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We obtain bounds on estimation error rates for regularization
procedures of the form

f̂ ∈ argmin
f∈F

(
1

N

N∑
i=1

(Yi − f(Xi))
2 + λΨ(f)

)
when Ψ is a norm and F is convex.

Our approach gives a common framework that may be used in
the analysis of learning problems and regularization problems alike.
In particular, it sheds some light on the role various notions of spar-
sity have in regularization and on their connection with the size of
subdifferentials of Ψ in a neighbourhood of the true minimizer.

As ‘proof of concept’ we extend the known estimates for the LASSO,
SLOPE and trace norm regularization.

1. Introduction. The focus of this article is on regularization, which
is one of the most significant methods in modern statistics. To give some
intuition on the method and on the reasons behind its introduction, consider
the following standard problem.

Let (Ω, µ) be a probability space and set X to be distributed according to
µ. F is a class of real-valued functions defined on Ω and Y is the unknown
random variable that one would like to approximate using functions in F .
Specifically, one would like to identify the best approximation to Y in F , say
in the L2 sense, and find the function f∗ that minimizes in F the squared
loss functional f → E(f(X)− Y )2; that is,

f∗ = argminf∈FE(f(X)− Y )2,
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with the underlying assumption that f∗ exists and is unique.
Unlike problems in approximation theory, neither the target Y nor the

underlying measure µ are known. Therefore, computing the L2 distance
between functions in F and Y is impossible. Instead, one is given partial
information: a random sample (Xi, Yi)

N
i=1, selected independently according

to the joint distribution of X and Y .
Because of the random nature of the sample and the limited information

it provides, there is no real hope of identifying f∗, but rather, only of ap-
proximating it. In an estimation problem one uses the sample to produce a
random function f̂ ∈ F , and the success of the choice is measured by the
distance between f̂ and f∗ in the L2(µ) sense. Thus, one would like to ensure
that with high probability with respect to the samples (Xi, Yi)

N
i=1, the error

rate ∥∥∥f̂ − f∗∥∥∥2

L2(µ)
= E

((
f̂(X)− f∗(X)

)2|(Xi, Yi)
N
i=1

)
is small. More accurately, the question is to identify the way in which the
error rate depends on the structure of the class F and scales with the sample
size N and the required degree of confidence (probability estimate).

It is not surprising (and rather straightforward to verify) that the problem
becomes harder the larger F is. In contrast, if F is small, chances are that
f∗(X) is very far from Y , and identifying it, let alone approximating it, is
pointless.

In situations we shall refer to as learning problems, the underlying as-
sumption is that F is indeed small, and the issue of the approximation error
– the distance between Y and f∗ is ignored.

While the analysis of learning problems is an important and well-studied
topic, the assumption that F is reasonably small seems somewhat restrictive;
it certainly does not eliminate the need for methods that allow one to deal
with very large classes.

Regularization was introduced as an alternative to the assumption on
the ‘size’ of F . One may consider large classes, but combine it with the
belief that f∗ belongs to a relatively small substructure in F . The idea is
to penalize a choice of a function that is far from that substructure, which
forces the learner to choose a function in the ‘right part’ of F .

Formally, let E be a vector space, assume that F ⊂ E is a closed and
convex set and let Ψ : E → R+ be the penalty. Here, we will only consider
the case in which Ψ is a norm on E.

Let λ > 0 and for a sample (Xi, Yi)
N
i=1, set

f̂ ∈ argmin
f∈F

(
1

N

N∑
i=1

(Yi − f(Xi))
2 + λΨ(f)

)
;
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f̂ is called a regularization procedure, Ψ is the regularization function and
λ is the regularization parameter.

In the classical approach to regularization, the substructure of f∗ is quan-
tified directly by Ψ. The underlying belief is that Ψ(f∗) is not ‘too big’ and
one expects the procedure to produce f̂ for which Ψ(f̂) is of the order of
Ψ(f∗). Moreover, the anticipated error rate ‖f̂−f∗‖L2(µ) depends on Ψ(f∗).
In fact, an optimistic viewpoint is that regularization could perform as well
as the best learning procedure in the class {f : Ψ(f) ≤ Ψ(f∗)}, but without
knowing Ψ(f∗) beforehand.

Among the regularization schemes that are based on the classical ap-
proach are reproducing kernel Hilbert spaces (RKHS), in which the RKHS
norm serves as the penalty. Since RKHS norms capture various notions of
smoothness, in RKHS regularization one is driven towards a choice of a
smooth f̂ – as smooth as f∗ is.

In more modern regularization problems the situation is very different.
Even when penalizing with a norm Ψ, one no longer cares whether or not
Ψ(f∗) is small; rather, one knows (or at least believes) that f∗ is sparse in
some sense, and the hope is that this sparsity will be reflected in the error
rate.

In other words, although one uses certain norms as regularization func-
tions – norms that seemingly have nothing to do with ‘sparsity’ – the hope is
that the sparse nature of f∗ will be exposed by the regularization procedure,
while Ψ(f∗) will be of little importance.

The most significant example in the context of sparsity-driven regulariza-
tion is the celebrated LASSO estimator [33]. Let F = {

〈
t, ·
〉

: t ∈ Rd} and
set t∗ to be a minimizer in Rd of the functional t → E(

〈
t,X

〉
− Y )2. The

LASSO is defined by

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(〈
t,Xi

〉
− Yi

)2
+ λΨ(t)

)
for the choice Ψ(t) = ‖t‖1 =

∑d
i=1 |ti|.

The remarkable property of the LASSO (see [8] and [3]) is that for a well-
chosen regularization parameter λ, if t∗ is supported on at most s coordinates
(and under various assumptions on X and Y to which we will return later),
then with high probability,

‖t̂− t∗‖22 .
s log(ed)

N
.
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Thus, the error rate of the LASSO does not depend on Ψ(t∗) = ‖t∗‖1, but
rather on the degree of sparsity of t∗, measured here by the cardinality of
its support ‖t∗‖0 = |{i : t∗i 6= 0}|.

This fact seems almost magical, because to the naked eye, the regular-
ization function ‖t‖1 has nothing to do with sparsity; yet `1 regularization
leads to a sparsity-driven error rate.

A standard (yet somewhat unconvincing) explanation of this phenomenon
is that the penalty ‖t‖1 is a convexified version of ‖t‖0 = |{i : ti 6= 0}|,
though this loose connection hardly explains why ‖t∗‖0 has any effect on
the error rate of the LASSO.

A similar phenomenon occurs for other choices of Ψ, such as the SLOPE
and trace-norm regularization, which will be explored in detail in what fol-
lows. In all these cases and others like them, the regularization function is
a norm that does not appear to be connected to sparsity, nor to other nat-
ural notions of low-dimensional structures for that matter. Yet, and quite
mysteriously, the respective regularization procedure emphasizes those very
properties of t∗.

The aim of this note is to offer a framework that can be used to tackle
standard learning problems (small F ) and regularized problems alike. More-
over, using the framework, one may explain how certain norms lead to the
emergence of sparsity-based bounds.

In what follows we will show that two parameters determine the error
rate of regularization problems. The first one captures the ‘complexity’ of
each set in the natural hierarchy in F

Fρ = {f ∈ F : Ψ(f − f∗) ≤ ρ}.

Applying results from [20, 22, 19], the ‘complexity’ of each Fρ turns out to
be the optimal (in the minimax sense) error rate of the learning problem
in that set. To be more precise, the main ingredient in obtaining a sharp
error rate of a learning problem in a class H is an accurate analysis of the
empirical excess squared loss functional

(1.1) f → PNLf =
1

N

N∑
i=1

(f(Xi)− Yi)2 − 1

N

N∑
i=1

(f∗(Xi)− Yi)2.

Since the minimizer f̂ of the functional (1.1) satisfies PNLf̂ ≤ 0, one may
obtain an estimate on the error rate by showing that with high probability,
if ‖f − f∗‖L2(µ) ≥ r then PNLf > 0. This excludes functions in the set
{f ∈ H : ‖f−f∗‖L2(µ) ≥ r} as potential empirical minimizers. That ‘critical
level’ turns out to be the correct (minimax) error rate of a learning problem
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in H. That very same parameter is of central importance in regularization
problems — specifically, the ‘critical level’ r(ρ) for each one of the sets
{f ∈ F : Ψ(f − f∗) ≤ ρ} (see Section 2.1 for an accurate definition of
r(ρ) and its role in the analysis of learning problems and regularization
problems).

The second parameter, which is the main ingredient in our analysis of
regularization problems, measures the ‘size’ of the subdifferential of Ψ in
points that are close to f∗: recall that the subdifferential of Ψ in f is

(∂Ψ)f = {z∗ ∈ E∗ : Ψ(f + h) ≥ Ψ(f) + z∗(h) for every h ∈ E}

where E∗ is the dual space of the normed space (E,Ψ), and that if f 6= 0,
the subdifferential consists of all the norm one linear functionals z∗ for which
z∗(f) = Ψ(f).

Fix ρ > 0 and let Γf∗(ρ) be the collection of functionals that belong to
the subdifferential (∂Ψ)f for some f ∈ F that satisfies Ψ(f − f∗) ≤ ρ/20.
Set

Hρ = {f ∈ F : Ψ(f − f∗) = ρ and ‖f − f∗‖L2(µ) ≤ r(ρ)}

and let
∆(ρ) = inf

h∈Hρ
sup

z∗∈Γf∗ (ρ)
z∗(h− f∗).

