
s

)
,

∥∥t̂− t∗∥∥2

2
6 c5‖ξ‖2Lq0P

s

N
log
(ed
s

)
.

The constants (cj)
5
j=1 depend only on L and q0.

4.4. Minmax MOM LASSO and SLOPE. In this section, Theorem 2 is
applied to the set F of linear functionals indexed by Rd with regularization
functions being either the `1 or the SLOPE norm. The aim is to show that
the results from Section 4.3 hold and are sometimes even improved by MOM
versions of LASSO and SLOPE under weaker assumptions and with a better
probability deviation. Start with the new set of assumptions.

Assumption 5. Denote by (ej)
d
j=1 the canonical basis of Rd and assume

1. (X,Y ), (Xi, Yi)i∈I are i.i.d.
2. X is isotropic and for every t ∈ Rd, p ∈ [C0 log(ed)] and j ∈ [d],∥∥〈X, ej〉∥∥LpP 6 L

√
p
∥∥〈X, ej〉∥∥L2

P
,

3. ξ = Y −
〈
t∗, X

〉
∈ Lq0P for some q0 > 2.

4. there exists θ0 such that for all t ∈ Rd,
∥∥〈X, t〉∥∥

L2
P
6 θ0

∥∥〈X, t〉∥∥
L1
P

,

5. there exists θm such that var(ξ
〈
X, t

〉
) 6 θm

∥∥〈X, t〉∥∥
L2
P

.

In order to apply Theorem 2, we have to compute the fixed point functions
rQ(·), rM (·) and solve the sparsity equation in both cases. To compute the
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fixed point functions, recall the definition of Gaussian mean widths: for a
set V ⊂ Rd, the Gaussian mean width of V is defined as

(6) `∗(V ) = E sup
v∈V

〈
G, v

〉
, where G ∼ Nd(0, Id) .

The dual norm of the `d1-norm is the `d∞-norm which is 1-unconditional
with respect to the canonical basis of Rd [50, Definition 1.4]. Therefore, [50,
Theorem 1.6] applies under the following assumption.

Assumption 6. There exist constants q0 > 2, C0 and L such that ξ ∈
Lq0P , X is isotropic and for every j ∈ [d] and 1 6 p 6 C0 log d,

∥∥〈X, ej〉∥∥LpP 6

L
√
p
∥∥〈X, ej〉∥∥L2

P
.

Under Assumption 6, if σ = ‖ξ‖Lq0P , [50, Theorem 1.6] shows that for ζi =

Yi −
〈
Xi, t

∗〉 and for every ρ > 0,

E sup
v∈ρBd1∩rBd2

∣∣∣∣∣∣
∑
i∈[N ]

εi
〈
v,Xi

〉∣∣∣∣∣∣ 6 c2

√
N`∗(ρBd

1 ∩ rBd
2) ,

E sup
v∈ρBd1∩rBd2

∣∣∣∣∣∣
∑
i∈[N ]

εiζi
〈
v,Xi

〉∣∣∣∣∣∣ 6 c2σ
√
N`∗(ρBd

1 ∩ rBd
2) .

Local Gaussian mean widths `∗(ρBd
1 ∩ rBd

2) are bounded from above in [39,
Lemma 5.3] and computations of rM (·) and rQ(·) follow

r2
M (ρ) .L,q0,γM

σ
2 d
N if ρ2N > σ2d2

ρσ

√
1
N log

(
eσd
ρ
√
N

)
otherwise

,

r2
Q(ρ)

{
= 0 if N &L,γQ d

.L,γQ
ρ2

N log
(
c(L,γQ)d

N

)
otherwise

.

Therefore, one can take
(7)

r2(ρ) ∼L,q0,γQ,γM


max

(
ρσ

√
1
N log

(
eσd
ρ
√
N

)
, σ

2d
N

)
if N &L d

max

(
ρσ

√
1
N log

(
eσd
ρ
√
N

)
, ρ

2

N log
(
d
N

))
otherwise

.

Now we turn to a solution of the sparsity equation for the `d1-norm. This
equation has been solved in [39, Lemma 4.2], we recall this result.
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Lemma 1. If there exists v ∈ Rd such that v ∈ t∗ + (ρ/20)Bd
1 and

|supp(v)| 6 cρ2/r2(ρ) then

∆(ρ) = inf
h∈ρSd−1

1 ∩r(ρ)Bd2

sup
g∈Γt∗ (ρ)

〈
h, g − t∗

〉
>

4ρ

5
.

where Sd−1
1 is the unit sphere of the `d1-norm and Bd

2 is the unit Euclidean
ball in Rd.

