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Abstract

We construct an algorithm, running in time Õ(Nd + uKd) , which is robust to outliers and heavy-tailed data
and which achieves the subgaussian rate from [31]√

Tr(Σ)

N
+

√
‖Σ‖op K

N
(1)

with probability at least 1 − exp(−c0K) − exp(−c1u) where Σ is the covariance matrix of the informative data,
K ∈ {1, . . . ,K} is some parameter (number of block means) and u ∈ N∗ is another parameter of the algorithm.
This rate is achieved when K ≥ c2|O| where |O| is the number of outliers in the database and under the only
assumption that the informative data have a second moment. The algorithm is fully data-dependent and does not
use in its construction the proportion of outliers nor the rate in (1). Its construction combines recently developed
tools for Median-of-Means estimators and covering-Semi-definite Programming [8, 37]. We also show that this
algorithm can automatically adapt to the number of outliers.

AMS subject classification: 62F35
Keywords: Robustness, algorithms, heavy-tailde data.

1 Introduction on the robust mean vector estimation problem

Estimating the mean of a random variable in a d-dimensional space when given some of its realizations is arguably
the oldest and most fundamental problem of statistics. In the past few years, it has received important attention
from two communities: the Statistics [5, 34, 7, 6, 31, 35, 32, 22, 9] and Computer Science [14, 13, 16, 15, 17, 18, 8]
communities. Both communities consider the problem of robust mean estimation, focusing mainly on different
definitions of robustness.

In recent years, many efforts have been made by the Statistics community on the construction of estimators
performing in a subgaussian way for heavy-tailed data. Such estimators achieve the same statistical properties as the
empirical mean of a N -sample of i.i.d. gaussian variables N (µ,Σ) where µ ∈ Rd and Σ � 0 is the covariance matrix.
In that case, for a given confidence 1− δ, the subgaussian rate as defined in [31] is (up to an absolute multiplicative
constant)

rδ =

√
Tr(Σ)

N
+

√
||Σ||op log(1/δ)

N
(2)

where Tr(Σ) is the trace of Σ and ||Σ||op is the operator norm of Σ. Indeed, it follows from Borell-TIS’s inequality
(see Theorem 7.1 in [26] or pages 56-57 in [27]) that with probability at least 1− δ,∥∥X̄N − µ

∥∥
2

= sup
‖v‖2≤1

〈
X̄N − µ, v

〉
≤ E sup

‖v‖2≤1

〈
X̄N − µ, v

〉
+ σ

√
2 log(1/δ)

where σ = sup‖v‖2≤1

√
E
〈
X̄N − µ, v

〉2
. It is straightforward to check that E sup‖v‖2≤1

〈
X̄N − µ, v

〉
≤
√

Tr(Σ)/N

and σ =
√
‖Σ‖op /N , which leads to the rate in (2) (up to the constant

√
2 on the second term in (2)). In most

of the recent works, the effort has been made to achieve the rate rδ for i.i.d. heavy-tailed data even under the
minimal requirement that the data only have a second moment. Under this second-moment assumption only, the
empirical mean cannot achieve the rate (2) and one needs to consider other procedures1. Over the years, some

1Under only a second-moment assumption, the empirical mean achieves the rate
√

Tr(Σ)/(δN) which can not be improved in general.
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procedures have been proposed to achieve such a goal: a Le Cam test estimator, called a tournament estimator in
[31], a minmax Median-Of-Means estimator in [32] and a PAC-Bayesian estimator in [6]. The first two one are based
on the median-of-means principle that we will also use.

On the other side, the Computer Science community mostly considers a different definition of robustness and
targets a different goal. In many recent CS papers, algorithms (not only estimators) have been constructed and
proved to be robust with respect to a contamination of the dataset that is when some of the data are replaced by
other data which may have nothing to do with the original batch. This covers the Huber ε-contamination model but
also adversarial data which receives an important attention recently in the deep learning community. Moreover, the
Computer Science community looks at the problem of robust mean estimation from algorithmic perspectives such as
the running time. A typical result in this line of research is Theorem 1.3 from [8] that we recall now.

Theorem 1 (Theorem 1.3, [8]). Let X1, . . . , XN be random vectors in Rd. We assume that there is a partition
{1, . . . , N} = O∪I such that nothing is assumed on (Xi)i∈O and (Xi)i∈I are independent with mean µ and covariance
matrix Σ � σ2Id. We assume that ε = |O|/N is such that 0 < ε < 1/3 and N & d log(d)/ε. There exists an algorithm
running in Õ(Nd)/poly(ε) which outputs µ̂ε such that with probability at least 9/10, ‖µ̂ε − µ‖2 . σ

√
ε.

The first result proving the existence of a polynomial time algorithm robust to contamination may be found in
[14]. Theorem 1 improves upon many existing results since it achieves the optimal information theoretic-lower bound
with a (nearly) linear-time algorithm.

Finally, there are two recent papers for which both algorithmic and statistical considerations are important. In
[22, 9], algorithms achieving the subgaussian rate in (2) have been constructed. They both run in polynomial time
: O(N24 + Nd) for [22] and O(N4 + N2d) for [9] (see [9] for more details on these running times). They do not
consider a contamination of the dataset even though their results easily extend to this setup. Some other estimators
which have been proposed in the Statistics literature are very fast to compute but they do not achieve the optimal
subgaussian rate from (2). A typical example is Minsker’s geometric median estimator [34] which achieves the rate√

Tr(Σ) log(1/δ)/N in linear time Õ(Nd). All the later three papers use the Median-of-means principle. We will use
this principle but only to construct a starting point (which will simply be the coordinate-wise median) and for the
computation of the step size (where we will only use the one dimensional definition of the median along the descent
line direction). What we mainly borrow from the literature on MOM estimators is the advantage to work with local
block means instead of the data themselves. We will identify two such advantages by doing so: a stochastic one and
a computational one (see Remark 4 below).

Robust mean estimation have been raised in pioneered works in robust statistics from Huber [23, 24], Tukey
[39, 40] or Hampel [21, 20]. Their concerns was more about robustness to model misspecification and on the
breakdown point property (“smallest amount of contamination necessary to upset an estimator entirely” taken from
[19]). The computational problem connected to this issue was not of primary interest even though it was already
raised, for instance, in Section 5.3 from [19] for the construction of Tukey contours (a d-dimensional definition of
quantiles).

The aim of this work is to show that a single algorithm can answer the three problems: robustness to heavy-
tailed data, to contamination and computational cost. In this article, we construct an algorithm running in time
Õ(Nd+u log(1/δ)d) which outputs an estimator of the true mean achieving the subgaussian rate (2) with confidence
1 − δ (for exp(−c0N) ≤ δ ≤ exp(−c1|O|)) on a corrupted database and under a second moment assumption only.
It is therefore robust to heavy-tailed data and to contamination. Our approach takes ideas from both communities:
the median-of-means principle which has been recently used in the Statistics community and a SDP relaxation from
[8] which can be computed fast. The baseline idea is to construct K equal size groups of data from the N given ones
and to compute their empirical means X̄k, k = 1, . . . ,K. These K empirical means are used successively to find a
robust descent direction thanks to a SDP relaxation from [8]. We prove the robust subgaussian statistical property
of the resulting descent algorithm under the only following assumption.

Assumption 1. There exists a partition I ∪O = {1, . . . , N} of the dataset (Xi)i≤N such that 1) nothing is assumed
on (Xi)i∈I 2) (Xi)i∈I are independent with mean µ and covariance E(Xi − µ)(Xi − µ)>) � Σ where Σ is a given
(unknown) covariance matrix.

Assumption 1 covers the two concepts of robustness considered in the Statistics and Computer Science commu-
nities since the informative data (data indexed by I) are only assumed to have a second moment and there are |O|
outliers onto which we do not make any assumption. Our aim is to show that the rate of convergence (2) which
is the rate achieved by the empirical mean in the ideal i.i.d. Gaussian case can be achieved in the corrupted and
heavy-tailed setup from Assumption 1 with a fast algorithm.

The paper is organized as follows. In the next section, we give a high-level description of the algorithm and its
statistical and computation performances. In section 3, we prove its statistical properties and give a precise definition
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of the algorithm. In Section 4, we study the statistical performance of the SDP relaxation at the heart of the descent
direction. In Section 5, we fully characterize its computational cost. In Section 6, we construct a procedure achieving
the same statistical properties and can automatically adapt to the number of outliers.