Hence, Γf∗(ρ) is a subset of the unit sphere of E∗ when 0 /∈ {f ∈ F :
Ψ(f − f∗) ≤ ρ/20} and it is the entire unit ball of E∗ otherwise. And, since
Hρ consists of functions whose Ψ norm is ρ, it is evident that ∆(ρ) ≤ ρ.
Therefore, if ∆(ρ) ≥ αρ for a fixed 0 < α ≤ 1 then Γf∗(ρ) is rather large:
for every h ∈ Hρ there is some z∗ ∈ Γf∗(ρ) for which z∗(h) is ‘almost
extremal’—that is, at least αρ.

Our main result (Theorem 3.2 below) is that if Γf∗(ρ) is large
enough to ensure that ∆(ρ) ≥ 4ρ/5, and the regularization param-

eter λ is set to be of the order of r2(ρ)
ρ , then with high probability,

the regularized minimizer in F , f̂ , satisfies that ‖f̂ − f∗‖L2(µ) ≤ r(ρ)

and Ψ(f̂ − f∗) ≤ ρ.
Theorem 3.2 implies that one may analyze regularization problems by

selecting ρ wisely, keeping in mind that points in a Ψ-ball of radius ∼ ρ
around f∗ must generate a sufficiently large subdifferential. And the fact
that functionals in Γf∗(ρ) need to be ‘almost extremal’ only for points in Hρ

rather than for the entire sphere is crucial; otherwise, it would have forced
Γf∗(ρ) to be unreasonably large – close to the entire dual sphere.

As will be clarified in what follow, sparsity, combined with the right choice
of Ψ, contributes in two places: firstly, if f∗ is sparse in some sense and Ψ
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is not smooth on sparse elements, then Γf∗(ρ), which contains the subdif-
ferential (∂Ψ)f∗ , is large; secondly, for the right choice of ρ the ‘localiza-
tion’ Hρ consists of elements that are well placed: if Ψ(f − f∗) = ρ and
‖f − f∗‖L2(µ) ≤ r(ρ), there is some z∗ ∈ Γf∗(ρ) for which z∗(f − f∗) is large
enough. The fact that Hρ is well placed is an outcome of some compatibility
between Ψ and the L2(µ) norm.

Of course, to find the right choice of ρ one must first identify r(ρ), which
is, in itself, a well-studied yet nontrivial problem.

Before we dive into technical details, let us formulate some outcomes of
our main result. We will show how it can be used to obtain sparsity-driven
error rates in three regularization procedures: the LASSO, SLOPE and trace
norm regularization. In all three cases our results actually extend the known
estimates in various directions.
The LASSO.

The LASSO is defined for the class of linear functional F = {
〈
t, ·
〉

: t ∈
Rd}. For a fixed t0 ∈ Rd, the goal is to identify t0 using linear measurements,
the regularization function is Ψ(t) = ‖t‖1 =

∑d
i=1 |ti|, and the resulting

regularization procedure produces

t̂ ∈ argmin
t∈Rd

( 1

N

N∑
i=1

(〈
t,Xi

〉
− Yi

)2
+ λ‖t‖1

)
.

The LASSO has been studied extensively in the last two decades. Even
though some recent advances [39, 35, 27] have shown the LASSO to have
its limitation, historically, it has been the benchmark estimator of high-
dimensional statistics — mainly because a high dimensional parameter space
does not significantly affect its performance as long as t0 is sparse. This was
shown for example, in [3, 15, 36, 37, 17, 26, 34] in the context of estimation
and sparse oracle inequalities, in [16, 40, 2] for support recovery results; and
in various other instances as well; we refer the reader to the books [5, 8] for
more results and references on the LASSO.
SLOPE.

In some sense, SLOPE, introduced in [4, 31], is actually an extension of
the LASSO, even though it has been introduced as an extension of multiple-
test procedures. Again, the underlying class is F = {

〈
t, ·
〉

: t ∈ Rd}, and to
define the regularization function let β1 ≥ β2 ≥ ... ≥ βd > 0 and set

Ψ(t) =

d∑
i=1

βit
]
i,

where (t]i)
d
i=1 denotes the non-increasing re-arrangement of (|ti|)di=1. Thus,
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the SLOPE norm is a sorted, weighted `1-norm, and for (β1, ..., βd) = (1, ..., 1),
SLOPE regularization coincides with the LASSO.
Trace-norm regularization.

Consider the trace inner-product on Rm×T . Let F = {
〈
A, ·
〉

: A ∈
Rm×T } and given a target Y put A∗ to be the matrix that minimizes
A→ E(

〈
A,X

〉
− Y )2. The regularization function is the trace norm.

Definition 1.1. Let A be a matrix and set (σi(A)) to be its singular
values, arranged in a non-increasing order. For p ≥ 1, ‖A‖p = (

∑
σpi (A))1/p

is the p-Schatten norm.

Note that the trace-norm is simply the 1-Schatten norm, the Hilbert-
Schmidt norm is the 2-Schatten norm and the operator norm is the ∞-
Schatten norm.

The trace norm regularization procedure is

Â ∈ argmin
A∈Rm×T

( 1

N

N∑
i=1

(Yi −
〈
Xi, A

〉
)2 + λ‖A‖1

)
and it was introduced for the reconstruction of low-rank, high-dimensional
matrices [28, 9, 29, 6, 7, 25].

As will be explained in what follows, our main result holds in rather
general situations and may be implemented in examples once the ‘critical
levels’ r(ρ) are identified. Since the examples we present serve mainly as
“proof of concept”, we will focus only on one scenario in which r(ρ) may be
completely characterized for an arbitrary class of functions.

Definition 1.2. Let `M2 be an M -dimensional inner product space and
let µ be a measure on `M2 . The measure µ is isotropic if for every x ∈ `M2 ,∫ 〈

x, t
〉2
dµ(t) = ‖x‖2

`M2
;

it is L-subgaussian if for every p ≥ 2 and every x ∈ `M2 ,

‖
〈
x, ·
〉
‖Lp(µ) ≤ L

√
p‖
〈
x, ·
〉
‖L2(µ).

Hence, the covariance structure of an isotropic measure coincides with
the inner product in `M2 , and if µ is an L-subgaussian measure then the
Lp(µ) norm of a linear form does not grow faster than the Lp norm of the
corresponding Gaussian variable.
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Assumption 1.1. Assume that the underlying measure µ is isotropic
and L-subgaussian, and that for f∗ =

〈
t∗, ·
〉

(or f∗ =
〈
A∗, ·

〉
in the matrix

case), the noise1 ξ = f∗(X)− Y belongs to Lq for some q > 2.

When dealing with the LASSO and SLOPE, the natural Euclidean struc-
ture is the standard one in Rd, and for trace norm regularization, the natural
Euclidean structure is endowed by the trace inner product in Rm×T .

Remark 1.3. In the supplementary material we study a general X with-
out assuming it is isotropic, which means dealing with less natural Euclidean
structures in the examples we present. It is also possible to go beyond the sub-
gaussian case, we refer the reader to [13] where other moment assumptions
on X are considered.

The second part of Assumption 1.1, that ξ ∈ Lq for some q > 2, is rather
minimal. Indeed, for the functional f → E(f(X) − Y )2 to be well defined,
one must assume that f(X)− Y ∈ L2; the assumption here is only slightly
stronger.

Applying our main result we will show the following:

Theorem 1.4. Consider the LASSO under Assumption 1.1. Let 0 <
δ < 1. Assume that there is some v ∈ Rd supported on at most s coordinates
for which

‖t∗ − v‖1 ≤ c1(δ)‖ξ‖Lqs
√

log(ed)

N
.

If λ = c2(L, δ)‖ξ‖Lq
√

log(ed)/N and N ≥ s log(ed/s), then with probability
at least 1− δ the LASSO estimator with regularization parameter λ satisfies
that for every 1 ≤ p ≤ 2

∥∥t̂− t∗∥∥
p
≤ c3(L, δ)‖ξ‖Lqs1/p

√
log(ed)

N
.

The error rate in Theorem 1.4 coincides with the standard estimate on
the LASSO (cf. [3]), but in a broader context: t∗ need not be sparse but only
approximated by a sparse vector; the target Y is arbitrary and the noise ξ
may be heavy tailed and need not be independent of X.

1In what follows we will refer to ξ as ‘the noise’ even though it depends in general on Y
and X. The reason for using that term comes from the situation in which Y = f∗(X)−W
for a symmetric random variable W that is independent of X (independent additive noise);
thus ξ = W . We have opted to call ξ ‘the noise’ because its role in the general case and
its impact on the error rate is rather similar to what happens for independent noise.
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Turning to SLOPE, let us recall the estimates from [31], where the setup
is somewhat restricted: Let X be a Gaussian vector on Rd, set W to be a
Gaussian random variable with variance σ2 that is independent of X and
put Y =

〈
t∗, X

〉
+ W . Consider some q ∈ (0, 1), let Φ−1(α) be the α-th

quantile of the standard normal distribution and put βi = Φ−1(1− iq/(2d)).