As a consequence, if N & s log(ed/s) and if there exists a s-sparse vector
in t∗ + (ρ/20)Bd

1 , Lemma 1 and the choice of r(·) in (7) imply that for
σ = ‖ξ‖Lq0 ,

ρ∗ ∼L,q0 σs

√
1

N
log

(
ed

s

)
and r2(ρ∗) ∼ σ2s

N
log

(
ed

s

)
then ρ∗ satisfies the sparsity equation and r2(ρ∗) is the rate of convergence
of the LASSO for λ ∼ r2(ρ∗)/ρ∗ ∼ ‖ξ‖Lq0P

√
log(ed/s)/N . This choice of

λ requires to know the sparsity parameter s. That is the reason why we
either need to choose a larger value for the r(·) function as in [36] – this
results in the suboptimal

√
log(ed)/N rates of convergence from Theorem 3

– or to use an adaptation step as in Section 3.4.1 – this results in the better
minimax rate

√
log(ed/s)/N . Finally, one needs to compute the radii ρK and

λ ∼ r2(ρK)/ρK . Let K ∈ [N ] and σ = ‖ξ‖Lq0 . The equation K = cr(ρK)2N
is solved by

(8) ρK ∼L,q0
K

σ

√
1

N
log−1

(
σ2d

K

)
for the r(·) function defined in (7). Therefore,

(9) λ ∼ r2(ρK)

ρK
∼L,q0 σ

√
1

N
log

(
eσd

ρK
√
N

)
∼L,q0 σ

√
1

N
log

(
eσ2d

K

)
.

The regularization parameter depends on the Lq0P -norm of ξ. This parameter
is unknown in practice. Nevertheless, it can be replaced by an estimator in
the regularization parameter as in [23, Sections 5.4 and 5.6.2].

The following result follows from Theorem 2 together with the previous
computation of ρ∗, rQ(·), rM (·), r(·) and λ.
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Theorem 5. Grant Assumption 5. Let s ∈ [d]. Assume that N >
c1s log(ed/s) and that there is some v ∈ Rd supported on at most s coordi-
nates for which ‖t∗ − v‖1 6 c2‖ξ‖Lq0s

√
log(ed)/N . Assume that |I| > N/2

and |O| 6 c3s log(ed/s). The MOM-LASSO estimator t̂ with the adaptively
chosen number of blocks K (and λ) from Section 3.4.1 satisfies, with prob-
ability at least 1− c4 exp(−c5s log(ed/s)), for every 1 6 p 6 2,

∥∥t̂− t∗∥∥
p
6 c6 ‖ξ‖Lq0 s

1/p

√
1

N
log

(
ed

s

)
,

where (cj)
6
j=1 depends only on θ0, θm and q0.

Proof. It follows from Theorem 2, the computation of r(ρK) from (7)
and ρK in (8) that with probability at least 1 − c0 exp(−cr(ρK)2N/C),∥∥t̂− t∗∥∥

1
6 ρK∗ and

∥∥t̂− t∗∥∥
2
. r(ρK). The result follows since ρK∗ ∼

ρ∗ ∼L,q0 σs
√

1
N log

(
ed
s

)
and ‖v‖p 6 ‖v‖−1+2/p

1 ‖v‖2−2/p
2 for all v ∈ Rd and

1 6 p 6 2.

Theoretical properties of MOM LASSO (cf. Theorem 5) outperform those
of LASSO (cf. Theorem 3) in several ways:

• Estimation rates achieved by MOM-LASSO are the actual minimax
rates s log(ed/s)/N , see [11], while classical LASSO estimators achieve
the rate s log(ed)/N . This improvement is possible thanks to the adap-
tation step in MOM-LASSO.
• the probability deviation in (5) is polynomial – 1/N (q0/2−1) – whereas

it is exponentially small for MOM LASSO. Exponential rates for LASSO
hold only if ξ is subgaussian (‖ξ‖Lp 6 C

√
p ‖ξ‖L2

for all p > 2).

• MOM LASSO is insensitive to data corruption by up to s log(ed/s)
outliers while only one outlier can be responsible of a dramatic break-
down of the performance of LASSO (cf. Figure 1).
• Assumptions on X are weaker for MOM LASSO than for LASSO. In

the LASSO case, we assume that X is subgaussian whereas for the
MOM LASSO we assume that the coordinates of X have C0 log(ed)
subgaussian moments and that X satisfies a L2/L1 equivalence as-
sumption.

Let us now turn to the study of a “minmax MOM version” of the SLOPE
estimator. The computation of the fixed point functions rQ(·) and rM (·)
rely on [50, Theorem 1.6] and the computation from [36]. Again, the SLOPE
norm has a dual norm which is 1-unconditional with respect to the canonical
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basis of Rd, [50, Definition 1.4]. Therefore, it follows from [50, Theorem 1.6]
that under Assumption 6, one has

E sup
v∈ρB∩rBd2

∣∣∣∣∣∣
∑
i∈[N ]

εi
〈
v,Xi

〉∣∣∣∣∣∣ 6 c2

√
N`∗(ρB ∩ rBd

2) ,

E sup
v∈ρB∩rBd2

∣∣∣∣∣∣
∑
i∈[N ]

εiζi
〈
v,Xi

〉∣∣∣∣∣∣ 6 c2σ
√
N`∗(ρB ∩ rBd

2) ,

where B is the unit ball of the SLOPE norm and ζi = Yi −
〈
Xi, t

∗〉. Lo-
cal Gaussian mean widths `∗(ρB ∩ rBd

2) are bounded from above in [39,
Lemma 5.3]: `∗(ρB ∩ rBd

2) . min{Cρ,
√
dr} when βj = C

√
log(ed)/j for all

j ∈ [d] and computations of rM (·) and rQ(·) follow:

r2
Q(ρ) .L


0 if N &L d

ρ2

N otherwise,

and r2
M (ρ) .L,q,δ


‖ξ‖2Lq

d
N if ρ2N &L,q,δ ‖ξ‖2Lqd

2

‖ξ‖Lq
ρ√
N

otherwise.

