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CREST, CNRS, ENSAE† and CNRS, Université Paris Sud Orsay ‡

The supplementary material is organized as follows:

• In Section 6, we provide the proofs of Theorem 1 and Theorem 2.
• In Section 7, we introduce minmax and maxmin MOM estimators

for the problem of learning without a priori regularization. We study
its statistical properties such as estimation bounds and sharp oracle
inequalities. We apply these results to the example of Ordinary least
squares.
• In Section 8, we state a minimax optimality of our results.

6. Proofs of the main results. Recall the quadratic / multiplier de-
composition of the difference of losses: for all f, g ∈ F , x ∈ X and y ∈ R,

`f (x, y)− `g(x, y) = (y − f(x))2 − (y − g(x))2

= (f(x)− g(x))2 + 2(y − g(x))(g(x)− f(x)).(15)

Upper and lower bounds on TK(·, ·) follow from a study of “quadratic” and
“multiplier” quantiles of means processes. As no assumption is granted on
the outliers, any block of data containing one or more of these outliers is
“lost” from our perspective meaning that empirical means over these blocks
cannot be controlled. Let K denote the set of blocks which have not been
corrupted by outliers:

(16) K = {k ∈ [K] : Bk ⊂ I} .

If k ∈ K, all data indexed by Bk are informative. We will show that con-
trols on the blocks indexed by K are sufficient to demonstrate statistical
performance of MOM estimators.
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2 G. LECUÉ AND M. LERASLE

6.1. Bounding quadratic and multiplier processes. The following lemmas
are the only two “stochastic tools” needed to control the performance of
minmax MOM estimators. There is in particular no need to estimate the
L2
P geometry over F to study minmax MOM estimators. The two following

lemmas have already been proved in Lemma 1 and Lemma 2 in [3] and can
also be obtained in the i.i.d. setup under similar assumptions using Lemmas
5.1 and 5.5 in [8], see [7]. We reproduce here the proof of these technical
lemmas for the sake of completeness. The first result is a lower bound on
the quantiles of means quadratic processes.

Lemma 3. Grant Assumptions 1 and 3. Fix η ∈ (0, 1), ρ ∈ (0,+∞] and
let α, γ, γQ, x be positive numbers such that γ (1− α− x− 16γQθ0) > 1− η.
Assume that K ∈ [|O|/(1− γ), Nα/4θ2

0]. Then there exists an event ΩQ(K)
such that P (ΩQ(K)) > 1 − exp

(
−Kγx2/2

)
and, on ΩQ(K): for all f ∈ F

such that ‖f − f∗‖ 6 ρ, if ‖f − f∗‖L2
P
> rQ(ρ, γQ) then∣∣∣{k ∈ [K] : PBk(f − f∗)2 > (4θ0)−2 ‖f − f∗‖2L2

P

}∣∣∣ > (1− η)K .

In particular, Qη,K((f − f∗)2) > (4θ0)−2 ‖f − f∗‖2L2
P

.

Proof. Define F ∗ρ = B(f∗, ρ) = {f ∈ F : ‖f − f∗‖ 6 ρ}. For all f ∈ F ∗ρ ,

let nf = (f − f∗)/ ‖f − f∗‖L2
P

and note that for all i ∈ I, Pi|nf | > θ−1
0

by Assumption 3 and Pin
2
f = 1 by Assumption 1. It follows from Markov’s

inequality that, for all k ∈ K (K is defined in (16)),

P

(
|(PBk − P )|nf || >

1√
α|Bk|

)
6 α .

As P |nf | > θ−1
0 ,

P

(
PBk |nf | >

1

θ0
− 1√

α|Bk|

)
> 1− α .

Since K 6 Nα/4θ2
0, |Bk| = N/K > 4θ2

0/α and so

(17) P (2θ0PBk |nf | > 1) > 1− α .

Let φ be the function defined on R+ by φ(t) = (t−1)I(1 6 t 6 2)+I(t > 2),
and, for all f ∈ F ∗ρ let Z(f) =

∑
k∈[K] I(4θ0PBk |nf | > 1). Since for all x ∈ R,

I(x > 1) > φ(x),

Z(f) >
∑
k∈K

φ (4θ0PBk |nf |) .
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Now, for any x ∈ R+, φ(x) > I(x > 2), thus, according to (17),

E

[∑
k∈K

φ (4θ0PBk |nf |)

]
>
∑
k∈K

P (4θ0PBk |nf | > 2) > |K|(1− α) .

Therefore,

Z(f) > |K|(1− α) +
∑
k∈K

(φ (4θ0PBk |nf |)− E [φ (4θ0PBk |nf |)]) .

Denote F = {f ∈ F : ‖f − f∗‖ 6 ρ, ‖f − f∗‖L2
P

> rQ(ρ, γQ)}. By the

bounded difference inequality (see, for instance [1, Theorem 6.2]), there ex-
ists an event ΩQ(K) with probability larger than 1 − exp(−x2|K|/2), on
which, for all f ∈ F ,

sup
f∈F

∣∣∣∣∣∑
k∈K

(φ (4θ0PBk |nf |)− E [φ (4θ0PBk |nf |)])

∣∣∣∣∣
6 E sup

f∈F

∣∣∣∣∣∑
k∈K

(φ (4θ0PBk |nf |)− E [φ (4θ0PBk |nf |)])

∣∣∣∣∣+ |K|x .