Theorem 1.5. [31] Let 1 ≤ s ≤ d satisfy that s/d = o(1) and (s log d)/N =
o(1) when N → ∞. If 0 < ε < 1, N → ∞ and λ = 2σ/

√
N , the SLOPE

estimator with weights (βi)
d
i=1 and regularization parameter λ satisfies

sup
‖t∗‖0≤s

Pr
( N

∥∥t̂− t∗∥∥2

2

2σ2s log(d/s)
> 1 + 3ε

)
→ 0.

Note that Theorem 1.5 is asymptotic in nature and not ‘high-dimensional’.
Moreover, it only holds for a Gaussian X, independent Gaussian noise W ,
a specific choice of weights (βi)

d
i=1 and t∗ that is s-sparse.

We consider a more general situation. Let βi ≤ C
√

log(ed/i) and set

Ψ(t) =
∑d

i=1 βit
]
i .

Theorem 1.6. There exists constants c1, c2 and c3 that depend only on
L, δ and C for which the following holds. Under Assumption 1.1, if there

is v ∈ Rd that satisfies |supp(v)| ≤ s and Ψ(t∗ − v) ≤ c1‖ξ‖Lq s√
N

log
(
ed
s

)
,

then for N ≥ c2s log(ed/s) and with the choice of λ = c2‖ξ‖Lq/
√
N , one has

Ψ(t̂− t∗) ≤ c3‖ξ‖Lq
s√
N

log
(ed
s

)
and

∥∥t̂− t∗∥∥2

2
≤ c3‖ξ‖2Lq

s

N
log
(ed
s

)
with probability at least 1− δ.

Finally, let us consider trace norm regularization.

Theorem 1.7. Under Assumption 1.1 and if there is V ∈ Rm×T that

satisfies that rank(V ) ≤ s and ‖A∗ − V ‖1 ≤ c1‖ξ‖Lqs
√

max{m,T}
N , one has

the following. Let N ≥ c2smax{m,T} and λ = c3‖ξ‖Lq
√

max{m,T}
N . Then

with probability at least 1− δ, for any 1 ≤ p ≤ 2∥∥∥Â−A∗∥∥∥
p
≤ c4‖ξ‖Lqs1/p

√
max{m,T}

N
.

The constants c1, c2, c3 and c4 depends only on L and δ.
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A result of a similar flavour to Theorem 1.7 is Theorem 9.2 from [8].

Theorem 1.8. Let X be an isotropic and L-subgaussian vector, and W
that is mean-zero, independent of X and belongs to the Orlicz space Lψα for
some α ≥ 1. If Y =

〈
A∗, X

〉
+W and

λ ≥ c1(L) max

{
‖ξ‖2

√
m(t+ logm)

N
, ‖ξ‖ψα log1/α

(‖ξ‖ψα
‖ξ‖L2

)√m(t+ logN)(t+ logm)

N

}
,

then with probability at least 1− 3 exp(−t)− exp(−c2(L)N)

(1.2)
∥∥∥Â−A∗∥∥∥2

2
≤ c3 min

{
λ ‖A∗‖1 , λ

2rank(A∗)
}
.

Clearly, the assumptions of Theorem 1.8 are more restrictive than those
of Theorem 1.7, as the latter holds for a heavy tailed ξ that need not be
independent of X, and for A∗ that can be approximated by a low-rank
matrix. Moreover, if ‖A∗‖1 is relatively large and the error rate in Theorem
1.8 is the sparsity-dominated λ2rank(A∗), then the error rate in Theorem
1.7 is better by a logarithmic factor.

The proofs of the error rates in all the three examples will be presented
in Section 5.

1.1. Notation. We end the introduction with some standard notation.
Throughout, absolute constants are denoted by c, c1..., etc. Their value

may change from line to line. When a constant depends on a parameter α it
will be denoted by c(α). A . B means that A ≤ cB for an absolute constant
c, and the analogous two-sided inequality is denoted by A ∼ B. In a similar
fashion, A .α B implies that A ≤ c(α)B, etc.

Let E ⊂ L2(µ) be a vector space and set Ψ to be a norm on E. For a set
A ⊂ E, t ∈ E and r > 0, let rA+ t = {ra+ t : a ∈ A}.

Denote by BΨ = {w ∈ E : Ψ(w) ≤ 1} the unit ball of (E,Ψ) and set
SΨ = {f ∈ E : Ψ(f) = 1} to be the corresponding unit sphere. BΨ(ρ, f) is
the ball of radius ρ centred in f and SΨ(ρ, f) is the corresponding sphere.
Also, set D to be the unit ball in L2(µ), S is the unit sphere there, and
D(ρ, f) and S(ρ, f) are the ball and sphere centred in f and of radius ρ,
respectively.

A class of spaces we will be interested in consists of `dp, that is, Rd endowed

with the `p norm; Bd
p denotes the unit ball in `dp and S(`dp) is the unit sphere.

For every x = (xi)
d
i=1, (x]i)

d
i=1 denotes the non-increasing rearrangement

of (|xi|)di=1.
Finally, if (Xi, Yi)

N
i=1 is a sample, PNh = 1

N

∑N
i=1 h(Xi, Yi) is the empirical

mean of h.
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2. Preliminaries: The regularized functional. Let F ⊂ E be a
closed and convex class of functions. Recall that for target Y , f∗ is the
minimizer in F of the functional f → E(f(X)− Y )2. Since F is closed and
convex, the minimum exists and is unique.

Let Lf (X,Y ) = (f(X) − Y )2 − (f∗(X) − Y )2 be the excess squared loss
functional and for λ > 0 let Lλf (X,Y ) = Lf + λ(Ψ(f) − Ψ(f∗)) be its reg-

ularized counterpart. Thus, for a random sample (Xi, Yi)
N
i=1, the empirical

(regularized) excess loss functional is

PNLλf =
1

N

N∑
i=1

Lf (Xi, Yi) + λ(Ψ(f)−Ψ(f∗)),

Note that if `f (x, y) = (y− f(x))2 and f̂ minimizes PN`f +λΨ(f) then f̂
also minimizes PNLλf . Moreover, since Lλf∗ = 0, it is evident that PNLλf̂ ≤ 0.

This simple observation shows that the random set {f ∈ F : PNLλf > 0}
may be excluded from our considerations, as it does not contain potential
minimizers. Therefore, if one can show that with high probability,

{f ∈ F : PNLλf ≤ 0} ⊂ {f ∈ F : ‖f − f∗‖L2(µ) ≤ r},

then on that event, ‖f̂ − f∗‖L2(µ) ≤ r.
We will identify when PNLλf > 0 by considering the two parts of the

empirical functional: the empirical excess loss PNLf and the regularized
part λ(Ψ(f)−Ψ(f∗)).

Because of its crucial role in obtaining error estimates in learning prob-
lems, the functional f → PNLf has been studied extensively using the small-
ball method, (see, e.g., [20, 22, 19]). Thus, the first component in the ma-
chinery we require for explaining both learning problems and regularization
problems is well understood and ready-to-use; its details are outlined below.

2.1. The natural decomposition of PNLf . Set ξ = ξ(X,Y ) = f∗(X)− Y
and observe that

Lf (X,Y ) =(f − f∗)2(X) + 2(f − f∗)(X) · (f∗(X)− Y )

=(f − f∗)2(X) + 2ξ(f − f∗)(X).

Since F is convex, the characterization of the nearest point map in a Hilbert
space shows that E(f − f∗)(X) · (f∗(X) − Y ) ≥ 0 for every f ∈ F . Hence,
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setting ξi = f∗(Xi)− Yi, one has

PNLλf ≥
1

N

N∑
i=1

(f − f∗)2(Xi) + 2
( 1

N

N∑
i=1

ξi(f − f∗)(Xi)− Eξ(f − f∗)(X)
)

+λ(Ψ(f)−Ψ(f∗)).

To simplify notation, for w ∈ L2(µ) set Qw = w2 and Mw = ξw − Eξw.
Thus, for every f ∈ F ,

(2.1) PNLλf ≥ PNQf−f∗ + 2PNMf−f∗ + λ(Ψ(f)−Ψ(f∗)).

The decomposition of the empirical excess loss to the quadratic compo-
nent (Qf−f∗) and the multiplier one (Mf−f∗) is the first step in applying the
small-ball method to learning problems. One may show that on a large event,
if ‖f−f∗‖L2(µ) is larger than some critical level then PNQf−f∗ ≥ θ‖f−f∗‖2L2

and dominates PNMf−f∗ ; hence PNLf > 0.
To identify this critical level, let us define the following parameters:

Definition 2.1. Let H ⊂ F be a convex class that contains f∗. Let
(εi)

N
i=1 be independent, symmetric, {−1, 1}-valued random variables that are

independent of (Xi, Yi)
N
i=1.

For γQ, γM > 0 set

rQ(H, γQ) = inf

{
r > 0 : E sup

h∈H∩D(r,f∗)

∣∣∣∣∣ 1

N

N∑
i=1

εi(h− f∗)(Xi)

∣∣∣∣∣ ≤ γQr
}
,

let

φN (H, s) = sup
h∈H∩D(s,f∗)

∣∣∣∣∣ 1√
N

N∑
i=1

εiξi(h− f∗)(Xi)

∣∣∣∣∣ ,
and put

rM (H, γM , δ) = inf
{
s > 0 : Pr

(
φN (H, s) ≤ γMs2

√
N
)
≥ 1− δ

}
.

