
Comment to “Generic chaining and the

`1-penalty” by Sara van de Geer

Guillaume Lecué1

I would like to congratulate the author for the interesting ideas and intuition

that are put forward in this contribution. I will focus my comment on the role of

the generic chaining and on the geometry of `
1

-balls.

In [9], the oracle inequalities provide both a prediction result (a bound on the

excess risk E(✓̂, ✓0)) and a coe�cient estimation result (a bound on k✓̂ � ✓0k
1

when

✓0 2 ⇥). There are two main steps in the author’s proof. The first one follows

from some tricky algebraic arguments and leads to Equation (3) of Theorem 2.1

(Equation (4) in Theorem 2.1 and Theorem 2.2 are similar in nature). Along the

lines of this step, the role of the Margin assumption (Condition 2.1 in [9]): for all

✓ 2 ⇥,

E(✓; ✓0) := P (⇢✓ � ⇢✓0) � G(⌧(✓ � ✓0)), (1)

and the e↵ective sparsity parameter for S
0

= {j : ✓0

j 6= 0},

�2(L, S
0

) = max
⇣k✓S0k

2

1

⌧(✓)2

:
�

�✓Sc
0

�

�

1

 L k✓S0k
1

⌘

(2)

are highlighted. In particular, the norm ⌧ characterizing the “local behavior” of the

excess risk ✓ 7�! E(✓, ✓0) around ✓0 2 ⇥ in (1) appears to be the correct norm with

respect to which the distortion with respect to the `
1

-norm has to be measured over

the cone {✓ 2 Rp :
�

�✓Sc
0

�

�

1

 L k✓S0k
1

} intersected with ⇥ (note that, in this cone,

k✓S0k
1

 k✓k
1

 (1 + L) k✓S0k
1

). This first step does not require any probabilistic
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tool and this bound (i.e. Equation (3) in Theorem 2.1) is obtained on the event

T (✓0) =
n

|(P � Pn)(⇢✓ � ⇢✓0)|  �
0

�

�✓ � ✓0

�

�

1

_ �2

0

: 8✓ 2 ⇥
o

. (3)

The second step in the author’s argument is to show that the event T (✓0) holds

with high probability when �
0

is of the order of
p

log p/n. This is the step where

empirical processes theory - and in particular, the tools developed in [8] - may be

particularly useful. This is the place where Fernique-Slepian theorem can be use as

a simple alternative to the generic chaining based argument in [9].

1 An alternative to the generic chaining argument

in [9]

In [9], the first step to prove that the event T (✓0) holds with high probability

is to use the peeling device. The second step is to study the empirical process

✓ 7! (P � Pn)(⇢✓ � ⇢✓0) indexed by ⇥M(✓0) = {✓ 2 ⇥ : k✓ � ✓0k
1

 M} by means

of symmetrization and concentration of suprema of Rademacher processes. At that

point of the argument, everything boils down to upper bound the expectation (con-

ditionally to X = (X
1

, . . . , Xn))

E" sup
✓2⇥M (✓0

)

�

�Y "(✓, ✓0)
�

� where Y "(✓, ✓0) =
1p
n

n
X

i=1

"i(⇢
c
✓ � ⇢c

✓0)(Xi).

For this issue, we suggest an alternative proof to the generic chaining based argument

in [9] (involving Talagrand majorizing measure theorem [6]).

This alternative proof is based upon two ingredients: a comparison theorem (cf.

Lemma 4.5 in [2]),

E" sup
✓2⇥

�

�

�

n
X

i=1

"iai(✓)
�

�

�

. Eg sup
✓2⇥

�

�

�

n
X

i=1

giai(✓)
�

�

�

, (4)

where the "i’s are iid Rademacher and the gi’s are iid Gaussian (and the ai’s are any

real-valued functions); and Fernique-Slepian theorem (cf. Theorem 3.15 in [2]): if

(Z(✓))✓2⇥

and (X(✓))✓2⇥

are two Gaussian processes such that for all ✓, ✓̃ 2 ⇥

E
�

Z(✓)� Z(✓̃)
�

2  E
�

X(✓)�X(✓̃)
�

2

, (5)
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then

E sup
✓,˜✓2⇥

|Z(✓)� Z(✓̃)|  E sup
✓,˜✓2⇥

|X(✓)�X(✓̃)|. (6)

In order to use the comparison theorem (4), we introduce the following Gaussian

process: for any ✓ 2 ⇥M(✓0),

Zg(✓, ✓0) =
1p
n

n
X

i=1

gi(⇢
c
✓ � ⇢c

✓0)(Xi).

It follows from the comparison principle in (4) that (conditionaly on X),

E" sup
✓2⇥M (✓0

)

�

�Y "(✓, ✓0)
�

� . Eg sup
✓2⇥M (✓0

)

�

�Zg(✓, ✓0)
�

�. (7)

Assume that the pseudo-metric associated to the Gaussian process (Zg(✓, ✓0))✓2⇥M (✓0
)

is such that for any ✓, ✓̃ 2 ⇥M(✓0)

Eg

�

Zg(✓, ✓0)� (Zg(✓̃, ✓0)
�

2 . d(✓, ✓̃)2 (8)

where d is the natural pseudo-metric associated to some other Gaussian process

(X(✓, ✓0))✓2⇥M (✓0
)

. Then by Fernique-Slepian theorem, we have

Eg sup
✓,˜✓2⇥M (✓0

)

�

�Zg(✓, ✓0)� Zg(✓̃, ✓0)
�

� . Eg sup
✓,˜✓2⇥M (✓0

)

�

�X(✓, ✓0)�X(✓̃, ✓0)
�

�. (9)

For instance, if we assume that (8) holds for the pseudo-metric (we use the notation

of [9])

(✓, ✓̃) 7�! d(✓, ✓̃)2 =
r

X

k=1

�

�

�

pk
X

j=1

(✓j,k � ✓̃j,k) j,k

�

�

�

2

n
, (10)

then (9) holds for the following Gaussian process introduced in [9],

X(✓, ✓0) =
1p
n

n
X

i=1

r
X

k=1

pk
X

j=1

(✓j,k � ✓0

j,k) j,k(Xi, i)gi,k

where the gi,k’s are iid standard Gaussian variables. Condition (8) for the pseudo-

metric (10) is equivalent to Condition 4.1 in [9]. In particular, Condition 4.1 in

[9] can be seen as a comparison assumption between the canonical pseudo-metrics

associated to two Gaussian processes (the process Zg coming naturally from the
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study and the process X for which the supremum is easier to handle thanks to some

linearity properties).

