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The supplementary material is organized as follows.

• Section 6 proposes an alternating direction method of multiplier algo-
rithm for the matrix completion methods proposed in Section 4. Our
estimator is evaluated on simulated and real datasets. Python note-
books can be downloaded: https://sites.google.com/site/vincentcottet/code
• Section 7 contains an application of our general results to the case

where E is a reproducing kernel Hilbert space (RKHS).
• Section 8 contains a complete discussion of the Bernstein condition.

Many examples and sufficient conditions (old and new) are provided.
• Section 9 contains the proofs of the theorems of Section 2.
• Section 10 contains the proofs of the optimality results of Section 4.
• Section 11 contains the proofs of the new results stated in Section 8.
• Finally, Section 12 contains the study of the (non-penalized) ERM. We

also provide an application to shape-constrained logistic regression.

6. Simulation study in matrix completion.

6.1. Algorithm and Simulation Outlines. Since this part provides new
methods and results on matrix completion, we propose an algorithm in or-
der to compute efficiently the RERM using the hinge loss and the quantile
loss. This section explains the structure of the algorithm that is used with
specific loss functions in next sections. Although many algorithms exist for
the least squares matrix completion, to our knowledge many of them treat
only the exact recovery such as in [10] and [30], or at least they all deal with
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differentiable loss functions, see [22]. On the other hand, the two losses that
we mainly consider here are non differentiable because they are piecewise
linear (in the case of hinge and 0, 5-quantile loss functions): new algorithms
are hence needed. It has been often noted that the RERM with respect to the
hinge loss or 0.5-quantile loss can be solved by a semidefinite programming
but the cost is prohibitive for large matrices, say dimensions larger than 100.
It actually works for small matrices as we ran SDP solver in Python in very
small examples.

We propose here an alternating direction method of multiplier (ADMM)
algorithm. For a clear and self-contained introduction to this class of algo-
rithms, the reader is referred to the very pedagogical introduction [9], and
we do not explain all the details here. When the optimization problem is a
sum of two parts, the core idea is to split the problem by introducing an
extra variable. In our case, the two following problems are equivalent:

minimize
M

{
1

N

N∑
i=1

`(
〈
Xi,M

〉
, Yi) + λ ‖M‖S1

}
,

and

minimize
M,L

{
1

N

N∑
i=1

`(
〈
Xi,M

〉
, Yi) + λ ‖L‖S1

}
subject to M = L

Below, we use the scaled form and the m× T matrix U is then called the
scaled dual variable. Note that the S2 norm is also the Froebenius norm and
is thus elementwise. We can now exhibit the augmented Lagrangian:

Lα(M,L,U) =
1

N

N∑
i=1

`(
〈
Xi,M

〉
, Yi)+λ ‖L‖S1

+
α

2
‖M − L+ U‖2S2

−α
2
‖U‖2S2

,

where α is a positive constant, called the augmented Lagrange parameter.
The ADMM algorithm [9] is then:

Mk+1 = argmin
M

(
1

N

N∑
i=1

`(
〈
Xi,M

〉
, Yi) +

α

2

∥∥∥M − Lk + Uk
∥∥∥2
S2

)
(24)

Lk+1 = argmin
L

(
λ ‖L‖S1

+
α

2

∥∥∥Mk+1 − L+ Uk
∥∥∥2
S2

)
(25)

Uk+1 = Uk +Mk+1 − Lk+1

The starting point (M0, L0, U0) uses one random matrix with independent
Gaussian entries for M0 and two zero matrices for L0 and U0. Another choice
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of starting point is to use a previous estimator with a larger λ. The stopping

criterion is, as explained in [9],
∥∥Mk+1 −Mk

∥∥2
S2

+
∥∥Uk+1 − Uk

∥∥2
S2
≤ ε for

a fixed threshold ε. It means that it stops when both (Uk) and (Mk) start
converging.

General considerations. The second step (25) is independent of the loss
function. It is well-known that the solution to this problem is Sλ/α(Mk+1 +

Uk) when Sa(M) is the soft-thresholding operator with magnitude a applied
to the singular values of the matrix M . It is defined for a rank r matrix M

with SVD M = UΣV > where Σ = diag
(

(di)1≤i≤r

)
by Sa(M) = USa(Σ)V >

where Sa(Σ) = diag
(

(max(0, di − a))1≤i≤r

)
.

It requires the computation of the SVD of am×T matrix at each iteration.
This is the main bottleneck of this algorithm (the other main step (24) can be
performed elementwise since the Xi’s take their values in the canonical basis
of Rm×T ; so it needs only at most N operations). Two methods may be used
to speed up the algorithm. First, there are efficient algorithms for computing
the n largest singular values and the associate subspaces, such as the Fortran
PROPACK. It can be plugged in order to solve (25) by computing the n
largest and stop at this stage if the lowest computed singular values is lower
than the threshold. It is obviously more relevant when the target is expected
to have a very small rank. This method has been implemented in Python
and works well in practice even though the parameter n has to be tuned
carefully. Second, one can use an approximate SVD such as in [21].

Moreover, the first step (24) (which may be performed elementwise) has
a closed form solution for hinge and quantile loss: it is a soft-thresholding
applied to a specified quantity.

Simulated observations as well as real-world data (cf. the MovieLens
dataset1) are considered in the examples below. Finally note that parameter
λ is tuned by cross-validation.

6.2. Simulation study for RERM “Hinge + S1”. As the hinge loss has
not been often studied in the matrix context, we provide many simulations
in order to show the robustness of our method and the opportunity of using
the hinge loss rather than the logistic loss. We follow the simulations ran
in [14] and compare several methods. An estimator based on the logistic
model, studied in [16], is also challenged2.

1available in http://grouplens.org/datasets/movielens/
2In the followings, the four estimators will be referred to Hinge for estimator given

in (18), Hinge Bayes and Logit Bayes for the two Bayesian estimators from [14] with
respectively hinge and logistic loss functions, and Logit for the estimator from [16]. The
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A first set of simulations. The simulations are all based on a low-rank 200×
200 matrix M? from which the data are generated and which is the target
for the predictions. M? is also a minimizer of R0/1 so the error criterion that
we will report for a matrix M is the difference of the predictions between
M? and M , which is P[sign(

〈
M?, X

〉
) 6= sign(

〈
M,X

〉
)]. The Xi’s correspond

to 20% of the entries randomly picked so the misclassification rate is also
(1/mT )

∑
p,q I{sign(Mp,q) 6= sign(M?

p,q)}.
Two different scenarios are tested: the first one (called A), involves a

matrix M? with only entries in {−1,+1} so the Bayes classifier is low rank
and favors the hinge loss. The second test (called B) involves a matrix M? =
LR> where L,R have i.i.d. Gaussian entries and the rank is the number of
columns. In this case, the Bayes matrix contains the signs of a low-rank
matrix, but it is not itself low rank in general. We also test the impact of
several noise structures on the performance of the estimators:

1. (noiseless) Yi = sign(
〈
M?, Xi

〉
)

2. (logistic) Yi = sign(
〈
M?, Xi

〉
+ Zi), where Zi follows a logistic distri-

bution
3. (switch) Yi = εisign(

〈
M?, Xi

〉
) where εi = (1− p)δ1 + pδ−1

Finally, we run all the simulations on rank 3 and rank 5 matrices and λ is
tuned by cross validation. All the simulations are run one time.

Model A1 A2 (p = .1) A3 B1 B2 (p = .1) B3

Rank 3

Hinge 0 0 14.5 6.7 10.9 21.0
Logit 0 0.5 17.3 5.1 10.7 19.8
Hinge Bayes 0 0.1 8.5 5.3 10.8 22.1
Logit Bayes 0 0.5 16.0 4.1 10.1 16.0

Rank 5

Hinge 0 0.8 29.0 11.7 19.3 23.3
Logit 0 3.1 30.1 9.0 18.3 22.1
Hinge Bayes 0 0.5 27 9.4 17.9 24.4
Logit Bayes 0 4.4 32.5 7.8 17.3 21.5

Table 1
Misclassification error rates on simulated matrices in various cases. Model

∈ {A,B}{1, 2, 3} refers to scenario ∈ {A,B} and noise structure ∈ {1, 2, 3}. For the
noise-free Model = A0, the 0 column shows the exact reconstruction property of all

procedures.

The results are very similar among the methods, see Table 1. The logistic
loss performs better for matrices of type B and especially for high level of
noise in the logistic data generation as expected. For type A matrices, the
hinge loss performs slightly better. The Bayesian estimators performs as well
as the frequentist estimators even though the program solved is not convex.

Bayesian estimators use the Gammma prior distribution.
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Impact of the noise level. The second experiment is a focus on the switch
noise and matrices that are well separated (as A2 in the previous example).
The noise lies between p = 0 and almost full noise (p = .4). The performance
of the RERM with the hinge loss is slightly worse than the Bayesian esti-
mator with hinge loss but always better than the RERM with the logistic
loss, see Figure 6.2.
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Fig 1. Misclassification error rates for a large range of switch noise (noise structure
number 3).

Real dataset. We finally run the hinge loss estimator on the MovieLens
dataset. The ratings, that lie in {1, 2, 3, 4, 5}, are split between good ratings
(4, 5) and bad ratings (others). The goal is therefore to predict whether the
user will like a movie or not. On a test set that contains 20% of the data, the
misclassification rate in prediction are almost the same for all the methods
(Table 2).

Model Hinge Bayes Logit Hinge

misclassification rate .28 .27 .28
Table 2

Misclassification Rate on MovieLens 100K dataset

6.3. Simulation study for quantile matrix completion. The goal of this
section is to challenge the regularized least squares estimator by the RERM
with 0.5-quantile loss. The quantile used here is therefore the median. The
main conclusion of our study is that median based estimators are more
robust to outliers and noise than mean based estimators. We first test them
on simulated datasets and then turn to use a real dataset.
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Simulated matrices. The observations come from a base matrix M? which
is a 200×200 low rank matrix. It is built by M? = LR> where the entries of
L,R are i.i.d. gaussian and L,R have 3 columns (and therefore, the rank of
M? is 3). The Xi’s correspond to 20% randomly picked entries. The criterion
that we retain is the l1 reconstruction of M? that is: (1/mT )

∑
p,q |M?

p,q −
Mp,q|.

The observations are made according to this flexible model:

Yi =
〈
M?, X

〉
+ zi + oζi.

zi is the noise, o is the magnitude of outliers and ζi is the outlier indicator
parametrized by the share p such that ζi = p/2δ−1 + (1− p)δ0 + p/2δ1. The
different parameters for the different scenarios are summarized in Table 3.