The main outcome of the small-ball method is that for the right choices
of γM and γQ, r = max{rM , rQ} is the above-mentioned ‘critical level’ in H,
once H satisfies a weak small-ball condition.

Assumption 2.1 (The small ball condition). Assume that there are con-
stants κ > 0 and 0 < ε ≤ 1, for which, for every f, h ∈ F ∪ {0},

Pr
(
|f − h| ≥ κ‖f − h‖L2(µ)

)
≥ ε.
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There are numerous examples in which the small-ball condition may be
verified for κ and ε that are absolute constants. We refer the reader to
[12, 19, 10, 21, 22, 30] for some of them.

Theorem 2.2 ([22]). Let H be a closed, convex class of functions that
contains f∗ and satisfies Assumption 2.1 with constants κ and ε. If θ =
κ2ε/16 then for every 0 < δ < 1, with probability at least 1−δ−2 exp(−Nε2/2)
one has for every f ∈ H:

• |PNMf−f∗ | ≤ θ
8 max

{
‖f − f∗‖2L2(µ), r

2
M (H, θ/10, δ/4)

}
,

• if ‖f − f∗‖L2(µ) ≥ rQ (H,κε/32) then PNQf−f∗ ≥ θ‖f − f∗‖2L2(µ).

In particular, with probability at least 1− δ − 2 exp(−Nε2/2),

PNLf ≥
θ

2
‖f − f∗‖2L2(µ)

for every f ∈ H that satisfies

‖f − f∗‖L2(µ) ≥ max {rM (H, θ/10, δ/4) , rQ (H,κε/32)} .

From now on, we will assume that F satisfies the small-ball condition
with constants κ and ε, and that θ = κ2ε/16.

Definition 2.3. Let ρ > 0 and set

rM (ρ) = rM
(
F ∩BΨ(ρ, f∗),

θ

10
,
δ

4

)
and rQ(ρ) = rQ

(
F ∩BΨ(ρ, f∗),

κε

32

)
.

In what follows we will abuse notation and omit the dependence of rM and
rQ on f∗, κ, ε and δ.

Let r(·) be a function that satisfies r(ρ) ≥ supf∗∈F max{rQ(ρ), rM (ρ)}.
Finally, put

O(ρ) = sup
f∈F∩BΨ(ρ,f∗)∩D(r(ρ),f∗)

∣∣PNMf−f∗
∣∣.

Theorem 2.2 implies the following:

Corollary 2.4 ([22]). Using the notation introduced above, on an event
of probability at least 1 − δ − 2 exp(−Nε2/2), if f ∈ F ∩ BΨ(ρ, f∗) and
‖f − f∗‖L2(µ) ≥ r(ρ) then PNLf ≥ θ

2‖f − f
∗‖2L2(µ). Moreover, on the same

event, O(ρ) ≤ θ
8r

2(ρ).
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Remark 2.5. Let us stress once again that r(ρ) plays a central role
in the analysis of empirical risk minimization in the set F ∩ BΨ(ρ, f∗).
Theorem 2.2 implies that with high probability, the empirical risk minimizer
h̃ in F ∩BΨ(ρ, f∗) satisfies ‖h̃− h∗‖L2(µ) ≤ r(ρ). Moreover, it follows from
[11] and [23] that under mild structural assumptions on F , r(ρ) is the best
possible error rate of any learning procedure in F ∩ BΨ(ρ, f∗) – i.e., the
minimax rate in that class.

Let A be the event from Corollary 2.4 and set

γO(ρ) = sup
w∈A
O(ρ).

γO will be of little importance in what follows, because it may be upper
bounded by (θ/8)r2(ρ). However, it will be of the utmost importance in
[13], where complexity-based regularization is studied (see Section 6 for more
details).

3. The main result. Let us turn to the second part of the regularized
functional – namely, λ(Ψ(f) − Ψ(f∗)). Let E∗ be the dual space to (E,Ψ)
and set Ψ∗ to be the dual norm. BΨ∗ and SΨ∗ denote the dual unit ball and
unit sphere, respectively; i.e., BΨ∗ consists of all the linear functionals z∗ on
E for which supΨ(x)=1 |z∗(x)| ≤ 1.

Definition 3.1. The functional z∗ ∈ SΨ∗ is a norming functional for
z ∈ E if z∗(z) = Ψ(z).

In the language of Convex Analysis, a functional is norming for x if and
only if it belongs to (∂Ψ)x, the subdifferential of Ψ in x.

Let Γf∗(ρ) be the collection of functionals that are norming for some
f ∈ BΨ(ρ/20, f∗). In particular, Γf∗(ρ) contains all the norming functionals
of f∗.

Set
∆(ρ) = inf

h∈H
sup

z∗∈Γf∗ (ρ)
z∗(h− f∗),

where the infimum is taken in the set

H = F∩SΨ(ρ, f∗)∩D(r(ρ), f∗) = {h ∈ F : Ψ(h−f∗) = ρ and ‖h−f∗‖L2(µ) ≤ r(ρ)}.

Note that if z∗ ∈ Γf∗(ρ) and h ∈ SΨ(ρ, f∗) then |z∗(h − f∗)| ≤ Ψ(h −
f∗) = ρ. Thus, a lower bound of the form ∆(ρ) ≥ (1 − δ)ρ implies that
Γf∗(ρ) is a relatively large subset of the dual unit sphere: each point in
F ∩ SΨ(ρ, f∗) ∩D(r(ρ), f∗) has an ‘almost norming’ functional in Γf∗(ρ).
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Our main result is that if Γf∗(ρ) is indeed large enough to ensure that

∆(ρ) ≥ 4/5ρ then with high probability ‖f̂−f∗‖L2(µ) ≤ r(ρ) and Ψ(f̂−f∗) ≤
ρ.

Theorem 3.2. Assume that F is closed and convex. Let ρ > 0 and set
A to be an event on which Corollary 2.4 holds. If ∆(ρ) ≥ 4ρ/5 and

3
γO(ρ)

ρ
≤ λ < θ

2
· r

2(ρ)

ρ
,

then on the event A, a regularized empirical minimizer f̂ ∈ argminf∈FPNLλf
satisfies

Ψ(f̂ − f∗) ≤ ρ and ‖f̂ − f∗‖L2(µ) ≤ r(ρ).

Moreover, since rO(ρ) ≤ (θ/8)r2(ρ), the same assertion holds if

3θ

8
· r

2(ρ)

ρ
≤ λ < θ

2
· r

2(ρ)

ρ
.

The proof of the theorem follows in three steps: first, one has to show
that PNLλf is positive on the set F ∩ SΨ(ρ, f∗). Second, thanks to certain
homogeneity properties of the functional, it is positive in F\BΨ(ρ, f∗), be-
cause it is positive on the ‘sphere’ F ∩ SΨ(ρ, f∗). Finally, one has to study
the functional in F ∩ BΨ(ρ, f∗) and verify that it is positive in that set,
provided that ‖f − f∗‖L2(µ) ≥ r(ρ).

Proof. Fix h ∈ F ∩ SΨ(ρ, f∗) and we shall treat two different cases:
when ‖h− f∗‖L2(µ) ≥ r(ρ) and when ‖h− f∗‖L2(µ) ≤ r(ρ).

If ‖h− f∗‖L2 ≥ r(ρ), then by the triangle inequality for Ψ,

Ψ(h)−Ψ(f∗) = Ψ(h− f∗ + f∗)−Ψ(f∗) ≥ −Ψ(h− f∗).

Hence, for (Xi, Yi)
N
i=1 ∈ A and by the upper estimate in the choice of λ,

(3.1) PNLλh ≥
θ

2
‖h− f∗‖2L2(µ) − λΨ(h− f∗) ≥ θ

2
r2(ρ)− λρ > 0.

Next, if ‖h− f∗‖L2(µ) ≤ r(ρ) then PNLλh ≥ −2O(ρ) + λ(Ψ(h)−Ψ(f∗)).
Consider u, v ∈ E that satisfy f∗ = u + v and Ψ(u) ≤ ρ/20. Let z∗

be any norming functional of v; thus, z∗ ∈ SΨ∗ and z∗(v) = Ψ(v). Since
Ψ(h) = supx∗∈BΨ∗

x∗(h) it follows that

Ψ(h)−Ψ(f∗) ≥Ψ(h)−Ψ(v)−Ψ(u) ≥ z∗(h− v)−Ψ(u) ≥ z∗(h− f∗)− 2Ψ(u).
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This holds for any v ∈ BΨ(ρ/20, f∗), and by the definition of ∆(ρ) and for
an optimal choice of z∗,
(3.2)
PNLλh ≥ −2O(ρ) + λ(z∗(h− f∗)− 2Ψ(u)) ≥ −2O(ρ) + λ(∆(ρ)− ρ/10) > 0,

where the last inequality holds because ∆(ρ) ≥ 4ρ/5 and λ ≥ 3γO(ρ)/ρ.
Also, since γO(ρ) ≤ (θ/8)r2(ρ), it suffices that λ ≥ (3θ/8)r2(ρ)/ρ to ensure
that PNLλh > 0 in (3.2). This completes the proof of the first step – that
PNLλh > 0 on F ∩ SΨ(ρ, f∗).