The sparsity equation has been solved in [36, Lemma 4.3].

Lemma 2. Let 1 6 s 6 d and set Bs =
∑

j6s βj/
√
j. If t∗ is ρ/20

approximated (relative to the SLOPE norm) by an s-sparse vector and if
40Bs 6 ρ/r(ρ) then ∆(ρ) > 4ρ/5.

For βj 6 C
√

log(ed/j), Bs =
∑

j6s βj/
√
j . C

√
s log(ed/s). The condi-

tion Bs . ρ/r(ρ) holds when N &L,q0 s log(ed/s), ρ &L,q0 ‖ξ‖Lq s√
N

log
(
ed
s

)
.

Lemma 2 implies that ∆(ρ) > 4ρ/5 when there is an s-sparse vector in t∗+
(ρ/20)BΨ. Therefore, Theorem 1 applies for λ ∼ r2(ρ)/ρ ∼L,q,δ ‖ξ‖Lq/

√
N .

The final ingredient is to compute the ρK solution to K = cr(ρK)2N . It is
solved for ρK ∼ K/(σ

√
N) and therefore λ ∼ r2(ρK)/ρK ∼L,q,δ ‖ξ‖Lq/

√
N .

The following result follows from Theorem 2 together with the previous
computations of ρ∗, ρK , rQ(·), rM (·) and r(·). The proof, similar to Theo-
rem 5, is omitted.

Theorem 6. Grant Assumption 5. Let s ∈ [d]. Assume that N >
c1s log(ed/s) and that there is v ∈ Rd such that |supp(v)| 6 s and Ψ(t∗−v) 6
c2‖ξ‖Lqs log(ed/s)/

√
N . Assume that |I| > N/2 and |O| 6 c3s log(ed/s).

The MOM-SLOPE estimator t̂ with the adaptive number of blocks K from
Section 3.4.1 satisfies, with probability at least 1− c4 exp(−c5s log(ed/s)),∥∥t̂− t∗∥∥2

2
6 c6 ‖ξ‖2Lq0

s

N
log

(
ed

s

)
,
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where (cj)
6
j=1 depends only on θ0, θm and q0.

MOM-SLOPE has the same advantages upon SLOPE as MOM-LASSO
upon LASSO. These improvements, listed below Theorem 5 are not re-
peated. The only difference is that SLOPE, unlike LASSO, already achieves
the minimax rate s log(ed/s)/N whereas, without an extra adaptation step
as in [11], the LASSO is not known to achieve a rate better than s log(ed)/N .

5. Algorithms for minmax MOM LASSO. The aim of this section
is to show that there is a systematic way to transform classical descent
based algorithms (such as Newton or gradient descent algorithm, or proximal
gradient descent algorithms, etc.) into robust ones using MOM approach.
This section provides several examples of such modifications.

These algorithms are tested in high-dimensional frameworks. In this setup,
there exists an important number of algorithms approximating LASSO. The
aim of this section is to show that there is a natural modification of these
algorithms that makes them more robust to outliers. The choice of hyper-
parameters like the number of blocks or the regularization parameter cannot
be done via classical Cross-Validation (CV) because of possible outliers in
the test sets. CV procedures are also adapted using MOM’s principle in
Section 6. We also advocate for using random blocks at every iterations
of the algorithms, to bypasses a problem of “local saddle points” we have
identified. A byproduct of the latter approach is a definition of depth adapted
to the learning task and therefore of an outliers detection algorithm. This
material and a simulation study are given in Section 6 of Supplement A.

5.1. From algorithms for LASSO to MOM LASSO. Each algorithm de-
signed for the LASSO can be transformed into a robust algorithm for the
minmax MOM estimator. Recall that minmax MOM LASSO estimator is

(10) t̂K,λ ∈ argmin
t∈Rd

sup
t′∈Rd

TK,λ(t′, t)

where TK,λ(t′, t) = MOMK

(
`t − `t′

)
+ λ (‖t‖1 − ‖t′‖1), MOMK

(
`t − `t′

)
is a

median of the set of real numbers {PB1(`t − `t′), · · · , PBK (`t − `t′)} and for
all k ∈ [K],

PBk(`t − `t′) =
1

|Bk|
∑
i∈Bk

(Yi −
〈
Xi, t

〉
)2 − (Yi −

〈
Xi, t

′〉)2.