On the first experiment, p is fixed to 10% and the magnitude o increases.
As expected for least squares, the results are better for low magnitude of
outliers (it corresponds to the penalized maximum likelihood estimator), see
Figure 2. Quickly, the performance of the least squares estimator is getting
worse and when the outliers are large enough, the best least squares predictor
is a matrix with null entries. In opposite to this estimator, the median of the
distribution is almost not affected by outliers and it is completely in line with
the results: the performances are strictly the same for mid-range to high-
range magnitude of outliers. The robustness of the quantile reconstruction
is totally independent to the magnitude of the outliers.

zi o ζi
Figure 2 N (0, 1/4) o = 0..30 p = 0.1
Figure 3 N (0, 1/4) 10 p = 0.025
Figure 4 tα, α = 1..10 0 p = 0
tα: t-distribution with α degrees of freedom.

Table 3
Parameters and distributions of the simulations

In a second experiment, we fixed the magnitude of outliers but we increase
their proportion within the dataset (see Figure 3). The median completion
is, as expected, more robust and the results deteriorate less than the ones
from least squares. When the outliers ratio is greater than 20%, the least
squares estimator completely fails while the median completion still works.

The third simulation involves non gaussian noise without outliers: we use
the t-distribution, that has heavy tails. In this challenge, a lower degree of
freedom involves heavier tails and the worst case is for Student distribution
with degree 1. We can see that the least squares is inadequate for small
degrees of freedom (1 to 2) and behaves better than the median completion
for larger degrees of freedom, see Figure 4.
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Fig 2. l1 reconstruction for different magnitude of outliers
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Fig 3. l1 reconstruction for different percentage of outliers
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Fig 4. l1 reconstruction for student noise with various magnitude degrees of freedom

Real dataset. The last experiment involves the MovieLens dataset. We keep
one fifth of the sample for test set to check the prediction accuracy. Even
though the least squares estimator remains very efficient in the standard
case, see Table 4, the results are quite similar for the MAE criterion. In a
second step, we add artificial outliers. In order to do that, we change 20% of
5 ratings to 1 ratings. It can be seen as malicious users that change ratings
in order to distort the perception of some movies. As expected, it depreciates
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MSE MAE
Raw Data, LS 0.89 0.75
Raw Data, Median 0.93 0.75
Outliers, LS 1.04 0.84
Outliers, Median 0.96 0.78

Table 4
Prediction power of Least Squares and Median Loss on MovieLens 100K dataset

the least squares estimator performance but the median estimator returns
almost as good performances as in the standard case.

7. Kernel methods via the hinge loss and a RKHS-norm reg-
ularization. In this section, we consider regularization methods in some
general Reproducing Kernel Hilbert Space (RKHS) (cf. [15], Chapter 4 in
[38] or Chapter 3 of [44] for general references on RKHS). Note that RKHS
is a vast class of functions space which include non-parametric spaces such
as Sobolev spaces (see [38]).

Unlike the previous examples, the regularization norm here, which is the
norm ‖·‖HK of a RKHS HK , is not associated with some ”hidden” concept
of sparsity. In particular, RKHS norms have no singularity (except at 0)
since they are differentiable at any point except in 0. As a consequence
the sparsity parameter ∆(ρ) cannot be larger than 4ρ/5, i.e. ρ does not
satisfy the sparsity equation, unless the set Γf∗(ρ) contains 0 that is for ρ ≥
20 ‖f∗‖HK . Indeed, one key observation is that norms are non differentiable
at 0 and that its subdifferential at 0 is somehow extremal:

(26) ∂ ‖·‖ (0) = B∗ := {f : ‖f‖∗ ≤ 1},

where ‖·‖∗ is the dual norm.
As a consequence, the rates obtained in this section do not depend on

some hidden sparsity parameter associated with the oracle f∗ but on the
RKHS norm at f∗, that is ‖f∗‖HK (such error rates are refer as “complexity
bounds” in [28]). The aim of this section is therefore to show that our main
results apply beyond “sparsity inducing regularization methods” by showing
that “classic” regularization method, inducing smoothness for instance, may
also be analyzed the same way and fall into the scope of Theorem 2.1 and
Theorem 2.2. This section also shows an explicit expression for the Gaussian
mean-width with localization as used in Definition 9.1 (a sharper way to
measure statistical complexity via a local r(·) function provided below).

Mathematical background. In this setup, the data are still N i.i.d. pairs
(Xi, Yi)

N
i=1 where the Xi’s take their values in some set X and Yi ∈ {−1,+1}.
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A ”similarity measure” is provided over the set X by means of a kernel
K : X × X → R so that x1, x2 ∈ X are ”similar” when K(x1, x2) is small.
One can think, for instance, of X as the set of all DNA sequences (that is
finite words over the alphabet {A, T,C,G}) and K(w1, w2) is the minimal
number of changes like insertion, deletion and mutation needed to transform
word w1 ∈ X into word w2 ∈ X .

The core idea behind kernel methods is to transport the design data Xi’s
from X to a Hilbert space via the application x→ K(x, ·) and then construct
statistical procedures based on the ”transported” dataset (K(Xi, ·), Yi)Ni=1.
The advantage of doing so is that the space where the K(Xi, ·)’s belong
have much structure than the initial set X which may have no algebraic
structure at all. The first thing to set is to define somehow the ”smallest”
Hilbert space containing all the functions x → K(x, ·). We recall now one
classic way of doing so that will be used later to define the objects that need
to be considered in order to construct RERM in this setup and to derive their
estimation rates via Theorem 2.1 and Theorem 2.2. Note that even though,
we derive estimation rates only in the bounded case (because the subgaussian
assumption is not natural for RKHS), we provide a computation of the two
complexity parameters since their analysis is identical and they yield an
example where the two Gaussian width and Rademacher complexities are
equal.

Recall that if K : X × X → R is a positive definite kernel such that
‖K‖L2

<∞, then by Mercer’s theorem, there is an orthogonal basis (φi)i∈N
of L2 such that µ ⊗ µ-almost surely, K(x, x′) =

∑∞
i=1 λiφi(x)φi(x

′) where
(λi)i∈N is the sequence of eigenvalues of the positive self-adjoint integral
operator TK (arranged in a non-increasing order) defined for every f ∈ L2

and µ-almost every x ∈ X by

(TKf)(x) =

∫
x′∈X

K(x, x′)f(x′)dµ(x′).

In particular, for all i ∈ N, φi is an eigenvector of TK corresponding to the
eigenvalue λi; and (φi)i is an orthonormal system in L2(µ).

The reproducing kernel Hilbert space HK is the set of all function series∑∞
i=1 aiK(xi, ·) converging in L2 endowed with the inner product〈∑

aiK(xi, ·),
∑

bjK(x′j , ·)
〉

=
∑
i,j

aibjK(xi, x
′
j)

where ai, bj ’s are any real numbers and the xi’s and x′j ’s are any points in
X .
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Estimator. The RKHS HK is therefore a class of functions from X to R
that can be used as a learning model and the norm naturally associated
to its Hilbert structure can be used as a regularization function. Given a
Lipschitz loss function `, the oracle is defined as

f∗ ∈ argmin
f∈HK

E`f (X,Y )

and it is believed that ‖f∗‖HK is small which justified the use of the RERM
with regularization function given by the RKHS norm ‖·‖HK :

f̂ ∈ argmin
f∈HK

(
1

N

N∑
i=1

`f (Xi, Yi) + λ ‖f‖HK

)

Statistical properties of this RERM may be obtained from Theorem 2.1
in the subgaussian case and from Theorem 2.2 in the bounded case. To
that end, we only have to compute the Gaussian mean width and/or the
Rademacher complexities of BHK . In this example, we rather compute the
localized version of those quantities because it is possible to derive explicit
formula. They are obtained by intersecting the ball with rE . In order not to
induce any confusion, we still use the global ones in estimation bounds.

Localized complexity parameter. The goal is to compute w(ρBHK ∩rE) and
Rad(ρBHK ∩ rE) for all ρ, r > 0 where BHK = {f ∈ HK : ‖f‖HK ≤ 1} is

the unit ball of the RKHS and E = {f ∈ HK : Ef(X)2 ≤ 1} is the ellipsoid
associated with X. In the following, we embed the two sets BHK and E in
l2 = l2(N) so that we simply have to compute the Gaussian mean width and
the Rademacher complexities of the intersection of two ellipsoids sharing the
same coordinates structures.

The unit ball of HK can be constructed from the eigenvalue decom-
position of TK by considering the feature map Φ : X → l2 defined by
Φ(x) =

(√
λiφi(x)

)
i∈N and then the unit ball of HK is just

BHK =
{
fβ(·) =

〈
β,Φ(·)

〉
: ‖β‖l2 ≤ 1

}
.

One can use the feature map Φ to show that there is an isometry between the

two Hilbert spacesHK and l2 endowed with the norm ‖β‖K =
(∑

β2i /λi
)1/2

.
The unit ball of l2 endowed with the norm ‖·‖K is an ellipsoid denoted by
EK .

Let us now determine the ellipsoid in l2 associated with the design X
obtained via this natural isomorphism β ∈ l2 → fβ(·) =

〈
β,Φ(·)

〉
∈ HK be-

tween l2 and HK . Since (φi)i is an orthonormal system in L2, the covariance
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operator of Φ(X) in l2 is simply the diagonal operator with diagonal ele-
ments (λi)i. As a consequence the ellipsoid associated with X is isomorphic

to Ẽ = {β ∈ l2 : E
〈
β,Φ(X)

〉2 ≤ 1}; it has the same coordinate structure as

the canonical one in l2 endowed with ‖·‖K : Ẽ = {β ∈ l2 :
∑
λiβ

2
i ≤ 1}. So

that, we obtain

(27) w(Kρ(f
∗) ∩ rEf∗) = w(ρEK ∩ rẼ) ∼

∑
j

(ρ2λj) ∧ r2
1/2

where the last inequality follows from Proposition 2.2.1 in [39] (note that
we defined the Gaussian mean widths in Definition (2.4) depending on the
covariance of X). We also get from Theorem 2.1 in [32] that

(28) Rad(Kρ(f
∗) ∩ rEf∗) ∼

∑
j

(ρ2λj) ∧ r2
1/2

.

Note that unlike the previous examples, we do not have to assume isotropic-
ity of the design. Indeed, in the RKHS case, the unit ball of the regularization
function is isomorphic to the ellipsoid EK . Since E is also an ellipsoid having
the same coordinates structure as EK (cf. paragraph above), for all ρ, r > 0,
the intersection ρBHK∩rE is equivalent to an ellipsoid, meaning that, it con-
tains an ellipsoid and is contained in a multiple of this ellipsoid. Therefore,
the Gaussian mean width and the Rademacher complexity of ρBHK ∩rE has
been computed without assuming isotropicity (thanks to general results on
the complexity of Ellipsoids from Proposition 2.2.1 in [39] and Theorem 2.1
in [32]).