Turning to the second step, one has to establish a similar inequality for
functions outside BΨ(ρ, f∗). To that end, let f ∈ F\BΨ(ρ, f∗). Since F
is convex and Ψ is homogeneous, f = f∗ + α(h − f∗) for some h ∈ F ∩
SΨ(ρ, f∗) and α > 1. Therefore, PNQf−f∗ = α2PNQh−f∗ and PNMf−f∗ =
αPNMh−f∗ ; moreover, Ψ(f −f∗) = αΨ(h−f∗) and for every functional z∗,
z∗(f − f∗) = αz∗(h− f∗).

Thus, by (3.1), when ‖h − f∗‖L2(µ) ≥ r(ρ), PNLλf > 0, and when ‖h −
f∗‖L2(µ) ≤ r(ρ),

PNLλf ≥ α2PNQh−f∗ + 2αPNMh−f∗ + λ(αz∗(h− f∗)− 2Ψ(u))

≥ α
(
PNQh−f∗ + 2PNMh−f∗ + λ(z∗(h− f∗)− 2Ψ(u))

)
> 0.

Finally, when h ∈ F ∩ BΨ(ρ, f∗) and ‖h− f∗‖L2(µ) ≥ r(ρ), (3.1) shows

that PNLλf > 0.

Remark 3.3. Note that if ρ ≥ Ψ(f∗) there is no upper limitation on the
choice of λ. Indeed, if ‖h − f∗‖L2(µ) ≥ r(ρ) and Ψ(h) = ρ ≥ Ψ(f∗) then

λ(Ψ(h)−Ψ(f∗)) ≥ 0, and PNLλh > 0 just as in (3.1). The rest of the proof
remains unchanged.

It follows from the proof that the quadratic component PNQf−f∗ and
the regularization one λ(Ψ(f)−Ψ(f∗)) dominate the multiplier component
2PNMf−f∗ in different parts of F . The behaviour of PNQf−f∗ allows one
to exclude the set (F ∩ Bψ(ρ, f∗))\D(r(ρ), f∗), as well as any point in F
for which the interval [f, f∗] intersects (F ∩ Sψ(ρ, f∗))\D(r(ρ), f∗). This
exclusion is rather free-of-charge, as it holds with no assumptions on the
norm Ψ.

The situation is more subtle when trying to exclude points for which the
interval [f, f∗] intersects F ∩ Sψ(ρ, f∗) ∩ D(r(ρ), f∗). That is precisely the
region in which the specific choice of Ψ is important and the regularization
component is the reason why PNLλf > 0.
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Figure 1 shows this idea: PNLλf > 0 for two different reasons: either
Q > M – the quadratic component dominates the multiplier component, or
R > M – the regularization component dominates the multiplier component.

Note that an output of the sparsity equation is that the descent cone
TΨ(f∗) = ∪τ>0{h : Ψ(f∗ + τh) ≤ Ψ(f∗)} does not intersect SΨ(ρ, f∗) ∩
D(r(ρ), f∗) when the “sparsity condition” ∆(ρ) ≥ 4ρ/5 is satisfied (cf. Fig-
ure 2).

f∗

R > MR > M

R > MR > M

Q > M

Q > M Q > M

Q > M

Fig 1: The “Q > M and R > M”
decomposition.

D(r(ρ), f∗)

f∗

TΨ(f∗) SΨ(ρ, f∗)

Fig 2: TΨ(f∗) ∩ SΨ(ρ, f∗) ∩D(r(ρ), f∗) = ∅.

4. The role of ∆(ρ). It is clear that ∆(ρ) plays a crucial role in the
proof of Theorem 3.2, and that the larger Γf∗(ρ) is, the better the lower
bound on ∆(ρ).

Having many norming functionals of points inBΨ(ρ/20, f∗) can be achieved
somewhat artificially, by taking ρ ∼ Ψ(f∗). If ρ is large enough, BΨ(ρ/20, f∗)
contains a Ψ-ball centred in 0. Therefore, Γf∗(ρ) is the entire dual sphere
and ∆(ρ) = ρ. This is the situation when one attempts to derive complexity-
based bounds (see Section 6 and [13]), i.e., when one wishes to find f̂ that
inherits some of f∗’s ‘good qualities’ that are captured by Ψ(f∗).

Here, we are interested in cases in which ρ may be significantly smaller
than Ψ(f∗) and enough norming functionals have to be generated by other
means.

If Ψ is smooth, each f 6= 0 has a unique norming functional, and for a
small ρ, the norming functionals of points in BΨ(ρ/20, f∗) are close to the
(unique) norming functional of f∗; hence there is little hope that Γf∗(ρ) will
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be large enough to ensure that ∆(ρ) ∼ ρ. It is therefore reasonable to choose
Ψ that is not smooth in f∗ or in a neighbourhood of f∗.

Another important fact is that Γf∗(ρ) need not be as large as the entire
dual sphere to ensure that ∆(ρ) ∼ ρ. Indeed, it suffices if Γf∗(ρ) contains
‘almost norming’ functionals only to points that satisfy ‖w‖L2(µ) ≤ r(ρ)/ρ
and Ψ(w) = 1, rather than to every point in the sphere SΨ.

4.1. ∆(ρ) and sparsity. It turns out that the combination of the right
notion of sparsity with a wise choice of a norm Ψ ensures that Γf∗(ρ) contains
enough ‘almost norming’ functionals precisely for the subset of the sphere
one is interested in.

To give an indication of how this happens, let us show the following:

Lemma 4.1. Let Z ⊂ SΨ∗, W ⊂ SΨ and 0 < η1, η2 < 1. If every w ∈W
can be written as w = w1+w2, where Ψ(w1) ≤ η1Ψ(w) and supz∗∈Z z

∗(w2) ≥
(1− η2)Ψ(w2), then

inf
w∈W

sup
z∗∈Z

z∗(w) ≥ (1− η1)(1− η2)− η1

In particular, if η1, η2 ≤ 1/20 then infw∈W supz∗∈Z z
∗(w) ≥ 4/5.

Proof. Let w = w1 + w2 and observe that Ψ(w2) ≥ Ψ(w) − Ψ(w1) ≥
(1− η1)Ψ(w). Thus, for the optimal choice of z∗ ∈ Z,

z∗(w1 + w2) ≥(1− η2)Ψ(w2) + z∗(w1) ≥ (1− η2)Ψ(w2)− η1Ψ(w).

≥
(
(1− η1)(1− η2)− η1

)
Ψ(w),

and the claim follows because w ∈ SΨ.

Let E = Rd viewed as a class of linear functionals on Rd. Set µ to be an
isotropic measure on Rd; thus {t ∈ Rd : E

〈
t,X

〉2 ≤ 1} = Bd
2 .

Assume that for t ∈ Rd that is supported on I ⊂ {1, ..., d}, the set of its
norming functionals consists of functionals of the form z∗0 + (1 − η2)u∗ for
some fixed z∗0 that is supported on I and any u ∈ BΨ∗ that is supported on
Ic (such is the case, for example, when E = `d1).

For every such t, consider w ∈ ρSΨ and set w1 = PIw and w2 = PIcw, the
coordinate projections of w onto span(ei)i∈I and span(ei)i∈Ic , respectively.
Hence, there is a functional z∗ = z∗0 + (1 − η2)u∗ that is norming for t and
also satisfies z∗(w2) = (1 − η2)u∗(w2) = (1 − η2)Ψ(w2). Therefore, Lemma
4.1 may be applied once Ψ(PIw) ≤ η1Ψ(w).

Naturally, such a shrinking phenomenon need not be true for every w ∈
SΨ; fortunately, it is only required for w ∈ SΨ ∩ (r(ρ)/ρ)D – and we will
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show that it is indeed the case in the three examples we present. In all
three, the combination of sparsity and the right choice of the norm helps
in establishing a lower bound on ∆(ρ) in two ways: firstly, the set Γt∗(ρ)
consists of functionals that are ‘almost norming’ for any x whose support
is disjoint from the support of t∗; and secondly, a coordinate projection
‘shrinks’ the Ψ norm of points in ρSΨ ∩ r(ρ)D.

4.2. ∆(ρ) in the three examples. Let us show that in the three examples,
the LASSO, SLOPE and trace norm regularization, ∆(ρ) ≥ (4/5)ρ for the
right choice of ρ, and that choice depends on the degree of sparsity in each
case.

In all three examples, we will assume that the underlying measure is
isotropic; thus the L2(µ) norm coincides with the natural Euclidean struc-
ture: the `d2 norm for the LASSO and SLOPE, and the Hilbert-Schmidt norm
for trace-norm regularization.

The LASSO.
Observe that if f∗ =

〈
t∗, ·
〉

is the true minimizer of the functional
〈
t, ·
〉
→

E(
〈
t,X

〉
−Y )2 in F = {

〈
t, ·
〉

: t ∈ Rd}, then any function ht =
〈
t, ·
〉

for which
‖ht−f∗‖L2 ≤ r(ρ) and Ψ(ht−f∗) = ρ is of the form ht =

〈
t, ·
〉

=
〈
w+ t∗, ·

〉
,

where w ∈ ρS(`d1)∩ r(ρ)Bd
2 . Recall that the dual norm to ‖ · ‖1 is ‖ · ‖∞, and

thus
∆(ρ) = inf

w∈ρS(`d1)∩r(ρ)Bd2

sup
z∈Γt∗ (ρ)

〈
z, w

〉
,

where Γt∗(ρ) is the set of all vectors z∗ ∈ Rd that satisfy

‖z∗‖∞ = 1 and z∗(v) = ‖v‖1 for some v for which ‖v − t∗‖1 ≤ ρ/20.