2 Construction of the algorithms and main result

The construction of our robust subgaussian descent procedure is using two ideas. The first one comes from the
median-of-means (MOM) approach which has recently received a lot of attention in the statistical and machine
learning communities [4, 30, 12, 33, 34]. The MOM approach [36, 1, 25, 2] often yields robust estimation strategies
(but usually at a high computational cost). Let us give the general idea behind that approach: we first randomly
split the data into K equal-size blocks B1, . . . , BK (if K does not divide N , we just remove some data). We then
compute the empirical mean within each block: for k = 1, . . . ,K,

X̄k =
1

|Bk|
∑
i∈Bk

Xi

where we set |Bk| = Card(Bk) = N/K. In the one-dimensional case, we then take the median of the latter K
empirical means to construct a robust and subgaussian estimator of the mean [12]. It is more complicated in the
multi-dimensional case, where there is no definitive equivalent of the one dimensional median but several candidates:
coordinate-wise median, the geometric median (also known as Fermat point), the Tukey Median, among many others
(see [38]). The strength of this approach is the robustness of the median operator, which leads to good statistical
properties even on corrupted databases. For the construction of our algorithm, we actually only use the idea of
grouping the data and computing their K means X̄k, k = 1, . . . ,K.

Finding good descent directions in the heavy-tailed and corrupted scenario considered in Assumption 1 in rea-
sonnable time is a main issue. A construction has been proposed by [9] which also uses a SDP relaxation, which
costs O(N4 +Nd) to be computed. Our approach also uses a SDP relaxation, with an other SDP. It is based on the

observation that µ is solution of the minimization problem minν∈Rd f(ν) where f : ν ∈ Rd → ‖EX − ν‖22 and X is
any random vector with mean µ. One way to approach µ is therefore to run a gradient descent algorithm using f as
an objective function: from xc ∈ Rd we go to the next iteration with xc − θ∇f(xc) where θ ≥ 0 is a step size. Since
∇f(xc) = xc − EX, for θ = 1, the latter algorithm achieves the target mean µ in one step, which is not surprising
given that xc−EX is the best descent direction towards EX starting from xc. We can also re-write that as a matrix
problem : the top eigenvector of

argmax
M�0,Tr(M)=1

〈
M, (EX − xc)(EX − xc)>

〉
(3)

is given by xc−EX
‖xc−EX‖2

, which is the best descent direction we are looking for.

Of course, we don’t know (EX − xc)(EX − xc)
> in (3) but we are given a database of N data X1, . . . , XN

(among which |I| of them have mean µ). We use these data to estimate in a robust way the unknown quantity
(EX −xc)(EX −xc)> in (3). Ideally, we would like to identify the informative data and then use (1/|I|)

∑
i∈I(Xi−

xc)(Xi−xc)> or its block means version (1/|K|)
∑
k∈K(X̄k−xc)(X̄k−xc)>, where K = {k : Bk∩O = ∅}, to estimate

this quantity but this information is not available either.
To address this problem we use a tool introduced in [8] adapted to the block means. The idea is to endow each

block mean X̄k with a weight ωk taken in ∆K defined as

∆K =

{
(ωk)Kk=1 : 0 ≤ ωk ≤

1

9K/10
,

K∑
k=1

ωk = 1

}
.

Ideally we would like to put 0 weights to all block means X̄k corrupted by an outliers. But, we cannot do it since K
is unknown. To overcome this issue, we learn the optimal weights and consider the following minmax optimization
problem

max
M�0,Tr(M)=1

min
w∈∆K

〈
M,

K∑
k=1

ωk(X̄k − xc)(X̄k − xc)>
〉
. (Exc)

This is the dual problem from [8] adapted to the block means. The key insight from [8] is that an approximating
solution Mc of the maximization problem in (Exc) can be obtained in reasonable time using a covering SDP approach
[8, 37] (see Section 4). We expect a solution (in M) to (Exc) to be close to a solution of the minimization problem

in (3) – which is M∗ = (µ− ν)(µ− ν)>/ ‖µ− ν‖22 – and the same for their top eigenvectors (up to the sign).
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At a high level description, the robust descent algorithm we perform outputs µ̂K after at most log d iterations of
the form xc − θcv1 where v1 is a top eigenvector of an approximating solution Mc to the problem (Exc) and θc is
a step size. It starts at the coordinate-wise median of the means X̄1, . . . , X̄K . In Algorithm 4, we define precisely
the step size and the stopping criteria we use to define the algorithm (it requires too many notation to be defined
at this stage). This algorithm outputs the vector µ̂K : its running time and statistical performances are gathered in
the following result.

Theorem 2. Grant Assumption 1. Let K ∈ {1, . . . , N} be the number of equal-size blocks and assume that K ≥
300|O|. Let u ∈ N∗ be a parameter of the covering SDP used at each descent step. With probability at least
1− exp(−K/180000)− (1/10)u, the descent algorithm finishes in Õ(Nd+Kud) and outputs µ̂K such that

‖µ̂K − µ‖2 ≤ 808

1200

√
Tr(Σ)

N
+

√
1200 ‖Σ‖opK

N

 .

To make the presentation of the proof of Theorem 2 as simple as possible we did not optimize the constants.
Theorem 2 generalizes and improves Theorem 1 in several ways. We first improve the confidence from a constant
“9/10” to an exponentially large confidence 1 − exp(−c0K). We obtain the result for any covariance structure Σ
and µ̂K does not require the knowledge of Σ for its construction. We obtain a result which holds for any N (even
under the sample complexity). The construction of µ̂K does not require the knowledge of the exact proportion of
outliers ε in the dataset unlike µ̂ε in Theorem 1. We only need to know that K & |O|. Moreover, using a Lepskii
adaptation method it is also possible to automatically choose K and therefore to adapt to the proportion of outliers
if we have some extra knowledge on Tr(Σ) and ‖Σ‖op (see Section 6 for more details). Moreover, if we only care

about constant 9/10 confidence, our runtime does not depend on ε and is nearly-linear Õ(Nd). We also refer the
reader to Corollary 2 for more comparison with Theorem 1.

Remark 1 (Nearly-linear time). We identify two important situations where the algorithm from Theorem 2 runs
in nearly-linear time that is in Õ(Nd). First, when the number of outliers is known to be less than

√
N , we can

choose K ≤
√
N and u = K. In that case, the algorithm runs in Õ(Nd) and the subgaussian rate is achieved with

probability at least 1− 2 exp(−c0K) for some constant c0 (see also Corollary 3 for an adaptive to K version of this
result). Another widely investigated situation is when we only want to have a constant confidence like 9/10. In that
case, one may chose u = 1 and any values of K ∈ [N ] can be chosen (so we can have any number of outliers) to
achieve the subgaussian rate with constant probability and in nearly-linear time Õ(Nd) (see also Corollary 2 for an
adaptive to K version of this result).

Theorem 2 improves the result from [22, 9] since µ̂K runs faster than the polynomial times O(N24 + Nd) and
O(N4 + Nd) in [22] and [9]. The algorithm µ̂K also does not require the knowledge of Tr(Σ) and ‖Σ‖op. Finally,
Theorem 2 provides running time guarantees on the algorithm unlike in [31, 32, 6] and it improves upon the statistical
performances from [34].

3 Proof of the statistical performance in Theorem 2

In this section, we prove the statistical performance of µ̂K as stated in Theorem 2. We first identify an event E onto
which we will derive the rate of convergence of the order of (2). This event is also used to compute the running time
of µ̂K in the next section as announced in Theorem 2.

Proposition 1. Denote by E the event onto which for all matrix M � 0 such that Tr(M) = 1, there are at least
9K/10 of the blocks for which

∥∥M1/2(X̄k − µ)
∥∥

2
≤ 8r where

r = 1200

√
Tr(Σ)

N
+

√
1200 ‖Σ‖opK

N
. (4)

If Assumptions 1 holds and K ≥ 300|O| then P[E ] ≥ 1− exp(−K/180000).

Proposition 1 contains all the stochastic arguments we will use in this paper (constants have not been optimized).
In other words, after identifying E all the remaining arguments do not involve any other stochastic tools. Before
proving Proposition 1, let us first state a result that is of particular interest beyond our problem.
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Corollary 1. On the event E, for all M ∈ Rd×d such that M � 0 and Tr(Σ) = 1 there are at least 9K/10 blocks
such that for all xc ∈ Rd,∥∥∥M1/2(µ− xc)

∥∥∥
2
− 8r ≤

∥∥∥M1/2(X̄k − xc)
∥∥∥

2
≤
∥∥∥M1/2(µ− xc)

∥∥∥
2

+ 8r. (5)

Let us now turn to a proof of Proposition 1. We first remark that if we were to only consider matrices M of rank
1, Proposition 1 would boil down to show that for all v ∈ Sd−1

2 (the unit sphere in `d2) on more than 9/10 blocks
|
〈
v, X̄k − µ

〉
| ≤ 8r. This is a “classical” result in the MOM literature which has been proved in [31] and [32]. We

recall now this result and the short proof from [32] for completeness. We will use it to prove Proposition 1.

Lemma 1. Grant Assumption 1 and assume that K ≥ 300|O|. With probability at least 1 − exp(−K/180000), for
all v ∈ Sd−1

2 , there are at least 99K/100 of the blocks k such that |
〈
v, X̄k − µ

〉
| ≤ r.

Proof. We want to show that with probability at least 1− exp(−K/180000), for all v ∈ Sd−1
2 ,∑

k∈[K]

I(|
〈
X̄k − µ, v

〉
| > r) ≤ K/100.