A natural idea to implement (10) is to consider algorithms based on a
sequence of alternating descents (in t) and ascents (in t′) steps with possible



20 G. LECUÉ AND M. LERASLE

proximal/projection steps and for various choices of step sizes. A key issue
here is that t→ TK,λ(t′0, t) (resp. t′ → TK,λ(t′, t0)), for some given (t0, t

′
0) ∈

Rd × Rd, may not be convex (resp. concave). Nevertheless, one can still
compute the steepest descent by assuming that the index in [K] of the block
achieving the median in MOMK

(
`t0 − `t′0

)
remains constant on a convex

open set containing (t0, t
′
0), for almost all (t0, t

′
0). The median is set as the

minimal value of the median interval.

Assumption 7. Almost surely (with respect to (Xi, Yi)
N
i=1) for almost

all (t0, t
′
0) ∈ Rd × Rd (with respect to the Lebesgue measure on Rd × Rd),

there exists a convex open set B containing (t0, t
′
0) and k ∈ [K] such that

for all (t, t′) ∈ B, PBk(`t − `t′) ∈ MOMK

(
`t − `t′

)
.

Under Assumption 7, for almost all couples (t0, t
′
0) ∈ Rd × Rd, t →

TK,λ(t′0, t) is “locally convex” and t′ → TK,λ(t′, t0) is “locally concave”.
Therefore, for k such that PBk(`t0 − `t′0) ∈ MOMK

(
`t0 − `t′0

)
,

(11) ∇tMOMK

(
`t − `t′0

)
|t=t0 = −2(X(k))>(Y (k) −X(k)t0)

where Y (k) = (Yi)i∈Bk and X(k) is the |Bk|×d matrix with rows given by X>i
for i ∈ Bk. The integer k ∈ [K] is the index of the median of K real numbers
PB1(`t − `t′), · · · , PBK (`t − `t′), which is straightforward to compute. The
gradient −2(X(k))>(Y (k) −X(k)t0) in (11) depends on t′0 only through the
index k.

Remark 3 (Block Gradient Descent). Algorithms developed for the min-
max estimator using steepest descent steps such as (11) are special instances
of Block Gradient Descent (BGD). The major difference with standard BGD
(which takes sequentially all blocks), is that the index of the block is chosen
here as PBk(`t0−`t′0) ∈ MOMK

(
`t0−`t′0

)
. In particular, we expect blocks cor-

rupted by outliers to be avoided which is not the case in the classical BGD.
Moreover, choosing the “descent / ascent” block k using its centrality, we
also expect PBk(`t0 − `t′0) to be close to the objective function P (`t0 − `t′0).
This should make every descent (resp. ascent) steps particularly efficient.

Remark 4 (map-reduce). The algorithms presented in this section par-
ticularly fits the map-reduce paradigm [19], where data are spread out in a
cluster of servers and are therefore naturally split into blocks. Our proce-
dures use for mapper a mean and for reducer a median. This makes our al-
gorithms easily scalable into the big data framework even when some servers
have crashed down (making blocks of outliers data). The median identifies
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the correct block of data onto which one should make a descent or an ascent
and leaves aside servers which have crashed down.

Remark 5 (Normalization). In the i.i.d. setup, the design matrix X
(i.e., the N × d matrix with row vectors X1, . . . , XN ) is normalized to make
`N2 -norms of the columns equal to one. In a corrupted setup, one row of X
may be corrupted and normalizing each column of X would corrupt the entire
matrix X. We therefore do not normalize the design matrix in the following.

5.2. Subgradient descent algorithm. LASSO is solution of the minimiza-
tion problem mint∈Rd ψ(t) where ψ is defined for all t ∈ Rd by ψ(t) =
‖Y− Xt‖22 + λ ‖t‖1 with Y = (Yi)

N
i=1 and X is the N × d matrix with row

vectors X1, . . . , XN . LASSO can be approximated by a subgradient descent
procedure : given t0 ∈ Rd and step sizes (γp)p (i.e. γp > 0 and (γp)p de-
creases), at step p we update

(12) tp+1 = tp − γp∂ψ(tp)

where ∂ψ(tp) is a subgradient of ψ at tp like ∂ψ(tp) = −2X>(Y − Xtp) +
λsign(tp) where sign(tp) is the vector of signs of the coordinates of tp with
the convention sign(0) = 0. The sub-gradient descent algorithm (12) can
be turned into an alternating subgradient ascent/descent algorithm for the
min-max estimator (10): let

(13) Yk = (Yi)i∈Bk and Xk = (X>i )i∈Bk ∈ R|Bk|×d .

input : (t0, t
′
0) ∈ Rd × Rd: initial point, ε > 0: a stopping parameter,

(ηp)p, (βp)p: two step size sequences
output: approximated solution to the min-max problem (10)

1 while ‖tp+1 − tp‖2 > ε or
∥∥t′p+1 − t′p

∥∥
2
> ε do

2 find k ∈ [K] such that PBk(`tp − `t′p) = MOMK

(
`tp − `t′p

)
3

tp+1 = tp + 2ηpX>k (Yk − Xktp)− ληpsign(tp)

4 find k ∈ [K] such that PBk(`tp+1 − `t′p) = MOMK

(
`tp+1 − `t′p

)
5

t′p+1 = t′p + 2βpX>k (Yk − Xkt′p)− λβpsign(t′p)

6 end
7 Return (tp, t

′
p)

Algorithm 1: A “minmax MOM version” of the sub-gradient descent.
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The key insight in Algorithm 1 are steps 2 and 4 where the blocks num-
ber have been chosen by the median operator. Those steps are expected 1)
to remove outliers from the descent / ascent directions 2) to improve the
accuracy of the latter directions.