Lemma 4.2. If t∗ = v+u for u ∈ (ρ/20)Bd
1 and 100|supp(v)| ≤ (ρ/r(ρ))2

then ∆(ρ) ≥ 4ρ/5.

In other words, if t∗ is well approximated with respect to the `d1 norm by
some v ∈ Rd that is s-sparse, and s is small enough relative to the ratio
(ρ/r(ρ))2, then ∆(ρ) ≥ (4/5)ρ.

Just as noted earlier, we shall use two key properties of the `1 norm
and sparse vectors: firstly, that if x and y have disjoint supports, there is
a functional that is simultaneously norming for x and y, i.e., z∗ ∈ Bd

∞ for
which

(4.1) z∗(x) = ‖x‖1 and z∗(y) = ‖y‖1;

secondly, that if ‖x‖1 = ρ and ‖x‖2 is significantly smaller than ρ, a coordi-
nate projection ‘shrinks’ the `d1 norm: ‖PIx‖1 is much smaller than ‖x‖1.
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Proof. Let w ∈ ρS(`d1) ∩ r(ρ)Bd
2 . Since ‖t∗ − v‖1 ≤ ρ/20 there exists

z∗ ∈ Γt∗(ρ) that is norming for v. Moreover, if I = supp(v), then according
to (4.1) one can choose z∗ that is also norming for PIcw. Thus, ‖PIcw‖1 =
z∗(PIcw) and

z∗(w) = z∗(PIw) + z∗(PIcw) ≥ ‖PIcw‖1 − ‖PIw‖1 ≥ ‖w‖1 − 2 ‖PIw‖1 .

Since ‖w‖2 ≤ r(ρ), one has ‖PIw‖1 ≤
√
s ‖PIw‖2 ≤

√
sr(ρ). Therefore,〈

z, w
〉
≥ ρ− 2

√
sr(ρ) ≥ 4ρ/5 when 100s ≤ (ρ/r(ρ))2.

SLOPE.
Let β1 ≥ β2 ≥ ... ≥ βd > 0 and recall that Ψ(t) =

∑d
i=1 βit

∗
i .

Note that Ψ(t) = supz∈Z
〈
z, t
〉
, for

Z =

{
d∑
i=1

εiβπiei : (εi)
d
i=1 ∈ {−1, 1}d, π is a permulation of {1, ..., d}

}
.

Therefore, the extreme points of the dual unit ball are of the form
∑d

i=1 εiβπiei.
Following the argument outlined above, let us show that if x is supported

on a reasonably small I ⊂ {1, ..., d}, the set of norming functionals of x
consists of ‘almost norming’ functionals for any y that is supported on Ic.
Moreover, and just like the `d1 norm, if Ψ(x) = ρ and ‖x‖2 is significantly
smaller than ρ, a coordinate projection of x ‘shrinks’ its Ψ norm.

Lemma 4.3. Let 1 ≤ s ≤ d and set Bs =
∑

i≤s βi/
√
i. If t∗ is ρ/20

approximated (relative to Ψ) by an s-sparse vector and if 40Bs ≤ ρ/r(ρ)
then ∆(ρ) ≥ 4ρ/5.

Proof. Let t∗ = u+ v, for v that is supported on at most s coordinates
and u ∈ (ρ/20)BΨ. Set I ⊂ {1, ..., d} to be the support of v and let z =
(zi)

d
i=1 be a norming functional for v to be specified later; thus, z ∈ Γt∗(ρ).

Given t for which Ψ(t− t∗) = ρ and ‖t− t∗‖2 ≤ r(ρ), one has

z(t− t∗) = z(t− v)− z(u) = z(PIc(t− v)) + z(PI(t− v))− z(u)

≥
∑
i∈Ic

zi(t− v)i +
∑
i∈I

zi(t− v)i −Ψ(u)

≥
∑
i∈Ic

zi(t− v)i −
∑
i≤s

βi(t− v − u)]i − 2Ψ(u)

=
∑
i∈Ic

zi(t− v)i −
∑
i≤s

βi(t− t∗)]i − 2Ψ(u) = (∗).
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Since v is supported in I, one may optimize the choice of z by selecting the
right permutation of the coordinates in Ic, and∑

i∈Ic
zi(t− v)i ≥

∑
i>s

βi(t− v)]i ≥
∑
i>s

βi(t− v − u)]i −Ψ(u)

=
d∑
i=1

βi(t− t∗)]i −
∑
i≤s

βi(t− t∗)]i −Ψ(u).

Therefore,

(∗) ≥
d∑
i=1

βi(t− t∗)]i − 2
∑
i≤s

βi(t− t∗)]i − 3Ψ(u) ≥ 17

20
ρ− 2

∑
i≤s

βi(t− t∗)]i.

Since ‖t− t∗‖2 ≤ r(ρ), it is evident that (t− t∗)]i ≤ r(ρ)/
√
i, and

s∑
i=1

βi(t− t∗)]i ≤ r(ρ)

s∑
i=1

βi√
i

= r(ρ)Bs.

Hence, if ρ ≥ 40r(ρ)Bs then ∆(ρ) ≥ 4ρ/5.

Trace-norm regularization.
The trace norm has similar properties to the `1 norm. Firstly, one may

show that the dual norm to ‖ · ‖1 is ‖ · ‖∞, which is simply the standard
operator norm. Moreover, one may find a functional that is simultaneously
norming for any two elements with ‘disjoint support’ (and of course, the
meaning of ‘disjoint support’ has to be interpreted correctly here). Finally,
it satisfies a ‘shrinking’ phenomenon for matrices whose Hilbert-Schmidt
norm is significantly smaller than their trace norm.

Lemma 4.4. If A∗ = V + U , where ‖U‖1 ≤ ρ/20 and 400rank(V ) ≤
(ρ/r(ρ))2, then ∆(ρ) ≥ 4ρ/5.

The fact that a low-rank matrix has many norming functionals is well
known and follows, for example, from [38].

Lemma 4.5. Let V ∈ Rm×T and assume that V = PIV PJ for appropri-
ate orthogonal projections onto subspaces I ⊂ Rm and J ⊂ RT . Then, for
every W ∈ Rm×T there is a matrix Z that satisfies ‖Z‖∞ = 1, and〈

Z, V
〉

= ‖V ‖1,
〈
Z,PI⊥WPJ⊥

〉
= ‖PI⊥WPJ⊥‖1,〈

Z,PIWPJ⊥
〉

= 0 and
〈
Z,PI⊥WPJ

〉
= 0.
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Lemma 4.5 describes a similar phenomenon to the situation in `d1, but with
a different notion of ‘disjoint support’: if V is low-rank and the projections
PI and PJ are non-trivial, one may find a functional that is norming both
for V and for the part of W that is ‘disjoint’ of V . Moreover, the functional
vanishes on the ‘mixed’ parts PIWPJ⊥ and PI⊥WPJ .
Proof of Lemma 4.4. Recall that S1 is the unit sphere of the trace norm
and that B2 is the unit ball of the Hilbert-Schmidt norm. Hence,

∆(ρ) = inf
W∈ρS1∩r(ρ)B2

sup
Z∈ΓA∗ (ρ)

〈
Z,W

〉
where ΓA∗(ρ) is the set of all matrices Z ∈ Rm×T that satisfy ‖Z‖∞ = 1
and

〈
Z, V

〉
= 1 for some V for which ‖A∗ − V ‖1 ≤ ρ/20.

Fix a rank-s matrix V = PIV PJ , for orthogonal projections PI and PJ
that are onto subspaces of dimension s. Consider W ∈ Rm×T for which
‖W‖1 = ρ and ‖W‖2 ≤ r(ρ) and put Z to be a norming functional of V as
in Lemma 4.5. Thus, Z ∈ ΓA∗(ρ) and〈

Z,W
〉

=
〈
Z,PI⊥WPJ⊥

〉
+
〈
Z,PIWPJ

〉
= ‖PI⊥WPJ⊥‖1 − ‖PIWPJ‖1

≥‖W‖1 − ‖PIWPJ⊥‖1 − ‖PI⊥WPJ‖1 − 2‖PIWPJ‖1.

All that remains is to estimate the trace norms of the three components that
are believed to be ‘low-dimension’ - in the sense that their rank is at most
s.

Recall that (σi(A)) are the singular values ofA arranged in a non-increasing
order. It is straightforward to verify (e.g., using the characterization of the
singular values via low-dimensional approximation), that

σi(PIWPJ⊥), σi(PI⊥WPJ), σi(PIWPJ) ≤ σi(W ).

Moreover, ‖W‖2 ≤ r(ρ), therefore, being rank-s operators, one has

‖PIWPJ⊥‖1, ‖PI⊥WPJ‖1, ‖PIWPJ‖1 ≤
s∑
i=1

σi(W ) ≤
√
s
( s∑
i=1

σ2
i (W )

)1/2
,

implying that
〈
Z,W

〉
≥ ρ − 4r(ρ)

√
s. Therefore, if 400s ≤ (ρ/r(ρ))2, then

∆(ρ) ≥ 4ρ/5.