We take K = {k ∈ [K] : Bk ∩ O = ∅}. We define φ(t) = 0 if t ≤ 1/2, φ(t) = 2(t− 1/2) if 1/2 ≤ t ≤ 1 and φ(t) = 1 if
t ≥ 1. We have I(t ≥ 1) ≤ φ(t) ≤ I(t ≥ 1/2) for all t ∈ R and so∑

k∈K

I(|
〈
X̄k − µ, v

〉
| > r) ≤

∑
k∈K

I(|
〈
X̄k − µ, v

〉
| > r)− P[|

〈
X̄k − µ, v

〉
| > r/2] + P[|

〈
X̄k − µ, v

〉
| > r/2]

≤
∑
k∈K

φ

(
|
〈
X̄k − µ, v

〉
|

r

)
− Eφ

(
|
〈
X̄k − µ, v

〉
|

r

)
+ P[|

〈
X̄k − µ, v

〉
| > r/2]

≤ sup
v∈Sd−1

2

(∑
k∈K

φ

(
|
〈
X̄k − µ, v

〉
|

r

)
− Eφ

(
|
〈
X̄k − µ, v

〉
|

r

))
+
∑
k∈K

P[|
〈
X̄k − µ, v

〉
| > r/2].

For all k ∈ K, we have

P[|
〈
X̄k − µ, v

〉
| > r/2] ≤

E
〈
X̄k − µ, v

〉2
(r/2)2

≤ 4Kv>Σv

Nr2
≤

4K supv∈Sd−1
2

v>Σv

Nr2
=

4K ‖Σ‖op
Nr2

≤ 1

300

because r2 ≥ 1200K ‖Σ‖op /N . Next, using the bounded difference inequality (Theorem 6.2 in [3]), the symmetriza-
tion argument and the contraction principle (Chapter 4 in [27]), with probability at least 1− exp(−K/180000),

sup
v∈Sd−1

2

(∑
k∈K

φ

(
|
〈
X̄k − µ, v

〉
|

r

)
− Eφ

(
|
〈
X̄k − µ, v

〉
|

r

))

≤ E sup
v∈S

(∑
k∈K

φ

(
|
〈
X̄k − µ, v

〉
|

r

)
− Eφ

(
|
〈
X̄k − µ, v

〉
|

r

))
+

√
|K|K

360000

≤ 4K

Nr
E sup
v∈Sd−1

2

〈
v,

∑
i∈∪k∈KBk

εi(Xi − µ)
〉

+

√
|K|K

360000

=
4K√
Nr

E

∥∥∥∥∥∥ 1√
N

∑
i∈∪k∈KBk

εi(Xi − µ)

∥∥∥∥∥∥
2

+
√
|K|K/360000 ≤ K

300

because r ≥ 1200E
∥∥∥∑i∈∪k∈KBk εi(Xi − µ∗)

∥∥∥
2
/
√
N since

E

∥∥∥∥∥∥ 1√
N

∑
i∈∪k∈KBk

εi(Xi − µ)

∥∥∥∥∥∥
2

≤

√√√√√E

∥∥∥∥∥∥ 1√
N

∑
i∈∪k∈KBk

εi(Xi − µ)

∥∥∥∥∥∥
2

2

=

√
| ∪k∈K Bk|

N

√
Tr(Σ) ≤

√
Tr(Σ).

As a consequence, when K ≥ 300|O|, with probability at least 1− exp(−K/180000), for all v ∈ Sd−1
2 ,∑

k∈[K]

I(|
〈
X̄k − µ, v

〉
| > r) ≤ |O|+ |K|

300
+

K

300
≤ K

100
.
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Proof of Proposition 1: Let M ∈ Rd×d be such that M � 0 and Tr(Σ) = 1. Denote by AM = {k ∈ [K] :∥∥M1/2(X̄k − µ)
∥∥

2
≥ 8r} and assume that |AM | ≥ 0.1K. LetG be a Gaussian vector in Rd with mean 0 and covariance

matrix M (and independent from X1, . . . , XN ). We consider the random variable Z =
∑
k∈[K] I

(
|
〈
X̄k − µ,G

〉
| > 5r

)
.

We work conditionally to X1, . . . , XN in this paragraph. For all k ∈ [K],
〈
X̄k − µ,G

〉
is a centered Gaussian

variable with variance σ2
k :=

∥∥M1/2(X̄k − µ)
∥∥2

2
. In particular, for all k ∈ AM , if we denote by g a standard real-

valued Gaussian variable, we have PG
[
|
〈
X̄k − µ,G

〉
| > 5r

]
≥ PG

[
|
〈
X̄k − µ,G

〉
| > 5σk/8

]
= 2P[g > 5/8] ≥ 0.528

(where PG (resp. EG) denotes the probability (resp. expectation) w.r.t. G conditionally on X1, . . . , XN ). Hence,
EGZ ≥ 0.528|AM | ≥ 0.0528K. Since |Z| ≤ K a.s., it follows from Paley-Zygmund inequality (see Proposition 3.3.1
in [10]) that

PG[Z > 0.01K] ≥ (EGZ − 0.01K)2

EGZ2
≥ (0.0428)2 = 0.0018.

Moreover, it follows from the Borell-TIS inequality (see Theorem 7.1 in [26] or pages 56-57 in [27]) that with

probability at least 1 − exp(−8), ‖G‖2 ≤ E ‖G‖2 + 4
√
‖M‖op. Moreover, E ‖G‖2 ≤

√
Tr(M) ≤ 1 and ‖M‖op ≤

Tr(M) ≤ 1, so ‖G‖2 ≤ 5 with probability at least 1 − exp(−8) ≥ 0.9996. Since 0.9996 + 0.0018 > 1 there exists
a vector GM ∈ Rd such that ‖GM‖2 ≤ 5 and

∑
k∈[K] I

(
|
〈
X̄k − µ,GM

〉
| > 5r

)
> 0.01K. We recall that this latter

result holds when we assume that |AM | ≥ 0.1K.
Next, we denote by Ω0 the event onto which for all v ∈ Sd−1

2 , there are at least 99K/100 blocks such that
|
〈
X̄k − µ, v

〉
| ≤ r. We know from Lemma 1 that P[Ω0] ≥ 1 − exp(−K/180000). Let us place ourselves on the

event Ω0 up to the end of the proof. Let M ∈ Rd×d be such that M � 0 and Tr(Σ) = 1 and assume that
|AM | ≥ 0.1K. It follows from the first paragraph of the proof that there exists GM ∈ Rd such that ‖GM‖2 ≤ 5 and∑
k∈[K] I

(
|
〈
X̄k − µ,GM

〉
| > 5r

)
> 0.01K. Given that we work on the event Ω0, we have for vM = GM/ ‖GM‖2,

that for more than 99K/100 blocks |
〈
X̄k−µ, vM

〉
| ≤ r and so |

〈
X̄k−µ,GM

〉
| ≤ ‖GM‖2 r ≤ 5r which contradicts the

fact that
∑
k∈[K] I

(
|
〈
X̄k − µ,GM

〉
| > 5r

)
> 0.01K. Therefore, we necessarily have |AM | ≤ 0.1K, which concludes

the proof.

Proof of Corollary 1: Let us assume that the event E holds up to the end of the proof. Let M ∈ Rd×d be such
that M � 0 and Tr(Σ) = 1. Let KM = {k ∈ [K] :

∥∥M1/2(X̄k − µ)
∥∥

2
≤ 8r}. On the event E , we have |KM | ≥ 9K/10.

Let xc ∈ Rd. For all k ∈ KM , we have
∥∥M1/2(µ− xc)

∥∥
2
≤ 8r and so∥∥∥M1/2(X̄k − xc)

∥∥∥
2
∈
[∥∥∥M1/2(X̄k − µ)

∥∥∥
2
−
∥∥∥M1/2(µ− xc)

∥∥∥
2
,
∥∥∥M1/2(X̄k − µ)

∥∥∥
2

+
∥∥∥M1/2(µ− xc)

∥∥∥
2

]
⊂
[∥∥∥M1/2(X̄k − µ)

∥∥∥
2
− 8r,

∥∥∥M1/2(X̄k − µ)
∥∥∥

2
+ 8r

]
.

Let us now turn to the study of the optimization problem (Exc) on the event E . Like in [8], we denote by OPTxc
the optimal value of (Exc) and by hxc : M → min

w∈∆K

〈M,
∑
k ωk(X̄k − xc)(X̄k − xc)>〉 its objective function to be

minimized over the constraint set {M ∈ Rd×d : M � 0,Tr(M) = 1}.

Remark 2. For a given M , the optimal choice of w ∈ ∆K in the definition of hxc(M) is straightforward: one just
have to put the maximum possible weight on the 9K/10 smallest

〈
M, (X̄k − xc)(X̄k − xc)>

〉
, k ∈ [K]. Formally, we

set SM = σ({1, 2, · · · , 9K/10}), where σ is a permutation on [K] that arranges the (X̄k − xc)>M(X̄k − xc), k ∈ [K]
in ascending order:

(X̄σ(1) − xc)>M(X̄σ(1) − xc) ≤ (X̄σ(2) − xc)>M(X̄σ(2) − xc) ≤ · · · ≤ (X̄σ(K) − xc)>M(X̄σ(K) − xc).