A classical choice of step size γp in (12) is γp = 1/L where L = ‖X‖2S∞
(‖X‖S∞ is the operator norm of X). Another possible choice follows from the
Armijo-Goldstein condition with the following backtracking line search: γ is
decreased geometrically while the Armijo-Goldstein condition is not satisfied

while ψ(tp + γ`∂ψ(tp)) > ψ(tp) + δγ` ‖∂ψ(tp)‖22 do γ`+1 = ργ`

for some given ρ ∈ (0, 1), δ = 10−4 and initial point γ0 = 1.
Of course, the same choices of step size cannot be made for (ηp)p and

(βp)p in Algorithm 1 because X may be corrupted but it can be adapted.
In the first case, one can take ηp = 1/ ‖Xk‖2S∞ where k ∈ [K] is the index

defined in line 2 of Algorithm 1 and βp = 1/ ‖Xk‖2S∞ where k ∈ [K] is the
index defined in line 4 of Algorithm 1. In the other backtracking line search
case, the Armijo-Goldstein condition adapted for Algorithm 1 reads like

while ψk(tp + γ`∂ψk(tp)) > ψk(tp) + δγ` ‖∂ψk(tp)‖22 do η`+1 = ρη`

where ψk(t) = ‖Yk − Xkt‖22 + λ ‖t‖1 where k ∈ [K] is defined in line 2 of
Algorithm 1 and, for βp, with k ∈ [K] defined in line 4 of Algorithm 1.

5.3. Proximal gradient descent algorithms. This section provides MOM
versions of ISTA (Iterative Shrinkage-Thresholding Algorithm) and its ac-
celerated version FISTA. ISTA and FISTA are proximal gradient descent
where the objective function ψ(t) = f(t) + g(t) with f(t) = ‖Y− Xt‖22 (con-
vex and differentiable) and g(t) = λ ‖t‖1 (convex). ISTA alternates between
a descent in the direction of the gradient of f and a projection through the
proximal operator of g, which, for the `1-norm, is the soft-thresholding:

(14) tp+1 = proxλ‖·‖1

(
tp + 2γpX>(Y− Xtp)

)
where proxλ‖·‖1(t) = (sign(tj) max(|tj | − λ, 0))dj=1 for all t = (tj)

d
j=1 ∈ Rd.

A natural “MOM version” for ISTA is given by the following alternat-
ing method where the step sizes sequences (ηp)p and (βp)p may be chosen
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according to the remarks below Algorithm 1 or chosen a posteriori.

input : (t0, t
′
0) ∈ Rd × Rd: initial point, ε > 0 : a stopping parameter,

(ηk)k, (βk)k: two step size sequences
output: approximated solution to the min-max problem (10)

1 while ‖tp+1 − tp‖2 > ε or
∥∥t′p+1 − t′p

∥∥
2
> ε do

2 find k ∈ [K] such that PBk(`tp − `t′p) = MOMK

(
`tp − `t′p

)
3 tp+1 = proxλ‖·‖1

(
tp + 2ηkX>k (Yk − Xktp)

)
4 find k ∈ [K] such that PBk(`tp+1 − `t′p) = MOMK

(
`tp+1 − `t′p

)
5 t′p+1 = proxλ‖·‖1

(
t′p + 2βkX>k (Yk − Xkt′p)

)
6 end
7 Return (tp, t

′
p)

Algorithm 2: A “minmax MOM version” of ISTA.

5.4. Douglas-Racheford / ADMM. This section presents the Alternating
Direction Method of Multipliers (ADMM) algorithm. It is also a splitting
algorithm which reads as follows in the LASSO case: at step p,

tp+1 = (X>X + ρId×d)
−1(X>Y + ρzp − up)

zp+1 = proxλ‖·‖1 (tp+1 + up/ρ)

up+1 = up + ρ(tp+1 − zp+1)
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where ρ is a tuning parameter. ADMM algorithm returns tp after a stopping
criteria is met. In Algorithm 3, we provide a MOM version of this algorithm.

input : (t0, t
′
0) ∈ Rd × Rd : initial point, ε > 0 : a stopping parameter,

ρ: a parameter
output: approximated solution to the min-max problem (10)

1 while ‖tp+1 − tp‖2 > ε or
∥∥t′p+1 − t′p

∥∥
2
> ε do

2 find k ∈ [K] such that PBk(`tp − `t′p) = MOMK

(
`tp − `t′p

)
tp+1 = (X>k Xk + ρId×d)

−1(X>k Yk + ρzp − up)
zp+1 = proxλ‖·‖1 (tp+1 + up/ρ)

up+1 = up + ρ(tp+1 − zp+1)

3 find k ∈ [K] such that PBk(`tp+1 − `t′p) = MOMK

(
`tp+1 − `t′p

)
t′p+1 = (X>k Xk + ρId×d)

−1(X>k Yk + ρz′p − u′p)
z′p+1 = proxλ‖·‖1

(
t′p+1 + u′p/ρ

)
u′p+1 = u′p + ρ(t′p+1 − z′p+1)

4 end
5 Return (tp, t

′
p)

Algorithm 3: A “minmax MOM version” of ADMM

6. Simulations study. This section provides an extensive simulation
study based on algorithms of Section 5. In particular, their robustness and
their convergence properties are illustrated on simulated data. The algo-
rithms depend on hyper-parameters that need to be tuned. Due to possible
corruption, classical approaches relying on test samples can’t be trusted.
The section starts therefore by introducing a robust CV procedure based on
MOM principle.