By the symmetrization argument,

E sup
f∈F

∣∣∣∣∣∑
k∈K

(φ (4θ0PBk |nf |)− E [φ (4θ0PBk |nf |)])

∣∣∣∣∣
≤ 2E sup

f∈F

∣∣∣∣∣∑
k∈K

εkφ (4θ0PBk |nf |)

∣∣∣∣∣ .
Since the function φ is 1-Lipschitz and φ(0) = 0, by the contraction principle
(see, for example [6, Chapter 4] or [1, Theorem 11.6]), we have

E sup
f∈F

∣∣∣∣∣∑
k∈K

εkφ (4θ0PBk |nf |)

∣∣∣∣∣ 6 4θ0E sup
f∈F

∣∣∣∣∣∑
k∈K

εkPBk |nf |

∣∣∣∣∣ .
The family (ε[i]|nf (Xi)| : i ∈ ∪k∈KBk), where [i] = di/Ke for all i ∈ I, is

a collection of centered random variables. Therefore, if (ε′k)k∈K and (X ′i)i∈I
denote independent copies of (εk)k∈K and (Xi)i∈I then

E sup
f∈F

∣∣∣∣∣∑
k∈K

εkPBk |nf |

∣∣∣∣∣ 6 E sup
f∈F

∣∣∣∣∣∣
∑
k∈K

1

|Bk|
∑
i∈Bk

εk|nf (Xi)| − ε′k|nf (X ′i)|

∣∣∣∣∣∣ .
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Then, as (Xi)i∈I and (X ′i)i∈I are two independent families of independent
variables therefore, if (ε′′i )i∈I denote a family of i.i.d. Rademacher variables
independent of (εi), (ε

′
i), (Xi)i∈I , (X

′
i)i∈I then (εk|nf (Xi)| − ε′k|nf (X ′i)|) and

(ε′′i (εk|nf (Xi)| − ε′k|nf (X ′i)|)) have the same distribution. Therefore,

E sup
f∈F

∣∣∣∣∣∣
∑
k∈K

1

|Bk|
∑
i∈Bk

εk|nf (Xi)| − ε′k|nf (X ′i)|

∣∣∣∣∣∣
6 E sup

f∈F

∣∣∣∣∣∣
∑
k∈K

1

|Bk|
∑
i∈Bk

ε′′i
(
εk|nf (Xi)| − ε′k|nf (X ′i)|

)∣∣∣∣∣∣
= E sup

f∈F

∣∣∣∣∣∣
∑
k∈K

1

|Bk|
∑
i∈Bk

ε′′i
(
|nf (Xi)| − |nf (X ′i)|

)∣∣∣∣∣∣
6

2K

N
E sup
f∈F

∣∣∣∣∣∣
∑

i∈∪k∈KBk

εinf (Xi)

∣∣∣∣∣∣ .
By the contraction principle, on ΩQ(K),

(18) Z(f) > |K|

1− α− x− 16θ0K

|K|N
E sup
f∈F

∣∣∣∣∣∣
∑

i∈∪k∈KBk

εinf (Xi)

∣∣∣∣∣∣
 .

For any f ∈ F , rQ(ρ, γQ)nf + f∗ ∈ F because F is convex. Moreover,
‖rQ(ρ, γQ)nf‖L2

P
= rQ(ρ, γQ) and

‖rQ(ρ, γQ)nf‖ = [rQ(ρ, γQ)/ ‖f − f∗‖L2
P

] ‖f − f∗‖ 6 ρ.

Therefore, rQ(ρ, γQ)nf + f∗ ∈ F and by definition of rQ(ρ, γQ),

E sup
f∈F

∣∣∣∣∣∣
∑

i∈∪k∈KBk

εinf (Xi)

∣∣∣∣∣∣
=

1

rQ(ρ, γQ)
E sup
f∈F :‖f−f∗‖6ρ, ‖f−f∗‖

L2
P

=rQ(ρ,γQ)

∣∣∣∣∣∣
∑

i∈∪k∈KBk

εi(f − f∗)(Xi)

∣∣∣∣∣∣
6 γQ

|K|N
K

.

Using the last inequality together with (18) and the assumption K >
|O|/(1−γ) (so that |K| > K−|O| > γK), we get that, on the event ΩQ(K),
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for any f ∈ F ,

Z(f) > |K| (1− α− x− 16θ0γQ) > (1− η)K .

Hence, on ΩQ(K), for any f ∈ F , there exists at least (1−η)K blocks Bk for
which PBk |nf | > (4θ0)−1. On these blocks, PBkn

2
f > (PBk |nf |)2 > (4θ0)−2,

therefore, on ΩQ(K), Qη,K [n2
f ] > (4θ0)−2.

Now, let us turn to a control of the multiplier process.

Lemma 4. Grant Assumption 2. Fix η ∈ (0, 1), ρ ∈ (0,+∞], and let
α, γM , γ, x and ε be positive absolute constants such that γ (1− α− x− 8γM/ε) >
1 − η. Let K ∈ [|O|/(1 − γ), N ]. There exists an event ΩM (K) such that
P(ΩM (K)) > 1− exp(−γKx2/2) and on the event ΩM (K): if f ∈ F is such
that ‖f − f∗‖ 6 ρ then the number of elements k ∈ K such that

|2(PBk − P )(ζ(f − f∗))| 6 εmax

(
16θ2

m

ε2α

K

N
, r2
M (ρ, γM ), ‖f − f∗‖2L2

P

)
is at least (1− η)K.

Proof. For all k ∈ [K] and f ∈ F , set Wk = ((Xi, Yi))i∈Bk and define

gf (Wk) = 2(PBk − P ) (ζ(f − f∗))

and

γk(f) = εmax

(
16θ2

m

ε2α

K

N
, r2
M (ρ, γM ), ‖f − f∗‖2L2

P

)
.

Let f ∈ F and k ∈ K. It follows from Markov’s inequality that

P
[
2
∣∣∣gf (Wk)

∣∣∣ > γk(f)
]
6

4E
[(

2(PBk − P )(ζ(f − f∗))
)2
]

16θ2m
α ‖f − f∗‖2L2

P

K
N

6
α
∑

i∈Bk varPi(ζ(f − f∗))
|Bk|2θ2

m ‖f − f∗‖
2
L2
P

K
N

6
αθ2

m ‖f − f∗‖
2
L2
P

|Bk|θ2
m ‖f − f∗‖

2
L2
P

K
N

= α .(19)
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Let J = ∪k∈KBk and let rM (ρ) = rM (ρ, γM ). We have

E sup
f∈B(f∗,ρ)

∑
k∈K

εk
gf (Wk)

γk(f)
6 2E sup

f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

εk(PBk − P )(ζ(f − f∗))
εmax(r2

M (ρ), ‖f − f∗‖2L2
P

)

∣∣∣∣∣
6

2

εr2
M (ρ)

E

 sup
f∈B(f∗,ρ):‖f−f∗‖

L2
P
>rM (ρ)

∣∣∣∣∣∑
k∈K

εk(PBk − P )