Therefore, under Condition 4.1, one has (conditionaly on X),

E" sup
✓2⇥M (✓0

)

�

�Y "(✓, ✓0)
�

� . Eg sup
✓,˜✓2⇥M (✓0

)

�

�X(✓, ✓0)�X(✓̃, ✓0)
�

�.

Then, we recover Theorem 4.2 in [9] thanks to a duality argument and a Gaussian

maximal inequality:

Eg sup
✓,˜✓2⇥M (✓0

)

�

�X(✓, ✓0)�X(✓̃, ✓0)
�

� .
p

log p max
j,k

k j,kkn .

2 Some comments on the geometry of `1-balls

It follows from the analysis of [9] that the regularization parameter � is of the order

of
p

(log p)/n. The complexity term
p

log p comes from the Gaussian mean width

`⇤(Bp
1

) ⇠
p

log p where for any set T ⇢ Rp and for iid Standard Gaussian variables

g
1

, . . . , gp,

`⇤(T ) = E sup
t2T

p
X

j=1

giti.

This improves upon the result of [5], where the regularization parameter is taken

of the order of
p

(log n)3(log(p _ n))/n. This last result follows from some entropy

bound (cf. proof of Lemma 2 in [5]) and somehow the regularization parameter

cannot be taken smaller than Dudley(Bp
1

, `p
2

)/
p

n where we denote by Dudley(Bp
1

, `p
2

)

the Dudley entropy integral of Bp
1

with respect to the `p
2

-metric defined for any set

T ⇢ Rp by

Dudley(T, `p
2

) =

Z 1

0

p

log N(T, "Bp
2

)d".

Thanks to [4], we have Dudley(Bp
1

, `p
2

) ⇠ (log p)3/2. Note that in [5], the authors

were able to “replace” some log p factors in Dudley(Bp
1

, `p
2

) by some log n factors in

� because, in fact, this is the expected complexity of a random n-dimensional section

of Bp
1

that measures the complexity of the problem.

The interesting point is that there is a gap between the two di↵erent complexity

measures of the unit `
1

-ball Bp
1

:

`⇤(Bp
1

) ⇠
p

log p and Dudley(Bp
1

, `p
2

) ⇠ (log p)3/2. (11)
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In particular, as mentioned in [5], trying to obtain an optimal value for � through a

Dudley’s entropy integral will result inevitably in a logarithmic loss.

The gap between the Gaussian mean width and the Dudley entropy integral

observed on the set Bp
1

in (11) is somehow extremal in Rp since for any set T ⇢ Rp,

`⇤(T ) . Dudley(Bp
1

, `p
2

) . (log p)`⇤(T ).

Indeed, the left-hand side is the classical chaining argument. For the right-hand side,

if "
0

:= max">0

�

N(T, "Bp
2

) � p
�

, then by a volumetric argument (cf. Lemma 4.16

in [3]) and Sudakov inequality (cf. Theorem 3.18 in [2]),

Z "0

0

p

log N(T, "Bp
2

)d" .
Z "0

0

p

log N(T, "
0

Bp
2

) + log N("
0

Bp
2

, "Bp
2

)d"

. "
0

p

log N(T, "
0

Bp
2

) +

Z "0

0

q

p log
�

5"
0

/"
�

d" . "
0

p

log N(T, "
0

Bp
2

) . `⇤(T ).

Then, if for any s 2 N, Ts denotes a maximal "s-net of T with respect to `p
2

where

✏s := inf">0

�

N(T, "Bp
2

)  22

s�

, it follows from Sudakov inequality that

Z 1

"0

p

log N(T, "Bp
2

)d" .
dlog pe
X

s=0

2s/2 sup
t2T

d`p
2
(t, Ts)

. (log p) max
">0

"
p

log N(T, "Bp
2

) . (log p)`⇤(T ).

It is interesting to note that, in the case of ellipsoids in Rp, the gap between the

Dudley entropy integral (w.r.t. `p
2

) and the Gaussian mean width is at most
p

log p

(cf. Chapter 2 in [7]). In the case of Bp
q -balls, it can be seen, thanks to the entropy

estimates of [4], that there is no gap between the Dudley entropy integral and the

Gaussian mean width: for any 1 < q  2,

Dudley(Bp
q , `

p
2

) ⇠ `⇤(Bp
q ) ⇠ p1�1/q.

Other examples of such sets having no gap between the Dudley entropy integral and

the Gaussian mean width is the purpose of a result of Fernique that can be found,

for instance, in Theorem 2.7.4 and Corollary 2.7.5 in [1].

As a conclusion, the study of the empirical processes naturally associated to

the study of `
1

-based algorithms should avoid any “Dudley entropy integral based
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approach” in order to avoid logarithmic losses. This is to me, one of the most

important message behind [9].

Acknowledgement: I would like to thank Ramon van Handel and Shahar

Mendelson for the di↵erent discussions we had on the generic chaining method which

helped to improve this discussion paper.
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