6.1. Adaptive choice of hyper-parameters via MOM V-fold CV. MOM’s
principles can be combined with the idea of multiple splitting into training
/ test datasets in cross-validation.

Let V ∈ [N ] be such that N can be divided by V . Let also GK ⊂ [N ]
and Gλ ⊂ (0, 1]. The aim is to select an optimal number of blocks and regu-
larization parameter within both grids. The dataset is split into V disjoints
blocks D1, . . . ,DV . For each v ∈ [V ], ∪u6=vDu is used to train a family of
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estimators

(15)
(
f̂

(v)
K,λ : K ∈ GK , λ ∈ Gλ

)
.

The remaining Dv of the dataset is used to test the performance of each
estimator in the family (15). Using these notations, we define a MOM version
of the cross-validation procedure.

Definition 6. The Median of Means V -fold CV associated to the
estimators (15) is f̂K̂,λ̂ where (K̂, λ̂) is a minimizer of

(K,λ) ∈ GK × Gλ → MomCvV (K,λ) = Q1/2

(
MOM

(v)
K′

(
`
f̂
(v)
K,λ

)
v∈[V ]

)
,

where, for all v ∈ [V ] and f ∈ F ,

(16) MOM
(v)
K′ (`f ) = MOMK′

(
P
B

(v)
1

`f , · · · , PB(v)

K′
`f

)
and B

(v)
1 ∪ · · · ,∪B(v)

K′ is a partition of the test set Dv into K ′ blocks where
K ′ ∈ [N/V ] such that K ′ divides N/V .

The difference with standard V-fold CV is that empirical means in classi-
cal V-fold CV are replaced by MOM estimators in (16). Moreover, the mean
over all V splits in the classical V -fold CV is replaced by a median.

The choice of V raises the same issues for MOM CV as for classical V -fold
CV [3, 5]. In the simulations, we use V = 5. The construction of MOM-CV
requires to choose another parameter: K ′, the number of blocks used to
build MOM criteria (16) over the test set. One can choose K ′ = K/V to
make only one split of D into K blocks and use, for each round, (V −1)K/V
blocks to build estimators (15) and K/V blocks to test them.

In Figures 2, hyper-parameters K (i.e. the number of blocks) and λ (i.e.
the regularization parameter) have been chosen for MOM LASSO estimators
via MOM V-fold CV. Only the evolution of K̂ in function of the proportion of
outliers has been depicted (the choice of the adaptively chosen regularization
parameter is more erratic and may first require a more deeper understanding
of CV in the classical i.i.d. before the study of MOM CV in the O ∪ I
framework). The adaptive K̂ grows with the number of outliers as expected,
since the number of blocks has to be at least twice the number of outliers.
In particular, when there are no outliers in the dataset, MOMCV selects
K = 1 so minmax MOM LASSO is the LASSO. The algorithm learns that
splitting the database is useless in the absence of outliers: LASSO is the best
choice among all minmax MOM LASSO estimators for K ∈ [N/2].
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Fig 2. Adaptively chosen number of blocks K for the minmax MOM LASSO.

Remark 6. Median of Means V -fold CV introduced in Definition 6 aims
at testing the performance of estimators on a possibly corrupted test set.
This is done by excluding outliers from the test set thanks to the median
operator. However, there are situations, for instance in image recognition,
where the test set is corrupted but still we expect estimators to perform well
even on these corrupted data in the test set. This is a classical robustness
issue in Deep Learning [68]. Indeed, deep learning methods are known to
fail if a small Gaussian noise is added to images even with a small vari-
ance undetectable by human eyes. Even though minmax MOM estimators
introduced in this paper have been initially designed to be robust to outliers
in the train set, one can use classical tricks to be also robust to corrup-
tion in the test set by training minmax MOM estimators onto an augmented
database: in practice, given a (clean or not) dataset (Xi, Yi)

N
i=1, one can con-

struct an augmented dataset where each data (Xi, Yi) is replicated m times
with an added Gaussian noise: (Xi + Zi1, Yi), · · · , (Xi + Zim, Yi) – where
(Zij : 1 ≤ i ≤ N, 1 ≤ j ≤ m) are i.i.d. Gaussian variable – and then a
minmax MOM estimator can be trained onto the dataset

(Xi + Zij , Yi), i = 1, . . . , n, j = 1, . . . ,m.