(
ζrM (ρ)

f − f∗

‖f − f∗‖L2
P

)∣∣∣∣∣
∨ sup
f∈B(f∗,ρ):‖f−f∗‖

L2
P
6rM (ρ)

∣∣∣∣∣∑
k∈K

εk(PBk − P ) (ζ(f − f∗))

∣∣∣∣∣


6
2

εr2
M (ρ)

E sup
f∈B(f∗,ρ):‖f−f∗‖

L2
P
6rM (ρ)

∣∣∣∣∣∑
k∈K

εk(PBk − P ) (ζ(f − f∗))

∣∣∣∣∣ ,
where in the last but one inequality, we used that the class F is convex and
the same argument as in the proof of Lemma 3. Since (ε[i](ζi(f − f∗)(Xi)−
Piζi(f − f∗)) : i ∈ I) is a family of centered random variables, one can use
the symmetrization argument to get

E sup
f∈B(f∗,ρ)

∑
k∈K

εk
gf (Wk)

γk(f)

6
4K

εr2
M (ρ)N

E sup
f∈B(f∗,ρ):‖f−f∗‖

L2
P
6rM (ρ)

∣∣∣∣∣∑
i∈J

εiζi(f − f∗)(Xi)

∣∣∣∣∣
6

4K

εN
γM |K|

N

K
=

4γM
ε
|K| ,(20)

where the definition of rM (ρ) has been used in the last but one inequality.
Let ψ(t) = (2t−1)I(1/2 6 t 6 1)+I(t > 1). The function ψ is 2-Lipschitz

and satisfies I(t > 1) 6 ψ(t) 6 I(t > 1/2), for all t ∈ R. Therefore, all
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f ∈ B(f∗, ρ) satisfies∑
k∈K

I (|gf (Wk)| < γk(f))

= |K| −
∑
k∈K

I

(
|gf (Wk)|
γk(f)

> 1

)
> |K| −

∑
k∈K

ψ

(
|gf (Wk)|
γk(f)

)
= |K| −

∑
k∈K

Eψ
(
|gf (Wk)|
γk(f)

)
−
∑
k∈K

[
ψ

(
|gf (Wk)|
γk(f)

)
− Eψ

(
|gf (Wk)|
γk(f)

)]
> |K| −

∑
k∈K

EI
(
|gf (Wk)|
γk(f)

>
1

2

)
−
∑
k∈K

[
ψ

(
|gf (Wk)|
γk(f)

)
− Pψ

(
|gf (Wk)|
γk(f)

)]

> (1− α)|K| − sup
f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

[
ψ

(
|gf (Wk)|
γk(f)

)
− Eψ

(
|gf (Wk)|
γk(f)

)]∣∣∣∣∣
where we used (19) in the last inequality.

The bounded difference inequality ensures that there exists an event
ΩM (K) satisfying P(ΩM (K)) > 1− exp(−x2|K|/2), where

sup
f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

[
ψ

(
|gf (Wk)|
γk(f)

)
− Eψ

(
|gf (Wk)|
γk(f)

)]∣∣∣∣∣
6 E sup

f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

[
ψ

(
|gf (Wk)|
γk(f)

)
− Eψ

(
|gf (Wk)|
γk(f)

)]∣∣∣∣∣+ |K|x .

Furthermore, it follows from by the symmetrization argument that

E sup
f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

[
ψ

(
|gf (Wk)|
γk(f)

)
− Eψ

(
|gf (Wk)|
γk(f)

)]∣∣∣∣∣
6 2E sup

f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

εkψ

(
|gf (Wk)|
γk(f)

)∣∣∣∣∣
and, from the contraction principle and (20), that

E sup
f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

εkψ

(
|gf (Wk)|
γk(f)

)∣∣∣∣∣ 6 2E sup
f∈B(f∗,ρ)

∣∣∣∣∣∑
k∈K

εk
|gf (Wk)|
γk(f)

∣∣∣∣∣ 6 8γM
ε
|K| .

In conclusion, on ΩM (K), for all f ∈ B(f∗, ρ),∑
k∈K

I (|gf (Wk)| < γk(f)) > (1− α− x− 8γM/ε) |K|

> Kγ (1− α− x− 8γM/ε) > (1− η)K .
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6.2. Bounding the empirical criterion CK,λ
(
f∗
)
. Let us first introduce

the event on which the statement of Theorem 1 holds. Denote by Ω(K) the
intersection of the events ΩQ(K), ΩM (K) defined respectively in Lemmas 3
and 4 for ρ ∈ {κρK : κ ∈ {1, 2}} and

(21) η =
1

4
, γ =

7

8
, α =

1

24
, x =

1

24
, γQ =

1

384θ0
, ε =

1

cθ2
0

and γM =
ε

192

for some absolute constants c > 0 to be specified later. For these values,
conditions in both Lemmas 3 and 4 are satisfied:

γ(1− α− x− 16γQθ0) > 1− η =
3

4
and γ(1− α− x− 8γM/ε) > 1− η =

3

4
.

According to Lemmas 3 and 4, the event Ω(K) satisfies P(Ω(K)) > 1 −
4 exp (−7K/9216). On Ω(K), the following holds for all ρ ∈ {κρK : κ ∈
{1, 2}} and f ∈ F such that ‖f − f∗‖ 6 ρ,

1. if ‖f − f∗‖L2
P
> rQ(ρ, γQ) then

(22) Q1/4,K((f − f∗)2) >
1

(4θ0)2
‖f − f∗‖2L2

P
,

2. there exists 3K/4 block Bk with k ∈ K, for which
(23)

|(PBk−P )[2ζ(f−f∗)]| 6 εmax

(
r2
M (ρ, γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)
.

Moreover, on the blocks Bk where (23) holds, it follows that all f ∈ F
such that ‖f − f∗‖ 6 ρ satisfies

PBk [2ζ(f−f∗)]| 6 P [2ζ(f−f∗)]+εmax

(
r2
M (ρ, γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)
.