It follows from (27) and (28) that the Gaussian mean width and the
Rademacher complexities are equal. Therefore, up to constant (L in the sub-
gaussian case and b in the bounded case), the two subgaussian and bounded
setups may be analyzed at the same time. Nevertheless, since we will only
consider in this setting the hinge loss and that the Bernstein condition (cf.
Assumption 2.1) with respect to the hinge loss has been studied in Propo-
sition 8.3 only in the bounded case, we continue the analysis only for the
bounded framework. Moreover, the subgaussian assumption is not natural
for RKHS.

We are now able to identify the complexity parameter of the problem. We
actually do not use the localization in this and rather use only the global
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complexity parameter as defined in Definition 2.7: for all ρ > 0:

(29) r(ρ) =

Cρ
(∑

j λj

)1/2
√
N


1
2κ

where κ ≥ 1 is the Bernstein parameter.

Results in the bounded setting. Finally, let us discuss about the bounded-
ness assumption. It is known (cf., for instance, Lemma 4.23 in [38]) that if
the kernel K is bounded then the functions in the RKHS HK are bounded:
for any f ∈ HK , ‖f‖L∞ ≤ ‖K‖∞ ‖f‖HK where ‖K‖∞ := supx∈X

√
K(x, x).

As a consequence, if one restricts the search space of the RERM to a RKHS
ball of radius R, one has F := RBHK ⊂ R ‖K‖∞BL∞ and therefore the
boundedness assumption is satisfied by F . However, note that a refinement
of the proof of Theorem 9.2 using a boundedness parameter b depending
on the radius of the RKHS balls used while performing the peeling device
yields statistical properties for the RERM with no search space constraint.
For the sake of shortness, we do not provide this analysis here.

We are now in a position to provide estimation and prediction results for
the RERM

(30) f̂ ∈ argmin
f∈RBHK

 1

N

N∑
i=1

(1− Yif(Xi))+ +
C
(∑

j λj

)1/2
√
N

‖f‖HK


where the choice of the regularization parameter λ follows from Theorem (2.2)
and (28) (for r = +∞). Note that unlike the examples in the previous sec-
tions, we do not have to find some radius ρ∗ satisfying the sparsity equa-
tion (3) to apply Theorem 2.2 since we simply take ρ∗ = 20 ‖f∗‖HK to insure
that 0 ∈ Γf∗(ρ

∗).

Theorem 7.1. Let X be some space, K : X × X → R be a bounded
kernel and denote by HK the associated RKHS. Denote by (λi)i the sequence
of eigenvalues associated to HK in L2. Assume that the Bayes rule f from
(35) belongs to RBHK and that the margin assumption (36) is satisfied for
some κ ≥ 1.

Then the RERM defined in (30) satisfies with probability larger than

1−C exp

−CN1/2κ

∥∥f∥∥HK
∑

j

λj

1/2


(2κ−1)/κ
 ,
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that

∥∥∥f̂ − f∥∥∥
L2

≤ C


∥∥f∥∥HK (∑j λj

)1/2
√
N


1/2κ

and Ehinge(f̂) ≤ C

∥∥f∥∥HK (∑j λj

)1/2
√
N

where Ehinge(f̂) is the excess hinge risk of f̂ .

Note that classic procedures in the literature on RKHS are mostly devel-
oped in the classification framework. They are usually based on the hinge
loss and the regularization function is the square of the RKHS norm. For
such procedures, oracle inequalities have been obtained in Chapter 7 from
[38] under the margin assumption (cf. [40]). A result that is close to the one
obtained in Theorem 7.1 is Corollary 4.12 in [34]. Assuming that ‖Y ‖∞ ≤ C,
X ⊂ Rd, ‖K‖∞ ≤ 1, that the eigenvalues of the integral operator satisfies

(31) λi ≤ ci−1/p

for some 0 < p < 1 and that the eigenvectors (φi) are such that ‖φi‖∞ ≤ A
for any i and some constant A then the RERM f̃ over the entire RKHS
space, w.r.t. the quadratic loss and for a regularization function of the order
of (up to logarithmic terms)

(32) f 7→ ρ(‖f‖H) := max

(
‖f‖2p/(1+p)H
N1/(1+p)

,
‖f‖2H
N

)

satisfies with large probability an oracle inequality like

E(Y − f̃(X))2 ≤ inf
r≥1

(
inf

‖f‖H≤r
E(Y − f(X))2 + Cρ(r)

)
.

In particular, an error bound (up to log factors) follows from this result:
with high probability,

(33)
∥∥∥f̃ − f∗∥∥∥2

L2

≤ Cρ(‖f∗‖H) = Cmax

(
‖f∗‖2p/(1+p)H
N1/(1+p)

,
‖f∗‖2H
N

)
.

One may compare this result to the one from Theorem 7.1 under assump-
tion (31) even though the two procedures f̃ and f̂ use different loss functions,
regularization function and different search space. If assumption (31) holds

then
(∑

j λj

)1/2
≤ c and so, one can take r(ρ) =

(
Ccρ/(θ

√
N)
)1/(2κ)

and
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λ = C
√
C/N . For such a choice of regularization parameter, Theorem 7.1

provides an error bound of the order of

(34)
∥∥∥f̃ − f∥∥∥2

L2(µ)
≤ C

[∥∥f∥∥HK C√
N

]1/κ
which is almost the same as the one obtained in (33) when κ = 1 and p is
close to 1. But our result is worse when κ > 1 and p is far from 1. This is
the price that we pay by using the hinge loss – note that the quadratic loss
satisfies the Bernstein condition with κ = 1 – and by fixing a regularization
function which is the norm ‖·‖HK instead of fitting the regularization func-
tion in a “complexity dependent way” as in (32). In the last case, our proce-
dure f̂ does not benefit from the “real complexity” of the problem which is
localized Rademacher complexities – note that we used global Rademacher
complexities to fit λ and construct the complexity function r(·).

8. A review of the Bernstein and margin conditions. In order
to apply the main results from Theorem 2.1 and Theorem 2.2, one has
to check the Bernstein condition. This section is devoted to the study of
this condition for three loss functions: the hinge loss, the quantile loss and
the logistic loss. This condition has been extensively studied in Learning
theory (cf. [2, 46, 33, 4, 43, 18]). We can identify mainly two approaches
to study this condition: when the class F is convex and the loss function
` is “strongly convex”, then the risk function inherits this property and
automatically satisfies the Bernstein condition (cf. [2]). On the other hand,
for loss functions like the hinge or quantile loss, that are affine by parts, one
has to use a different path. In such cases, one may go back to a statistical
framework and try to check the margin assumption. As a consequence, in the
latter case, the Bernstein condition is usually more restrictive and requires
strong assumptions on the distribution of the observations.

8.1. Logistic loss. In this section, we study the Bernstein condition of
the logistic loss function which is defined for every f : X → R, x ∈ X ,
y ∈ {−1, 1} and u ∈ R by

`f (x, y) = ˜̀(yf(x)) where ˜̀(u) = log(1 + exp(−u)).

Function ˜̀ is strongly convex on every compact interval in R. As it was first
observed in [2, 3], one may use this property to check the Bernstein condition
for the loss function `. This approach was extended to the bounded regression
problem with respect to Lp loss functions (1 < p < ∞) in [31] and to non
convex classes in [33].
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In the bounded scenario, [3] proved that the logistic loss function satisfies
the Bernstein condition for κ = 1. One may therefore use that result to
apply Theorem 2.2. The analysis is pretty straightforward in the bounded
case. It becomes more delicate in the subgaussian scenario as considered in
Theorem 2.1.

Proposition 8.1 ([2]). Let F be a convex class of functions from X to
R. Assume that for every f ∈ F , ‖f‖L∞ ≤ b. Then the class F satisfies the
Bernstein condition (for the logistic loss) with Bernstein parameter κ = 1
and constant A = 4 exp(2b).

The proof is given in Section 11. This result solves the problem of the
Bernstein condition with respect to the logistic loss function over a convex
class F of functions as long as all functions in F are uniformly bounded
by some constant b. We will therefore use this result only in the bounded
framework, for instance, when F is a class of linear functionals indexed by
a bounded set of vectors and X takes values in the canonical basis – like in
Section 4 where we assumed that X ∈ {E1,1, · · · , Em,T }, the canonical basis
of Rm×T .

In the subgaussian framework, one may proceed as in [43] and assume that
a statistical model holds. In that case, the Bernstein condition is reduced to
the study of the margin assumption since, in that case, the “Bayes rule” f
(which is called the log-odds ratio in the case of the logistic loss function)
is assumed to belong to the class F and so f∗ = f . The margin assumption
with respect to the logistic loss function has been studied in Example 1 from
[43] but for a slightly different definition of the margin assumption. Indeed,
in [43] only functions f in a L∞ neighborhood of f need to satisfy the margin
assumption whereas in Assumption 2.1 it has to be satisfied at least in the
non-bounded set C (see Remark 2.1).

From our perspective, we do not want to make no “statistical modeling
assumption”. In particular, we do not want to assume that f belongs to F .
We therefore have to prove the Bernstein condition when f̄ may not belong
to F . We used this result in Section 3 in order to obtain statistical bounds
for the logistic LASSO and logistic SLOPE procedures. In those cases, F
is a class of linear functionals. We now state that the Bernstein condition
is satisfied for a class of linear functional when X is a standard Gaussian
vector (the proof has been postponed to Section 11).

Proposition 8.2. Let F = {
〈
·, t
〉

: t ∈ RBl2} be a class of linear
functionals indexed by RBl2 for some radius R ≥ 1. Let X be a standard
Gaussian vector in Rd and let Y be a {−1, 1} random variable. For every



16 P. ALQUIER AND V. COTTET AND G. LECUÉ

f ∈ F , the excess logistic risk of f , denoted by PLf , satisfies

Elogistic(f) = PLf ≥
c0
R3
‖f − f∗‖2L2

where c0 is some absolute constant.

8.2. Hinge loss. Unlike the logistic loss function (on a bounded support),
both the hinge loss and the quantile losses do not enjoy a strong convexity
property. Therefore, one has to turn to a different approach as the one used
in the previous section to check the Bernstein condition for those two loss
functions.