5. The three examples revisited. The estimates on ∆(ρ) presented
above show that in all three examples, when f∗ is well approximated by a
function whose ‘degree of sparsity’ is . (ρ/r(ρ))2, then ∆(ρ) ≥ 4ρ/5 and
Theorem 3.2 may be used. Clearly, the resulting error rates depend on the
right choice of ρ, and thus on r(ρ).
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Because r(ρ) happens to be the minimax rate of the learning problem
in the class F ∩ BΨ(ρ, f∗), its properties have been studied extensively.
Obtaining an estimate on r(ρ) involves some assumptions on X and ξ, and
the one setup in which it can be characterized for an arbitrary class F is
when the class is L-subgaussian and ξ ∈ Lq for some q > 2 (though ξ
need not be independent of X). It is straightforward to verify that an L-
subgaussian class satisfies the small-ball condition of Assumption 2.1 for
κ = 1/2 and ε = c/L4 where c is an absolute constant. Moreover, if the class
is L-subgaussian, the natural complexity parameter associated with it is the
expectation of the supremum of the canonical Gaussian process indexed by
the class.

Definition 5.1. Let F ⊂ L2(µ) and set {Gf : f ∈ F} to be the canon-
ical Gaussian process indexed by F ; that is, each Gf is a centred Gaussian
variable and the covariance structure of the process is endowed by the inner
product in L2(µ). The expectation of the supremum of the process is defined
by

`∗(F ) = sup{E sup
f∈F ′

Gf : F ′ ⊂ F is finite}.

It follows from a standard chaining argument that if F is L-subgaussian
then

E sup
f∈F

∣∣∣ 1

N

N∑
i=1

εi(h− f∗)(Xi)
∣∣∣ . L

`∗(F )√
N

.

Therefore, if Fρ,r = F ∩BΨ(ρ, f∗)∩D(r, f∗) then for every ρ > 0 and f∗ ∈ F

rQ(ρ) ≤ inf
{
r > 0 : `∗(Fρ,r) ≤ C(L)r

√
N
}
.

Turning to rM , we shall require the following fact from [18].

Theorem 5.2 (Corollary 1.10 in [18]). Let q > 2 and L ≥ 1. For every
0 < δ < 1 there is a constant c = c(δ, L, q) for which the following holds. If
H is an L-subgaussian class and ξ ∈ Lq, then with probability at least 1− δ,

sup
h∈H

∣∣∣∣∣ 1√
N

N∑
i=1

εiξih(Xi)

∣∣∣∣∣ ≤ c‖ξ‖Lq`∗(H).

The complete version of Theorem 5.2 includes a sharp estimate on the
constant c. However, obtaining accurate probability estimates is not the
main feature of this note and deriving such estimates leads to a cumbersome
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presentation. To keep our message to the point, we have chosen not to present
the best possible probability estimates in what follows.

A straightforward application of Theorem 5.2 shows that

rM (ρ) ≤ inf
{
r > 0 : ‖ξ‖Lq `∗(Fρ,r) ≤ cr

2
√
N
}

for a constant c that depends on L, q and δ.
Recall that we have assumed that X is isotropic, which means that the

L2(µ) norm coincides with the natural Euclidean structure on the space:
the standard `d2 norm for the LASSO and SLOPE and the Hilbert-Schmidt
norm for trace norm regularization. Since the covariance structure of the
indexing Gaussian process is endowed by the inner product, it follows that

`∗(ρBΨ ∩ rD) = E sup
w∈ρBΨ∩rB2

〈
G,w

〉
for the standard Gaussian vector G = (g1, ..., gd) in the case of the LASSO
and SLOPE and the Gaussian matrix G = (gij) in the case of trace norm
minimization. Hence, one may obtain a bound on r(ρ) by estimating this
expectation in each case.
The LASSO and SLOPE. Let (βi)

d
i=1 be a non-increasing positive se-

quence and set Ψ(t) =
∑d

i=1 t
]
iβi.

Since the LASSO corresponds to the choice of (βi)
d
i=1 = (1, ..., 1), it suf-

fices to identify `∗(ρBΨ ∩ rBd
2) for the SLOPE norm and a general choice of

weights.

Lemma 5.3. There exists an absolute constant C for which the following
holds. If β and Ψ are as above, then

E sup
w∈ρBΨ∩rBd2

〈
G,w

〉
≤ C min

k

{
r

√
(k − 1) log

( ed

k − 1

)
+ ρmax

i≥k

√
log(ed/i)

βi

}
(and if k = 1, the first term is set to be 0).

Proof. Fix 1 ≤ k ≤ d. Let J be the set of indices of the k largest
coordinates of (|gi|)di=1, and for every w let Iw be the sets of indices of the
k largest coordinates of (|wi|)di=1. Put Jw = J ∪ Iw and note that |Jw| ≤ 2k.
Hence,

sup
w∈ρBΨ∩rBd2

d∑
i=1

wigi ≤ sup
w∈rBd2

∑
i∈Jw

wigi + sup
w∈ρBΨ

∑
i∈Jcw

wigi

. r

(∑
i<k

(g]i )
2

)1/2

+ sup
w∈ρBΨ

∑
i≥k

w]iβi
g]i
βi

. r

(∑
i<k

(g]i )
2

)1/2

+ ρmax
i≥k

g]i
βi
.
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As a starting point, note that a standard binomial estimate shows that

Pr
(
g]i ≥ t

√
log(ed/i)

)
≤
(
d

i

)
Pri

(
|g| ≥ t

√
log(ed/i)

)
≤2 exp(i log(ed/i)− i log(ed/i) · t2/2).

Applying the union bound one has that for t ≥ 4, with probability at least
1− 2 exp(−(t2/2)k log(ed/k)),

(5.1) g]i ≤ c3t
√

log(ed/i) for every i ≥ k.

The same argument shows that E(g]i )
2 . log(ed/i).

Let Uk be the set of vectors on the Euclidean sphere that are supported
on at most k coordinates. Set

‖x‖[k] =
(∑
i≤k

(x]i)
2
)1/2

= sup
u∈Uk

〈
x, u

〉
and recall that by the Gaussian concentration of measure theorem (see, e.g.,
Theorem 7.1 in [14]),(

E‖G‖q[k]

)1/q
≤ E‖G‖[k] + c

√
q sup
u∈Uk

‖
〈
G, u

〉
‖L2 ≤ E‖G‖[k] + c1

√
q.

Moreover, since E(g]i )
2 . log(ed/i), one has

E‖G‖[k] ≤
(
E
∑
i≤k

(g]i )
2
)1/2

.
√
k log(ed/k).

Therefore, by Chebyshev’s inequality for q ∼ k log(ed/k), for t ≥ 1, with
probability at least 1− 2t−c1k log(ed/k),(∑

i≤k
(g]i )

2
)1/2

≤ c2t
√
k log(ed/k).

Turning to the ‘small coordinates’, by (5.1),

max
i≥k

g]i
βi

. tmax
i≥k

√
log(ed/i)

βi
.

It follows that for every choice of 1 ≤ k ≤ d,

E sup
w∈ρBΨ∩rBd2

〈
G,w

〉
. rE

(∑
i<k

(g]i )
2
)1/2

+ ρEmax
i≥k

g]i
βi

.r
√

(k − 1) log(ed/(k − 1)) + ρmax
i≥k

√
log(ed/i)

βi
,

and, if k = 1, the first term is set to be 0.
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If β = (1, ..., 1) (which corresponds to the LASSO), then BΨ = Bd
1 , and

one may select
√
k ∼ ρ/r, provided that r ≤ ρ ≤ r

√
d. In that case,

E sup
w∈ρBd1∩rBd2

〈
G,w

〉
. ρ
√

log(edr2/ρ2).

The estimates when r ≥ ρ or r
√
d ≤ ρ are straightforward. Indeed, if r ≥ ρ

then ρBd
1 ⊂ rBd

2 and `∗(ρB
d
1 ∩ rBd

2) = `∗(ρB
d
1) ∼ ρ

√
log(ed), while if r

√
d ≤

ρ then rBd
2 ⊂ ρBd

1 , and `∗(ρB
d
1 ∩ rBd

2) = `∗(rB
d
2) ∼ r

√
d.

The LASSO.
A straightforward computation shows that

r2
M (ρ) .L,q,δ


‖ξ‖2Lqd
N if ρ2N &L,q,δ ‖ξ‖2Lq d

2

ρ ‖ξ‖Lq

√
1
N log

(
e‖ξ‖Lqd
ρ
√
N

)
otherwise,

and

r2
Q(ρ) .L

{
0 if N &L d

ρ2

N log
(
c(L)d
N

)
otherwise.

Proof of Theorem 1.4. We will actually prove a slightly stronger result,
which gives an improved estimation error if one has prior information on the
degree of sparsity.

Using the estimates on rM and rQ, it is straightforward to verify that the
sparsity condition of Lemma 4.2 holds when N &L,q,δ s log(ed/s) and for
any

ρ &L,q,δ ‖ξ‖Lqs
√

1

N
log
(ed
s

)
.