It follows from the convexity of F and the nearest point theorem that
P [2ζ(f − f∗)] 6 0 for all f ∈ F , therefore, for all f ∈ F such that
‖f − f∗‖ 6 ρ,

Q3/4,K(2ζ(f − f∗)) 6 εmax

(
r2
M (ρ, γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)
.(24)

Moreover, still on the blocks Bk where (23) holds, one also has that for all
f ∈ F such that ‖f − f∗‖ 6 ρ,

P [−2ζ(f−f∗)] 6 PBk [−2ζ(f−f∗)]+εmax

(
r2
M (ρ, γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)
.
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It follows that, for all f ∈ F such that ‖f − f∗‖ 6 ρ,

P [−2ζ(f − f∗)] 6 Q1/4,K [−2ζ(f − f∗)] + εmax

(
r2
M (ρ, γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)
6Q1/4,K [(f − f∗)2 − 2ζ(f − f∗)] + λ(‖f‖ − ‖f∗‖)

+ εmax

(
r2
M (ρ, γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)
+ λρ

6TK,λ(f∗, f) + εmax

(
r2
M (ρ, γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)
+ λρ .

(25)

The main result of this section is Lemma 5. It will be used to bound from
above the criterion CK,λ

(
f∗
)

= supg∈F TK,λ(g, f∗). Recall that ρK and λ are
defined as

(26) r2(ρK) =
384θ2

m

ε2
K

N
and λ =

c′εr2(ρK)

ρK

where ε = (cθ2
0)−1 and c, c′ > are absolute constants. We also need to con-

sider a partition of the space F according to the distance between g and f∗

w.r.t. ‖·‖ and ‖·‖L2
P

as in Figure 2: define for all κ > 1,

F
(κ)
1 =

{
g ∈ F : ‖g − f∗‖ 6 κρK and ‖g − f∗‖L2

P
6 r(κρK)

}
,

F
(κ)
2 =

{
g ∈ F : ‖g − f∗‖ 6 κρK and ‖g − f∗‖L2

P
> r(κρK)

}
,

F
(κ)
3 = {g ∈ F : ‖g − f∗‖ > κρK} .

Lemma 5. On the event Ω(K), it holds for all κ ∈ {1, 2},

sup
g∈F (κ)

1

TK,λ(g, f∗) 6 (1 + c′κ)εr2(κρK),

sup
g∈F (κ)

2

TK,λ(g, f∗) 6

(
(1 + c′κ)ε− 1

16θ2
0

)
r2(κρK)

and

sup
g∈F (κ)

3

TK,λ(g, f∗) 6 κmax

(
ε− 1

16θ2
0

+
11c′ε

10
, ε− 7c′ε

10

)
r2(ρK)

when c > 32 and 10ε/4 6 c′ε 6 ((4θ0)−2 − ε).

Proof of Lemma 5. Recall that, for all g ∈ F , `f∗ − `g = 2ζ(g− f∗)− (g−
f∗)2 where ζ(x, y) = y− f∗(x). Let us now place ourself on the event Ω(K)
up to the end of proof.
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f∗

R > MR > M

R > MR > M

Q > M

Q > M Q > M

Q > M

F
(κ)
1

F
(κ)
2

F
(κ)
3

Fig 2. Partition {F (κ)
1 , F

(κ)
2 , F

(κ)
3 } of F and the control of the multiplier MOM process

by either the quadratic MOM process (the “Q > M” part) or the regularization term (the
“R > M” part).

Bounding sup
g∈F(κ)

1

TK,λ(g, f∗). Let g ∈ F (κ)
1 . Since the quadratic process

is non negative,

TK,λ(g, f∗) = MOMK

(
2ζ(g − f∗)− (g − f∗)2

)
− λ (‖g‖ − ‖f∗‖)

6 Q3/4,K(2ζ(g − f∗)) + λ ‖f∗ − g‖ .

Therefore, applying (24) for ρ = κρK and the choice of ρK and λ as in (26),
we get

TK,λ(g, f∗) ≤ εmax

(
r2
M (κρK , γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)
+ λκρK

6 εr2(κρK) + c′κεr2(ρK) 6 (1 + c′κ)εr2(κρK) .

Bounding sup
g∈F(κ)

2

TK,λ(g, f∗). Let g ∈ F (κ)
2 . Given that Q1/2(x − y) 6

Q3/4(x)−Q1/4(y) for any vector x and y, we have

MOMK

(
2ζ(g − f∗)− (g − f∗)2

)
+ λ (‖f∗‖ − ‖g‖)

6 Q3/4,K(2ζ(g − f∗))−Q1/4,K((f∗ − g)2) + λκρK .
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Moreover 2ε 6 (4θ0)−2 when c > 32, so it follows from (22) and (24) for
ρ = κρK that

Q3/4,K(2ζ(f∗ − g))−Q1/4,K((f∗ − g)2)

6 εmax

(
r2
M (κρK , γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)
−
‖f − f∗‖2L2

P

(4θ0)2

6

(
ε− 1

(4θ0)2

)
‖f − f∗‖2L2

P
6

(
ε− 1

16θ2
0

)
r2(κρK) .

Putting both inequalities together and using that λκρK = c′κεr2(ρK), we
get

TK,λ(g, f∗) 6

(
(1 + c′κ)ε− 1

16θ2
0

)
r2(κρK) .

Bounding sup
g∈F(κ)

3

TK,λ(g, f∗) via an homogeneity argument. Start with

two lemmas.

Lemma 6. Let ρ > 0, Γf∗(ρ) = ∪f∈f∗+(ρ/20)B(∂ ‖·‖)f (cf.) section 3.3).
For all g ∈ F ,

‖g‖ − ‖f∗‖ > sup
z∗∈Γf∗ (ρ)

z∗(g − f∗)− ρ

10
.

Proof. Let g ∈ F , f∗∗ ∈ f∗ + (ρ/20)B and z∗ ∈ (∂ ‖·‖)f∗∗ . We have

‖g‖ − ‖f∗‖ > ‖g‖ − ‖f∗∗‖ − ‖f∗∗ − f∗‖ > z∗(g − f∗∗)− ρ

20

= z∗(g − f∗)− z∗(f∗∗ − f∗)− ρ

20
> z∗(g − f∗)− ρ

10
,

where the last inequality follows from z∗(f∗∗− f∗) 6 ‖f∗∗− f∗‖. The result
follows by taking supremum over z∗ ∈ Γf∗(ρ).