Then we get hxc(M) = (1/|SM |)
∑
k∈SM (X̄k − xc)>M(X̄k − xc).

The first lemma deals with the optimal value of (Exc) when the current point xc is far from µ.

Lemma 2. On the event E, for all xc ∈ Rd, if ‖xc − µ‖2 > 16r then

(8/9)(‖xc − µ‖2 − 8r)2 ≤ OPTxc ≤ (‖xc − µ‖2 + 8r)2.

Proof. Let M be a matrix such that M � 0 and Tr(M) = 1. Set KM = {k ∈ [K] :
∥∥M1/2(X̄k − µ)

∥∥
2
≤ 8r}.

On the event E , we have |KM | ≥ 9K/10 and it follows from the proof of Corollary 1 that for all k ∈ KM and all
xc ∈ Rd, ∥∥∥M1/2(µ− xc)

∥∥∥
2
− 8r ≤

∥∥∥M1/2(X̄k − xc)
∥∥∥

2
≤
∥∥∥M1/2(µ− xc)

∥∥∥
2

+ 8r. (6)
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Then we define a weight vector ω̃ ∈ ∆K by setting for all k ∈ [K]

ω̃k =

{
1/|KM | if k ∈ KM
0 else.

It follows from the definition of hxc and (6) that

hxc(M) ≤
∑
k∈[K]

ω̃k(X̄k − xc)>M(X̄k − xc) =
1

|KM |
∑
k∈KM

∥∥∥M1/2(X̄k − xc)
∥∥∥2

2
≤
(∥∥∥M1/2(µ− xc)

∥∥∥
2

+ 8r
)2

. (7)

Taking the maximum over all M ∈ Rd such that M � 0 and Tr(Σ) = 1 on both side of the latter inequality yields
the right-hand side inequality of Lemma 2.

For the left-hand side inequality of Lemma 2, we let xc ∈ Rd be such that ‖xc − µ‖2 > 16r. Let M be such that
M � 0 and Tr(M) = 1. We use the notation and observation from Remark 2: we note that |KM ∩ SM | ≥ 8K/10 so
that it follows from Corollary 1 that

hxc(M) =
1

9K/10

∑
k∈SM

∥∥∥M1/2(X̄k − xc)
∥∥∥2

2
≥ 1

9K/10

∑
k∈AM∩SM

∥∥∥M1/2(X̄k − xc)
∥∥∥2

2

≥ 8K/10

9K/10

(∥∥∥M1/2(µ− xc)
∥∥∥

2
− 8r

)2

.

Then, taking the maximum over all M � 0 such that Tr(M) = 1 on both sides, finishes the proof.

Next lemma shows that the top eigenvector of an approximating solution to (Exc) is aligned with the best possible
descent direction (µ − xc)/ ‖µ− xc‖2. It is taken from the proof of Lemma 3.3 in [8]. We reproduce here a short
proof for completeness.

Proposition 2. On the event E, if M is a matrix such that M � 0, Tr(M) = 1 and hxc(M) ≥ (β ‖xc − µ‖2 + 8r)2

for some 1/
√

2 ≤ β ≤ 1, then any top eigenvector v1 of M satisfies∣∣∣∣〈v1,
xc − µ
‖xc − µ‖2

〉∣∣∣∣ >√2β2 − 1.

Proof. Let M be a matrix such that M � 0 , Tr(M) = 1 and hxc(M) ≥ (β ‖xc − µ‖2 + 8r)2 for some

1/
√

2 ≤ β ≤ 1. We know from the proof of Lemma 2 (see Equation (7)) that hxc(M) ≤
(∥∥M1/2(µ− xc)

∥∥
2

+ 8r
)2

.

This implies that
∥∥M1/2(µ− xc)

∥∥2

2
≥ β2 ‖µ− xc‖22.

Let λ1 ≥ λ2 ≥ . . . ≥ λd ≥ 0 denote the eigenvalues of M and let v1, . . . , vd denote corresponding eigenvectors.
The conditions on M implies that

∑
j λj = 1 and BM = (v1, . . . , vd) is an orthonormal basis of Rd. We denote

v = (µ − xc)/ ‖µ− xc‖2. We decompose v in BM as v =
∑
j αjvj with

∑
j α

2
j = 1. Using this decomposition, we

have v>Mv =
∑
j λjα

2
j . We have λ1 = λ1

∑
j α

2
j ≥

∑
j λjα

2
j ≥ β2, so λ1 ≥ β2. Moreover, since

∑
j λj = 1, we have

β2
∑
j α

2
j ≤

∑
j λjα

2
j ≤ λ1α

2
1 + (1− λ1)(1−α2

1) ≤ α2
1 + (1− β2)

∑
j α

2
j , so we have α2

1 ≥ (2β2 − 1). As we know that

α1 =
〈
v1, v

〉
, we get the result.

Proposition 2 is the first tool we need to construct a descent algorithm since it provides a descent/ascent direction
(depending on the sign of the top eigenvector of an approximate solution to (Exc)). It remains to specify three other
quantities to fully characterize our algorithm: a starting point, a step size and a stopping criteria. We start with
the starting point. Here we simply use the coordinate-wise median-of-means. The following statistical guarantee
on the coordinate-wise median-of-means is known or folklore but we want to put forward that in our case it holds
on the event E . This again shows that E is the only event we need to fully analyze all the building blocks of our
algorithm. We recall that the coordinate-wise median-of-means is the estimator µ̂(0) ∈ Rd whose coordinates are for

all j ∈ [d], µ̂
(0)
j = med(X̄k,j : k ∈ [K]) where X̄k,j is the j-th coordinate of the block mean X̄k for all k ∈ [K].

Proposition 3. On the even E, we have
∥∥µ̂(0) − µ

∥∥
2
≤ 8
√
dr.

Proof. Let us place ourselves on the event E during all the proof. For all direction, v ∈ Sd−1
2 , there are at least

9K/10 blocks k such that |
〈
X̄k − µ, v

〉
| ≤ 8r. In particular, for all j ∈ [d], |

〈
X̄k − µ, ej

〉
| ≤ 8r where (e1, . . . , ed) is

the canonical basis of Rd. That is for at least 9K/10 blocks |X̄k,j − µj | ≤ 8r. In particular, the latter result is true

for the median of {X̄k,j : k ∈ [K]} that is for µ̂
(0)
j . We therefore have

∥∥µ̂(0) − µ
∥∥
∞ ≤ 8r and so

∥∥µ̂(0) − µ
∥∥

2
≤ 8r

√
d.
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Proposition 3 guarantees that starting from the coordinate-wise Median-of-Means we are off by a
√
d proportional

factor from the optimal rate r. This will play a key role to analyze the number of steps we need to reach µ within
the optimal rate r. Indeed, if we prove a geometric decay of the distance to µ along the descent step then only log d
steps (up to a mutliplicative constants) would be enough to reach µ by a distance at most of the order of r.

Let us now specify the step size we use at each iteration. At the current point xc we compute a top eigenvector v1

of an approximating solution M to (Exc) (i.e. M such that hxc(M) ≥ (β ‖xc − µ‖2 + 8r)2 for some 1/
√

2 ≤ β ≤ 1).
Next iteration is xc+1 = xc − θcv1 where the step size is

θc = −Med
(〈
X̄k − xc, v1

〉
: k ∈ [K]

)
. (8)

In particular, since θcv1 does not depend on the sign of v1 (the product θcv1 is the same if we replace v1 by −v1),
we do not care which top eigenvector of M we choose.

Let us now prove a geometric decay of the algorithm while xc is far from µ. Again, this result is proved on the
event E .

Proposition 4. On the event E, the following holds. Let xc ∈ Rd (be the current point of the algorithm). Assume
that M is an approximating solution of (Exc): M is such that hxc(M) ≥ (β ‖xc − µ‖2 + 8r)2 for some 0.78 ≤ β ≤ 1
and let v1 be one of its top eigenvector. Then, we have

‖xc+1 − µ‖22 ≤ 0.8 ‖xc − µ‖22 + 64r2

when xc+1 = xc − θcv1 for θc defined in (8).

Proof. Let us assume that the event E holds up to the end of the proof. Let M be an approximating solution
to (Exc) such that hxc(M) ≥ (β ‖xc − µ‖2 + 8r)2 for some 0.78 ≤ β ≤ 1 and let v1 be a top eigenvector of M .