It follows from Lemma 4.2 that if there is an s-sparse vector that belongs
to t∗ + (ρ/20)Bd

1 , then ∆(ρ) ≥ 4ρ/5. Finally, Theorem 3.2 yields the stated
bounds on ‖t̂− t∗‖1 and ‖t̂− t∗‖2 once we set

λ ∼ r2(ρ)

ρ
∼L,q,δ ‖ξ‖Lq

√
1

N
log
(ed
s

)
.

The estimates on ‖t̂− t∗‖p for 1 ≤ p ≤ 2 can be easily verified because

‖x‖p ≤ ‖x‖
−1+2/p
1 ‖x‖2−2/p

2 .

In case one has no prior information on s, one may take

ρ ∼L,q,δ ‖ξ‖Lqs
√

1

N
log(ed)
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and

λ ∼L,q,δ ‖ξ‖Lq

√
log(ed)

N
.

The rest of the argument remains unchanged.

SLOPE
Assume that βi ≤ C

√
log(ed/i), which is the standard assumption for

SLOPE [4, 31]. By considering the cases k = 1 and k = d,

(5.2) E sup
w∈ρBΨ∩rBd2

〈
G,w

〉
. min{Cρ,

√
dr}.

Thus, one may show that

r2
Q(ρ) .L


0 if N &L d

ρ2

N otherwise,

and r2
M (ρ) .L,q,δ


‖ξ‖2Lq

d
N if ρ2N &L,q,δ ‖ξ‖2Lqd

2

‖ξ‖Lq
ρ√
N

otherwise.

Proof of Theorem 1.6. Recall that Bs =
∑

i≤s βi/
√
i, and when βi ≤

C
√

log(ed/i), one may verify that

Bs . C
√
s log(ed/s).

Hence, the condition Bs . ρ/r(ρ) holds when N &L,q,δ s log(ed/s) and

ρ &L,q,δ ‖ξ‖Lq
s√
N

log
(ed
s

)
.

It follows from Lemma 4.3 that ∆(ρ) ≥ 4ρ/5 when there is an s-sparse vector
in t∗ + (ρ/20)BΨ; therefore, one may apply Theorem 3.2 for the choice of

λ ∼ r2(ρ)

ρ
∼L,q,δ

‖ξ‖Lq√
N

.

The trace-norm.
Recall that B1 is the unit ball of the trace norm, that B2 is the unit

ball of the Hilbert-Schmidt norm, and that the canonical Gaussian vector
here is the Gaussian matrix G = (gij). Since the operator norm is the dual
to the trace norm,`∗(B1) = Eσ1(G) .

√
max{m,T}, and clearly, `∗(B2) =

E ‖G‖2 .
√
mT. Thus,

`∗(ρBΨ ∩ rB2) = `∗(ρB1 ∩ rB2) ≤ min
{
ρ`∗(B1), r`∗(B2)

}
. min{ρ

√
max{m,T}, r

√
mT}.
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Therefore,

r2
Q(ρ) .L

{
0 if N &L mT

ρ2 max{m,T}
N otherwise,

and

r2
M (ρ) .L,q,δ


‖ξ‖2Lq

mT
N if ρ2N &L,q,δ ‖ξ‖2Lq mT (min {m,T})2

ρ‖ξ‖Lq
√

max{m,T}
N otherwise.

Proof of Theorem 1.7. It is straightforward to verify that if N &L,q,δ

smax{m,T} then s . (ρ/r(ρ))2 when

ρ &L,q,δ ‖ξ‖Lqs
√

max{m,T}
N

as required in Lemma 4.4. Moreover, if there is some V ∈ Rm×T for which
‖V −A∗‖1 . ρ and rank(V ) ≤ s, it follows that ∆(ρ) ≥ 4ρ/5. Setting

λ ∼ r2(ρ∗)

ρ∗
∼L,q,δ ‖ξ‖Lq

√
max{m,T}

N
,

Theorem 3.2 yields the bounds on ‖Â − A∗‖1 and ‖Â − A∗‖2. The bounds
on the Schatten norms ‖Â − A∗‖p for 1 ≤ p ≤ 2 hold because ‖A‖p ≤
‖A‖−1+2/p

1 ‖A‖2−2/p
2 .

6. Concluding Remarks. As noted earlier, the method we present
may be implemented in classical regularization problems as well, leading to
an error rate that depends on Ψ(f∗) – by applying the trivial bound on ∆(ρ)
when ρ ∼ Ψ(f∗).

The key issue in classical regularization schemes is the price that one
has to pay for not knowing Ψ(f∗) in advance. Indeed, given information on
Ψ(f∗), one may use a learning procedure taking values in {f ∈ F : Ψ(f) ≤
Ψ(f∗)} such as Empirical Risk Minimization. This approach would result
in an error rate of r(cΨ(f∗)), and the hope is that the error rate of the
regularized procedure is close to that – without having prior knowledge on
Ψ(f∗). Surprisingly, as we show in [13], that is indeed the case.

The problem with applying Theorem 3.2 to the classical setup is the choice
of λ. One has no information on Ψ(f∗), and thus setting λ ∼ r2(ρ)/ρ for
ρ ∼ Ψ(f∗) is clearly impossible.

A first attempt of bypassing this obstacle is Remark 3.3: if ρ & Ψ(f∗),
there is no upper constraint on the choice of λ. Thus, one may consider
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λ ∼ supρ>0
r2(ρ)
ρ , which suits any ρ > 0. Unfortunately, that choice will

not do, because in many important examples the supremum happens to be
infinite. Instead, one may opt for the lower constraint on λ and select

(6.1) λ ∼ sup
ρ>0

γO(ρ)

ρ
,

which is also a legitimate choice for any ρ, and is always finite.
We will show in [13] that the choice in (6.1) leads to optimal bounds in

many interesting examples – thanks to the first part of Theorem 3.2.
An essential component in the analysis of regularization problems is bound-

ing r(ρ), and we only considered the subgaussian case and completely ig-
nored the question of the probability estimate. In that sense, the method we
presented falls short of being completely satisfactory.

Addressing both these issues requires sharp upper estimates on empiri-
cal and multiplier processes, preferably in terms of some natural geometric
feature of the underlying class. Unfortunately, this is a notoriously difficult
problem. Indeed, the final component in the chaining-based analysis used to
study empirical and multiplier processes is to translate a metric complexity
parameter (e.g., Talagrand’s γ-functionals) to a geometric one (for example,
the mean-width of the set). Such estimates are known almost exclusively in
the Gaussian case – which is, in a nutshell, Talagrand’s Majorizing Measures
theory [32].

The chaining process in [18] is based on a more sensitive metric parameter
than the standard Gaussian one. This leads to satisfactory results for other
choices of random vectors that are not necessarily subgaussian, for example,
unconditional log-concave random vectors. Still, it is far from a complete
theory – as a general version of the Majorizing Measures Theorem is not
known.

Another relevant fact is from [24]. It turns out that if V is a class of linear
functionals on Rd that satisfies a relatively minor symmetry property, and
X is an isotropic random vector for which

(6.2) sup
t∈Sd−1

‖
〈
X, t

〉
‖Lp ≤ L

√
p for 2 ≤ p . log d,

then the empirical and multiplier processes indexed by V behave as if X
were a subgaussian vector. In other words, for such “symmetric” problems
it suffices to have a subgaussian moment growth up to p ∼ log d to ensure a
subgaussian behaviour.

This fact is useful because all the indexing sets considered here (and
in many other sparsity-based regularization procedures as well) satisfy the
required symmetry property.
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Finally, a word about the probability estimate in Theorem 5.2. The actual
result from [18] leads to a probability estimate governed by two factors: the
Lq space to which ξ belongs and the ‘effective dimension’ of the class. For
a class of linear functionals on Rd and an isotropic vector X, this effective
dimension is

D(V ) =

(
`∗(V )

d2(V )

)2

,

where `∗(V ) = E supv∈V |
〈
G, v

〉
| and d2(V ) = supv∈V ‖v‖`d2 .

One may show that with probability at least

1− c1w
−qN−((q/2)−1) logqN − 2 exp(−c2u

2D(V )),

(6.3) sup
v∈V

∣∣∣∣∣ 1√
N

N∑
i=1

(
ξi
〈
V,Xi

〉
− Eξ

〈
X, v

〉)∣∣∣∣∣ . Lwu‖ξ‖Lq`∗(V ).

If ξ has better tail behaviour, the probability estimate improves; for ex-
ample, if ξ is subgaussian then (6.3) holds with probability at least 1 −
2 exp(−cw2N)− 2 exp(−cu2D(V )).

The obvious complication is that one has to obtain a lower bound on the
effective dimension D(V ). And while it is clear that D(v) & 1, in many cases
(including our three examples) a much better bound is true.

Let us mention that the effective dimension is perhaps the most important
parameter in Asymptotic Geometric Analysis. Milman’s version of Dvoret-
zky’s Theorem (see, e.g., [1]) shows thatD(V ) captures the largest dimension
of a Euclidean structure hiding in V . In fact, this geometric observation ex-
hibits why that part of the probability estimate in (6.3) cannot be improved.

SUPPLEMENTARY MATERIAL

Supplement A: Supplementary material to regularization and
the small-ball method i: sparse recovery
(http://www.e-publications.org/ims/support/dowload/imsart-ims.zip). In the
supplementary material we study a generalX without assuming it is isotropic.
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