Lemma 7. Let ρ > 0. Let g ∈ F be such that ‖g − f∗‖ > ρ. Define
f = f∗ + ρ(g − f∗)/ ‖g − f∗‖. Then f ∈ F , ‖f − f∗‖ = ρ and,

MOMK

(
(g − f∗)2 − 2ζ(g − f∗)

)
+ λ sup

z∗∈Γf∗ (ρ)
z∗(g − f∗)

>
‖g − f∗‖L2

P

ρ

(
MOMK

(
(f − f∗)2 − 2ζ(f − f∗)

)
+ λ sup

z∗∈Γf∗ (ρ)
z∗(f − f∗)

)
.



12 G. LECUÉ AND M. LERASLE

Proof. The first conclusion holds by convexity of F , the second state-
ment is obvious. For the last one, let Υ = ‖g − f∗‖/ρ and note that Υ > 1
and g − f∗ = Υ(f − f∗), so we have

MOMK

(
(g − f∗)2 − 2ζ(g − f∗)

)
+ λ sup

z∗∈Γf∗ (ρ)
z∗(g − f∗)

= MOMK

(
Υ2(f − f∗)2 − 2Υζ(f − f∗)

)
+ λΥ sup

z∗∈Γf∗ (ρ)
z∗(f − f∗)

> Υ

(
MOMK

(
(f − f∗)2 − 2ζ(f − f∗)

)
+ λ sup

z∗∈Γf∗ (ρ)
z∗(f − f∗)

)
.

Now, let us bound sup
g∈F (κ)

3

TK,λ(g, f∗). Let g ∈ F (κ)
3 . Apply Lemma 6

and Lemma 7 to ρ = ρK : there exists f ∈ F such that ‖f − f∗‖ = ρK and

TK,λ(g, f∗) = MOMK

(
2ζ(g − f∗)− (g − f∗)2

)
− λ (‖g‖ − ‖f∗‖)

6 MOMK

(
2ζ(g − f∗)− (g − f∗)2

)
− λ sup

z∗∈Γf∗ (ρK)
z∗(g − f∗) + λ

κρK
10

6
‖g − f∗‖
ρK

(
MOMK

(
2ζ(f − f∗)− (f − f∗)2

)
− λ sup

z∗∈Γf∗ (ρK)
z∗(f − f∗)

)
+ λ

κρK
10

.

(27)

First assume that ‖f − f∗‖L2
P
6 r(ρK). In that case, ‖f − f∗‖ = ρK and

‖f − f∗‖L2
P
6 r(ρK) therefore, f ∈ HρK . Moreover, by definition of K∗ and

since K > K∗, we have ρK > ρ∗ which implies that ρK satisfies the sparsity
equation from Definition 4. Therefore, supz∗∈Γf∗ (ρK) z

∗(f − f∗) > ∆(ρK) >
4ρK/5. Now, it follows from the definition of λ in (26) that

−λ sup
z∗∈Γf∗ (ρK)

z∗(f − f∗) 6 −4c′εr2(ρK)

5
.

Moreover, since the quadratic process is non-negative, by (24) applied to
ρ = ρK ,

MOMK

(
2ζ(f − f∗)− (f − f∗)2

)
6 Q3/4,K [2ζ(f − f∗)]

6 εmax

(
r2
M (ρK , γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)
6 2εr2(ρK) .
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Finally, noting that ε − 4c′ε/5 6 0 when c′ > 10/4, binding all the pieces
together in (27) yields

TK,λ(g, f∗) 6 κε
(
1− 4c′/5

)
r2(ρK) + λ

κρK
10

= κε

(
1− 7c′

10

)
r2(ρK) .

Second, assume that ‖f − f∗‖L2
P
> r(ρK). Since ‖f − f∗‖ = ρK , it follows

from (22) and (23) for ρ = ρK that

MOMK

(
2ζ(f − f∗)− (f − f∗)2

)
6 Q3/4,K(2ζ(f − f∗))−Q1/4,K((f∗ − f)2)

6 εmax

(
r2
M (ρK , γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)
−
‖f − f∗‖2L2

P

(4θ0)2

6

(
ε− 1

16θ2
0

)
‖f − f∗‖2L2

P
6

(
2ε− 1

16θ2
0

)
r2(ρK) ,

where we used that ε 6 (16θ0)−2 when c > 32 in the last inequality. Plugging
the last result in (27) we get

TK,λ(g, f∗) 6
‖g − f∗‖
ρK

((
ε− 1

16θ2
0

)
r2(ρK) + λρK

)
+ λ

κρK
10

6
‖g − f∗‖
ρK

(
(1 + c′)ε− 1

16θ2
0

)
r2(ρK) +

c′κε

10
r2(ρK)

6 κ

((
1 +

11c′

10

)
ε− 1

16θ2
0

)
r2(ρK)

when 16(1 + c′)ε 6 θ−2
0 .

6.3. From a control of CK,λ
(
f̂
)

to statistical performance. The proof fol-
lows essentially the one of [5, Theorem 3.2] or [3, Lemma 2].

Lemma 8. Let f̂ ∈ F be such that, on Ω(K), CK,λ
(
f̂
)
6 (1 + c′)εr2(ρK).

Then, on Ω(K), f̂ satisfies∥∥∥f̂ − f∗∥∥∥ 6 2ρK ,
∥∥∥f̂ − f∗∥∥∥

L2
P

6 r(2ρK) and R(f̂) 6 R(f∗)+(1+(2+3c′)ε)r2(2ρK) ,

when c′ = 16 and c > 832.

Proof. Recall that for any x ∈ RK , Q1/2(x) > −Q1/2(−x). Therefore,

CK,λ
(
f̂
)

= sup
g∈F

TK,λ(g, f̂) > TK,λ(f∗, f̂) > −TK,λ(f̂ , f∗) .
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Thus, on Ω(K), f̂ ∈
{
g ∈ F : TK,λ(g, f∗) > −(1 + c′)εr2(ρK)

}
. When c′ =

16 and c > 832,

−(1+c′)ε > 2(1+c′)ε− 1

16θ2
0

and −(1+c′)ε > 2 max

(
ε− 1

16θ2
0

+
11c′ε

10
, ε− 7c′ε

10

)
therefore, f̂ ∈ F (2)

1 on Ω(K). This yields the results for both the regulariza-
tion and the L2

P -norm.
Finally, let us turn to the control on the excess risk. It follows from (25)

for ρ = κρK that

R(f̂)−R(f∗) =
∥∥∥f̂ − f∗∥∥∥2

L2
P

+ P [−2ζ(f̂ − f∗)]

6 r2(2ρK) + TK,λ(f∗, f̂) + εmax

(
r2
M (2ρK , γM ),

384θ2
m

ε2
K

N
,
∥∥∥f̂ − f∗∥∥∥2

L2
p

)
+ 2λρK

6 r2(2ρK) + CK,λ
(
f̂
)

+ εr2(2ρK) + c′εr2(ρK) = (1 + (2 + 3c′)ε)r2(2ρK) .