By doing so, we expect the minmax MOM estimator to improve its robustness
performance evaluated on a corrupted test set.

6.2. Saddle-point, random blocks, outliers detection and depth. The aim
of this section is to show some advantages of choosing randomly the blocks
at every (descent and ascent) steps of the algorithm and how this modified
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version works on the example of ADMM. As a byproduct, it is possible to
define an outliers detection algorithm.

Let us first explain a problem of “local saddle point” in the case of fixed
blocks. Minmax MOM estimators are based on the observation that the or-
acle f∗ is solution to the minmax problem f∗ ∈ argminf∈F supg∈F P (`f−`g).
Likewise, f∗ is solution of the maxmin problem: f∗ ∈ argmaxg∈F inff∈F P (`f−
`g). One can also define the maxmin MOM estimator

(17) ĝK,λ ∈ argmax
g∈F

inf
f∈F

TK,λ(g, f).

Following the proofs of Section 6 in the supplement, one can prove the same
results for ĝK,λ and f̂K,λ (see Section 7 in the supplement for a proof in

small dimension). However, ĝK,λ and f̂K,λ may differ since, in general

(18) argmin
f∈F

sup
g∈F

TK,λ(g, f) 6= argmax
g∈F

inf
f∈F

TK,λ(g, f).

In other words, the duality gap may not be null. Since TK,λ(g, f) = −TK,λ(f, g)
for all f, g ∈ F , (18) holds if and only if

inf
f∈F

sup
g∈F

TK,λ(f, g) = 0.

In that case, f̂ is a saddle-point estimator and minmax and maxmin esti-
mators are equal. The left-hand side of Figure 3 shows a simulation where
this happens. The choice of fixed blocks B1, . . . , BK may result in a prob-
lem of “local saddle points” and the algorithms remain close to subop-
timal local saddle points. To see this, consider the vector case (that is for
F = {f(·) =

〈
·, t
〉

: t ∈ Rd} and introduce, for all k ∈ [K],

(19) Ck =
{

(t, t′) ∈ Rd × Rd : MOMK

(
`t − `t′

)
= PBk(`t − `t′)

}
.

The problem is that, if a cell Ck contains a saddle-point of (t, t′) →
PBk(`t − `t′) + λ(‖t‖1 − ‖t′‖1) the algorithms gets stuck in that cell instead
of looking for “better saddle-point” in other cells.

To overcome this issue, the partition is chosen at random at every descent
and ascent steps of the algorithms, so the decomposition into cells C1, · · · , CK
changes at every steps. As an example, we develop the ADMM procedure
with a random choice of blocks in Algorithm 4.
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input : (t0, t
′
0) ∈ Rd × Rd: initial point, ε > 0: a stopping parameter,

ρ: parameter
output: approximated solution to the min-max problem (10)

1 while ‖tp+1 − tp‖2 > ε or
∥∥t′p+1 − t′p

∥∥
2
> ε do

2 Build an equipartition B1, . . . , BK of [N ] at random.
3 Find k ∈ [K] such that PBk(`tp − `t′p) = MOMK

(
`tp − `t′p

)
tp+1 = (X>k Xk + ρId×d)

−1(X>k Yk + ρzp − up)
4 zp+1 = proxλ‖·‖1(tp+1 + up/ρ)

5 up+1 = up + ρ(tp+1 − zp+1)
6 Build an equipartition B1, . . . , BK of [N ] at random.
7 Find k ∈ [K] such that PBk(`tp+1 − `t′p) = MOMK

(
`tp+1 − `t′p

)
8 t′p+1 = (X>k Xk + ρId×d)

−1(X>k Yk + ρz′p − u′p)
9 z′p+1 = proxλ‖·‖1

(
t′p+1 + u′p/ρ

)
10 u′p+1 = u′p + ρ(t′p+1 − z′p+1)

11 end
12 Return (tp, t

′
p)

Algorithm 4: minmax MOM ADMM with changing random blocks.

Fig 3. Fixed blocks against random blocks.

In Figure 3, both MOM LASSO via ADMM with fixed and changing
blocks are run. Both the objective function and the estimation error of MOM
LASSO jump with fixed blocks. These jumps correspond to a change of cell
number. The algorithm converges to local saddle-points before jumping to
other cells, thanks to the regularization of the `1-norm. On the other hand,
the algorithms with changing blocks do not suffer this drawback. Figure 3
shows that the estimation error converges faster and more smoothly for
changing blocks. The objective function of MOM ADMM with changing
blocks converges to zero so the duality gap converges to zero. This gives
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a natural stopping criterion and shows that minmax and maxmin MOM
LASSO are solution of a saddle point problem even though the objective
function is not convex-concave.

A byproduct is an outliers detection procedure. Count the number
of times each data is selected in the selected median blocks of steps 3 and
7 of Algorithm 4. At the end of the algorithm (for instance, Algorithm 4),
every data ends up with a score revealing its centrality for the learning
task. Aggressive outliers are likely to corrupt their respective blocks and
should therefore not be selected at steps 3 and 7 of Algorithm 4. With
fixed blocks, informative data cannot be distinguished from outliers lying
in the same block, therefore, this outliers detection algorithm only makes
sense when blocks are changing at every steps. Figure 4 shows performance
of this strategy on synthetic data (cf. Section 6.3 for more details on the
simulations). Outliers (data 1, 32, 170 and 194) end up with a null score.