For the hinge loss function, Bernstein condition is more stringent and is
connected to the margin condition in classification. So, let us first introduce
some notations specific to classification. In this setup, one is given N labeled
pairs (Xi, Yi), i = 1, . . . , N where Xi takes its values in X and Yi is a label
taking values in {−1,+1}. The aim is to predict the label Y associated
with X from the data when (X,Y ) is distributed like the (Xi, Yi)’s. The
classical loss function considered in this setup is the 0 − 1 loss function
`f (x, y) = I(y 6= f(x)) defined for any f : X → {−1,+1}. The 0 − 1 loss
function is not convex, this may result in some computational issues when
dealing with it. A classic approach is to use a “ convex relaxation function”
as a surrogate to the 0− 1 loss function: note that this is a way to motivate
the introduction of the hinge loss `f (x, y) = max(1 − yf(x), 0). It is well
known that the Bayes rules minimizes both the standard 0 − 1 risk as well
as the hinge risk: put η(x) := E[Y |X = x] for all x ∈ X and define the Bayes
rule as

(35) f(x) = sgn(η(x)),

then f minimizes f → P`f over all measurable functions from X to R when
`f is the hinge loss of f .

Let F be a class of functions from X to [−1, 1]. Assume that f ∈ F
so that f is an oracle in F and thus (using the notations from Section 2)
f∗ = f . In this situation, the margin assumption with respect to the hinge
loss (cf. [40, 25]) restricted to the class F and Bernstein condition (cf. As-
sumption 2.1) coincide. Therefore, Assumption 2.1 holds when the margin
assumption w.r.t. the hinge loss holds. According to Proposition 1 in [25],
the margin assumption with respect to the hinge loss is equivalent the mar-
gin assumption with respect to the 0− 1 loss for a class F of functions with
values in [−1, 1]. Then, according to Proposition 1 in [40] and [8] the margin
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assumption with respect to the 0− 1 loss with parameter κ is equivalent to

(36)

{
P(|η(X)| ≤ t) ≤ ct

1
κ−1 ,∀0 ≤ t ≤ 1 when κ > 1

|η(X)| ≥ τ a.s. for some τ > 0 when κ = 1.

As a consequence, one can state the following result on the Bernstein con-
dition for the hinge loss in the bounded case scenario.

Proposition 8.3 (Proposition 1, [25]). Let F be a class of functions
from X to [−1, 1]. Define η(x) = E[Y |X = x] for all x ∈ X and assume that
the Bayes rule (35) belongs to F . If (36) is satisfied for some κ ≥ 1 then
Assumption 2.1 holds with parameter κ for the hinge loss, and A depending
on c, κ and τ (which is explicitly given in the mentioned references). In the
special case when κ = 1 then A = 1/(2τ).

Note that up to a modification of the constant A, the same result holds
for functions with values in [−b, b] for b > 0, a fact we used in Section 7.

8.3. Quantile loss. In this section, we study the Bernstein parameter
of the quantile loss in the bounded regression model, that is when for all
f ∈ F, ‖f‖L∞ ≤ b a.s.. Let τ ∈ (0, 1) and, for all x ∈ X , define f(x) as
the quantile of order τ of Y |X = x and assume that f̄ belongs to F , in
that case, f = f∗ and Bernstein condition and margin assumption are the
same. Therefore one may follow the study of the margin assumption for the
quantile loss in [18] to obtain the following result.

Proposition 8.4 ([18]). Assume that for any x ∈ X , it is possible
to define a density fx w.r.t the Lebesgue measure for Y |X = x such that
fx(u) ≥ 1/C for some C > 0 for all u ∈ R with |u− f∗(x)| ≤ 2b. Then the
quantile loss satisfies Bernstein’s assumption with κ = 1 and A = 2C over
F .

9. Proof of Theorem 2.1 and Theorem 2.2.

9.1. More general statements: Theorems 9.2 and 9.1. First, we state two
theorems: Theorem 9.1 in the subgaussian setting, and Theorem 9.2 in the
bounded setting. These two theorems rely on localized versions of the com-
plexity function r(·) that will be defined first. Note that the localized version
of r(·) can always be upper bounded by the simpler version used in the core
of the paper. Thus, Theorem 2.1 is a direct corollary of Theorem 9.1, and
Theorem 2.2 is a direct corollary of Theorem 9.2.
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So let us start with a localized complexity parameters. The ”statistical
size” of the family of ”sub-models” (ρB)ρ>0 is now measured by local Gaus-
sian mean-widths in the subgaussian framework.

Definition 9.1. Let θ > 0. The complexity parameter is a non-
decreasing function r(·) such that for every ρ ≥ 0,

CLw (ρB ∩ r(ρ)BL2) ≤ θr(ρ)2κ
√
N

where κ is the Bernstein parameter from Assumption 2.1.

In the boundedness case, it is written as follows.

Definition 9.2. Let θ > 0. The complexity parameter is a non-
decreasing function r(·) such that for every ρ ≥ 0,

48Rad(ρB ∩ r(ρ)BL2) ≤ θr(ρ)2κ
√
N

where κ is the Bernstein parameter from Assumption 2.1.

To obtain the complexity functions from Definition 2.5 and 2.7, we use the
fact that w (ρB ∩ r(ρ)BL2) ≤ w(ρB) and Rad(ρB ∩ r(ρ)BL2) ≤ Rad(ρB):
it indeed does not use the localization. We also set θ = 7/40A in those
definitions because it is the largest value allowed in the following theorems.

Theorem 9.1. Assume that Assumption 1.1, Assumption 2.1 and As-
sumption 2.2 hold. Let r(·) be a function as in Definition 9.1 for some θ
such that 40Aθ ≤ 7 and assume that ρ→ r(2ρ)/ρ is non-increasing. Let the
regularization parameter λ be chosen such that

(37)
10θr(2ρ)2κ

7ρ
< λ <

r(2ρ)2κ

2Aρ
, ∀ρ ≥ ρ∗

where ρ∗ satisfies (3). Then, with probability larger than

(38) 1−
∞∑
j=0

∑
i∈Ij

exp

(
−θ

2N(2(i−1)∨0r(2jρ∗))4κ−2

4C2L2

)

where for all j ∈ N, Ij = {1} ∪ {i ∈ N∗ : 2i−1r(2jρ∗) ≤ 2jρ∗dL2(B)}, we
have ∥∥∥f̂ − f∗∥∥∥ ≤ ρ∗, ∥∥∥f̂ − f∗∥∥∥

L2

≤ r(2ρ∗) and E(f̂) ≤ r(2ρ∗)2κ/A.
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Proof of Theorem 2.1: Let r(·) be chosen as in Definition 2.5. For this
choice, one can check that the regularization parameter used for the con-
struction of the RERM satisfies (37) with an adequate choice of constants.
Moreover, for this choice of function r(·) it is straightforward to lower bound
the sum in the probability estimate in (38). �

The bounded case is in the same spirit.

Theorem 9.2. Assume that Assumption 1.1, Assumption 2.1 and As-
sumption 2.3 hold. Let r(·) be a function as in Definition 9.2 for some θ
such that 40Aθ ≤ 7 and assume that ρ→ r(2ρ)/ρ is non-increasing. Let the
regularization parameter λ be chosen such that

(39)
10θr(2ρ)2κ

7ρ
< λ <

r(2ρ)2κ

2Aρ
, ∀ρ ≥ ρ∗

where ρ∗ satisfies (3). Then, with probability larger than

(40) 1− 2
∞∑
j=0

∑
i∈Ij

exp
(
−c0θ2N(2ir(2j+1ρ∗))4κ−2

)
where c0 = 1/max

(
48, 207θb2κ−1

)
and for all j ∈ N, Ij := {1} ∪ {i ∈ N∗ :

2i−1r(2jρ∗) ≤ min(2jρ∗dL2(B), b)}, we have∥∥∥f̂ − f∗∥∥∥ ≤ ρ∗, ∥∥∥f̂ − f∗∥∥∥
L2

≤ r(2ρ∗) and E(f̂) ≤ r(2ρ∗)2κ/A.

The proof of Theorem 2.2 is straightforward consequence of Theorem 9.2.
It is identical to the one of Theorem 2.1 and we do not reproduce it here.

9.2. Proofs of Theorems 9.2 and 9.1. Proof of Theorem 9.1 and and
Theorem 9.2 follow the same strategy. They are split into two parts. First,
we identify an event onto which the statistical behavior of the regularized
estimator f̂ can be controlled using only deterministic arguments. Then, we
prove that this event holds with a probability at least as large as the one in
(38) in the case of Theorem 9.1 and as in (40) in the case of Theorem 9.2.
We first introduce this event which is common to the subgaussian and the
bounded setups:

Ω0 :=

{
for all f ∈ F∣∣(P − PN )Lf

∣∣ ≤ θmax
(
r(2 max(‖f − f∗‖ , ρ∗))2κ, ‖f − f∗‖2κL2

) }
where θ is a parameter appearing in the definition of r(·) in Definition 9.1
and Definition 9.2, κ ≥ 1 is the Bernstein parameter from Definition 2.1 and
ρ∗ is a radius satisfying the sparsity Equation (3).
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Proposition 9.1. Let λ be as in (37) (or equivalently as in (39)) and
let ρ∗ satisfy (3), on the event Ω0, one has∥∥∥f̂ − f∗∥∥∥ ≤ ρ∗, ∥∥∥f̂ − f∗∥∥∥

L2

≤ r(2ρ∗) and E(f̂) ≤ θr(2ρ∗)2κ.

Proof. Denote ρ̂ =
∥∥∥f̂ − f∗∥∥∥. We first prove that ρ̂ < ρ∗. To that end, we

assume that the reverse inequality holds and show some contradiction. As-
sume that ρ̂ ≥ ρ∗. Since ρ→ r(2ρ)/ρ is non-increasing then by Lemma A.1,
ρ→ ∆(ρ)/ρ is non-decreasing and so we have

∆(ρ̂)

ρ̂
≥ ∆(ρ∗)

ρ∗
≥ 4

5
.

Now, we consider two cases: either
∥∥∥f̂ − f∗∥∥∥

L2

≤ r(2ρ̂) or
∥∥∥f̂ − f∗∥∥∥

L2

>

r(2ρ̂).

First assume that
∥∥∥f̂ − f∗∥∥∥

L2

≤ r(2ρ̂). Since ∆(ρ̂) ≥ 4ρ̂/5 and h = f̂ −
f∗ ∈ ρ̂S ∩ r(2ρ̂)BL2 , it follows from the definition of the sparsity parameter
∆(ρ̂) that there exists some f ∈ F such that ‖f − f∗‖ ≤ ρ̂/20 and for which

‖f + h‖ − ‖f‖ ≥ 4ρ̂

5
.

It follows that∥∥∥f̂∥∥∥−‖f∗‖ = ‖f∗ + h‖−‖f∗‖ ≥ ‖f + h‖−‖f‖−2 ‖f − f∗‖ ≥ 4ρ̂

5
− ρ̂

10
=

7ρ̂

10
.

Let us now introduce the excess regularized loss: for all f ∈ F ,

Lλf = Lf + λ(‖f‖ − ‖f∗‖) = (`f + λ ‖f‖)− (`f∗ + λ ‖f∗‖) .