6.4. End of the proof of Theorem 1. By definition of f̂K,λ,

CK,λ
(
f̂K,λ

)
≤ CK,λ

(
f∗
)

= sup
g∈F

TK,λ(g, f∗) ≤ max
i∈[3]

sup
g∈F (1)

i

TK,λ(g, f∗),

where {F (1)
1 , F

(1)
2 , F

(1)
3 } is the decomposition of F as in Figure 2. It follows

from Lemma 5 (for κ = 1) that on the event Ω(K),

CK,λ
(
f̂K,λ

)
6 (1 + c′)εr2(ρK) .

Therefore, for c′ = 16 and c = 833 the conclusion of the proof of Theorem 1
follows from Lemma 8.

6.5. Proof of Theorem 2. Define

K1 =
|O|

1− γ
= 8|O| and K2 =

Nα

2θ2
0

=
N

96θ2
0

.

Let K ∈ [K1,K2] and let ΩK,cad = {f∗ ∈ ∩K2
J=KR̂J,cad} where we recall

that R̂J,cad = {f ∈ F : CJ,λ(f) 6 (cad/θ
2
0)r2(ρJ)}. Lemma 5 (for κ =

1) shows that, for cad = (1 + c′)/c, ΩK,cad ⊃ ∩
K2
J=KΩ(J). Therefore, on

∩K2
J=KΩ(J), K̂cad 6 K which implies that f̂cad ∈ R̂K,cad . By Lemma 8 (for

c′ = 16 and c = 833), this implies that∥∥∥f̂cad − f∗∥∥∥ 6 2ρK ,
∥∥∥f̂cad − f∗∥∥∥

L2
P

6 r(2ρK)
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and
R(f̂cad) 6 R(f∗) + (1 + (2 + 3c′)ε)r2(2ρK) .

7. Learning without regularization: minmax and maxmin MOM
procedures. All the results from the previous sections also apply in the
setup of learning with no regularization which is the framework one should
consider when there is no a priori known structure on the oracle.

We consider the learning problem with no regularization. In this setup,
we may use both minmaximization or maxminimization estimators

(28) f̂K ∈ argmin
f∈F

sup
g∈F

TK(g, f) and ĝK ∈ argmax
g∈F

inf
f∈F

TK(g, f)

where TK(g, f) = MOMK

(
`f − `g

)
.

We show below that f̂K and ĝK are efficient procedures even in situations
where the dataset is corrupted by outliers. The case K = 1 corresponds to
the classical ERM: f̂1 = ĝ1 ∈ argminf∈F PN`f which can only be trusted
when used with a “clean dataset”.

Indeed, the ideal setup for ERM is the subgaussian (and convex) frame-
work: that is for a convex class F of functions, i.i.d. data (Xi, Yi)

N
i=1 having

the same distribution as (X,Y ) and such that for some L > 0 and all
f, g ∈ F ,

(29) ‖Y ‖ψ2
<∞ and ‖g(X)− f(X)‖ψ2

6 L ‖g(X)− f(X)‖L2
.

When F satisfies the right-hand side of (29), we say that F is a L-subgaussian
class. It is proved in [4] that in this setup the ERM is an optimal minimax
procedure (cf. Theorem A′ from [4] recalled in Theorem 9 below).

But first, we need a version of the two theorems 1 and 2 valid for f̂K and
ĝK (that is for the learning problem with no regularization). Let us first
introduce the set of assumptions we use. Then, we will introduce the two
fixed points driving the statistical properties of f̂K and ĝK .

Assumption 8. For all i ∈ I and f ∈ F , we have

• ‖f(Xi)− f∗(Xi)‖L2 = ‖f(X)− f∗(X)‖L2
,

• ‖Yi − f(Xi)‖L2 = ‖Y − f(X)‖L2
,

• var((Y − f∗(X))(f(X)− f∗(X))) 6 θ2
m ‖f(X)− f∗(X)‖2L2

• ‖f(Xi)− f∗(Xi)‖L2 6 θ0 ‖f(Xi)− f∗(Xi)‖L1.

The two fixed points associated to this problem are rQ(ρ, γQ) and rM (ρ, γM )
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as in Definition 3 for ρ =∞:

rQ(γQ) = inf

r > 0 : sup
J⊂I,|J |>N

2
,

E sup
f∈F :‖f−f∗‖

L2
P
6r

∣∣∣∣∣ 1

|J |
∑
i∈J

εi(f − f∗)(Xi)

∣∣∣∣∣ 6 γQr

 ,

rM (γM ) = inf

r > 0 : sup
J⊂I,|J |>N

2

E sup
f∈F :‖f−f∗‖

L2
P
6r

∣∣∣∣∣ 1

|J |
∑
i∈J

εiζi(f − f∗)(Xi)

∣∣∣∣∣ 6 γMr
2

 ,

and let r∗ = r∗(γQ, γM ) = max{rQ(γQ), rM (γM )}.

Theorem 7. Grant Assumptions 8 and let rQ(γQ), rM (γM ) and r∗ be
defined as above for γQ = (384θ0)−1, γM = ε/192 and ε = 1/(32θ2

0). Assume
that N > 384θ2

0 and |O| 6 N/(768θ2
0). Let K∗ denote the smallest integer

such that K∗ > Nε2(r∗)2/(384θ2
m). Then, for all K ∈ [max(K∗, 8|O|), N/(96θ2

0)],

with probability larger than 1−2 exp(−7K/9216), the estimators f̂K and ĝK
defined in (28) satisfy

‖ĝK − f∗‖L2
P
,
∥∥∥f̂K − f∗∥∥∥

L2
P

6
θm
ε

√
384K

N

and

R(ĝK), R(f̂K) 6 R(f∗) + (1 + 2ε)
384θ2

mK

ε2N
.