Fig 4. Outliers detection algorithm. The dataset has been corrupted by 4 outliers at number
1, 32, 170 and 194. The score of the outliers is 0: they haven’t been selected even once.

6.3. Simulations setup for the figures. All codes are available at [1] and
can be used to reproduce the figures. Many other simulations and algorithms
can be found in [1].

6.3.1. Data generating process and corruption by outliers. The algorithms
introduced in Section 5 are tested on datasets corrupted by outliers of vari-
ous forms in [1]. The basic set of informative data is called D1. The outliers
are named D2,D3, D4 and D5. These data are merged and shuffled in the
dataset D = D1 ∪ D2 ∪ D3 ∪ D4 ∪ D5 given to the algorithm.

1. The set D1 of inliers contains Ngood i.i.d. data (Xi, Yi) with common
distribution

(20) Y =
〈
X, t∗

〉
+ ξ ,
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where t∗ ∈ Rd, X ∼ N (0, Id×d) and ξ ∼ N (0, σ2) is independent of X.
2. D2 is a dataset of Nbad−1 outliers (Xi, Yi) such that Yi = 1 and Xi =

(1)dj=1

3. D3 is a dataset of Nbad−2 outliers (Xi, Yi) such that Yi = 10000 and
Xi = (1)dj=1

4. D4 is a dataset of Nbad−3 outliers (Xi, Yi) where Yi is a 0−1-Bernoulli
random variable and Xi is uniformly distributed over [0, 1]d,

5. D5 is also a set of outliers that have been generated according to
a linear model (20), with the same target vector t∗ and a different
choice of design X and noise ξ. the design X ∼ N (0,Σ) with Σ =
(ρ|i−j|)16i,j6d and ξ is a heavy-tailed noise distributed according to a
Student distribution with various degrees of freedom.

The different types of outliers Dj , j = 2, 3, 4, 5 are useless to learn the oracle
t∗ some are not independent nor random as in D2 and D3.

6.3.2. Simulations setup for the figures. Let us now precise the parame-
ters of the simulations in Figure 1 and Figure 2: the number of observations
is N = 200, the number of features is d = 500, t∗ ∈ Rd has sparsity s = 10
and support chosen at random, with non-zero coordinates t∗j being either
equal to 10, −10 or decreasing according to exp(−j/10). Informative data
D1, described in Section 6.3.1, have variance σ = 1. This dataset is increas-
ingly corrupted with outliers in D3.

The proportion of outliers are 0, 1/100, 2/100, . . . , 15/100. ADMM algo-
rithm is run with adaptive λ chosen by V -fold CV with V = 5 for the
LASSO. Then MOM ADMM is run with adaptive K and λ chosen by MOM
CV with V = 5 and K ′ = max(gridK)/V where gridK = {1, 4, · · · , 115/4}
and gridλ = {0, 10, 20 · · · , 100} /

√
100 are the search grids used to select the

best K and λ during the CV and MOM CV steps. The number of itera-
tions of ADMM and MOM ADMM is 200. Simulations have been run 70
times and the averaged values of the estimation error and adaptive K̂ have
been reported in Figure 1, Figure 5 and Figure 2. The `2 estimation error
of LASSO increases roughly from 0 when there is no outliers and stabilize
at 550 right after a single outliers enters the dataset. The value 550 comes
from the fact that Y = 10000 and X = (1)500

j=1 satisfy that the vector t with

minimal `d1 norm among all the solutions t of Y =
〈
X, t

〉
is t∗∗ = (20)500

j=1,
and ‖t∗∗ − t∗‖2 is approximately 550. This means that LASSO is trying to
fit a model on the single outlier instead of solving the linear problem as-
sociated with the 200 other informative data. A single outliers is therefore
completely misleading the LASSO.

For Figure 3, we have run similar experiments with N = 200, d = 300, s =
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Fig 5. Estimation error versus proportion of outliers for LASSO and the minmax MOM
LASSO.

20, σ = 1, K = 10, the number of iterations was 500 and the regularization
parameter was 1/

√
N .

For Figure 4, we took N = 200, d = 500, s = 20, σ = 1, the number
of outliers is |O| = 4 and the outliers are of the form Y = 10000 and
X = (1)dj=1, K = 10, the number of iterations is 5.000 and λ = 1/

√
200.

SUPPLEMENTARY MATERIAL

Supplement A: Supplementary material to “Estimation bounds
and sharp oracle inequalities of regularized procedures with Lips-
chitz loss functions”
(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). Sec-
tion 6 gives the proof of the main results. These main results focus on reg-
ularized version of the MOM estimates of the increments presented in this
introduction that are well suited for high dimensional learning frameworks,
we complete these results in Section 7, providing results for the basic estima-
tors without regularization in small dimension. Finally, Section 8 provides
minimax optimality results for our procedures.
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