In direction v1, there are at least 9K/10 blocks such that |
〈
X̄k − µ, v1

〉
| ≤ 8r hence on these blocks we also have

|θc −
〈
xc − µ, v1

〉
| = |Med

(〈
µ− X̄k, v1

〉
: k ∈ [K]

)
| ≤ Med

(
|
〈
µ− X̄k, v1

〉
| : k ∈ [K]

)
≤ 8r. (9)

Let v = (µ − xc)/ ‖µ− xc‖2 denote the optimal normalized descent direction. We write v = λ1v1 + λ2v
⊥
1

where v⊥1 is a normalized orthogonal vector to v1. We have λ2
1 + λ2

2 = 1 and it follows from Proposition 2 that

|λ1| = |
〈
v1, v

〉
| >

√
2β2 − 1. We conclude that

‖xc+1 − µ‖22 = ‖xc − µ− θcv1‖22 =
∥∥(
〈
xc − µ, v1

〉
− θc)v1 +

〈
xc − µ, v⊥1

〉
v⊥1
∥∥2

2

= (
〈
xc − µ, v1

〉
− θc)2 +

〈
xc − µ, v⊥1

〉2 ≤ (8r)2 + λ2
2 ‖xc − µ‖

2
2

As λ2
2 = 1− λ2

1 < 2− 2β2 < 0.8 we get the result.

We now have almost all the building blocks to fully characterize the algorithm. The last and final step is to find a
stopping rule. The idea we use to design such a rule is based on Proposition 4: we know that when the current point
xc is not in a `d2-neighborhood of µ with a radius of the order of r then the `d2-distance between the next iteration xc+1

and µ should be less than
√

0.81 times the `d2-distance between xc and µ. We therefore have a geometric decay of the
distance to µ along the iterations until we reach µ in a `d2-neighborhood of radius proportional to r. Starting from the
coordinate-wise median(-of-means) which is in a 8

√
dr neighborhood of µ, we only have to do log(8

√
d)/ log(1/

√
0.81)

iterations to output a current point which is r-close to µ w.r.t. the `d2-norm (see Proposition 3).
We are now in a position to write an “almost final” pseudo-code of our algorithm. In the next section, we will dive

a bit deeper in this pseudo-code (and in particular on the covering SDP algorithm used to construct an approximating
solution to (Exc)) in order to provide a final pseudo-code together with its total running time.
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input : X1, . . . , XN and a number K of blocks
output: A robust subgaussian estimator of µ

1 Construct an equipartition B1 t · · · tBK = {1, · · · , N}
2 Construct the K empirical means X̄k = (N/K)

∑
i∈Bk Xi, k ∈ [K]

3 Compute µ̂(0) the coordinate-wise median-of-means and put xc ← µ̂(0)

4 for T = 1, 2, · · · , log(8
√
d)/ log(1/

√
0.81) do

5 Compute Mc an approximating solution to (Exc) such that

hxc(Mc) ≥ (0.78 ‖xc − µ‖2 + 8r)
2

6 Compute v1 a top eigenvector of Mc

7 Compute a step size θc = −Med
(〈
X̄k − xc, v1

〉
: k ∈ [K]

)
8 Update xc ← xc − θcv1

9 end
10 Return xc

Algorithm 1: “Almost final” pseudo-code of the robust sub-gaussian estimator of µ

Algorithm 1 is “almost” our final algorithm. There is one last step we need to check carefully: given a current
point xc we need to find a way to construct Mc satisfying “hxc(Mc) ≥ (0.78 ‖xc − µ‖2 + 8r)

2
” without knowing r or

µ. This is the last issue we need to address in order to explain how step 5 from Algorithm 1 can be realized in a
fully data-dependent way in a good time. This issue is answered in the next section together with the computation
of its running time.

4 Solving (approximatively) the SDP (Exc)

The aim of this section is to show that, on the event E , it is possible to construct in reasonnable time a matrix
Mc such that “hxc(Mc) ≥ (0.78 ‖xc − µ‖2 + 8r)

2
” without any extra information than the data. To that end we

construct in an efficient way an approximation solution to the optimization problem (Exc) using covering SDP as in
[8]. The main result of this section is the following.

Theorem 3. Let u ∈ N∗. On E, for every xc ∈ Rd such that ‖xc − µ‖2 ≥ 800r, we can either compute, in time

Õ(Kud), with probability > 1− (1/10)u+5/
√
d :

• A matrix Mc such that
hxc(Mc) ≥ (0.78 ‖xc − µ‖2 + 8r)

2

• Or directly a subgaussian estimate of µ, using only the block means X̄1, . . . , X̄K as inputs.

Theorem 3 answers the last issue raised at the end of Section 3 and provides the running time for step 5 of
Algorithm 1. It therefore concludes the statement that there exists a fully data-driven robust subgaussian algorithm
for the estimation of a mean vector under the only Assumption 1 (the total running time of Algorithm 1 is studied
in Section 5).

Remark 3. Theorem 3 states that we either find an approximating solution Mc to (Exc) or a good estimate of µ (at
the current point xc). As we will see in this section, this second case is degenerate as it is not the typical situation.

We now turn to the proof of Theorem 3. It is decomposed into several lemmas adapted from techniques developed
by [8] to approximately solve the semi-definite positive problem (Exc) in polynomial time. To that end, we first
introduce the following covering SDP

minimize Tr(M ′) + ‖y′‖1
subject to M ′ � 0, y′ ≥ 0,

∀k ∈ [K], ρ(X̄k − xc)>M ′(X̄k − xc) + 9K/10 y′k ≥ 1

(Cρ)

where ρ > 0 is some parameter that we will show how to fine-tune later. Then, we show that, for a good choice of
ρ, we can turn a good approximation solution for (Cρ) into a good approximation solution for (Exc).
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We note g(ρ) the optimal objective value of (Cρ). We begin with a first lemma that shows how to link the two
optimization problems (Exc) and (Cρ). The proof can be found in Lemma 4.2 from [8]. We adapt it here for our
purpose.

Lemma 3. Let ρ > 0. From a feasible solution (M ′, y′) for (Cρ) that achieves Tr(M ′)+ ||y′||1 ≤ 1, we can construct
a feasible solution for (Exc) with objective value ≥ 1/ρ (and conversely).

Proof. We first note that the optimization problem (Exc) is equivalent to the following one:

maximize z −
‖y‖1

9K/10

subject to M � 0, Tr(M) = 1, y ≥ 0, z ≥ 0

∀k ∈ [K], (X̄k − xc)>M(X̄k − xc) + yk ≥ z

(Ẽxc)

Indeed, for a given M � 0 such that Tr(M) = 1, one can notice that the optimal value is achieved in (Ẽxc) for
yk = max(0, z − (X̄k − xc)>M(X̄k − xc)), k ∈ [K] and z = Q9/10

(
(X̄k − xc)>M(X̄k − xc)

)
the 9/10-th quantile of

{(X̄k − xc)>M(X̄k − xc) : k ∈ [K]}, so that z−‖y‖1 /(9K/10) = hxc(M) which gives the equivalence between (Exc)

and (Ẽxc).
Then, once a feasible solution (M ′, y′) for (Cρ) that achieves Tr(M ′) + ‖y′‖1 ≤ 1 is obtained, by taking M =

M ′/Tr(M ′), z = 1/(ρTr(M ′)) and y = (9K/10)/(ρTr(M ′))y′, we get the desired result (and the converse follows
from inverting those relations).

From Lemma 3, it is enough to solve (Cρ) – for a good choice of ρ – to find a good approximating solution for
(Exc). It therefore remains to find such a good ρ. To do so, we rely on the next two lemmas. The first one is adapted
from Lemma 4.3 in [8].

Lemma 4. For every ρ > 0 and every α ∈ (0, 1), g((1− α)ρ) ≥ g(ρ) ≥ (1− α)g((1− α)ρ).

Proof. A feasible pair (M ′, y′) for (C(1−α)ρ) is feasible for (Cρ), which gives the first inequality. If (M ′, y′) is a
feasible pair for (Cρ), then (M ′/(1−α), y′/(1−α)) is a feasible pair for (C(1−α)ρ), which gives the second inequality.

It follows from Lemma 4, that g is continuous, non increasing, and (from Lemma 3, using both sides of the
implication, we have that g(ρ) ≤ 1 iff 1/ρ ≥ OPTxc) that g(1/OPTxc) = 1. So in order to find a good solution, we
must find a ρ such that g(ρ) is as close to 1 as possible. Unfortunately, we do not know how to solve (Cρ) exactly
for a given ρ > 0, but we can compute efficiently a good approximation (M ′, y′) and a top eigenvector of M ′ thanks
to the following result which can be found in [37] and is detailed in [8] (see Section 4 and Remark 3.4).

Lemma 5. [[37]] Let u ≥ 1 be an integer. For every ρ > 0 and every fixed η > 0, we can find with probability
> 1 − (1/10)u+10/d a feasible solution to (Cρ) that is η-close to the optimal, that is to say a feasible pair (M ′, y′)

so that Tr(M ′) + ‖y′‖1 ≤ (1 + η)g(ρ) in time Õ(uKd). Moreover, it is possible to find a top eigenvector of M ′ in

Õ(Kd).