Moreover, one can choose adaptively K via Lepski’s method. We will do it
only for the maxmin estimators ĝK . Similar result hold for the minmax esti-
mators f̂K from straightforward modifications (the same as in Section 3.4.1).
Define the confidence regions: for all J ∈ [K] and g ∈ F ,

R̂J =

{
g ∈ F : CJ(g) >

−384θ2
mJ

εN

}
where CJ(g) = inf

f∈F
TJ(g, f)

and TJ(g, f) = MOMJ

(
`f − `g

)
for all f, g ∈ F . Next, let

K̂ = inf

{
K ∈

[
max(K∗, 8|O|), N

96θ2
0

]
:

K2⋂
J=K

R̂J 6= ∅

}
and ĝ ∈

K2⋂
J=K̂

R̂J .

The following theorem shows the performance of the resulting estimator.

Theorem 8. Grant Assumption 8. For ε = 1/(32θ2
0) and all K ∈

[max(K∗, 8|O|), N/(96θ2
0)], with probability larger than 1−2 exp(−K/2304),

‖ĝ − f∗‖L2
P
6
θm
ε

√
384K

N
, R(ĝ) 6 R(f∗) + (1 + 2ε)

384θ2
mK

ε2N
.
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The proofs of Theorem 7 and 8 essentially follow the one of Theorem 1
and 2. We will only sketch the proof for the maxmin estimator ĝK given
that we already studied the minmax estimators in the regularized setup in
Section 6.

Proof of Theorem 7. It follows from Lemma 3 and Lemma 4 for ρ = ∞
that there exists an event Ω(K) such that P(Ω(K)) > 1−2 exp (−7K/9216)
and, on Ω(K), for all f ∈ F ,

1. if ‖f − f∗‖L2
P
> rQ(γQ) then

(30) Q1/4,K((f − f∗)2) >
1

(4θ0)2
‖f − f∗‖2L2

P
,

2. there exists 3K/4 block Bk with k ∈ K, for which
(31)

|(PBk − P )[2ζ(f − f∗)]| 6 εmax

(
r2
M (γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)
.

Moreover, it follows from Assumption 8 that for all k ∈ K, PBk [ζ(f −f∗)] =
P [ζ(f − f∗)] and P [2ζ(f − f∗)] 6 0 because of the convexity of F and the
nearest point theorem. Therefore, on the event Ω(K), for all f ∈ F ,

Q3/4,K(2ζ(f − f∗)) 6 εmax

(
r2
M (γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)
(32)

and

P [−2ζ(f − f∗)] 6 PBk [−2ζ(f − f∗)] + εmax

(
r2
M (γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)
6 Q1/4,K [(f − f∗)2 − 2ζ(f − f∗)] + εmax

(
r2
M (γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)

6 TK(f∗, f) + εmax

(
r2
M (γM ),

384θ2
m

ε2
K

N
, ‖f − f∗‖2L2

p

)
.

(33)

Let us place ourself on the event Ω(K) and let rK be such that r2
K =

384θ2
mK/(ε

2N). Given that rK > r∗, it follows from (30) and (32) that if
f ∈ F is such that ‖f − f∗‖L2

P
> rK then

TK(f, f∗) 6 Q3/4,K(2ζ(f − f∗))−Q1/4((f − f∗))

6

(
ε− 1

16θ2
0

)
‖f − f∗‖2L2

P
6

(
−1

32θ2
0

)
‖f − f∗‖2L2

P
(34)
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for ε = 1/(32θ2
0) and if ‖f − f∗‖L2

P
6 rK then TK(f, f∗) 6 Q3/4,K(2ζ(f −

f∗)) 6 εr2
K . In particular,

CK(f∗) = inf
f∈F

TK(f∗, f) = − sup
f∈F

TK(f, f∗) > −εr2
K

and since CK(ĝK) > CK(f∗) one has CK(ĝK) > −εr2
K . On the other hand, we

have CK(ĝK) = inff∈F TK(ĝK , f) 6 TK(ĝK , f
∗). Therefore, TK(ĝK , f

∗) >
−εr2

K . But, we know from (34) that if g ∈ F is such that ‖g − f∗‖L2
P
>

√
32εθ0rK then TK(g, f∗) 6 (−1/(32θ2

0)) ‖g − f∗‖2L2
P
< −εr2

K . Therefore,

one necessarily have ‖ĝK − f∗‖L2
P
6
√

32εθ0rK = rK .

The oracle inequality now follows from (33):

R(ĝK)−R(f∗) = ‖ĝK − f∗‖2L2
P

+ P [−2ζ(ĝK − f∗)]

6 r2
K + TK(f∗, ĝK) + εr2

K 6 (1 + 2ε)r2
K .

Proof of Theorem 8. Consider the same notations as in the proof of The-
orem 7 and denote K2 = N/(96θ2

0). It follows from the proof of Theo-
rem 7, that with probability larger than 1 − 2

∑K2
J=K exp(−7J/9216), for

all J ∈ [K,K2], CJ(f∗) > −εr2
J therefore, f∗ ∈ R̂J and so K̂ 6 K . The

latter implies that ĝ ∈ R̂Kwhich, by using the same argument as in the
end of the proof of Theorem 7 implies that ‖ĝ − f∗‖L2

P
6 rK and then

R(ĝ)−R(f∗) 6 (1 + 2ε)rK .
Example: Ordinary least squares. Let us consider the case where

F = {
〈
·, t
〉

: t ∈ Rd} is the set of all linear functionals indexed by Rd. We
assume that for all i ∈ I and t ∈ Rd,

1. E
〈
Xi, t

〉2
= E

〈
X, t

〉2
,

2. E(Yi −
〈
Xi, t

〉
)2 = E(Y −

〈
X, t

〉
)2,

3. E(Y −
〈
X, t∗

〉
)2
〈
X, t

〉2
6 θ2

mE
〈
X, t

〉2
,

4.
√
E
〈
X, t

〉2
6 θ0E|

〈
X, t

〉
|.