On the event Ω0, we have

PNLλf̂ = PNLf̂ + λ
(∥∥∥f̂∥∥∥− ‖f∗‖) ≥ (PN − P )Lf̂ + λ

(∥∥∥f̂∥∥∥− ‖f∗‖)
≥ −θmax

(
r(2ρ̂)2κ,

∥∥∥f̂ − f∗∥∥∥2κ
L2

)
+

7λρ̂

10
= −θr(2ρ̂)2κ +

7λρ̂

10
> 0

because by definition of λ, 7λρ̂ > 10θr(2ρ̂)2κ. Therefore, PNLλf̂ > 0. But, by

construction, one has PNLλf̂ ≤ 0.

Then, assume that
∥∥∥f̂ − f∗∥∥∥

L2

> r(2ρ̂). In particular, f̂ ∈ C where C is the

set introduced in Equation (2) from Remark 2.1 . By definition of f̂ we have
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PNLλf̂ ≤ 0 so it follows from the Bernstein condition (cf. Assumption 2.1)

that∥∥∥f̂ − f∗∥∥∥2κ
L2

≤ APLf̂ = A
[
(P − PN )Lf̂ + PNLλf̂ + λ

(
‖f∗‖ −

∥∥∥f̂∥∥∥)]

≤ Aθmax

(
r(2ρ̂)2κ,

∥∥∥f̂ − f∗∥∥∥2κ
L2

)
+Aλ

∥∥∥f̂ − f∗∥∥∥ = Aθ
∥∥∥f̂ − f∗∥∥∥2κ

L2

+Aλρ̂.

(41)

Hence, if Aθ ≤ 1/2 then

r(2ρ̂)2κ ≤
∥∥∥f̂ − f∗∥∥∥2κ

L2

≤ 2Aλρ̂.

But, by definition of λ one has r(2ρ̂)2κ > 2Aλρ̂.
Therefore, none of the two cases is possible when one assumes that ρ̂ ≥ ρ∗

and so we necessarily have ρ̂ < ρ∗.

Now, assuming that
∥∥∥f̂ − f∗∥∥∥

L2

> r(2ρ∗) and following (41) step by step

also leads to a contradiction, so
∥∥∥f̂ − f∗∥∥∥

L2

≤ r(2ρ∗). p Next, we prove the

result for the excess risk. One has

PNLλf̂ = PNLf̂ + λ
(∥∥∥f̂∥∥∥− ‖f∗‖) = (PN − P )Lf̂ + PLf̂ + λ

(∥∥∥f̂∥∥∥− ‖f∗‖)
≥ −θmax

(
r(2ρ∗)2κ,

∥∥∥f̂ − f∗∥∥∥2κ
L2

)
+ PLf̂ − λρ̂ ≥ −θr(2ρ

∗)2κ − λρ∗ + PLf̂

≥ −
(
θ +

1

2A

)
r(2ρ∗)2κ + PLf̂ ≥

−r(2ρ∗)2κ

A
+ PLf̂ .

In particular, if PLf̂ > r(2ρ∗)2κ/A then PNLλf̂ > 0 which is not possible by

construction of f̂ so we necessarily have PLf̂ ≤ r(2ρ
∗)2κ/A. �

Proposition 9.1 shows that f̂ satisfies some estimation and prediction
properties on the event Ω0. Next, we prove that Ω0 holds with large prob-
ability in both subgaussian and bounded frameworks. We start with the
subgaussian framework. To that end, we introduce several tools.

Recall that the ψ2-norm of a real valued random variable Z is defined by

‖Z‖ψ2
= inf {c > 0 : Eψ2(|Z|/c) ≤ ψ2(1)}

where ψ2(u) = exp(u2)−1 for all u ≥ 0. The space Lψ2 of all real valued ran-
dom variables with finite ψ2-norm is called the Orlicz space of subgaussian
variables. We refer the reader to [36, 37] for more details on Orlicz spaces.
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We recall several facts on the ψ2-norm and subgaussian processes. First,
it follows from Theorem 1.1.5 from [11] that ‖Z‖ψ2

≤ max(K0,K1) if

(42) E exp(λ|Z|) ≤ exp
(
λ2K2

1

)
, ∀λ ≥ 1/K0.

It follows from Lemma 1.2.2 from [11] that, if Z is a centered ψ2 random
variable then, for all λ > 0,

(43) E exp (λZ) ≤ exp
(
eλ2 ‖Z‖2ψ2

)
.

Then, it follows from Theorem 1.2.1 from [11] that if Z1, . . . , ZN are in-
dependent centered real valued random variables then

(44)

∥∥∥∥∥
N∑
i=1

Zi

∥∥∥∥∥
ψ2

≤ 16

(
N∑
i=1

‖Zi‖2ψ2

)1/2

.

Finally, let us turn to some properties of subgaussian processes. Let (T, d)
be a pseudo-metric space. Let (Xt)t∈T be a random process in Lψ2 such that
for all s, t ∈ T , ‖Xt −Xs‖ψ2

≤ d(s, t). It follows from the comment below
Theorem 11.2 p.300 in [29] that for all measurable set A and all s, t ∈ T ,∫

A
|Xs −Xt|dP ≤ d(s, t)P(A)ψ−12

(
1

P(A)

)
.

Therefore, it follows from equation (11.14) in [29] that for every u > 0,

(45) P

(
sup
s,t∈T

|Xs −Xt| > c0(γ2 +Du)

)
≤ ψ2(u)−1

where D is the diameter of (T, d), c0 is an absolute constant and γ2 is the
majorizing measure integral γ(T, d;ψ2) (cf. Chapter 11 in [29]). When T is a
subset of L2 and d is the natural metric of L2 it follows from the majorizing
measure theorem that γ2 ≤ c1w(T ) (cf. Chapter 1 in [39]).

Lemma 9.1. Assume that Assumption 1.1 and Assumption 2.2 hold. Let
F ′ ⊂ F then for every u > 0, with probability at least 1− 2 exp(−u2)

sup
f,g∈F ′

|(P − PN )(Lf − Lg)| ≤
c0L√
N

(
w(F ′) + udL2(F ′)

)
where d is the L2 metric and dL2(F ′) is the diameter of (F ′, d).
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Proof. To prove Lemma 9.1, it is enough to show that ((P − PN )Lf )f∈F ′

has (L/
√
N)-subgaussian increments and then to apply (45) where γ2 ∼

w(F ′) in this case.
Let us prove that for some absolute constant c0: for all f, g ∈ F ′,

‖(P − PN )(Lf − Lg)‖ψ2
≤ c0(L/

√
N) ‖f − g‖L2

It follows from (44) that

‖(P − PN )(Lf − Lg)‖ψ2
≤ 16

(
N∑
i=1

‖(Lf − Lg)(Xi, Yi)− E(Lf − Lg)‖2ψ2

N2

)1/2

=
16√
N
‖ζf,g‖ψ2

.

where ζf,g = (Lf − Lg)(X,Y ) − E(Lf − Lg). Therefore, it only remains to
show that ‖ζf,g‖ψ2

≤ c1L ‖f − g‖L2
.

It follows from (42), that the last inequality holds if one proves that for
all λ ≥ c1/(L ‖f − g‖L2

),

(46) E exp (λ|ζf,g|) ≤ exp(c2λ
2L2 ‖f − g‖2L2

)

for some absolute constants c1 and c2. To that end, it is enough to prove
that, for some absolute constant c3 – depending only on c1 and c2 – and all
λ > 0,

E exp (λ|ζf,g|) ≤ 2 exp(c3λ
2L2 ‖f − g‖2L2

).

Note that if Z is a real valued random variable and ε is a Rademacher
variable independent of Z then E exp(|Z|) ≤ 2E exp(εZ). Hence, it follows
from a symmetrization argument (cf. Lemma 6.3 in [29]), (a simple version
of) the contraction principle (cf. Theorem 4.4 in [29]) and (43) that, for all
λ > 0,

E exp (λ|ζf,g|) ≤ 2E exp(λεζf,g) ≤ 2E exp (2λε(Lf − Lg)(X,Y ))

≤ 2E exp (2λε(f − g)(X)) ≤ 2E exp
(
c4λ

2L2 ‖f − g‖2ψ2

)
where ε is a Rademacher variable independent of (X,Y ) and where we used
in the last but one inequality that |Lf (X,Y )− Lg(X,Y )| ≤ |f(X)− g(X)|
a.s.. �

Proposition 9.2. We assume that Assumption 1.1, 2.2 and 2.1 hold.
Then the probability measure of Ω0 is at least as large as the one in (38).
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Proof. The proof is based on a peeling argument (cf. [42]) with respect to
the two distances naturally associated with this problem: the regularization
norm ‖·‖ and the L2-norm ‖·‖L2

associated with the design X. The peeling

according to ‖·‖ is performed along the radii ρj = 2jρ∗ for j ∈ N and the
peeling according to ‖·‖L2

is performed within the class {f ∈ F : ‖f − f∗‖ ≤
ρj} := f∗ + ρjB along the radii 2ir(ρj) for all i = 0, 1, 2, · · · up to a radius
such that 2ir(ρj) becomes larger than the radius of f∗ + ρjB in L2, that is
for all i ∈ Ij .

We introduce the following partition of the class F . We first introduce the
”true model”, i.e. the subset of F where we want to show that f̂ belongs to
with high probability:

F0,0 =
{
f ∈ F : ‖f − f∗‖ ≤ ρ0 and ‖f − f∗‖L2

≤ r(ρ0)
}

(note that ρ0 = ρ∗). Then we peel the remaining set F\F0,0 according to
the two norms: for every i ∈ I0,

F0,i =
{
f ∈ F : ‖f − f∗‖ ≤ ρ0 and 2i−1r(ρ0) < ‖f − f∗‖L2

≤ 2ir(ρ0)
}
,

for all j ≥ 1 ,

Fj,0 =
{
f ∈ F : ρj−1 < ‖f − f∗‖ ≤ ρj and ‖f − f∗‖L2

≤ r(ρj)
}

and for every integer i ∈ Ij ,

Fj,i =
{
f ∈ F : ρj−1 < ‖f − f∗‖ ≤ ρj and 2i−1r(ρj) < ‖f − f∗‖L2

≤ 2ir(ρj)
}
.