We compute (u + 3 log(d) + 10) times independently the (randomized) algorithm from [37] that has a runtime
of Õ(Kd) and that outputs an η-close feasible solution with probability 9/10. By taking the largest of the output’s
objective value, we have an η-close feasible solution with probability 1− (1/10)u+3 log(d)+10, in time Õ(uKd), proving
Lemma 5. Let us call ALGρ the algorithm from Lemma 5, that takes as input ((X̄k)Kk=1, xc, ρ, η, u) and returns a

feasible pair (M ′, y′) for (Cρ) satisfying Tr(M ′)+‖y′‖1 ≤ (1+η)g(ρ) in Õ(uKd), with probability > 1−(1/10)u+10/d.
Next, in order to find a good ρ, we have to get some additional information on the function g. We will get it on the
event E .

Lemma 6. On the event E, for all xc ∈ Rd, if ‖xc − µ‖2 > 8r then

g(ρ) ≤ 1

ρ OPTxc

(
1 + ρOPTxc

(
9(‖xc − µ‖2 + 8r)2

8(‖xc − µ‖2 − 8r)2
− 1

))
.

Proof. We use the same notation as in the proof of Lemma 3. For any ν > 0, we can choose a triplet
(z, y,M) feasible for (Ẽxc) such that z − ‖y‖1 /(9K/10) > OPTxc − ν. On the event E , Lemma 2 yields OPTxc >
(8/9)(‖xc − µ‖2 − 8r)2 and we have from Corollary 1 that

z = Q9/10

(
(X̄k − xc)>M(X̄k − xc)

)
= Q9/10

(∥∥∥M1/2(X̄k − xc)
∥∥∥

2

)
≤
(∥∥∥M1/2(xc − µ)

∥∥∥
2

+ 8r
)2

≤ (‖xc − µ‖2 +8r)2
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because M � 0 and Tr(M) = 1. Let M ′ = M/(ρz), y′ = y/[z(9K/10)]. We have

g(ρ) ≤ Tr(M ′) + ‖y′‖1 ≤
1 + ρ ‖y‖1 /(9K/10)

ρz

<
1 + ρ(z −OPTxc + ν)

ρz
≤

1 + ρν + ρOPTxc

(
9(‖xc−µ‖2+8r)2

8(‖xc−µ‖2−8r)2 − 1
)

ρ(OPTxc − ν)
.

By taking ν → 0, we get the result.

Proof of Theorem 3. Let us place ourselves on the event E so that we can apply Lemma 6. Let xd ∈ Rd and
assume that ‖xc − µ‖2 > 800r. It follows from Lemma 6 that g(ρ) ≤ 1/(ρ OPTxc) + 0.171. Therefore, if we can find
a ρ such that g(ρ) ≥ 1− ε+ 0.171 for some 0 < ε < 1, then necessarily 1/ρ ≥ OPTxc(1− ε). Let us take ε = 0.173,
and η = 0.0001. Then if ALGρ returns, a feasible pair (M ′, y′) for (Cρ) so that 0.9981 ≤ Tr(M ′) + ‖y′‖1 ≤ 1, then,
since 0.9981 > 1.0001× 0.998 = (1 + η)(1− ε+ 0.171) we will know that, with probability > 1− (1/10)u+10/d,

(1 + η)g(ρ) ≥ Tr(M ′) + ‖y′‖1 ≥ (1 + η)(1− ε+ 0.171)

hence 1/ρ ≥ OPTxc(1− ε), and by Lemma 3, we can construct a feasible solution Mc for (Exc) with objective value
satisfying hxc(Mc) ≥ OPTxc(1− ε). Next, using Lemma 2, we obtain that when ‖xc − µ‖2 ≥ 800r

hxc(Mc) ≥ OPTxc(1− ε) ≥ (1− ε)(8/9) (‖xc − µ‖2 − 8r)
2 ≥ (0.78 ‖xc − µ‖2 + 8r)

2

for ε = 0.173, solving step 5 from Algorithm 1.
Therefore, it only remains to show how to find a ρ such that ALGρ returns a pair (M ′, y′) (feasible for (Cρ))

satisfying 0.9981 ≤ Tr(M ′) + ‖y′‖1 ≤ 1. We do it first by assuming that we have access to an initial ρ0 such that
ALGρ0 returns a feasible pair (M ′, y′) for (Cρ) (for ρ = ρ0) so that Tr(M ′) + ‖y′‖1 ≤ 1 and to a maximal number T
of iterations (we will also see later how to choose such ρ0 and T ). The following algorithm (which is a binary search)
taking as input (X̄1, . . . , X̄K , xc, ρ0, u, T ) returns a feasible pair (M ′, y′) for (Cρ) so that 0.9981 ≤ Tr(M ′)+‖y′‖1 ≤ 1
(when T is large enough). This is simply due to the fact that g is continuous, non increasing, g(0) = 10/9 > 1 and
g(ρ) ≤ 2/8 when ρ → +∞ and ‖xc − µ‖2 > 800r (because of Lemma 6). For this to work, we need that for each
iteration, ALGρ returns a feasible pair (M ′, y′) for (Cρ) (for ρ = ρ0) so that Tr(M ′) + ‖y′‖1 ≤ (1 + 0.0001)g(ρ). We
will suppose that it is the case for the rest of the proof. By union bound, this happens with probability at least
> 1− T (1/10)u+10/d

input : X̄1, . . . , X̄K , xc, ρ0,u, T
output: A feasible pair (M ′, y′) for (Cρ) satisfying 0.9981 ≤ Tr(M ′) + ‖y′‖1 ≤ 1

1 ρm ← 0, ρM ← ρ0, V ← ALGρ0(u) , i← 0
2 while V /∈ [0, 9981, 1] and i < T do
3 if V < 0, 9981 then
4 ρM ← (ρM + ρm)/2
5 end
6 else
7 ρm ← (ρM + ρm)/2
8 end
9 V ← objective(ALG ρm+ρM

2

(u)) , i← i+ 1

10 end
11 Return ALG ρm+ρM

2 (u)

Algorithm 2: The BinarySearch algorithm to find a ρ so that ALGρ returns a pair (M ′, y′) (feasible for (Cρ))
satisfying 0.9981 ≤ Tr(M ′) + ‖y′‖1 ≤ 1.

If we can find a ρ0 (such that ALGρ0 returns a feasible pair (M ′, y′) for (Cρ) so that Tr(M ′)+‖y′‖1 ≤ 1) and a large
enough number of iterations T in BinarySerach, Algorithm 2 returns a feasible pair (M ′, y′) for (Cρ) from which we

can construct an approximating solution Mc for (Exc) with objective value hxc(Mc) larger than (0.78 ‖xc − µ‖2 + 8r)
2

whenever ‖xc − µ‖2 ≥ 800r. This is exactly what we expect in step 5 of Algorithm 1. Next, the last and final step
that remains to be explained is to show how one can get such a ρ0 and T using only the block means (X̄k)Kk=1 in

Õ(Nd+ uKd).
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Let us consider µ̂(0) the coordinate-wise median(-of-means) and let us define δ = Med(
∥∥X̄k − µ̂(0)

∥∥
2

: k ∈ [K])

– both quantities can be computed in Õ(Kd). On the event E , it follows from Corollary 1 (for M = Id/d) and
Proposition 3 that δ ≤ 16

√
d × r. So if one takes ρ0 = d/δ2 ≥ 1/[(16)2r2], and if ‖xc − µ‖2 > 800r, Lemma 2 and

Lemma 6 guarantee that OPTxc ≥ (8/9) (‖xc − µ‖2 − 8r)
2 ≥ (8/9)(792)2r2 and so

g(ρ0) ≤ 1

ρ OPTxc
+ 0.171 ≤ 162

(8/9)(792)2
+ 0.171 < 0.18

so ALGρ0 ≤ (1 + η)g(ρ) < 1.0001× 0.18 < 1 (for the same choice of η = 0.0001).
Now we tackle the question of the number T of iterations, which is crucial for the runtime. We know from

Lemma 4 and Lemma 6 that the interval I of all ρ’s such that 0.9981 ≤ objective(ALGρ) ≤ 1 is at least of size
0.001/OPTxc when ‖xc − µ‖2 > 800r. Indeed, since g(ρ) ≤ objective(ALGρ) ≤ (1 + η)g(ρ), if ρ is such that 0.9981 ≤
g(ρ) ≤ 1/(1 + η) then 0.9981 ≤ objective(ALGρ) ≤ 1. Now, if we let ρ1 > 0 and 0 < α < 1 be such that
g(ρ1) = 0.9981 and g((1− α)ρ1) = 1/(1 + η) the interval I is at least of size αρ1. Moreover, from Lemma 4 we have
1/(1 + η) ≤ g((1−α)ρ1) ≤ g(ρ1)/(1−α) and so 0.9981 = g(ρ1) ≥ (1−α)/(1 + η), i.e. α ≥ 1− 0.9981(1 + η) > 0.001.
Finally, since g(ρ1) ≤ 1, g(1/OPTxc) = 1 and g is non-increasing, we conclude that ρ1 ≥ 1/OPTxc and so the length
of I is at least αρ1 ≥ 0.001/OPTxc .