Let us now compute the fixed points rQ(γQ) and rM (γM ). The proof essen-
tially follows from Example 1 in [2]. Let J ⊂ I be such that |J | > N/2.
Denote by V ⊂ Rd the smallest linear span containing almost surely X. Let
ϕ1, · · · , ϕD be an orthonormal basis of V with respect to the Hilbert norm
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‖t‖ = E
〈
X, t

〉2
. It follows from Cauchy-Schwartz inequality that

E sup
f∈F :‖f−f∗‖

L2
P
6r

∣∣∣∣∣∑
i∈J

εi(f − f∗)(Xi)

∣∣∣∣∣ = E sup∑D
j=1 θ

2
j6r

2

∣∣∣∣∣∣
D∑
j=1

θj
∑
i∈J

εi
〈
Xi, ϕj

〉∣∣∣∣∣∣
6 rE

 D∑
j=1

(∑
i∈J

εi
〈
Xi, ϕj

〉)2
1/2

6 r

√√√√ D∑
j=1

∑
i∈J

E
〈
Xi, ϕj

〉2
= r
√
D|J |.

As a consequence, rQ(γQ) = 0 if γQ|J | >
√
D|J |, i.e. if γQ >

√
D/|J |. Using

the same arguments as above, we have

E sup
f∈F :‖f−f∗‖

L2
P
6r

∣∣∣∣∣∑
i∈J

εiζi(f − f∗)(Xi)

∣∣∣∣∣ 6 r

√√√√ D∑
j=1

∑
i∈J

Eζi
〈
Xi, ϕj

〉2
6 rθm

√
D|J |.

Therefore, rM (γM ) 6 (θm/γM )
√
D/|J | 6 (θm/γM )

√
2D/N and K∗ = D.

Now, it follows from Theorem 8, that if N > 2(384θ0)2D and |O| 6
N/(768θ2

0) then the MOM OLS with adaptively chosen number of blocks K
is such that for all K ∈

[
max (D, 8|O|) , N/(96θ2

0)
]
, with probability at least

1− 2 exp(−K/2304),

(35)

√
E
〈
t̂− t∗, X

〉2
6
θm
ε

√
384K

N
.

A consequence of (35), is that if the number of outliers is less than D/8 then
the MOM OLS recovers the classical D/N rate of convergence for the means
square error. This happens with probability at least 1 − 2 exp(−D/2304),
that is with an exponentially large probability. This is a remarkable fact
given that we only made assumptions on the L2 moments of the design
X. Moreover, this result is obtained under the only assumption on the in-
formative data that they have equivalent L2 moments to the one of the
distribution of interest P . Therefore, only very little information on P needs
to be brought to the statistician via the data; moreover those data can be
corrupted up to D/8 complete outliers. Finally, note that we did not assume
isotropicity of the design X to obtain (35). Therefore, (35) holds even for
very degenerate design X and the price we pay is the true dimension of X
that is of the dimension of the smallest linear span containing almost surely
X not the one of the whole space Rd.

8. Minimax optimality of Theorem 1, 2, 7 and 8. The aim of this
section is to show that the rates obtained in Theorems 1, 2, 7 and 8 are
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optimal in a minimax sense. To that end we recall a minimax lower bound
result from [4].

Theorem 9 (Theorem A′ in [4]). There exists an absolute constant c0

for which the following holds. Let X be a random variable taking values in
X . Let F be a class of functions such that Ef2(X) <∞. Assume that F is
star-shaped around one of its point (i.e. there exists f0 ∈ F such that for
all f ∈ F the segment [f0, f ] belongs to F ). Let ζ be a centered real-valued
Gaussian variable with variance σ independent of X and for all f∗ ∈ F
denote by Y f∗ the target variable

(36) Y f∗ = f∗(X) + ζ.

Let 0 < δN < 1 and r2
N > 0. Let f̂N be a statistics (i.e. a measurable

function from (X ×R)N to L2(PX) where PX is the probability distribution
of X). Assume that f̂N is such that for all f∗ ∈ F , with probability at least
1− δN , ∥∥∥f̂N (D)− f∗

∥∥∥2

L2
P

= R(f̂N (D))−R(f∗) 6 r2
N

where D = {(Xi, Yi) : i ∈ [N ]} is a set of N i.i.d. copies of (X,Y f∗). Then,
necessarily, one has

r2
N > min

(
c0σ

2 log(1/δN )

N
,
1

4
diam(F,L2(PX))

)
where diam(F,L2(PX)) denotes the L2(PX) diameter of F .

Theorem 9 proves that if the statistical model (36) holds then there is a
strong connexion between the deviation parameter δN and the uniform rate
of convergence r2

N over F : the smaller δN , the larger r2
N . We now use this

result to prove that Theorems 1, 2, 7 and 8 are essentially optimal.
In Theorems 7 and 8, the deviation bounds are 1− c1 exp(−c2K) and the

residual terms in the L2
P (to the square) estimation rates are like c3K/N .

Therefore, setting δN = c1 exp(−c2K) then Theorem 9 proves that no
procedure can do better than

min

(
c0σ

2 log(1/δN )

N
,
1

4
diam(F,L2(PX))

)
= min

(
c4σ

2K

N
,
1

4
diam(F,L2(PX))

)
.

Given that one can obviously bound from above the performance of f̂K and
ĝK as well as those of f̂ and ĝ in Theorems 7 and 8 by the L2

P -diameter of
F (because f∗ and those estimators are in F ), then the result of Theorem 7
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and 8 are optimal even in the very strong Gaussian setup with i.i.d. data
satisfying a Gaussian regression model like (36). The remarkable point is
that Theorem 7 and 8 have been obtained under much weaker assumptions
than those considered in Theorem 9 since outliers may corrupt the dataset,
the noise and the design do not have to be independent, the informative
data are only assumed to have a L2 norm equivalent to the one of P and
may therefore be heavy tailed.

Given the form of the deviation bounds in Theorems 1 and 2 and given
that r(ρK) ∼ K/N and that r(2ρK) ∼ K/N (if one assumes a weak regu-
larity assumption on the class F ) then the same conclusions hold for Theo-
rems 1 and 2: there is no procedure doing better than the MOM estimators
even in the very good framework of Theorem 9.
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