We also consider the sets F ∗j,i = ρjB ∩ (2ir(ρj))BL2 for all integers i and j.
Let j and i ∈ Ij be two integers. It follows from Lemma 9.1 that for any

u > 0, with probability larger than 1− 2 exp(−u2),

sup
f∈Fj,i

|(P − PN )Lf | ≤ sup
f,g∈F ∗j,i+f∗

|(P − PN )(Lf − Lg)|

≤ c0L√
N

(
w(F ∗j,i) + udL2(F ∗j,i)

)
(47)

where dL2(F ∗j,i) ≤ 2i+1r(ρj).
Note that for any ρ > 0, h : r → w(ρB ∩ rBL2)/r is non-increasing

(cf. Lemma A.2 in the Appendix) and note that, by definition of r(ρ) (cf.
Definition 9.1), h(r(ρ)) ≤ θr(ρ)2κ−1

√
N/(CL). Since h(·) is non-increasing,

we have w(F ∗j,i)/(2
ir(ρj)) ≤ h(2ir(ρj)) ≤ h(r(ρj)) ≤ θr(ρj)

2κ−1√N/(CL)

and so w(F ∗j,i) ≤ θ2ir(ρj)
2κ
√
N/(CL). Therefore, it follows from (47) for
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u = θ
√
N(2(i−1)∨0r(ρj))

2κ−1/(2CL), if C ≥ 4c0 then, with probability at
least

(48) 1− 2 exp
(
−θ2N(2(i−1)∨0r(ρj))

4κ−2/(4C2L2)
)
,

for every f ∈ Fj,i,

|(P − PN )Lf | ≤ θ(2(i−1)∨0r(ρj))2κ

≤ θmax
(
r(2 max(‖f − f∗‖ , ρ∗))2κ, ‖f − f∗‖2κL2

)
.

The result follows from a union bound. �
Now we turn to the proof of Theorem 9.1 under the boundedness assump-

tion. The proof follows the same strategy as in the ”subgaussian case”: we
first use Proposition 9.1 and then show (under the boundedness assumption)
that event Ω0 holds with probability at least as large as the one in (40).

Similar to Proposition 9.2, we prove the following result under the bound-
edness assumption.

Proposition 9.3. We assume that Assumption 1.1, 2.3 and 2.1 hold.
Then the probability measure of Ω0 is at least as large as the one in (40).

Proof. Using the same notation as in the proof of Proposition 9.2, we
have for any integer j and i such that 2ir(ρj) ≤ b that by Talagrand’s
concentration inequality: for any x > 0, with probability larger than 1−2e−x,

(49) Zj,i ≤ 2EZj,i + σ(LFj,i)
√

8x

N
+

69
∥∥LFj,i∥∥∞ x

2N

where

Zj,i = sup
f∈Fj,i

|(P−PN )Lf |, σ(LFj,i) = sup
f∈Fj,i

√
EL2f and

∥∥LFj,i∥∥∞ = sup
f∈Fj,i

‖Lf‖∞ .

By the Lipschitz assumption, one has

σ(LFj,i) ≤ 2i+1r(ρj) and
∥∥LFj,i∥∥∞ ≤ 2b.

Therefore, it only remains to upper bound the expectation EZj,i. Let ε1, . . . , εN
be a N i.i.d. Rademacher variables independent of the (Xi, Yi)’s. For all func-
tion f , we set

PN,εf =
1

N

N∑
i=1

εif(Xi)
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It follows from a symmetrization and a contraction argument (cf. Chapter 4
in [29]) that

EZj,i ≤ 4E sup
f∈Fj,i

|PN,ε(f−f∗)| ≤
4Rad(ρjB ∩ (2ir(ρj))BL2)√

N
≤ (θ/12)2ir(ρj)

2κ.

Now, we take x = c2θ
2N(2i−1r(ρj))

4κ−2 in (49) and note that 2ir(ρj) ≤ b
and κ ≥ 1: with probability larger than

(50) 1− 2 exp(−c2θN(2ir(ρj))
4κ−2),

for any f ∈ Fj,i,

|(P − PN )Lf | ≤ θ2i−1r(ρj)2κ/3 + 2
√

8c2θ
(
2i−1r(ρj)

)2κ
+ 69c2θ

2b(2i−1r(ρj))
4κ−2

≤ θ
(

2(i−1)∨0r(ρj)
)2κ [1

3
+ 2
√

8c2 + 69c2θb(2
ir(ρj))

2κ−2
]

≤ θ
(

2(i−1)∨0r(ρj)
)2κ [1

3
+ 2
√

8c2 + 69c2θb
2κ−1

]
≤ θmax

(
r(2 max(‖f − f∗‖ , ρ∗))2κ, ‖f − f∗‖2κL2

)
if c2 is defined by

(51) c2 = min

(
1

48
,

1

207θb2κ−1

)
.

We conclude with a union bound. �

Remark 9.1 (Technical comments). The machinery we used here to
prove Theorems 9.2 and 9.1 is inspired by the technique from [28, 27]. In the
latter papers, estimation properties of regularized ERM are also obtained but
for the square loss. Here, we extend those results to Lipschitz loss functions.
Going from the square loss to Lipschitz loss functions is not straightforward.
It requires another machinery given that the homogeneity argument used in
[28, 27] do not apply here. In a nutshell, this argument shows that if PNLλf >
0 (where Lλf is the regularized excess loss of f) for all f ∈ F ∩ (f∗ + r∗SL2)
then it is also the case for all f such that ‖f − f∗‖L2

≥ r∗ (and therefore
the RERM is in f∗ + r∗BL2). This argument cannot be used for Lipschitz
loss function because there is no homogeneity between Lf and Lg when f −
f∗ = λ(g − f∗) for some λ > 0. As a consequence, one needs to control
the oscillation of the process f → (PN − P )Lf on every shelves Fi,j in the
Lipschitz case. This requires a (double) peeling argument. Peeling arguments
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(see [42]) work only if one can sum all the deviation probabilities of the events
where the empirical process is controlled on each shell. This is an infinite sum
and therefore, one needs enough concentration to make this sum converging.
That is the reason why we assumed subgaussianity or boundedness in order to
make the peeling argument work. The weak stochastic framework considered
in [28, 27] would not be enough here because of this approach based on a
peeling argument.

10. Proof of the optimality results in Section 4.

10.1. Proof of Theorem 4.3. For the sake of simplicity, assume that m ≥
T so max(m,T ) = m. Fix r ∈ {1, . . . , T}. Fix x > 0 such that exp(x)/[1 +
exp(x)] ≤ b, we define the set of matrices

Cx =
{
A ∈ Rm×r : ∀(p, q), Ap,q ∈ {0, x}

}
and

Mx = {A ∈ Rm×T : A = (B| . . . |B|O), B ∈ Cx}

where the blockB is repeated bT/rc times (this construction is taken from [24]).
Varshamov-Gilbert bound (Lemma 2.9 in [41]) implies that there is a finite
subset M0

x ⊂ Mx with card(M0
x) ≥ 2rm/8 + 1 with 0 ∈ M0

x, and for any
distinct A,B ∈M0

x,

‖A−B‖2S2
≥ mrbT/rc

8
x2 ≥ mT

16
x2

and so
1

mT
‖A−B‖2S2

≥ x2

16
.

Then, for M ∈M0
x \ {0},

K(P0,PM ) =
n

mT

m∑
i=1

T∑
j=1

[
1

2
log

(
1 + exp(Mi,j)

2 exp(Mi,j)

)
+

1

2
log

(
1 + exp(Mi,j)

2

)]

=
n

mT

m∑
i=1

T∑
j=1

[
log

(
1 + exp(Mi,j)

2

)
− 1

2
Mi,j

]

≤ n
[
log

(
1 + exp(x)

2

)
− 1

2
x

]
≤ c(b)nx2
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where c(b) > 0 is a constant that depends only on b. So:

1

card(M0
x)− 1

∑
A∈M0

x

K(P0,PA) ≤ c(b)nx2 ≤ c(b) log(card(M0
x)− 1)

as soon as we choose

x ≤
√

log(card(M0
x)− 1)

n
≤
√
rm log(2)

8n

(note that the condition n ≥ rm log(2)/(8b2) implies that exp(x)/[1 +
exp(x)] ≤ b). Then, Theorem 2.5 in [41] leads to the existence of β, c > 0
such that

inf
M̂

sup
A∈M0

x

PA
(

1

mT
‖M̂ −A‖2S2

≥ cmr
N

)
≥ β.

�

10.2. Proof of Theorem 4.5. For the sake of simplicity, assume that m ≥
T so max(m,T ) = m. Fix r ∈ {2, . . . , T} and assume that rT ≤ N ≤ mT .

We recall that {Ep,q : 1 ≤ p ≤ m, 1 ≤ p ≤ T} is the canonical basis of
Rm×T . We consider the following “blocks of coordinates”: for every 1 ≤ k ≤
r − 1 and 1 ≤ l ≤ T ,

Bkl =

{
Ep,l :

(k − 1)mT

N
+ 1 ≤ p < kmT

N
+ 1

}
(note that (r − 1)mT/N + 1 ≤ m when rT ≤ N ≤ mT ). We also introduce
the “blocks” of “remaining” coordinates:

B0 =

{
Ep,q :

(r − 1)mT

N
+ 1 ≤ p, 1 ≤ q ≤ T

}
For every σ = (σkl) ∈ {0, 1}(r−1)×T , we denote by Pσ the probability

distribution of a pair (X,Y ) taking its values in Rm×T × {−1, 1} where X
is uniformly distributed over the basis {Ep,q : 1 ≤ p ≤ m, 1 ≤ p ≤ T} and
for every (p, q) ∈ {1, . . . ,m} × {1, . . . , T},

Pσ[Y = 1|X = Ep,q] =

{
σkl if Ep,q ∈ Bkl
1 otherwise.

We also introduce ησ(Ep,q) = E[Y = 1|X = Ep,q] = 2Pσ[Y = 1|X = Ep,q]−1.
It follows from [46] that the Bayes rules minimizes the Hinge risk, that is
f∗σ ∈ argminf Eσ(Y − f(X))+, where the minimum runs over all measurable
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functions and Eσ denotes the expectation w.r.t. (X,Y ) when (X,Y ) ∼ Pσ,
is achieved by f∗σ = sgn(ησ(·)). Therefore, f∗σ(·) =

〈
M∗σ , ·

〉
where for every

(p, q) ∈ {1, . . . ,m} × {1, . . . , T},

(M∗σ)pq =

{
2σkl − 1 if Ep,q ∈ Bkl

1 otherwise.
= ησ(Ep,q).

In particular, M∗σ has a rank at most equal to r.
Let σ = (σp,q), σ

′ = (σ′pq) be in {0, 1}(r−1)T . We denote by ρ(σ, σ′) the
Hamming distance between σ and σ′ (i.e. the number of times the coor-
dinates of σ and σ′ are different). We denote by H(Pσ,Pσ′) the Hellinger
distance between the probability measures Pσ and Pσ′ . We have

H(Pσ,Pσ′) =

∫ (√
dPσ −

√
dPσ′

)2
=

2ρ(σ, σ′)

N
.