So, in the case where ‖xc − µ‖2 > 800r, log2(ρ0×OPTxc/0.001) iterations are enough to insure that BinarySearch
outputs (M ′, y′) (from ALGρ for a well-chosen ρ) feasible for (Cρ) and such that 0.9981 ≤ Tr(M ′) + ‖y′‖1 ≤ 1. More-

over, on the event E it is possible to show that for all iterations xc along the algorithm we have ‖xc − µ‖2 < C
√
dr

for a constant C ≤ 800 (we may take that as an induction hypothesis for the firsts iterates xc, and the proof of
Theorem 2 below in Section 5 shows that it will still holds for xc+1). So if δ > r/d then ρ0 < d3/r2, and since
OPTxc < (C2d+ 8)r2 (this follows from Lemma 2), the binary search ends in time T = log2(C̃d4) with C̃ < 106.

Thus, if the binary search has not ended in that time, we have either δ < r/d (which is a degenerate case) or
‖xc − µ‖2 < 800r (or both). If ‖xc − µ‖2 > 800r and δ < r/d, then, taking ρ1 = 1/(dδ)2, we have, by Lemma

6, ALGρ1 < 1/2. So, if we can not end our binary search in time log2(C̃d4), we compute ALG1/(dδ)2 : if this gives

something smaller than 1, that means that 1/(dδ)2 > 1/OPTxc ⇒ δ <
√

(C2d+ 8)r/d < (C + 1)r/
√
d. We notice

that on E ,
∥∥µ̂(0) − µ

∥∥
2
< δ + 8r, so if ALG1/(dδ)2 < 1, then µ̂(0) is a good estimate for µ. If on the contrary we have

ALGρ1 > 1, it means that ‖xc − µ‖2 < 800r, so we stop the algorithm and return xc.

Let us write now in pseudo-code the procedure we just described. This is an algorithm, named SolveSDP,
running in Õ(Kud) which takes as inputs X̄1, . . . , X̄K , xc, u and which outputs, on the event E , with probability
> 1− log(C̃d4)(1/10)u+10/d, for every xc ∈ Rd such that ‖xc − µ‖2 ≥ 800r either a matrix Mc such that

hxc(Mc) ≥ (0.78 ‖xc − µ‖2 + 8r)
2

or a subgaussian estimate of µ. It therefore describes step 5 from Algorithm 1.

input : X̄1, . . . , X̄K , xc and u
output: A feasible solution for (Exc)

1 Compute µ̂(0), compute δ

2 T ← log(C̃d4), ρ0 ← d/δ2

3 (M ′, y′)← BinarySearch(T , ρ0)
4 if Tr(M ′) + ||y||1 ∈ [0, 9981, 1] then
5 M ←M ′/Tr(M ′)
6 Return (True, M)

7 end
8 else
9 if ALG1/(dδ)2 < 1 then

10 Return (False, µ̂(0))
11 end
12 else
13 Return (False, xc)
14 end

15 end

Algorithm 3: SolveSDP
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Remark 4. [Two advantages of block means] During the whole algorithm, we solve the program (Cρ) up to a factor
(1 + η) where η is fixed (here we take it equal to 0.0001). This differs crucially from the work of [8] where η depends
on the fraction of outliers, which decreases the performance of the algorithm in Lemma 5, the true runnnig time
being Õ(Kd/Poly(η)). This is another advantages of using the mean blocks instead of the data themselves. Indeed,
using blocks of data, we work with a constant fraction of corrupted blocks (we took it equal to 1/10), therefore the
approximation parameter used to approximately solved (Cρ) can be taken equal to a constant (we took it equal to
η = 0.0001) unlike [8] where η depends on ε = |O|/N . Taking the block means has therefore two advantages: a
stochastic one, which is to exhibit a subgaussian behavior for 9K/10 blocks even under a L2-moment assumption and
a computational one, which is to make the proportion of corrupted blocks constant.

5 The final algorithm and its computational cost: proof of Theorem 2.

We are now in a position to fully describe our robust subgaussian descent algorithm running in Õ(Nd+ uKd). One
may check that its construction is fully data-dependent, in particular, we do not need to know the value of r or the
proportion of outliers.

input : X1, . . . , XN and K ∈ [N ] and u ∈ N∗
output: A robust subgaussian estimator of µ

1 Construct an equipartition B1 t · · · tBK = {1, · · · , N}
2 Construct the K empirical means X̄k = (N/K)

∑
i∈Bk Xi, k ∈ [K]

3 Compute µ̂(0) the coordinate-wise median

4 xc ← µ̂(0), Bool ← True, T ← 0

5 while Bool and T < log(8
√
d)/ log(1/0.81) do

6 Bool, A ←SolveSDP(X̄1, . . . , X̄K , xc)
7 if Bool then
8 M ← A
9 Compute v1 a top eigenvector of Mc

10 Compute a step size θc = −Med
(〈
X̄k − xc, v1

〉
: k ∈ [K]

)
11 Update xc ← xc − θcv1

12 T ← T + 1

13 end
14 else
15 xc ← A
16 end

17 end
18 Return xc

Algorithm 4: Final Algorithm: covSDPofMeans

Proof of Theorem 2. From Theorem 3, we know that on E , when, ‖xc − µ‖2 > 800r, we get, with probability

> 1 − (1/10)u+5/
√
d, an Mc so that hxc(Mc) ≥ (0.8 ‖xc − µ‖2 + 8r)

2
(or directly a subgaussian estimate, in which

case our work is done). Proposition 4, states that in that case ‖xc+1 − µ‖22 ≤ 0.8 ‖xc − µ‖22 + 64r2 ≤ 0.81 ‖xc − µ‖22.

So we have a geometric decays and Proposition 3 guarantees that our starting point is at most 8
√
dr far away from

the mean so that in at most log(8
√
d)/ log(1/0.81)) steps the algorithm outputs its current point which is r-close to

µ, with probability > 1− (1/10)u+5 log(8
√
d)/(log(1/0.81))

√
d) > 1− (1/10)u (by union bound).

The last thing to do is to control what happens when ‖xc − µ‖2 < 800r. Then, we have no guarantees on v1, but
using the similar argument as in the proof of Proposition 4 we know that

|θc −
〈
xc − µ, v1

〉
| = |Med

(〈
µ− X̄k, v1

〉
: k ∈ [K]

)
| ≤ Med

(
|
〈
µ− X̄k, v1

〉
| : k ∈ [K]

)
≤ 8r (10)

and (for some v⊥1 a normalized orthogonal vector to v1)

‖xc+1 − µ‖22 = ‖xc − µ− θcv1‖22 =
∥∥(
〈
xc − µ, v1

〉
− θc)v1 +

〈
xc − µ, v⊥1

〉
v⊥1
∥∥2

2

= (
〈
xc − µ, v1

〉
− θc)2 +

〈
xc − µ, v⊥1

〉2 ≤ (8r)2 + ‖xc − µ‖22 .
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Hence, ‖xc+1 − µ‖2 ≤ (8r) + ‖xc − µ‖2. Therefore, in the worst case scenario where ‖xc − µ‖2 > 800r at the last
iteration, the algorithm outputs the next iteration µ̂K = xc+1 so that ‖µ̂K − µ‖2 ≤ 808r.

We end this proof with the computation of the running time of Algorithm 4. We detail the computation cost
for each line of Algorithm 4: line 1 cost N , line 2 costs Nd, line 3 costs O(dK log(K)). The while loop in line 5 is
running at least log d times (up to constant) so that the computational cost of all remaining lines of Algorithm 4 are
at worst to be multiplied by log d. Line 6 costs log(C̃d4) steps, each of cost Õ(Kud) (that comes from Lemma 5).
Line 9 can be computed in Õ(Nd) thanks to Lemma 5. Finally, line 10 costs O(Kd). Other lines take time at most
d. We thus recover the running time announced in Theorem 2.

6 Adaptive choice of K

Given a number of blocks K ∈ {1, . . . , N}, a parameter u ≥ 1 (so that the covering SDPs from [37] (used in Lemma 5)
is ran u+ 3 log d+ 10 times) and the dataset {X1, . . . , XN}, Algorithm 4 returns a vector µ̂K in Rd and Theorem 2
insures that µ̂K estimates the true mean µ at the subgaussian rate (1) with large probability as long as K ≥ 300|O|.
As a consequence, we have certified statistical guarantees for µK only when some a priori knowledge on the number
|O| of outliers is provided (such as “the corruption of this database is less than 5%” ) or if we choose K like N - but,
in this later case the rate (1) may be too pessimistic. The aim of this section is to overcome this issue by constructing
a procedure which can automatically adapt to the number of outliers. The resulting procedure satisfies the same
statistical bounds as µK for all K ≥ 300|O| without knowing |O| (up to constants).