Then, if ρ(σ, σ′) = 1, it follows that (cf. Section 2.4 in [41]),

H2(P⊗Nσ ,P⊗Nσ′ ) = 2

(
1−

(
1− H2(Pσ,Pσ′)

2

)N)

= 2

(
1−

(
1− 1

N

)N)
≤ 2(1− e−2) := α.

Now, it follows from Theorem 2.12 in [41], that

(52) inf
σ̂

max
σ∈{0,1}(r−1)T

E⊗Nσ ‖σ̂ − σ‖l1 ≥
(r − 1)T

8

(
1−

√
α(1− α/4)

)
where the infimum inf σ̂ runs over all measurable functions σ̂ of the data
(Xi, Yi)

N
i=1 with values in R (note that Theorem 2.12 in [41] is stated for

functions σ̂ taking values in {0, 1}(r−1)T but its is straightforward to extend
this result to any σ̂ valued in R) and E⊗Nσ denotes the expectation w.r.t.
those data distributed according to P⊗Nσ .

Now, we lower bound the excess risk of any estimator. Let f̂ be an esti-
mator with values in R. Using a truncation argument it is not hard to see
that one can restrict the values of f̂ to [−1, 1]. In that case, We have

Ehinge(f̂) = E
[
|2ησ(X)− 1||f̂(X)− f∗σ(X)|

]
= E|f̂(X)− f∗σ(X)|

=
∑
p,q

|f̂(Ep,q)− f∗σ(Ep,q)|P[X = Ep,q]

≥
∑
kl

1

mT

∑
Ep,q∈Bkl

|f̂(Ep,q)− (2σpq − 1)| ≥ 2

N

∑
kl

|σ̂kl − σpq|
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where σ̂kl is the mean of {(f̂(Ep,q) + 1)/2 : Ep,q ∈ Bkl}. Then we obtain,

inf
f̂

sup
σ∈{0,1}(r−1)T

E⊗Nσ Ehinge(f̂) ≥ 2

N
inf
σ̂

max
σ∈{0,1}(r−1)T

E⊗Nσ ‖σ̂ − σ‖l1

and, using (52), we get

inf
f̂

sup
σ∈{0,1}(r−1)T

E⊗Nσ Ehinge(f̂) ≥ c0
rT

N

for c0 =
(

1−
√
α(1− α/4)

)
/4.

�

11. Proofs of Section 8. The proof of Proposition 8.1 may be found
in several papers (cf., for instance, [2]). Let us recall this argument since we
will be using it at a starting point to prove the Bernstein condition in the
subgaussian case.

Proof of Proposition 8.1. The logistic risk of a function f : X → R can
be written as P`f = E[g(X, f(X))] where for all x, a ∈ R, g(x, a) :=
((1 + η(x))/2) log (1 + e−a)+((1− η(x))/2) log (1 + ea) and η(x) = E[Y |X =
x] is the conditional expectation of Y given X = x.

Since f∗ minimizes f → P`f over the convex class F , one has by the
first order condition that for every f ∈ F , E∂2g(X, f∗(X))(f − f∗)(X) ≥ 0.
Therefore, it follows from a second order Taylor expansion that the excess
logistic loss of every f ∈ F is such that

Elogistic(f) = PLf

≥ E
[
(f(X)− f∗(X))2

∫ 1

0
(1− u)δ(f∗(X) + u(f − f∗)(X))du

]
(53)

where δ(u) = ∂22g(x, u) = eu/(1 + eu)2 for every u ∈ R.
Since |f∗(X)|, |f(X)| ≤ b a.s. then for every u ∈ [0, 1], |f∗(X) + u(f −

f∗)(X)| ≤ 2b, a.s. and since δ(v) ≥ δ(2b) ≥ exp(−2b)/4 for every |v| ≤ 2b,
it follows from (53) that PLf ≥ δ(2b) ‖f − f∗‖2L2

. �

Proof of Proposition 8.2. Let t∗ ∈ RBl2 be such that f∗ =
〈
·, t∗
〉
, where

f∗ is an oracle in F = {
〈
·, t
〉

: t ∈ RBl2} w.r.t. the logistic loss risk. Let
f =

〈
·, t
〉
∈ F for some t ∈ RBl2 . It follows from (53) that the excess logistic

risk of f satisfies

PLf ≥
∫ 1

0
E
[〈
X, t∗ − t

〉2
δ
(〈
X, t∗ + u(t− t∗)

〉)]
du.
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The result will follow if one proves that for every t0, t ∈ Rd,

(54) E
[〈
X, t

〉2
δ
(〈
X, t0

〉)]
≥

min

(
π, π2

(
‖t0‖2

√
2π + ‖t0‖22

)−1)
√

2π + ‖t0‖22 + (π − 1) ‖t0‖2

‖t‖22
8
√

2π
.

Let us now prove (54). We write t = t⊥0 +λt0 where t⊥0 is a vector orthog-
onal to t0 and λ ∈ R. Since

〈
X, t⊥0

〉
and

〈
X, t0

〉
are independent random

variables, we have

E
[〈
X, t

〉2
δ
(〈
X, t0

〉)]
= E

[〈
X, t⊥0

〉2]E [δ (〈X, t0〉)]+ λ2E
[〈
X, t0

〉2
δ
(〈
X, t0

〉)]
,

=
∥∥∥t⊥0 ∥∥∥2

2
Eδ(‖t0‖2 g) + λ2 ‖t0‖22 Eg

2δ(‖t0‖2 g)

where g ∼ N (0, 1) is standard Gaussian variable and we recall that δ(v) =
ev/(1 + ev)2 for all v ∈ R. Now, it remains to lower bound Eδ(σg) and
Eg2δ(σg) for every σ > 0.

Since δ(v) ≥ exp(−|v|)/4 for all v ∈ R, one has for all σ > 0,

Eδ(σg) ≥ E exp(−σ|g|)/4 = exp(σ2/2)P[g ≥ σ]/2

and

Eg2δ(σg) ≥ Eg2 exp(−σ|g|)/4

= (1/2) exp(σ2/2)

[
(1 + σ2)P[g ≥ σ]− σ exp(−σ2/2)√

2π

]
.

Therefore, for σ = ‖t0‖2,

E
[〈
X, t

〉2
δ
(〈
X, t0

〉)]
≥ exp(σ2/2)P[g ≥ σ]

∥∥∥t⊥0 ∥∥∥2
2

+ 2λ2 ‖t0‖22 exp(σ2/2)

[(
1 + σ2

)
P[g ≥ σ]− σ exp(−σ2/2)√

2π

]
and since ‖t‖22 =

∥∥t⊥0 ∥∥22 + λ2 ‖t0‖22, one has,
(55)

E
[〈
X, t

〉2
δ
(〈
X, t0

〉)]
≥
‖t‖22√

2π
min

{(
1− Φ(σ)

φ(σ)

)
, (1 + σ2)

(
1− Φ(σ)

φ(σ)

)
− σ

}
where φ and Φ denote the standard Gaussian density and distribution func-
tions, respectively.
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We lower bound the right-hand side of (55) using estimates on the Mills
ratio (1− Φ)/φ that follows from Equation (10) in [17]: for every σ > 0,

1− Φ(σ)

φ(σ)
>

π√
2π + σ2 + (π − 1)σ

.

�

Proof of Proposition 8.4. We follow a proof from [18]. We have

PLf = E[ρτ (Y − f(X))− ρτ (Y − f∗(X))]

= E
{
E[ρτ (Y − f(X))− ρτ (Y − f∗(X))|X]

}
.

For all x ∈ X , denote by Fx the c.d.f. associated with fx. We have

E[ρτ (Y − f(X))|X = x]

= (τ − 1)

∫
y<f(x)

(y − f(x))Fx(dy) + τ

∫
y≥f(x)

(y − f(x))Fx(dy)

=

∫
y≥f(x)

(y − f(x))Fx(dy) + (τ − 1)

∫
R

(y − f(x))Fx(dy)

=

∫
y≥f(x)

(1− Fx(y))dy + (τ − 1)

(∫
R
yFx(dy)− f(x)

)
= g(x, f(x)) + (τ − 1)

∫
R
yFx(dy)

where g(x, a) =
∫
y≥a(1 − Fx(y))dy + (1 − τ)a. Note that ∂2g(x, f∗(x)) = 0

(can be checked by calculations but also obvious from the definition). So

E[ρτ (Y − f(X))− ρτ (Y − f∗(X))|X = x]

= g(x, f(x))− g(x, f∗(x)) =

∫ f(x)

f∗(x)
(f(x)− u)∂22g(x, u)du

=

∫ f(x)

f∗(x)
(f(x)− u)fx(u)du ≥ 1

C

∫ f(x)

f∗(x)
(f(x)− u)du =

(f(x)− f∗(x))2

2C2
.

It follows that

Equantile(f) = PLf ≥ E
{

(f(X)− f∗(X))2

2C

}
=

1

2C
‖f − f∗‖2L2

.

�
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12. Empirical risk minimization with Lipschitz loss function. In
this section, we consider the case where we have no a priori knowledge on the
oracle f∗ such as “low dimensional structure” or “smoothness”. In that case,
there is no reason to force some structure on the estimators and therefore
a natural procedure is the one minimizing the empirical risk itself (without
regularization):

(56) f̃ ∈ argmin
f∈F

(
1

N

N∑
i=1

`f (Xi, Yi)

)

where ` is a Lipschitz loss function as considered in the previous sections
and F is a convex class of functions.

The aim of this section is to obtain estimation and prediction bounds for
f̃ in the two subgaussian and bounded settings as introduced in Section 2.
As in the regularized case, the statistical performances of f̃ are driven by
fixed points, one for each of the two setups.

Definition 12.1. Let θ > 0. The complexity parameter in the sub-
gaussian case r∗ is any point satisfying

Lw (F ∩ (f∗ + r∗BL2)) ≤ θr2κ∗
√
N

where κ is the Bernstein parameter from Assumption 2.1.

In the bounded case, it is written as follows.

Definition 12.2. Let θ > 0. The complexity parameter in the
bounded case r∗ is any point satisfying

48Rad(F ∩ (f∗ + r∗BL2)) ≤ θr2κ∗
√
N

where κ is the Bernstein parameter from Assumption 2.1.

Explicit computations of r∗ in both subgaussian and bounded cases are
available in the literature for various classes F (see, for instance, [19, 5, 26,
27, 32, 1, 6, 20]). An example in shape constrained regression is provided
below. Let us now state the main results of this section (we treat both cases
at the same time since they are identical in nature).