The adaptation method we use is based on the Lepski method [28, 29] which is another tool used by the “MOM
community” since [31]. The price we pay for this adaptation is the a priori knowledge of the rate (1) for all K
which means that we know in advance Tr(Σ) and ‖Σ‖op – this is for instance the case when it is known that Σ is
the identity matrix Id. Of course, one can design robust estimators for Tr(Σ) (see [11]) and ‖Σ‖op but this requires
stronger assumptions that we want to avoid at this stage.

Lepski’s method proceeds as follows. We set for all K ∈ {1, . . . , N} and all j ∈ {0, 1, . . . , log2N}

r∗K = 808

1200

√
Tr(Σ)

N
+

√
1200 ‖Σ‖opK

N

 and r(j) = r∗dN/2je

the rate of convergence from Theorem 2. For a given parameter uj ∈ N∗, we construct from Algorithm 4

µ̂(j) ← covSDPofMeans(X1, . . . , XN ,K = dN/2je, u = uj). (11)

Classical Lepski’s method considers the largest J such that ∩Jj=0B2(µ̂(j), r(j)) is none empty and then take any point
µ̂ in this none empty intersection. Standard analysis of Lepski’s method shows that µ̂ estimates µ at the rate r∗K (up
to an absolute constant) simultaneously for all K ∈ {300|O|, . . . , N} without knowing |O|. Given that checking that
the intersection of several `d2-balls may not be straigtforward, we use a slightly modified version of Lepski’s method
as described in the following algorithm.

input : X1, . . . , XN and {uj : j = 0, 1, 2, . . . , log2N} ⊂ N∗
output: A robust subgaussian estimator of µ with adaptive choice of K
init : J = 0 and µ̂(0) = covSDPofMeans(X1, . . . , XN ,K = N, u = u0)

1 while
∥∥µ̂(J) − µ̂(j)

∥∥
2
≤ r(J) + r(j), j = J − 1, J − 2, . . . , 0 do

2 J ← J + 1

3 µ̂(J) ← covSDPofMeans(X1, . . . , XN ,K = dN/2Je, u = uJ)

4 end

5 Return µ̂(J)

Algorithm 5: Adaptive choice of K in covSDPofMeans

Unlike for the traditional Lepski’s method we check that µ̂(J) is in ∩J−1
j=0B2(µ̂(j), r(J) + r(j)) instead of checking

that ∩Jj=0B2(µ̂(j), r(j)) is none empty – this simplifies the adaptation step. It is also possible to speed up the whole
procedure by constructing iteratively the block means. Indeed, given that we consider a dyadic grid for K, i.e.

K ∈ {N, dN/2e, dN/4e, . . .}, for all j ∈ N, we can construct the block means {X̄(j+1)
k , k = 1, . . . , dN/2j+1e} at step

14



K = dN/2j+1e using the block means from the previous step K = dN/2je by simply averaging two successive block

means: X̄
(j+1)
k ← (X̄

(j)
2k + X̄

(j)
2k+1)/2.

Let us now turn to the statistical analysis of the output µ̂(Ĵ) from Algorithm 5 where

Ĵ = max
(
J ∈ {0, 1, . . . , log2N} : µ̂(J) ∈ ∩J−1

j=0B2(µ̂(j), r(J) + r(j))
)
.

Theorem 4. Let {uj : j = 0, 1, 2, . . . , log2N} ⊂ N∗ be the family of parameters used to construct the family of
estimators {µ̂(j), j = 0, 1, . . .} in Algorithm 5 (see also (11)). For all K ∈ {600|O|, . . . , N}, with probability at least

1− 2 exp(−K/360000)−
log2(N/(K−1))∑

j=0

(1/10)uj (12)

the output µ̂(Ĵ) of Algorithm 5 is such that
∥∥∥µ̂(Ĵ) − µ

∥∥∥
2
≤ 3r∗K .

Proof. For all j ∈ {0, 1, . . . , log2N} denote by Ej the event onto which Theorem 2 is valid for K = dN/2je and
for u = uj : that is on Ej , if dN/2je ≥ 300|O|,

∥∥µ̂(j) − µ
∥∥

2
≤ r(j) and P[Ej ] ≥ 1− exp(−dN/2je/180000)− (1/10)uj .

Let K ∈ {600|O|, . . . , N} and J ∈ {0, 1, . . . , log2N} be such that dN/2Je ≤ K < dN/2J−1e. On the event ∩Jj=0Ej , we

have
∥∥µ̂(j) − µ

∥∥
2
≤ r(j) for all j = 0, 1, . . . , J , in particular, for all j = 0, 1, . . . , J−1,

∥∥µ̂(J) − µ̂(j)
∥∥

2
≤ r(J) +r(j) and

so µ̂(J) ∈ ∩J−1
j=0B2(µ̂(j), r(J) + r(j)). As a consequence Ĵ ≥ J therefore

∥∥∥µ̂(Ĵ) − µ̂(J)
∥∥∥

2
≤ r(Ĵ) + r(J) ≤ 2r(J) ≤ 2r∗K .

Finally, we have

P[∩Jj=0Ej ] ≥ 1−
J∑
j=0

exp(−dN/2je/180000)− (1/10)uj ≥ 1− 2 exp(−K/360000)−
log2(N/(K−1))∑

j=0

(1/10)uj .

We can see in Algorithm 5 that µ̂(Ĵ) does not use any information on the number of outliers |O| for its construction
but it can still estimate µ at the optimal rate r∗K for all deviation parameters K in {600|O|, . . . , N}. The maximum

total running time of Algorithm 5 is achieved when Ĵ = log2N ; in that case, it is at most Õ(Nd+
∑log2N
j=0 dN/2jeujd).

In particular, if one chooses uj = 2j for all j = 0, 1, . . . , log2N then the total running time for the construction of

µ̂(Ĵ) is nearly-linear Õ(Nd). For this choice of uj , the probability deviation in (12) is constant and so one should
choose the smallest possible K allowed in Theorem 4, that is K = 600|O|. Let us write formally this result.

Corollary 2. If one takes uj = 2j for all j = 0, 1, . . . , log2N in Algorithm 5 then, in nearly-linear time Õ(Nd),

with probability at least 1− 2 exp(−600|O|/360000)− 1/11, the output µ̂(Ĵ) from Algorithm 5 satisfies

∥∥∥µ̂(Ĵ) − µ
∥∥∥

2
≤ 2r∗600|O| = 1616

1200

√
Tr(Σ)

N
+ 850

√
‖Σ‖op |O|

N

 . (13)

In particular, considering the setup from Theorem 1, if |O| = εN for some ε ≤ 1/600 then the rate achieved by

µ̂(Ĵ) in Corollary 2 is of the order of √
Tr(Σ)

N
+
√
‖Σ‖op ε

which is like
√
‖Σ‖op ε when N ≥ (Tr(Σ)/ ‖Σ‖op)/ε. As a consequence, the result from Corollary 2 improves the one

from Theorem 1 by removing an extra log d factor in the sample complexity in the case considered in Theorem 1
that is when Σ � σ2Id. Moreover, Corollary 2 also shows that the sample complexity depends on the effective
rank Tr(Σ)/ ‖Σ‖op of Σ. This ratio can be much smaller than d if the spectrum of Σ decays sufficiently fast.
Finally, Corollary 2 also covers the case where the sample size N is less than the sample complexity – that is when
N ≤ (Tr(Σ)/ ‖Σ‖op)/ε. In that case, the estimation rate is given by

√
Tr(Σ)/N which is the complexity coming

from the estimation of µ in the none corrupted case. As a consequence, Corollary 2 exhibits a phase transition
happening at N ∼ (Tr(Σ)/ ‖Σ‖op)/ε above which corruption is the main source of estimation mistakes and below
which corruption does not play any role.

Corollary 2 covers the case where µ̂(Ĵ) is computed in nearly-linear time and with statistical guarantees happening

with constant probability. In the following final result, we show that µ̂(Ĵ) can estimate µ at the optimal rate r∗K for
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all K ≥ 600|O| with a subgaussian deviation 1− 2 exp(−K/360000) if we perform more iterations uj of the covering

SDP from Lemma 5. The price we pay for this subgaussian behavior of µ̂(Ĵ) is on the total running time which goes
from nearly-linear time Õ(Nd) to Õ(N2d) by taking uj = dN/2je for j = 0, 1, . . . , log2N (uj = N would do as well).
We write formally this statement in the next corollary which follows directly from Theorem 4.

Corollary 3. If one takes uj = dN/2je for all j = 0, 1, . . . , log2N in Algorithm 5 then, in time Õ(N2d), for all

K ≥ 600|O|, with probability at least 1− 4 exp(−K/360000), the output µ̂(Ĵ) from Algorithm 5 satisfies

∥∥∥µ̂(Ĵ) − µ
∥∥∥

2
≤ 2r∗K = 1616

1200

√
Tr(Σ)

N
+

√
1200 ‖Σ‖opK

N

 . (14)

As a consequence µ̂(Ĵ) is a subgaussian estimator of µ for all range of K from 600|O| to N which can handle
up to |O| outliers in the database (even when |O| ∼ N) and that can be constructed in time Õ(N2d). It does not
require any knowledge on |O| for its construction.
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