Theorem 12.1. Assume that Assumption 1.1, Assumption 2.1 and As-
sumption 2.2 (resp. Assumption 2.3) hold. Let r∗ be as in Definition 12.1
(resp. Definition 12.2) for some θ such that Aθ < 1. There exists a constant
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c0 depending only on L (resp. on b) such that, with probability larger than
1− exp(−c0θ2Nr4κ−2∗ ), the ERM (56) f̃ satisfies∥∥∥f̃ − f∗∥∥∥

L2

≤ r∗ and E(f̃) ≤ θr2κ∗ .

Proof of Theorem 12.1: As in Section 9, we introduce an event (which
is common to the subgaussian and the bounded setups) on which we can
derive the statistical performances of f̃ using only deterministic arguments:

Ω′0 :=
{

for all f ∈ F,
∣∣(P − PN )Lf

∣∣ ≤ θmax
(
r2κ∗ , ‖f − f∗‖

2κ
L2

)}
where θ is a parameter appearing in the definition of r∗ in Definition 12.1 and
Definition 12.2 and κ ≥ 1 is the Bernstein parameter from Definition 2.1.

Let us place ourselves on the event Ω′0. Let f ∈ F be a function in F such
that ‖f − f∗‖L2

> r∗. We have

PNLf = (PN − P )Lf + PLf ≥ −θ ‖f − f∗‖2κL2
+ (1/A) ‖f − f∗‖2κL2

> 0.

Since PNLf̃ ≤ 0, we have
∥∥∥f̃ − f∗∥∥∥

L2

≤ r∗ on the event Ω′0. Let us now

prove the sharp oracle inequality. It follows from

0 ≥ PNLf̃ = (PN − P )Lf̃ + PLf̃

≥ −θmax

(
r2κ∗ ,

∥∥∥f̃ − f∗∥∥∥2κ
L2

)
+ PLf̃ = −θr2κ∗ + PLf̃

that θr2κ∗ ≥ PLf̃ .

Let us prove that Ω′0 holds at least with the exponential probability from
Theorem 12.1. The proof uses a peeling argument of the class F along the
shelves

Fk =
{
f ∈ F : 2k−1r∗ < ‖f − f∗‖L2

≤ 2kr∗

}
for all integer k ≥ 1 and F0 = F ∩ (f∗+ r∗BL2). The peeling argument used
here is similar to the one from Proposition 9.2 and 9.3 but it is simpler since
we do not have to peel simultaneously along the values of the distance to f∗

of the regularization norm.
Let us first consider the subgaussian case. It follows from Lemma 9.1 that

for all k ∈ N and u > 0, with probability larger than 1− 2 exp(−u2),

sup
f,g∈Fk

|(P − PN )(Lf − Lg)| ≤
c0L√
N

(w(Fk) + udL2(Fk))
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where dL2(Fk) ≤ 2k+1r∗. Finally the result in the subgaussian case follows
from a union bound and the same arguments as in the proof of Proposi-
tion 9.2. The result in the bounded case is similar except that we use Tala-
grand’s concentration inequality instead of Lemma 9.1 and the arguments
from the proof of Proposition 9.3.

As a proof of concept we apply Theorem 12.1 to the isotonic regression
which is an example of a shape constrained regression problem [35, 12, 45,
13, 7, 23]. Unlike the majority of works on shape constrained regression,
we consider the classification problem with {−1, 1}-valued outputs where
one wants to fit a logistic function ft : x ∈ Rp → σ(

〈
x, t
〉
) (where σ(u) =

eu/(1 + eu), ∀u ∈ R) with a constraint on the shape of the weights t. Note
that we do not assume that the log-odds ratio has a particular structure
satisfying a shape constraint since we do not make any assumption of the
distribution of Y |X but we want to predict Y by the best logistic function
ft∗ having weights t∗ satisfying a constraint.

We consider the class of linear functionals F =
{
ft(·) =

〈
·, t
〉

: t ∈ I
}

indexed by isotonic vectors:

(57) I = {t = (tj)
p
1 ∈ Rp : t1 ≤ t2 ≤ · · · ≤ tp} .

We are given a dataset made of N i.i.d. pairs of random variables (Xi, Yi)
N
i=1

distributed like (X,Y ) where the outputs Yi’s take their values in {−1, 1}
and the Xi’s take their values in Rp. Let R ≥ 1 and the ERM

(58) t̃ ∈ argmin
t∈I,‖t‖2≤R

(
1

N

N∑
i=1

log
(
1 + exp

(〈
Xi, t

〉)))
.

Let us assume that the Xi’s are distributed according to a standard Gaus-
sian variable. In that case, it follows from Proposition 8.2 that the Bernstein
condition is satisfied with parameter κ = 1 and the subgaussian Assump-
tion 2.2 is satisfied. Therefore, in order to apply Theorem 12.1, it only re-
mains to compute the complexity parameter r∗ in the Gaussian case. To
that end, we need to upper bound the local Gaussian mean width of I. This
follows from [1, (D.12)] that

w(I ∩ rB`2) ≤ r log(ed)

and so one can take r∗ = log(ed)/(θ
√
N) in Definition 12.1 given that κ = 1.

We can therefore apply Theorem 12.1 and obtain the following result.
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Theorem 12.2. Assume that X is a standard Gaussian vector in Rp.
With probability larger than 1 − C exp

(
−C log2(ep)

)
, the isotonic logistic

regression estimator t̃ defined in (58) satisfies

∥∥t̃− t∗∥∥
2
≤ log(ed)

θ
√
N

and Elogistic(t̃) = R(t̃)−R(t∗) ≤ log2(ed)

N

where t∗ ∈ argmint∈I,‖t‖2≤R E log(1 + exp(
〈
X, t

〉
)).

Note that other examples of applications of Theorem 12.1 in shape con-
strained regression can be obtained using the same strategy for other type
of constraints such as convex regression or unimodal regression by using the
results on the Gaussian mean widths from [6].

APPENDIX A: TECHNICAL LEMMAS

Lemma A.1. If ρ→ r(2ρ)/ρ is non-increasing then ρ→ ∆(ρ)/ρ is non-
decreasing.

Proof. We have for all ρ > 0

∆(ρ)

ρ
= inf

H∈S∩(r(2ρ)/ρ)BL2

sup
G∈∂‖·‖(M∗)

〈
H,G

〉
.

The result follows since ρ→ S ∩ (r(2ρ)/ρ)BL2 is non-increasing. �

Lemma A.2. Let ρ > 0. The function h : r > 0 → w(ρB ∩ rBL2)/r is
non-increasing.

Proof. Let r1 ≥ r2. By convexity of B and BL2 , we have

(59) (ρB∩r1BL2)/r1 = (ρ/r1)B∩BL2 ⊂ (ρ/r2)B∩BL2 = (ρB∩r2BL2)/r2.

�
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[25] Guillaume Lecué. Optimal rates of aggregation in classification under low noise
assumption. Bernoulli, 13(4):1000–1022, 2007.
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[28] Guillaume Lecué and Shahar Mendelson. Regularization and the small-ball method
II: complexity dependent error rates. Technical report, CNRS, Ecole Polytechnique
and Technion - to appear in Journal of Machine Learnint Research, 2015.

[29] Michel Ledoux and Michel Talagrand. Probability in Banach spaces, volume 23 of
Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and
Related Areas (3)]. Springer-Verlag, Berlin, 1991. Isoperimetry and processes.

[30] Rahul Mazumder, Trevor Hastie, and Robert Tibshirani. Spectral regularization algo-
rithms for learning large incomplete matrices. Journal of machine learning research,
11(Aug):2287–2322, 2010.

[31] Shahar Mendelson. Improving the sample complexity using global data. IEEE trans-
actions on Information Theory, 48(7):1977–1991, 2002.

[32] Shahar Mendelson. On the performance of kernel classes. J. Mach. Learn. Res.,
4(5):759–771, 2004.

[33] Shahar Mendelson. Obtaining fast error rates in nonconvex situations. J. Complexity,
24(3):380–397, 2008.

[34] Shahar Mendelson and Joseph Neeman. Regularization in kernel learning. Ann.
Statist., 38(1):526–565, 2010.

[35] Mary Meyer and Michael Woodroofe. On the degrees of freedom in shape-restricted
regression. Ann. Statist., 28(4):1083–1104, 2000.

[36] M. M. Rao and Z. D. Ren. Theory of Orlicz spaces, volume 146 of Monographs and
Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1991.

[37] M. M. Rao and Z. D. Ren. Applications of Orlicz spaces, volume 250 of Monographs
and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York,
2002.

[38] Ingo Steinwart and Andreas Christmann. Support vector machines. Information
Science and Statistics. Springer, New York, 2008.

[39] Michel Talagrand. The generic chaining. Springer Monographs in Mathematics.
Springer-Verlag, Berlin, 2005. Upper and lower bounds of stochastic processes.

[40] Alexandre B. Tsybakov. Optimal aggregation of classifiers in statistical learning.
Ann. Statist., 32(1):135–166, 2004.

[41] Alexandre B Tsybakov. Introduction to nonparametric estimation. Springer Series
in Statistics, 2009.

[42] Sara A. van de Geer. Applications of empirical process theory, volume 6 of Cambridge
Series in Statistical and Probabilistic Mathematics. Cambridge University Press,
Cambridge, 2000.

[43] Sara A Van de Geer. High-dimensional generalized linear models and the lasso. The
Annals of Statistics, pages 614–645, 2008.

[44] Vladimir N. Vapnik. Statistical learning theory. Adaptive and Learning Systems for
Signal Processing, Communications, and Control. John Wiley & Sons Inc., New York,



REGULARIZED PROCEDURES WITH LIPSCHITZ LOSS FUNCTIONS 39

1998. A Wiley-Interscience Publication.
[45] Cun-Hui Zhang. Risk bounds in isotonic regression. Ann. Statist., 30(2):528–555,

2002.
[46] Tong Zhang. Statistical behavior and consistency of classification methods based on

convex risk minimization. Annals of Statistics, pages 56–85, 2004.

ENSAE, 3, avenue Pierre Larousse,
92245 MALAKOFF. France.


	Simulation study in matrix completion
	Algorithm and Simulation Outlines
	Simulation study for RERM ``Hinge + S1''
	Simulation study for quantile matrix completion

	Kernel methods via the hinge loss and a RKHS-norm regularization
	A review of the Bernstein and margin conditions
	Logistic loss
	Hinge loss
	Quantile loss

	Proof of Theorem 2.1 and Theorem 2.2
	More general statements: Theorems 9.2 and 9.1
	Proofs of Theorems 9.2 and 9.1

	Proof of the optimality results in Section 4
	Proof of Theorem 4.3
	Proof of Theorem 4.5

	Proofs of Section 8
	Empirical risk minimization with Lipschitz loss function
	Technical lemmas
	References
	Author's addresses

